28.01.2015 Views

Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ...

Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ...

Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

54 OPTOINFORMATICS’05<br />

MODELLING RIGOROUS DIFFRACTION FROM 3D<br />

SUB-WAVELENGTH STRUCTURES<br />

J.M. Brok a & H.P. Urbach a,b<br />

a<br />

Delft University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, PO Box 5046, 2600 GA Delft, The Netherlands<br />

b<br />

Philips Research Laboratories, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Holstlaan 4, 5656 AA Eindhoven, The<br />

Netherlands<br />

E-mail: j.m.brok@tnw.tudelft.nl<br />

We present a rigorous method to calculate the electromagnetic field that is<br />

scattered from a perfectly c<strong>on</strong>ducting layer with finite thickness, c<strong>on</strong>taining<br />

multiple, rectangular, 3D pits and holes. Plasm<strong>on</strong> effects and polarisati<strong>on</strong><br />

phenomena are shown.<br />

In the rigorous modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> diffracti<strong>on</strong> from 3D sub-wavelength metallic structures, the<br />

methods that are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used are based <strong>on</strong> meshing the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interest and applying the<br />

finite-difference time-domain or the finite-element method. When calculating a (large) 3D<br />

volume, these methods are computati<strong>on</strong>ally (very) costly. Therefore, the modelled<br />

structures usually c<strong>on</strong>sist either <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly a single scatterer (such as a pit or hole) or else <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

periodic (2D) array <str<strong>on</strong>g>of</str<strong>on</strong>g> identical scattering objects. However, when we want to understand<br />

for example the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> neighbouring pits in optical recording or the extraordinary<br />

transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light through sub-wavelength holes [1] , it is important to study the mutual<br />

interacti<strong>on</strong> between two or more scatterers at varying distances. When the scatterers are<br />

rectangular holes or pits in a very good c<strong>on</strong>ductor, we describe a mode expansi<strong>on</strong><br />

technique that is a very efficient alternative to the numerical techniques menti<strong>on</strong>ed above.<br />

C<strong>on</strong>sider a perfectly c<strong>on</strong>ducting<br />

metallic layer <str<strong>on</strong>g>of</str<strong>on</strong>g> thickness D,<br />

with rectangular pits and holes.<br />

The materials above and below<br />

the layer, as well as inside the<br />

pits and holes, are homogeneous<br />

dielectrics. The incident field can<br />

be a simple plain wave or a<br />

complicated spot. The field<br />

z<br />

above and below the layer is written as an integral over a c<strong>on</strong>tinuum <str<strong>on</strong>g>of</str<strong>on</strong>g> propagating and<br />

evanescent plane waves. The pits and holes can be c<strong>on</strong>sidered finite, metallic waveguides.<br />

The field inside such waveguides can be written as a sum over propagating and evanescent<br />

waveguide modes <str<strong>on</strong>g>of</str<strong>on</strong>g> the infinitely l<strong>on</strong>g waveguide with the same cross-secti<strong>on</strong>. The<br />

tangential comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> these two expansi<strong>on</strong>s are matched at the upper and lower<br />

surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> the layer. With this mode expansi<strong>on</strong> technique [2,3] , a 3D diffracti<strong>on</strong> problem is<br />

turned into a 2D numerical problem. It turns out that the coefficients for the plane waves<br />

can be eliminated from the system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s and hence, we end up with a fairly small<br />

system for <strong>on</strong>ly the coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> the waveguide modes. Solving this system is a matter <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sec<strong>on</strong>ds <strong>on</strong> a modern desktop computer.<br />

y<br />

x<br />

Fig. 1 Problem definiti<strong>on</strong>. Multiple rectangular pits (with depth<br />

smaller than D) or holes are modelled.<br />

D<br />

Lx<br />

Ly

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!