14.11.2012 Views

NAND Flash Architecture and Specification Trends - Micron

NAND Flash Architecture and Specification Trends - Micron

NAND Flash Architecture and Specification Trends - Micron

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Santa Clara, CA<br />

August 2012<br />

<strong>NAND</strong> <strong>Flash</strong> <strong>Architecture</strong> <strong>and</strong><br />

<strong>Specification</strong> <strong>Trends</strong><br />

Michael Abraham (mabraham@micron.com)<br />

<strong>NAND</strong> Solutions Group Architect<br />

<strong>Micron</strong> Technology, Inc.<br />

1


Abstract<br />

• <strong>NAND</strong> <strong>Flash</strong> is quickly moving to sub-20nm lithographies,<br />

making it the fastest scaling semiconductor technology<br />

ever!<br />

• What impact do these shrinks have to <strong>NAND</strong>’s<br />

architecture, performance, <strong>and</strong> reliability in system<br />

solutions?<br />

• Learn how to prepare for these changes <strong>and</strong> counteract<br />

some of them through improved system design.<br />

• Also, take a look at innovative <strong>NAND</strong> technologies that<br />

improve performance <strong>and</strong> reliability.<br />

Santa Clara, CA<br />

August 2012<br />

2


Topics<br />

• <strong>NAND</strong> <strong>Flash</strong> <strong>Architecture</strong> <strong>Trends</strong><br />

• The Cloud <strong>and</strong> Clients<br />

• Enterprise Application Requirements<br />

• ECC <strong>and</strong> SSD Topologies<br />

Santa Clara, CA<br />

August 2012<br />

3


Santa Clara, CA<br />

August 2012<br />

Process Node (nm)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

<strong>NAND</strong> Process Migration:<br />

Shrinking Faster than Moore’s Law<br />

30nm Class<br />

Q1-07<br />

Q2-07<br />

Q3-07<br />

Q4-07<br />

Q1-08<br />

Q2-08<br />

Q3-08<br />

20nm Class<br />

Q4-08<br />

50nm Class<br />

Q1-09<br />

Q2-09<br />

Q3-09<br />

Q4-09<br />

Q1-10<br />

Q2-10<br />

Q3-10<br />

Q4-10<br />

Q1-11<br />

Q2-11<br />

Q3-11<br />

Q4-11<br />

Q1-12<br />

Q2-12<br />

Q3-12<br />

Q4-12<br />

Volume Production Dates<br />

Company A Company B Company C Company D<br />

Data based on publicly available information<br />

4


8388608<br />

2097152<br />

Memory Organization <strong>Trends</strong><br />

<strong>NAND</strong> block size is increasing<br />

524288<br />

131072<br />

32768<br />

8192<br />

2048<br />

512<br />

128<br />

32<br />

8<br />

Santa Clara, CA<br />

August 2012<br />

• Larger page sizes <strong>and</strong> more planes increase sequential throughput<br />

• More pages per block reduce die size<br />

• As ECC requirements increase, the spare area per <strong>NAND</strong> page is increasing<br />

Block size (B) Data Bytes per Operation Pages per Block<br />

5


Number of Electrons<br />

Santa Clara, CA<br />

August 2012<br />

Consumer-grade <strong>NAND</strong> <strong>Flash</strong>:<br />

Endurance <strong>and</strong> ECC <strong>Trends</strong><br />

� ECC improves data retention <strong>and</strong> endurance<br />

� Process shrinks lead to less electrons per floating gate<br />

� To adjust for increasing RBERs, ECC is increasing exponentially to<br />

achieve equivalent UBERs<br />

� ECC algorithms are transitioning from BCH to LDPC <strong>and</strong> codeword<br />

sizes are increasing<br />

10,000<br />

1,000<br />

100<br />

10<br />

MLC-2 SLC<br />

Endurance (cycles)<br />

100,000<br />

10,000<br />

1,000<br />

SLC Endurance MLC-2 Endurance<br />

SLC ECC MLC-2 ECC<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

ECC (bits)<br />

6


100.0<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

Larger Page Sizes Improve<br />

Sequential Write Performance<br />

� For a fixed page size across process nodes, write throughput<br />

decreases as the <strong>NAND</strong> process shrinks<br />

� <strong>NAND</strong> vendors increase the page size to compensate for slowing<br />

array performance<br />

� Write throughput decreases with more bits per cell<br />

0.0<br />

Santa Clara, CA<br />

August 2012<br />

SLC MLC-2 MLC-3<br />

Data Bytes per Operation (Page Size * # of Planes)<br />

Sequential Programming Throughput (MB/s)<br />

7


Block Copy Time (ms)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

32 /<br />

300<br />

64 /<br />

250<br />

More Pages Per Block Affect<br />

R<strong>and</strong>om Write Performance<br />

� As block copy time increases, r<strong>and</strong>om performance decreases.<br />

� Key factors that impact <strong>NAND</strong> <strong>Flash</strong> r<strong>and</strong>om write performance<br />

1. Number of pages per block<br />

2. Increase of tPROG<br />

3. Increase in I/O transfer time due to larger page sizes (effect not shown below)<br />

� Impact to system product r<strong>and</strong>om performance<br />

• Some card interfaces have write timeout specs at 250ms.<br />

• To improve r<strong>and</strong>om performance, block management algorithms manage pages<br />

or partial blocks.<br />

Santa Clara, CA<br />

August 2012<br />

SLC MLC-2 MLC-3<br />

64 /<br />

300<br />

128 /<br />

250<br />

256 /<br />

300<br />

128 /<br />

600<br />

128 /<br />

900<br />

256 /<br />

900<br />

Pages per Block / tPROG (typ)<br />

Block Copy Time (ms)<br />

256 /<br />

1200<br />

512 /<br />

1500<br />

192 /<br />

2000+<br />

384 /<br />

2000+<br />

8


Larger Monolithic <strong>NAND</strong> Densities<br />

Increase R<strong>and</strong>om Read Latencies<br />

� Most applications favor read operations over write operations<br />

� Most read operations are 4KB data sectors<br />

� As monolithic <strong>NAND</strong> density increases, less <strong>NAND</strong> die are being used for a fixed<br />

system density<br />

� As tPROG increases, the latency of r<strong>and</strong>om 4KB sector reads becomes more<br />

variable in mixed-operation environments as the probability of needing to read from a<br />

die that is busy increases<br />

<strong>NAND</strong> <strong>Flash</strong> TAM by Density (Units)<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

2011 2012 2013 2014 2015 2016<br />

Santa Clara, CA USA<br />

August 2012<br />

Source: iSuppli 2Q12<br />

256Gb (32GB)<br />

128Gb (16GB)<br />

64Gb (8GB)<br />

32Gb (4GB)<br />

16Gb (2GB)<br />

8Gb (1GB)<br />

4Gb<br />

2Gb<br />

1Gb<br />

512Mb<br />

256Mb<br />

128Mb<br />

Read Latency (µs)<br />

4KB R<strong>and</strong>om Read Latency<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

25 /<br />

250<br />

25 /<br />

300<br />

50 /<br />

600<br />

50 /<br />

900<br />

50 /<br />

1200<br />

tR / tPROG<br />

Min Latency Max Latency<br />

65 /<br />

1500<br />

9


MT/s<br />

<strong>NAND</strong> Interface <strong>Trends</strong> for High-<br />

Performance Applications<br />

Single Channel Package Dual Channel Package<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Santa Clara, CA<br />

August 2012<br />

ONFI 1.0 ONFI 2.x ONFI 3.0<br />

NV-SDR NV-DDR<br />

NV-DDR2<br />

� Applications<br />

• Transitioned to 200MT/s<br />

interface<br />

• Shifting to 400MT/s interface<br />

� Packaging<br />

• Typically BGA<br />

• 2 channel widely available<br />

• 4 channel being st<strong>and</strong>ardized<br />

� ONFI 3.0 compatible<br />

components are available<br />

10


Santa Clara, CA USA<br />

August 2012<br />

The Cloud’s Impact on <strong>NAND</strong><br />

System <strong>Architecture</strong>s<br />

Cloud:<br />

Long-term<br />

Data<br />

Client:<br />

Near-term<br />

Data<br />

11


Storage Comparison<br />

Client Storage<br />

• Information stored<br />

locally, on the device<br />

• Consumer or SSD grade<br />

<strong>NAND</strong> <strong>Flash</strong><br />

Santa Clara, CA USA<br />

August 2012<br />

Cloud Storage<br />

• Information stored in<br />

hosted server farms or<br />

data centers<br />

• SLC or Enterprise grade<br />

<strong>NAND</strong> <strong>Flash</strong><br />

12


Application<br />

Requirement<br />

Comparison of <strong>NAND</strong> <strong>Flash</strong> by<br />

Application Requirement<br />

Client Storage /<br />

Consumer<br />

Client Storage /<br />

SSD Grade<br />

Cloud Storage /<br />

Enterprise Grade<br />

<strong>NAND</strong> Cell MLC-2 � MLC-3 MLC-2 � MLC-3 SLC � MLC-2<br />

Endurance /<br />

Cycling<br />

Up to 3K Up to 3K Up to 100K (SLC)<br />

Up to 30K (MLC-2)<br />

DPM Consumer grade Better Best<br />

I/O Channel<br />

Throughput<br />

40 � 200 MT/s 40 � 400 MT/s 133 MT/s � 400<br />

MT/s<br />

UBER 1E-14 Less Less<br />

Data retention at<br />

max cycling<br />

<strong>NAND</strong> Package<br />

Placements<br />

Santa Clara, CA<br />

August 2012<br />

1 year 1 year Less<br />

Typically 1 to 4 4 to 16 Up to 32<br />

13


Application<br />

Requirement<br />

Higher system<br />

density<br />

How Do Enterprise Applications Meet<br />

Enterprise Requirements?<br />

Controller<br />

Ability to h<strong>and</strong>le many <strong>NAND</strong><br />

<strong>Flash</strong> – some controllers up to<br />

256 die<br />

More throughput Page-based block management,<br />

DRAM cache,<br />

Overprovisioning,<br />

More I/O channels,<br />

Faster I/O channels,<br />

Multiple ECC engines,<br />

Simultaneous, mixed operations<br />

Low latency<br />

reads<br />

Santa Clara, CA<br />

August 2012<br />

DRAM cache,<br />

Use smaller monolithic <strong>NAND</strong><br />

densities<br />

SSD/Enterprise-grade<br />

<strong>NAND</strong> <strong>Flash</strong><br />

Lower DPM<br />

Faster I/O channel<br />

14


Application<br />

Requirement<br />

Higher endurance /<br />

reliability<br />

More consistent<br />

use over time<br />

Power within<br />

budget for parallel<br />

operations<br />

Santa Clara, CA<br />

August 2012<br />

How Do Enterprise Applications Meet<br />

Enterprise Requirements? (Part 2)<br />

Controller<br />

SSD/Enterprise-grade<br />

<strong>NAND</strong> <strong>Flash</strong><br />

Higher ECC More ECC required,<br />

Lower UBER,<br />

Higher endurance<br />

Balanced block management to<br />

reduce write amplification <strong>and</strong><br />

provide even wear leveling so<br />

<strong>NAND</strong> die <strong>and</strong> blocks wear<br />

evenly<br />

Block management throttles<br />

parallelism as needed<br />

Peak power reduction<br />

15


ECC <strong>and</strong> Algorithms<br />

• Enterprise-grade <strong>NAND</strong> requires more ECC than consumer-grade<br />

<strong>NAND</strong> <strong>Flash</strong> to achieve higher endurance <strong>and</strong> lower UBER<br />

• Providing more ECC to a consumer-grade <strong>NAND</strong> <strong>Flash</strong> does not<br />

necessarily improve endurance, though it can improve data retention<br />

• ECC requirements are going to increase to the point that it will be a<br />

significant amount of real estate on a multi-channel controller<br />

1,000,000<br />

800,000<br />

600,000<br />

400,000<br />

200,000<br />

0<br />

Santa Clara, CA<br />

August 2012<br />

Logic Gates<br />

BCH (t=16) BCH (t=29) BCH (t=60) RS/TCM LDPC<br />

Logic Gates<br />

16


How to H<strong>and</strong>le Increasing ECC?<br />

� ECC is <strong>NAND</strong> <strong>Flash</strong> technology dependent <strong>and</strong> is implemented in hardware<br />

� Block management <strong>and</strong> drivers are not technology dependent <strong>and</strong> can be updated in<br />

software/firmware<br />

� ECC Free Solution<br />

• Tightly couples ECC to the <strong>NAND</strong> technology<br />

• Also covers <strong>NAND</strong> aggregation, reducing channel loading<br />

• Block management performed in processor can use DRAM buffer <strong>and</strong> results in a higher<br />

performance than a fully managed solution<br />

Santa Clara, CA<br />

August 2012<br />

17


Santa Clara, CA<br />

August 2012<br />

Questions?<br />

18


Other <strong>Micron</strong> Presentations<br />

� <strong>NAND</strong> uses in high performance platforms<br />

• Tutorial A-11 – Tuesday, August 21 st @ 8:30 am<br />

� <strong>NAND</strong> flash architecture <strong>and</strong> specification<br />

trends<br />

• Tutorial B-11 – Tuesday, August 21st @ 8:30 am<br />

� MLC media discussion<br />

• Tutorial C-11 – Tuesday, August 21st @ 8:30 am<br />

� Next-generation storage <strong>and</strong> the mobile<br />

computing ecosystem<br />

• Session 101-B – Tuesday, August 21st @ 8:30 am<br />

� Why ECC-free <strong>NAND</strong> is the best solution for<br />

high-performance applications<br />

• Session 102-A – Tuesday, August 21st @ 10:10 am<br />

� How ONFI st<strong>and</strong>ards are fueling highperformance<br />

SSDs<br />

• Session 102-C – Tuesday, August 21st @ 10:10 am<br />

� The need for differentiated MLC solutions<br />

• Tutorial F-21 – Wednesday, August 22 nd @ 8:30 am<br />

� Virtualized SSD storage for enterprise systems<br />

• Tutorial H-22 – Wednesday, August 22 nd @ 4:30 pm<br />

� Performance trade-offs of flash-based client<br />

storage solutions<br />

• Tutorial A-31 – Thursday, August 23 rd @ 8:30 am<br />

� Phase Change Memory – Panel Discussion<br />

• Session 302-D – Thursday, August 23 rd @ 9:50 am<br />

� 2.5-inch PCIe interface for enterprise flash<br />

cache – Panel Discussion<br />

• Session 303-B – Thursday, August 23 rd @ 3:10 pm


About Michael Abraham<br />

• Architect in the <strong>NAND</strong> Solutions<br />

Group at <strong>Micron</strong><br />

• Covers advanced <strong>NAND</strong> <strong>and</strong><br />

PCM interfaces <strong>and</strong> system solutions<br />

• IEEE Senior Member<br />

• BS degree in Computer Engineering from<br />

Brigham Young University<br />

©2007-2012 <strong>Micron</strong> Technology, Inc. All rights reserved. Products are warranted only to meet <strong>Micron</strong>’s production data sheet specifications. Information, products<br />

<strong>and</strong>/or specifications are subject to change without notice. All information is provided on an “AS IS” basis without warranties of any kind. Dates are estimates only.<br />

Drawings not to scale. <strong>Micron</strong> <strong>and</strong> the <strong>Micron</strong> logo are trademarks of <strong>Micron</strong> Technology, Inc. All other trademarks are the property of their respective owners.<br />

Santa Clara, CA<br />

August 2012<br />

20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!