14.11.2012 Views

A Shift in Data Storage Todd Dinkelman Micron Technology, Inc.

A Shift in Data Storage Todd Dinkelman Micron Technology, Inc.

A Shift in Data Storage Todd Dinkelman Micron Technology, Inc.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SSDs<br />

A <strong>Shift</strong> <strong>in</strong> <strong>Data</strong> <strong>Storage</strong><br />

<strong>Todd</strong> D<strong>in</strong>kelman<br />

<strong>Micron</strong> <strong>Technology</strong>, <strong>Inc</strong>.<br />

Santa Clara, CA USA<br />

August 2008 1


Agenda<br />

� SSD Def<strong>in</strong>ed<br />

� Quick Comparison<br />

� Why MLC<br />

� Reliability/Endurance<br />

� Summary<br />

Santa Clara, CA USA<br />

August 2008 2


What is Be<strong>in</strong>g Called an SSD?<br />

� USB <strong>in</strong>terface embedded solution<br />

� Module-based<br />

� IDE <strong>in</strong>terface card w/o enclosure<br />

� 1.8-<strong>in</strong>ch and 2.5-<strong>in</strong>ch, 32GB and 64GB SSD<br />

for notebook and performance comput<strong>in</strong>g<br />

� Module/card with custom form factor, density,<br />

and <strong>in</strong>terface<br />

Santa Clara, CA USA<br />

August 2008 3


Sp<strong>in</strong>dle<br />

Slider (and head)<br />

Actuator<br />

arm<br />

Actuator<br />

SATA <strong>in</strong>terface<br />

connector<br />

Source: Panther Products<br />

Base cast<strong>in</strong>g<br />

The Complexity of HDDs<br />

Actuator axis<br />

Cover mount<strong>in</strong>g holes<br />

Power connector<br />

Platters<br />

Flex circuit<br />

(attaches heads<br />

to logic board)<br />

� HDD Advantages<br />

• Density<br />

• Price/GB<br />

Santa Clara, CA USA<br />

August 2008 4


SATA <strong>in</strong>terface<br />

connector<br />

The Simplicity of SSDs<br />

Controller<br />

Pr<strong>in</strong>ted Circuit<br />

NAND<br />

� SSD Advantages<br />

• Performance<br />

• Size<br />

• Weight<br />

• Ruggedness<br />

• Temperature<br />

Range<br />

• Power<br />

Santa Clara, CA USA<br />

August 2008 5


Capacity<br />

Performance<br />

Reliability<br />

Endurance<br />

Power<br />

Size<br />

Weight<br />

Shock<br />

Temperature<br />

Cost per bit<br />

SSDs vs. HDDs<br />

SSDs<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

HDDs<br />

Santa Clara, CA USA<br />

August 2008 6<br />

�<br />

�<br />

�<br />

� Due to recent advances<br />

<strong>in</strong> NAND lithography,<br />

SSD densities have<br />

reached capacities for<br />

mass market appeal<br />

� SSDs offer many<br />

features that lead to<br />

improved user<br />

experiences<br />

� Early shortcom<strong>in</strong>gs<br />

regard<strong>in</strong>g reliability and<br />

endurance are be<strong>in</strong>g<br />

overcome


SSDs <strong>in</strong> Comput<strong>in</strong>g<br />

Relative<br />

Latency<br />

1,200<br />

L2 Cache<br />

DRAM<br />

1,400<br />

Santa Clara, CA USA<br />

Cost/bit data as of November 2007<br />

August 2008 7<br />

1<br />

2.5<br />

CPU<br />

L1 Cache<br />

Relative<br />

Cost/Bit<br />

1,800<br />

NAND 25,000<br />

SSD 3<br />

25,000,000<br />

HDD<br />

10<br />

NAND Flash closes the latency gap<br />

1


NAND <strong>in</strong> Computer Architecture<br />

DRAM<br />

DRAM<br />

USB<br />

Flash Drive<br />

DDR3<br />

USB<br />

CPU<br />

Memory<br />

& Bus<br />

Control<br />

L<strong>in</strong>k<br />

Peripheral<br />

& Bus<br />

Control<br />

SATA<br />

Hybrid<br />

HDD SSD<br />

PCIe Graphics<br />

PCIe<br />

NVMHCI<br />

Flash<br />

Santa Clara, CA USA<br />

August 2008 8


MLC and SLC Differences<br />

� SLC<br />

• S<strong>in</strong>gle-level cell<br />

– One bit per cell<br />

� MLC<br />

• Multi-level cell<br />

– 2 bits per cell – today<br />

– 3 and 4 bits per cell – future<br />

� Endurance<br />

• SLC is typically 10 times better than MLC<br />

� Performance<br />

� Price<br />

• SLC provides ~2X the write performance of MLC<br />

• SLC-based products have better than 2X the<br />

price/GB compared to MLC<br />

Santa Clara, CA USA<br />

August 2008 9


SSD Market Trends<br />

� Improvements <strong>in</strong> controller technology<br />

• Mov<strong>in</strong>g from CompactFlash architectures to true<br />

SSD controllers<br />

� Notebooks and PCs<br />

• Migration to MLC<br />

– Light usage model<br />

– Cost, size, and performance are all important<br />

• Value Proposition<br />

– Better than desktop performance <strong>in</strong> an ultra-light<br />

notebook<br />

Santa Clara, CA USA<br />

August 2008 10


$/GB<br />

SSD Average Price/GB<br />

1.8" HDD<br />

MLC SSD<br />

2004 2006 2008 2010 2012 2014<br />

Santa Clara, CA USA<br />

August 2008 11


Reliability<br />

Endurance<br />

NAND Reliability and Endurance<br />

Effect<br />

Program<br />

Disturb<br />

Read<br />

Disturb<br />

<strong>Data</strong><br />

Retention<br />

Endurance/<br />

Cycl<strong>in</strong>g<br />

Description<br />

Cells not be<strong>in</strong>g<br />

programmed<br />

receive charge<br />

via elevated<br />

voltage stress<br />

Cells not be<strong>in</strong>g<br />

read receive<br />

charge via<br />

elevated voltage<br />

stress<br />

Charge loss over<br />

time<br />

Cycles cause<br />

charge trapped <strong>in</strong><br />

dielectric<br />

Observed As<br />

<strong>Inc</strong>reased read<br />

errors immediately<br />

after programm<strong>in</strong>g<br />

<strong>Inc</strong>reased read<br />

error at high<br />

number of reads<br />

<strong>Inc</strong>reased read<br />

errors with time<br />

Failed<br />

program/erase<br />

status<br />

Management<br />

ECC and Block<br />

Management<br />

ECC and Block<br />

Management<br />

ECC and Block<br />

Management<br />

Retire Block<br />

Santa Clara, CA USA<br />

August 2008 12


NAND Error Rate<br />

� Bit Error Rate<br />

– Fail<strong>in</strong>g bits corrected with appropriate levels of ECC<br />

– Correctable bit errors do not result <strong>in</strong> data loss<br />

� Raw Bit Error Rate (RBER): Bit error rate<br />

prior to ECC<br />

� Uncorrectable Bit Error Rate (UBER): Bit<br />

error rate after ECC<br />

� UBER is projected us<strong>in</strong>g the measured RBER<br />

and specific level of ECC<br />

Santa Clara, CA USA<br />

August 2008 13


SSD Reliability and Endurance<br />

� SSD reliability has two parts<br />

• MTBF<br />

– Measure of time between failures due to manufactur<strong>in</strong>g or<br />

component defects<br />

– 2 million hours is typical for <strong>Micron</strong> SSDs<br />

• Endurance<br />

– SSDs all wear out due to data writes<br />

– Indication of drive life based on a usage condition<br />

– <strong>Micron</strong> SSDs are specified to last 5 years under predef<strong>in</strong>ed<br />

usage conditions<br />

– Usage conditions vary for consumer and performance products<br />

Santa Clara, CA USA<br />

August 2008 14


Endurance Factors<br />

� Wear-level<strong>in</strong>g efficiency<br />

� Write amplification<br />

� NAND cycles<br />

� SSD densities<br />

Santa Clara, CA USA<br />

August 2008 15


Wear-Level<strong>in</strong>g<br />

� Dynamic wear-level<strong>in</strong>g uses the available<br />

free space and the <strong>in</strong>com<strong>in</strong>g data to equally<br />

wear each of the physical blocks<br />

• Static data is not <strong>in</strong>cluded <strong>in</strong> the available pool of<br />

wear-level<strong>in</strong>g blocks, leav<strong>in</strong>g a portion of the drive<br />

with no wear<br />

� Static wear-level<strong>in</strong>g considers all physical<br />

blocks <strong>in</strong> the SSD, regardless of content, and<br />

ma<strong>in</strong>ta<strong>in</strong>s an even level of wear across the<br />

entire drive<br />

Santa Clara, CA USA<br />

August 2008 16


Wear-Level<strong>in</strong>g Example<br />

� MLC devices can typically support 10,000 cycles per<br />

block<br />

� If you erased and reprogrammed one block every<br />

second, you would exceed the 10,000 cycl<strong>in</strong>g limit <strong>in</strong><br />

just 3 hours!<br />

60 x 60 x 3 = 10,080<br />

� Rather than cycl<strong>in</strong>g the same block, wear-level<strong>in</strong>g<br />

<strong>in</strong>volves distribut<strong>in</strong>g the number of blocks that are<br />

cycled<br />

Santa Clara, CA USA<br />

August 2008 17


Wear-Level<strong>in</strong>g Example (cont<strong>in</strong>ued)<br />

� An 8GB MLC-based SSD conta<strong>in</strong>s 32,768 <strong>in</strong>dependent<br />

blocks (each block is 256KB of data)<br />

� If we took the previous example and distributed the cycles<br />

over all 32,768 blocks, each block would have been<br />

programmed once after 9 hours<br />

� If you provided perfect wear-level<strong>in</strong>g on an 8GB drive, you<br />

could erase and program a block every second, every day<br />

for over 10 years!<br />

10,000 X 32,768 327,680,000<br />

= = 3,792 days = 10.38 years<br />

60 X 60 X 24 86,400<br />

Santa Clara, CA USA<br />

August 2008 18


Write Amplification<br />

� Additional write overhead due to garbage collection<br />

and wear-level<strong>in</strong>g<br />

• Write Amplification = Flash Writes / Host Writes<br />

� Influence on host data patterns<br />

• Large number of small random transfers <strong>in</strong>creases write<br />

amplification<br />

� Influenced by number of spare blocks and static data<br />

• Keep<strong>in</strong>g a percentage of the drive as spares will bound the<br />

write amplification<br />

Santa Clara, CA USA<br />

August 2008 19


1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Typical PC File Transfers<br />

Less than<br />

4KB<br />

4KB to<br />

16KB<br />

Avg. Disk Bytes Per Read/Write<br />

16KB to<br />

32KB<br />

32KB to<br />

64KB<br />

Transfer Size<br />

64KB to<br />

128KB<br />

128KB to<br />

256KB<br />

Greater<br />

than<br />

256KB<br />

Reads<br />

Writes<br />

Santa Clara, CA USA<br />

August 2008 20


SSD Endurance Calculation<br />

� Write amplification and wear-level<strong>in</strong>g<br />

efficiency must be accounted for when<br />

calculat<strong>in</strong>g SSD lifetime<br />

Life <strong>in</strong> Years =<br />

NAND Cycles * SSD Capacity<br />

Amplification Factor * GB/Year<br />

Santa Clara, CA USA<br />

August 2008 21


SSD Lifetime<br />

� Given a capacity po<strong>in</strong>t, NAND endurance, and writes-per-day, the<br />

upper limit on SSD lifetime is def<strong>in</strong>ed<br />

• Example: A 64GB SSD, 10K PROGRAM/ERASE cycles and write duty of<br />

350 GB/day will wear out <strong>in</strong> 5 years<br />

� Uneven wear with<strong>in</strong> a NAND Flash device may cause ‘hot spots’<br />

• Wear-level<strong>in</strong>g of NAND is necessary<br />

� Improper NAND data management may cause lifetime to be<br />

significantly less than the limit<br />

• A Flash ERASE operation must occur before a page can be rewritten<br />

• To improve overall throughput, erase granularity is much larger than write<br />

granularity<br />

• LBA traffic pattern can cause lots of extra data movement<br />

Santa Clara, CA USA<br />

August 2008 22


Times per Day (Count)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

SSD Endurance<br />

Average Number Of Times Per Day The Drive Space Gets Written<br />

0 12 24 36 48 60 72 84 96<br />

Required Lifetime (Months)<br />

33% WRITEs<br />

2K random IOPs<br />

64GB drive<br />

(55GB user-accessible<br />

20% reserved spares<br />

Santa Clara, CA USA<br />

August 2008 23


Time to Failure<br />

SSD Capacity Effect on Endurance<br />

Years for SSD to Wear Out<br />

32 64 128 256 512<br />

Drive Capacity (GB)<br />

� SSD life will double with every doubl<strong>in</strong>g of capacity<br />

Santa Clara, CA USA<br />

August 2008 24


Summary<br />

� SSDs br<strong>in</strong>g many advantages to storage<br />

• Performance<br />

• Power<br />

• Reliability<br />

• Environmental ruggedness<br />

� Different products for different markets<br />

• MLC-based SSDs for PCs<br />

� Reliability has two aspects<br />

• Endurance and MTBF<br />

Santa Clara, CA USA<br />

August 2008 25


Thank You<br />

Santa Clara, CA USA<br />

August 2008 26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!