28.01.2015 Views

Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ...

Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ...

Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SAINT-PETERSBURG, October 17 – 20, 2005 41<br />

CdF 2 :In: A FAST-RESPONSE MEDIUM OF THE REAL-TIME<br />

HOLOGRAPHY<br />

A.E. Angervaks, S.A. Dimakov * , S.I. Kliment’ev * , A.S. Shcheulin, A.I Ryskin<br />

S.I. Vavilov State Optical Institute, 199034 12, Birghevaya Line, Saint-Petersburg, Russia<br />

* Institute for Laser Physics, 199034 12, Birghevaya Line, Saint-Petersburg, Russia<br />

E-mail: angervax@mail.ru<br />

Opportunities <str<strong>on</strong>g>of</str<strong>on</strong>g> use semic<strong>on</strong>ductor CdF 2 crystals with bistable indium centers<br />

as a high-frequency medium <str<strong>on</strong>g>of</str<strong>on</strong>g> the real-time holography is discussed.<br />

Indium i<strong>on</strong>s in semic<strong>on</strong>ductor CdF 2 crystals form bistable centers having two states,<br />

ground (the “deep”) state and excited (the “shallow”) state. Two states <str<strong>on</strong>g>of</str<strong>on</strong>g> the center are<br />

separated with a potential barrier, due to which the excited state has a metastable nature.<br />

The str<strong>on</strong>g photoi<strong>on</strong>izati<strong>on</strong> absorpti<strong>on</strong> band is tied with each <str<strong>on</strong>g>of</str<strong>on</strong>g> two center states: in the<br />

ultraviolet-visible (UV-VIS) range <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum for the deep state and in the infrared<br />

(IR) range for the shallow state. These bands are due to electr<strong>on</strong> transfer from the<br />

corresp<strong>on</strong>ding center state to c<strong>on</strong>ducti<strong>on</strong> band <str<strong>on</strong>g>of</str<strong>on</strong>g> the crystal. The photoinduced c<strong>on</strong>versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the deep centers into the shallow centers corresp<strong>on</strong>d to transforming an electr<strong>on</strong> from<br />

the tightly bound into weakly bound state with corresp<strong>on</strong>ding change <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong><br />

spectrum and refractive index <str<strong>on</strong>g>of</str<strong>on</strong>g> the crystal. This c<strong>on</strong>versi<strong>on</strong> underlies the process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hologram writing in the crystals with bistable centers [1,2] . The hologram decay is due to the<br />

thermoinduced c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the shallow centers into the deep centers. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

small height <str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier the decay time is very short: at room temperature it is <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 10 -7 s.<br />

Due to this dynamical holograms written in CdF 2 :In, crystal can follow processes with<br />

frequency up to ~ 10 MHz [3,4] .<br />

High spatial resoluti<strong>on</strong> (> 5000 lines/mm), cubic symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the crystal,<br />

unrestricted number <str<strong>on</strong>g>of</str<strong>on</strong>g> writing/reading cycles, and opportunity <str<strong>on</strong>g>of</str<strong>on</strong>g> growing crystals <str<strong>on</strong>g>of</str<strong>on</strong>g> large<br />

dimensi<strong>on</strong>s and good optical quality make CdF 2 :In a promising medium <str<strong>on</strong>g>of</str<strong>on</strong>g> the real-time<br />

holography.<br />

One may show two fields <str<strong>on</strong>g>of</str<strong>on</strong>g> using this medium. The first <strong>on</strong>e is dynamical<br />

holographic correcti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the optical image. The CdF 2 :In-based dynamical PC mirror used<br />

for this purpose ensures resp<strong>on</strong>se time about 15 ns at reflecti<strong>on</strong> coefficient up to 2%. The<br />

gain in the beam divergence at compensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> model large-scale distorti<strong>on</strong>s is 20 times at<br />

the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> compensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.05 [5] .<br />

CdF 2 :In crystal with renewed holograms can also be used as a dynamical holographic<br />

filter in problems <str<strong>on</strong>g>of</str<strong>on</strong>g> the image recogniti<strong>on</strong> and optical processing <str<strong>on</strong>g>of</str<strong>on</strong>g> in<strong>format</strong>i<strong>on</strong>. In the<br />

model experiment comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two transparencies has been executed during the 20 ns<br />

pulse <str<strong>on</strong>g>of</str<strong>on</strong>g> YAG:Nd laser [6] .<br />

1. R.A. Linke et al., Appl. Phys. Lett., 65, №1, 16-19, (1994).<br />

2. A.I. Ryskin et al., Appl. Phys. Lett., 67, №1, 31-33, (1995).<br />

3. S.A. Kazanskii et al., Physica B, 308-310, 1035-1037, (2001).<br />

4. A.S. Shcheulin et al., Opt. and Spectr., 92, №1, 133-141, (2002).<br />

5. A.E. Angervaks et al., Opt. and Spectr., in press.<br />

6. A.S. Shcheulin et al., Opt. and Spectr., in press.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!