Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ...

Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ... Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ...

28.01.2015 Views

28 OPTOINFORMATICS’05 Table. Calculation ong>ofong> summary errors depending on loading ong>ofong> the SSP registering tracts Intensity ong>ofong> SR Counting rate, Probability Probability beam I, photon/sec pulses/sec ong>ofong> OEE, Р(1) ong>ofong> TEE, Р(2) P(1)/P(2) Apparatus Statistical Summary error, % error, % error, % 10 4 10 0 10 -6 5⋅10 -13 2⋅10 6 100 5⋅10 -5 100 10 5 10 1 10 -5 5⋅10 -11 2⋅10 5 31,6 5⋅10 -4 31,6 10 6 10 2 10 -4 5⋅10 -9 2⋅10 4 10 5⋅10 -3 10 10 7 10 3 10 -3 5⋅10 -7 2⋅10 3 3,2 5⋅10 -2 3,2 10 8 10 4 9,9⋅10 -3 4,95⋅10 -5 2⋅10 2 1 5⋅10 -1 1,1 10 9 10 5 9⋅10 -2 4,52⋅10 -3 2⋅10 1 0,3 5⋅10 0 5 10 10 10 6 3,68⋅10 -1 1,84⋅10 -1 2⋅10 0 0,1 5⋅10 1 50 Figure. The functional dependences ong>ofong> apparatus, statistical and summary errors from counting rate ong>ofong> output signal (i.e. level ong>ofong> loading ong>ofong> the SSP registering channels) 2 2 The summary error σ sum is evaluated the following way: σ sum = σ app + σ . The stat calculated values ong>ofong> apparatus, statistical and summary errors, depending on the level ong>ofong> loading ong>ofong> the registering channel, are given in the table. So, the figure clearly demonstrates character ong>ofong> these errors. The figure shows, that the minimum summary error ong>ofong> measurements (and consequently, the most exact measurements at the SSP calibration) can be obtained at the counting rate 10 4 pulses/sec, that requires to set the SR beam intensity from the VEPP-4 storage ring about 10 8 photon/sec (see, table). Acknowledgments. This work has been supported by the grant ong>ofong> International Science and Technology Center through the Project #2500 «Calibration ong>ofong> the Space Solar Patrol apparatus at the synchrotron source». The author is grateful to prong>ofong>. S.V. Avakyan and collegues: Mironov A.I., Chernikov D.A. and Zotkin I.A. 1. Afanas’ev I.M., Avakyan S.V., et al. Achievements in creation ong>ofong> the Space patrol apparatus ong>ofong> ionizing radiation ong>ofong> the Sun, Nuc. Ins. & Meth. in Ph. Res., 543, 312-316, 2005. 2. I. Afanas’ev, et al. Some results ong>ofong> developments to realization ong>ofong> calibration trials ong>ofong> the SSP instrumentation. Articles ong>ofong> the 4 th Int. conf. “Optics-2005”, Russia, 2005. In press. 3. Afanas'ev I.M., et al. Investigation ong>ofong> statistic aspects ong>ofong> use ong>ofong> SR beam to calibrate the SSP instrumentation, Articles ong>ofong> the 6th Int. conf. “Applied optics”, 1 (2), 425-428, 2004. 4. Avakyan S. V., Andreev E. P., Afanas'ev I. M., et al. Laboratory studies ong>ofong> apparatus for monitoring ionizing solar radiation from space, J. Opt. Technol. 68 (2), 81-88, 2001.

SAINT-PETERSBURG, October 17 – 20, 2005 29 THE X-RAY/EUV MULTIPLIERS IN THE SPACE SOLAR PATROL APPARATUS I.A.Zotkin Birzhevaya line, 12, Saint-Petersburg, 199034, Russia Vavilov State Optical Institute E-mail: i.a.zotkin@bk.ru In the report a brief description and motivation ong>ofong> using ong>ofong> the open secondary electronical multipliers for the tasks ong>ofong> the Space Solar Patrol are stressed. The structure ong>ofong> complex ong>ofong> the Space Solar Patrol (SSP) apparatus included [1,2] the measuring instruments that are intended for the spectroradiometric measurements ong>ofong> solar flux variations in the spectral range from 0.14 to 157 nm. In the SSP apparatus as receivers ong>ofong> solar radiation are used open secondary electronical multipliers (SEM) with a beryllium copper photocathode. This photoreceivers has the highest level ong>ofong> “solar blindness” (minimum sensitivity in the near ultraviolet (UV) and visible ranges and, opposite, maximum sensitivity in the work spectral region – song>ofong>t X-ray and Extreme UV) in compare with others domestically produced and foreign receivers ong>ofong> ionizing radiation ong>ofong> the Sun [2] . The technology ong>ofong> producing ong>ofong> these receivers was made in 1950-60s at the Vavilov SOI on the base ong>ofong> the reports ong>ofong> the domestic maker ong>ofong> the SEM – A.M. Tyutikov. This type ong>ofong> SEM with the dynodes from activated alloy ong>ofong> CuBe has been recommended as a photoreceiver ong>ofong> short-wave solar radiation, situated on satellites. The SEM ong>ofong> open type with 14 dynodes, photocathode and anode, has higher stability in compare with the common devices, that were made from another materials. The main is condition that this SEM allows repeated laps ong>ofong> the atmosphere air in the device. Pulse quantum yield, electron / quantum 1,E-01 1,E-03 1,E-05 1,E-07 1,E-09 1,E-11 Diamond BeO SiC 1,E-13 0 100 200 300 400 500 600 Wavelength, nm Fig. 1. The comparative characteristics ong>ofong> quantum efficiency ong>ofong> some photoreceivers in the spectral range from 95 to 600 nm

SAINT-PETERSBURG, October 17 – 20, 2005 29<br />

THE X-RAY/EUV MULTIPLIERS IN THE SPACE SOLAR PATROL<br />

APPARATUS<br />

I.A.Zotkin<br />

Birzhevaya line, 12, Saint-Petersburg, 199034, Russia<br />

Vavilov State Optical Institute<br />

E-mail: i.a.zotkin@bk.ru<br />

In the report a brief descripti<strong>on</strong> and motivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> using <str<strong>on</strong>g>of</str<strong>on</strong>g> the open sec<strong>on</strong>dary<br />

electr<strong>on</strong>ical multipliers for the tasks <str<strong>on</strong>g>of</str<strong>on</strong>g> the Space Solar Patrol are stressed.<br />

The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> complex <str<strong>on</strong>g>of</str<strong>on</strong>g> the Space Solar Patrol (SSP) apparatus included [1,2] the<br />

measuring instruments that are intended for the spectroradiometric measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> solar<br />

flux variati<strong>on</strong>s in the spectral range from 0.14 to 157 nm. In the SSP apparatus as receivers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> solar radiati<strong>on</strong> are used open sec<strong>on</strong>dary electr<strong>on</strong>ical multipliers (SEM) with a beryllium<br />

copper photocathode. This photoreceivers has the highest level <str<strong>on</strong>g>of</str<strong>on</strong>g> “solar blindness”<br />

(minimum sensitivity in the near ultraviolet (UV) and visible ranges and, opposite,<br />

maximum sensitivity in the work spectral regi<strong>on</strong> – s<str<strong>on</strong>g>of</str<strong>on</strong>g>t X-ray and Extreme UV) in compare<br />

with others domestically produced and foreign receivers <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izing radiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Sun [2] .<br />

The technology <str<strong>on</strong>g>of</str<strong>on</strong>g> producing <str<strong>on</strong>g>of</str<strong>on</strong>g> these receivers was made in 1950-60s at the Vavilov<br />

SOI <strong>on</strong> the base <str<strong>on</strong>g>of</str<strong>on</strong>g> the reports <str<strong>on</strong>g>of</str<strong>on</strong>g> the domestic maker <str<strong>on</strong>g>of</str<strong>on</strong>g> the SEM – A.M. Tyutikov. This<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> SEM with the dynodes from activated alloy <str<strong>on</strong>g>of</str<strong>on</strong>g> CuBe has been recommended as a<br />

photoreceiver <str<strong>on</strong>g>of</str<strong>on</strong>g> short-wave solar radiati<strong>on</strong>, situated <strong>on</strong> satellites. The SEM <str<strong>on</strong>g>of</str<strong>on</strong>g> open type<br />

with 14 dynodes, photocathode and anode, has higher stability in compare with the<br />

comm<strong>on</strong> devices, that were made from another materials. The main is c<strong>on</strong>diti<strong>on</strong> that this<br />

SEM allows repeated laps <str<strong>on</strong>g>of</str<strong>on</strong>g> the atmosphere air in the device.<br />

Pulse quantum yield, electr<strong>on</strong> / quantum<br />

1,E-01<br />

1,E-03<br />

1,E-05<br />

1,E-07<br />

1,E-09<br />

1,E-11<br />

Diam<strong>on</strong>d<br />

BeO<br />

SiC<br />

1,E-13<br />

0 100 200 300 400 500 600<br />

Wavelength, nm<br />

Fig. 1. The comparative characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> some photoreceivers in the<br />

spectral range from 95 to 600 nm

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!