Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ...

Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ... Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ...

28.01.2015 Views

50 OPTOINFORMATICS’05 LIGHT EMISSION BY THE NANOMETER-SCALE STRUCTURES T.A.Kudykina, A.I.Pervak University “Ukraina”, Department ong>ofong> Engineering Technologies, vul. Horiva, 1 Γ , Kiev-71, Ukraine, 04071 E-mail: tkudykina@ukr.net It is shown that the nanometer-scale structures (quantum wells, dots, porous silicon, thin films) are the oscillatory systems with the natural frequencies in the spectral region from ultraviolet to infrared. The visible luminescence ong>ofong> the nanometer-scale objects and the radiowave generation by an oscillatory circuit are the similar processes but in the different regions ong>ofong> 1 frequencies. The natural frequency ong>ofong> a circuit is equal to ω 0 = ( where L and C are LC its inductance and capacity). The natural frequency ong>ofong> a sample with a thickness d is equal c to ω0 = (where ε and µ are a dielectric constant and a magnetic susceptibility ong>ofong> d εµ a medium). The natural frequencies ong>ofong> a thin metal or semiconductor layers with d = 1 ÷ 100 nm are situated in the spectral region from ultraviolet to infrared. Our calculations ong>ofong> the thickness dependencies ong>ofong> the indices ong>ofong> refraction n(d) and the coefficients ong>ofong> absorption α (d) ong>ofong> thin metal and semiconductor films based on our analogues ong>ofong> Fresnel’s formulas for absorbing media [1] and the experimental data ong>ofong> reflection and transmission for these materials show the resonance maxima ong>ofong> n(d) and the λ0 2πc resonance minima ong>ofong> α (d ) . All ong>ofong> them take place when d res = , ( λ0 = ). 2πn( d res ) ω0 Investigation show that silicon has the best emission ability among the investigated materials (Ag, Al, Fe, Si, Ge, Se, Te). Silver has greater negative absorption than silicon, but the luminescence decay in Ag (calculated coefficient ong>ofong> a time decay ong>ofong> a wave α 1 ) is α1 cn greater too. The condition =

SAINT-PETERSBURG, October 17 – 20, 2005 51 Fig.1. Dimension dependences ong>ofong> the coefficients ong>ofong> absorption α (d) ong>ofong> thin layers: х – tellurium; + - germanium; о – selenium; □ – silicon. The wavelength ong>ofong> the incident light is λ =580 nm. Fig.2. Dimension dependences ong>ofong> the coefficients ong>ofong> absorption ong>ofong> thin layers: □ - silver; ○ - aluminum; + - iron. The wavelength ong>ofong> the incident light is λ =546.1 nm.

50 OPTOINFORMATICS’05<br />

LIGHT EMISSION BY THE NANOMETER-SCALE STRUCTURES<br />

T.A.Kudykina, A.I.Pervak<br />

University “Ukraina”, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering Technologies,<br />

vul. Horiva, 1 Γ , Kiev-71, Ukraine, 04071<br />

E-mail: tkudykina@ukr.net<br />

It is shown that the nanometer-scale structures (quantum wells, dots, porous<br />

silic<strong>on</strong>, thin films) are the oscillatory systems with the natural frequencies in<br />

the spectral regi<strong>on</strong> from ultraviolet to infrared.<br />

The visible luminescence <str<strong>on</strong>g>of</str<strong>on</strong>g> the nanometer-scale objects and the radiowave<br />

generati<strong>on</strong> by an oscillatory circuit are the similar processes but in the different regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1<br />

frequencies. The natural frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> a circuit is equal to ω<br />

0<br />

= ( where L and C are<br />

LC<br />

its inductance and capacity). The natural frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample with a thickness d is equal<br />

c<br />

to ω0 = (where ε and µ are a dielectric c<strong>on</strong>stant and a magnetic susceptibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

d εµ<br />

a medium).<br />

The natural frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> a thin metal or semic<strong>on</strong>ductor layers with d = 1 ÷ 100 nm<br />

are situated in the spectral regi<strong>on</strong> from ultraviolet to infrared.<br />

Our calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the thickness dependencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the indices <str<strong>on</strong>g>of</str<strong>on</strong>g> refracti<strong>on</strong> n(d) and<br />

the coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong> α (d)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> thin metal and semic<strong>on</strong>ductor films based <strong>on</strong> our<br />

analogues <str<strong>on</strong>g>of</str<strong>on</strong>g> Fresnel’s formulas for absorbing media [1] and the experimental data <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reflecti<strong>on</strong> and transmissi<strong>on</strong> for these materials show the res<strong>on</strong>ance maxima <str<strong>on</strong>g>of</str<strong>on</strong>g> n(d) and the<br />

λ0<br />

2πc<br />

res<strong>on</strong>ance minima <str<strong>on</strong>g>of</str<strong>on</strong>g> α (d ) . All <str<strong>on</strong>g>of</str<strong>on</strong>g> them take place when d<br />

res<br />

= , ( λ0<br />

= ).<br />

2πn(<br />

d<br />

res<br />

) ω0<br />

Investigati<strong>on</strong> show that silic<strong>on</strong> has the best emissi<strong>on</strong> ability am<strong>on</strong>g the investigated<br />

materials (Ag, Al, Fe, Si, Ge, Se, Te). Silver has greater negative absorpti<strong>on</strong> than silic<strong>on</strong>,<br />

but the luminescence decay in Ag (calculated coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> a time decay <str<strong>on</strong>g>of</str<strong>on</strong>g> a wave α<br />

1<br />

) is<br />

α1 cn<br />

greater too. The c<strong>on</strong>diti<strong>on</strong> =

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!