28.01.2015 Views

Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ...

Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ...

Proceedings of Topical Meeting on Optoinformatics (pdf-format, 1.21 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

IV Internati<strong>on</strong>al C<strong>on</strong>ference for Students, Young Scientists and Engineers “Optics’05”<br />

Internati<strong>on</strong>al <str<strong>on</strong>g>Topical</str<strong>on</strong>g> <str<strong>on</strong>g>Meeting</str<strong>on</strong>g> <strong>on</strong> <strong>Optoin<strong>format</strong>ics</strong>’05<br />

C<strong>on</strong>ference Chairs:<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. V. N. Vasilev, Rector, State Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g> IT, Mechanics & Optics, St.Petersburg<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. G. T. Petrovsky, RAS Academian, OSR President, St.Petersburg<br />

<str<strong>on</strong>g>Meeting</str<strong>on</strong>g> Chairs:<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Maria Luisa Calvo Padilla, Universidad Complutense de Madrid<br />

Dr. Alexander V. Pavlov, S. I. Vavilov State Optical Institute, St.Petersburg<br />

<str<strong>on</strong>g>Meeting</str<strong>on</strong>g> Internati<strong>on</strong>al Program Committee:<br />

Dr. Tatiana Alieva, Universidad Complutense de Madrid, Spain<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Martin J. Bastiaans, Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Eidhoven, Netherlands<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Katarzyna Chalasinska-Macukow, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, Poland<br />

Dr. Pavel Cheben, Nati<strong>on</strong>al Research Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada, Canada<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Sergey O. Kostukevich, SPIE/Ukraine, Kiev, Ukraine<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Vladik Kreinovich, University <str<strong>on</strong>g>of</str<strong>on</strong>g> ElPaco, US<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Oleg P. Kuznetsov, RAS, Moscow, Russia<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Yurii T. Mazurenko, SOI, St.Petersburg, Russia<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Daniel Marini, Milano, Italy<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. G. Moagar-Poladian, Nat. Inst. for R&D in Microtech., Bucharest, Romania<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Le<strong>on</strong>id I. Muravsky, Physico-Mechanical Inst., Lviv, Ukraine<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Nikolai V. Nik<strong>on</strong>orov, SU ITMO, St.Petersburg, Russia<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Andrey V. Okishev, USA<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dejan Rakovic, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Belgrade, Serbia and M<strong>on</strong>tenegro<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dmitrii I. Stasel'ko, SOI, St.Petersburg, Russia<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Vladimir S. Udaltsov, GTL-CNRS Telecom, Metz, France<br />

Saint-Petersburg, 17-20 October 2005<br />

St.Petersburg State University <str<strong>on</strong>g>of</str<strong>on</strong>g> In<strong>format</strong>i<strong>on</strong> Technologies, Mechanics & Optics


<strong>Optoin<strong>format</strong>ics</strong>’2005. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Internati<strong>on</strong>al <str<strong>on</strong>g>Topical</str<strong>on</strong>g> <str<strong>on</strong>g>Meeting</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Optoin<strong>format</strong>ics</strong>’2005. Saint-Petersburg, 17-20 October 2005. / Ed. By<br />

Alexander V. Pavlov – SPb: SPbSU ITMO, 2005. – 67 p.<br />

This book c<strong>on</strong>tains the proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Internati<strong>on</strong>al <str<strong>on</strong>g>Topical</str<strong>on</strong>g> <str<strong>on</strong>g>Meeting</str<strong>on</strong>g><br />

<strong>on</strong> Optoi<strong>format</strong>ics’2005, which took place 17-20 October 2005 within<br />

framework <str<strong>on</strong>g>of</str<strong>on</strong>g> IV Internati<strong>on</strong>al C<strong>on</strong>ference “Optics’2005” (17-21 October).<br />

ISBN: 5-7577-0279-6<br />

© Authors, 2005<br />

© Saint-Petersburg State University <str<strong>on</strong>g>of</str<strong>on</strong>g> In<strong>format</strong>i<strong>on</strong> Technologies, Mechanics<br />

and Optics, 2005


SAINT-PETERSBURG, October 17 – 20, 2005 3<br />

TABLE OF CONTENTS<br />

Sessi<strong>on</strong> “Optical Technologies in In<strong>format</strong>i<strong>on</strong> Processing and Communicati<strong>on</strong>s” 5<br />

SOME ASPECTS OF SECURITY OF CHAOS-BASED COMMUNICATIONS (Invited) 5<br />

Vladimir S. Udaltsov, A. Locquet, L. Larger, J. P. Goedgebuer, D. S. Citrin<br />

INTEGRATED OPTICAL BRAGG GRATINGS FOR FAST ELECTROOPTICAL<br />

7<br />

CONTROL OF SPECTRAL CHANNELS IN OPTICAL TELECOMMUNICATIONS (Oral)<br />

Alexander Shamray, A. Kozlov, I. Ilichev, M. Petrov<br />

OPTOELECTRONIC GATES ON BIPHOTONS (Oral)<br />

8<br />

Yu. A. Asikritova, I. D. Balatsky, V. N. Gorbachev, A. I. Trubilko<br />

UNCERTAINTY RELATIONSHIPS FOR ANGULAR POSITION AND ANGULAR 10<br />

MOMENTUM OF LIGHT (Oral)<br />

Eric Yao, M. Padgett<br />

OPTICAL CORRELATION SYSTEMS FOR SECURITY VERIFICATION (Invited) 12<br />

Le<strong>on</strong>id I. Muravsky<br />

DETERMINATION OF SPECKLE DISPLACEMENT BY HYBRID OPTICAL-DIGITAL 14<br />

SPECKLE CORRELATOR (Oral)<br />

O. M. Sakharuk, N. V. Fityo, L. I. Muravsky, P. V. Yezhov<br />

MODELLING THE SPECKLE PATTERNS OF DEFORMABLE SURFACE FOR RIGID 16<br />

BODY MOTION ELIMINATION (Oral)<br />

Nazar V. Fityo<br />

IMAGE ENHANCEMENT BY IMPROVED CONTRAST-STRETCHING TECHNIQUE 17<br />

(Oral)<br />

Ching-Chung Yang<br />

FOTOBIOFTAL-1: A DATA ACQUISITION, PROCESSING AND STORAGE SYSTEM 19<br />

FOR AN OPHTHALMIC INSTRUMENT (Oral)<br />

Sorin Miclos, M. Mustata, D. Savastru, C. Cotirlan, T. Brezeanu, E. Ristici, A. Stefanescu-Dima<br />

Sessi<strong>on</strong> “Optical Technologies in Measurements” 21<br />

3-D MEASUREMENT OF AUTOMOTIVE GLASS BY USING A REFLECTIVE FRINGE 21<br />

TECHNIQUE (Oral)<br />

Oleksandr A. Skydan, M. J. Lalor, D. R. Burt<strong>on</strong><br />

THE APPLICATION OF DIRECT INTEGRAL-GEOMETRIC METHODS FOR THE 23<br />

ANALYSIS OF SOME EXPERIMENTAL INTERFEROMETRIC IMAGES (Oral)<br />

Abutrab A. Aliverdiev<br />

LASER PHOTOACOUSTIC MICROSCOPY OF MECHANICAL STRESSES IN MODERN 25<br />

MATERIALS (Invited)<br />

Kirill L. Muratikov, A. L. Glazov<br />

ESTIMATION OF INFLUENCE OF STATISTICAL ERRORS ON AN ACURACY OF 27<br />

CALIBRATION OF THE SPACE SOLAR PATROL INSTRUMENTATION AT A<br />

SYNCHROTRON RADIATION SOURCE (Oral)<br />

Ilya M. Afanas’ev<br />

THE X-RAY/EUV MULTIPLIERS IN THE SPACE SOLAR PATROL APPARATUS (Oral) 29<br />

I. A. Zotkin<br />

Sessi<strong>on</strong> “Holography and Recording Media” 31<br />

STUDY OF PULSED HOLOGRAM RECORDING ON THE PHOTOPOLYMERIC 31<br />

MATERIAL (Oral)<br />

Victor N. Mikhailov, O. V. Bandyuk, D. A. Kozlovsky<br />

ELECTRICAL AND OPTICAL PROPERTIES OF HOLOGRAMS RECORDED IN 33<br />

CONDUCTOR POLYMER (Oral)<br />

M. A. Flores-Vázquez, M. P. Hernández-Garay, A. Olivares-Pérez, I. Fuentes-Tapia, S. Toxqui–<br />

López<br />

HIGH-EFFECTIVE MULTIPLEX HOLOGRAMS IN VOLUME POLYMER MEDIA (Oral) 35<br />

O. V. Andreeva, Alexander P. Kushnarenko, B. B. Lesnichij, A. P. Nacharov, A. A. Param<strong>on</strong>ov<br />

DIGITAL HOLOGRAMS REPLICATIONS WITH POLYVINYL ALCOHOL (Oral) 37<br />

M. P. Hernández-Garay, A. Olivares-Pérez, I. Fuentes-Tapia, S. Toxqui-López<br />

NANOPOROUS SHRINKPROOF MEDIA FOR RECORDING AND STORAGE OF 39<br />

INFORMATION (Oral)<br />

Natalia V. Andreeva, A. P. Kushnarenko, O. V. Andreeva


4 OPTOINFORMATICS’05<br />

CdF2:In: A FAST-RESPONSE MEDIUM OF THE REAL-TIME HOLOGRAPHY (Oral) 41<br />

Alexander E. Angervaks, S. A. Dimakov, S. I. Kliment’ev, A. S. Shcheulin, A. I. Ryskin<br />

STRONGLY NONLINEAR REVERSIBLE HOLOGRAPHIC RECORDING AT THE 42<br />

STRUCTURES Sb 2 S 3 – LC and As 40 Se 60 -LC (Oral)<br />

Larisa P. Amosova, A. N. Chaika, N. I. Pletneva<br />

ABOUT SIMILARITY OF THE VOLUME SUPERPOSED HOLOGRAMS TO THE HUMAN 44<br />

MEMORY (Oral)<br />

Viacheslav V. Orlov<br />

DENTAL RESIN HOLOGRAMS (Poster)<br />

46<br />

Santa Toxqui-López, A. Olivares-Pérez, N. Grijalva y Ortiz, M. P. Hernández-Garay, B. Ruiz-Limón,<br />

I. Fuentes-Tapia<br />

MILK HOLOGRAMS (Poster)<br />

48<br />

I. Olvera-Bautista, S. Toxqui-López, A. Olivares-Pérez, M. Ortiz-Palacios, E. L. P<strong>on</strong>ce-Lee, M. P.<br />

Hernández-Garay, I. Fuentes-Tapia<br />

Sessi<strong>on</strong> “Optical Devices, Optical Trans<strong>format</strong>i<strong>on</strong>s, and Modeling” 50<br />

LIGHT EMISSION BY THE NANOMETER-SCALE STRUCTURES (Oral)<br />

50<br />

Tamara A. Kudykina, A. I. Pervak<br />

IMPACT OF TILT OF A PHASE DOE ON THE PROPERTIES OF THE LASER BEAMS 52<br />

MATCHED WITH THE ANGULAR HARMONICS BASIS (Oral)<br />

Ant<strong>on</strong> A. Almazov, S. N. Kh<strong>on</strong>ina, V. V. Kotlyar<br />

MODELLING RIGOROUS DIFFRACTION FROM 3D SUB-WAVELENGTH<br />

54<br />

STRUCTURES (Oral)<br />

Janne M. Brok, H. P. Urbach<br />

LIDAR SIGNAL PROCESSING (Poster)<br />

56<br />

Georgeta-Jeni Ciuciu, D. N. Nicolae, C. Talianu, M. Ciobanu, V. Babin<br />

A Nd:YAG SURGICAL LASER FOR OPHTHALMOLOGIC STEREOMICROSCOPE 58<br />

(Poster)<br />

D. Savastru, S. Miclos, C. Cotirlan, M. Mustata, E. Ristici, T. Brezeanu, S. D<strong>on</strong>tu, M. Rusu, V. Savu,<br />

A. Stefanescu<br />

ANALYSIS OF EDGE DETECTION ALGORITHM FOR ANALOG REALIZATION (Poster) 60<br />

Evgeniya N. Serova<br />

PITTING CORROSION MONITORING WITH ELECTRONIC-SPECKLE<br />

61<br />

PHOTOGRAPHY (Poster)<br />

Lyudmila F. Frankevych<br />

Post-deadline papers 63<br />

THE ANALYSIS OF RESOLUTION CAPABILITY OF THE OPTICAL COHERENT 63<br />

TOMOGRAPH (Oral)<br />

K<strong>on</strong>stantin L. Khohlov, V. K. Sokolov<br />

GENERATION OF THE DISCRETE SPECTRAL SUPERCONTINUUM IN TWO<br />

65<br />

INTENSIVE ULTRASHORT PULSES INTERACTION (Poster)<br />

Michael A. Bakhtin, S. A. Kozlov<br />

THE PHYSICS AND ENGINEERING ASPECTS OF VIBRATION ISOLATION SYSTEM 67<br />

DESIGNS FOCUSING THE APPLICATIONS FROM DIMENSIONAL TO QUANTUM<br />

METROLOGY SET UPS IN INDUSTRIAL ENVIRONMENT (Poster)<br />

S. N. Bagchi


SAINT-PETERSBURG, October 17 – 20, 2005 5<br />

SOME ASPECTS OF SECURITY OF CHAOS-BASED<br />

COMMUNICATIONS<br />

V. S. Udaltsov a , A. Locquet a,b , L. Larger a , J. P. Goedgebuer a , and D. S. Citrin a,b<br />

a GTL-CNRS TELECOM, UMR FEMTO-ST 6174, Georgia Tech Lorraine, 2-3 rue<br />

Marc<strong>on</strong>i, 57070 Metz, France<br />

b School <str<strong>on</strong>g>of</str<strong>on</strong>g> Electrical and Computer Engineering, Georgia Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

Atlanta, Georgia 30332-0250, USA<br />

E-mail: udaltsov@georgiatech-metz.fr<br />

Chaotic dynamics ruled by delay-differential equati<strong>on</strong>s (DDE) and chaos-based<br />

communicati<strong>on</strong> systems are explored from the point <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>of</str<strong>on</strong>g> security. The<br />

problem <str<strong>on</strong>g>of</str<strong>on</strong>g> the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the time-delay is the main security aspect<br />

c<strong>on</strong>sidered here. It is shown that carefully chosen architectures <str<strong>on</strong>g>of</str<strong>on</strong>g> the chaotic<br />

transmitter can increase the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> security.<br />

The idea to use a chaotic carrier and synchr<strong>on</strong>ized chaotic waveforms for secure<br />

communicati<strong>on</strong>s proposed originally in the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the nineties was revised precisely<br />

in c<strong>on</strong>juncti<strong>on</strong> with security issues. Several papers dedicated to the security <str<strong>on</strong>g>of</str<strong>on</strong>g> chaotic<br />

cryptosystems have been published in the last years. In the very beginning, systems using<br />

low-dimensi<strong>on</strong>al chaotic carriers have been explored and broken successfully. Then, it was<br />

shown that even a high chaos complexity characterized by a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> positive<br />

Lyapunov exp<strong>on</strong>ents, is not sufficient to ensure a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> security. This means that<br />

hyperchaotic cryptosystems can also be broken, as it was is shown in our paper [1] .<br />

We c<strong>on</strong>sider here optoelectr<strong>on</strong>ic cryptosystems ruled by delay-differential equati<strong>on</strong>s<br />

(a DDE in its simplest normalized form is known as Ikeda’s equati<strong>on</strong> [2] ). They are <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particular interest because they can produce highly complex chaos and, at the same time,<br />

are relatively easy to realize [3] . Message encoding is performed by a chaotic modulati<strong>on</strong><br />

technique [3] . Actually, the DDE-emitter represents a circuit with the feedback loop that<br />

includes a c<strong>on</strong>trolled source (for example, a tunable laser diode), a n<strong>on</strong>linear element (for<br />

example, a birefringent plate placed between two polarizers or an interferometer), and a<br />

detecting photodiode that c<strong>on</strong>verts optical signals to electrical <strong>on</strong>es and also limits the<br />

bandwidth <str<strong>on</strong>g>of</str<strong>on</strong>g> chaotic oscillati<strong>on</strong>s. In numerical models such a limitati<strong>on</strong> can be modeled<br />

by low- or band-pass filters [4] .<br />

If the topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the system (the block-diagrams and the equati<strong>on</strong>s describing the<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the system) is known to an eavesdropper (this assumpti<strong>on</strong> is usual for<br />

cryptanalysis), the rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the system allows decoding <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

transmitted in<strong>format</strong>i<strong>on</strong>. The eavesdropper’s attack can be fulfilled with a real receiver that<br />

should be synchr<strong>on</strong>ized with the chaotic emitter [5] , or by numerical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

receiver.<br />

In our previous article [1] , we have shown that the rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all the parameters<br />

characterizing a hyperchaotic system with a single feedback loop c<strong>on</strong>taining a str<strong>on</strong>g<br />

n<strong>on</strong>linearity is possible, when the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the time delay T is known or recovered. When<br />

there is no way to identify the time delay, the chaos-based communicati<strong>on</strong> system becomes<br />

difficult to break using the cryptanalysis techniques published in the literature. In that<br />

sense, the main problem for an eavesdropper is to recover T. Thus, we have c<strong>on</strong>centrated<br />

our attenti<strong>on</strong> <strong>on</strong> the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> identifying the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the time delay T.


6 OPTOINFORMATICS’05<br />

We applied and analyzed five published methods for the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the time<br />

delay from time series generated by a few different types <str<strong>on</strong>g>of</str<strong>on</strong>g> chaos-generating emitters.<br />

These methods are:<br />

1. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the return maps <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmitted signal,<br />

2. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the autocorrelati<strong>on</strong> functi<strong>on</strong> (ACF) <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmitted signal,<br />

3. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the average mutual in<strong>format</strong>i<strong>on</strong> technique (the AMI-technique),<br />

4. Recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> T by local linear fits in a low-dimensi<strong>on</strong>al space [6] ,<br />

5. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the time-distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extrema [7] .<br />

We used the numerical models describing a few modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a communicati<strong>on</strong><br />

system based <strong>on</strong> a DDE-circuit. These are:<br />

1. A system with two feedback loops, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> them c<strong>on</strong>trolling the source and another<br />

<strong>on</strong>e c<strong>on</strong>trolling the n<strong>on</strong>linearity,<br />

2. A system with two parallel time delays,<br />

3. A system with two parallel time delays and two different filters,<br />

4. A system with two parallel n<strong>on</strong>linearities and two time delays,<br />

5. A system with two switching time delays,<br />

6. A system with modulated time delays.<br />

We integrated the numerical models with the Runge-Kutta procedure for different<br />

sets <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters in the feedback loops. Next, chaotic time series generated by the<br />

aforementi<strong>on</strong>ed systems were analyzed from the point <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>of</str<strong>on</strong>g> the possibility to identify<br />

the time delay T.<br />

In brief, the main results obtained can be summarized as follows:<br />

1. The communicati<strong>on</strong> system based <strong>on</strong> the chaos-generating circuit with a single<br />

feedback c<strong>on</strong>taining a time delay and a n<strong>on</strong>linearity can be successfully attacked and<br />

rec<strong>on</strong>structed by an eavesdropper, despite the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> generating hyperchaotic<br />

signals.<br />

2. Numerical results obtained show that it is possible to find system architectures that<br />

increase the security <str<strong>on</strong>g>of</str<strong>on</strong>g> the cryptosystem up to the necessary level.<br />

3. A simple additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a sec<strong>on</strong>d feedback loop is not the universal remedy against<br />

breaking; the system becomes more secure <strong>on</strong>ly with specific choices <str<strong>on</strong>g>of</str<strong>on</strong>g> system<br />

architectures and parameters.<br />

Acknowledgements: The participati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> V. S. Udaltsov was supported by the Centre<br />

Nati<strong>on</strong>al de la Recherche Scientifique (CNRS), France.<br />

1. V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J. B. Cuenot, P. Levy, and W. T. Rhodes,<br />

Phys. Lett A 308, p. 54, 2003.<br />

2. K. Ikeda and K. Matsumoto, Physica D 29, p. 223, 1987.<br />

3. J. P. Goedgebuer, L. Larger, H. Porte, Phys. Rev. Lett. 80, No. 10, pp. 2249-2252,<br />

1998.<br />

4. V. S. Udaltsov, L. Larger, J. P. Goedgebuer, M. W. Lee, E. Genin, and W. T. Rhodes,<br />

IEEE TCAS-1 49, No. 7, pp.1006-1009, 2002.<br />

5. V. S. Udaltsov, J. P. Goedgebuer, L Larger., W. T. Rhodes, Phys. Rev. Lett. 86. No. 9,<br />

pp, 1892-1895, 2001.<br />

6. M. J. Bünner, M. Popp, Th. Meyer, A. Kittel, and J. Parisi, Phys. Rev. E 54, p. 3082,<br />

1996.<br />

7. B. P. Bezruchko, A. S. Karavaev, V. I. P<strong>on</strong>omarenko, and M. D. Prokhorov, Phys. Rev.<br />

E 64, 056216-1, 2001.


SAINT-PETERSBURG, October 17 – 20, 2005 7<br />

INTEGRATED OPTICAL BRAGG GRATINGS FOR FAST<br />

ELECTROOPTICAL CONTROL OF SPECTRAL CHANNELS IN<br />

OPTICAL TELECOMMUNICATIONS<br />

Alexander Shamray, Alexander Kozlov, Igor Ilichev, Mikhail Petrov<br />

I<str<strong>on</strong>g>of</str<strong>on</strong>g>fe Physico-Technical Institute, Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> Quantum Electr<strong>on</strong>ics,<br />

26 Polytekhnicheskaya, St. Petersburg, 194021, Russia<br />

Ph<strong>on</strong>e: +7-812-2479336, fax: +7-812-247-1017, e-mail: achamrai@mail.i<str<strong>on</strong>g>of</str<strong>on</strong>g>fe.ru<br />

A novel method <str<strong>on</strong>g>of</str<strong>on</strong>g> fast electrooptical c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectral resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> Bragg<br />

gratings has been developed. An integrated optical device for the c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spectral channels based <strong>on</strong> this method has been fabricated and tested.<br />

We have developed a novel technique <str<strong>on</strong>g>of</str<strong>on</strong>g> the electrooptical c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectral resp<strong>on</strong>se<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Bragg gratings in LiNbO 3 single-mode channel waveguides. The technique is based <strong>on</strong><br />

inducing <str<strong>on</strong>g>of</str<strong>on</strong>g> the average refractive index disc<strong>on</strong>tinuities which lead to the trans<strong>format</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> grating spectral resp<strong>on</strong>se. An integrated optical device for dem<strong>on</strong>strati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the suggested technique has been fabricated. A photorefractive Bragg grating was formed<br />

in the LiNbO 3 single mode optical waveguide by holographic recording. Average<br />

refractive index disc<strong>on</strong>tinuities in the Bragg grating were produced and electrically<br />

c<strong>on</strong>trolled by applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the external electric field with a specified spatial distributi<strong>on</strong><br />

defined by electrodes <str<strong>on</strong>g>of</str<strong>on</strong>g> specially designed c<strong>on</strong>figurati<strong>on</strong>. Two modes <str<strong>on</strong>g>of</str<strong>on</strong>g> the device<br />

operati<strong>on</strong> and two different regimes <str<strong>on</strong>g>of</str<strong>on</strong>g> its spectral resp<strong>on</strong>se c<strong>on</strong>trol have been<br />

dem<strong>on</strong>strated. The first regime is simple tuning <str<strong>on</strong>g>of</str<strong>on</strong>g> the central wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bragg<br />

grating spectral resp<strong>on</strong>se without changing its shape by applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a spatially uniform<br />

electric field. The wavelength shift <str<strong>on</strong>g>of</str<strong>on</strong>g> about 0.1 nm has been obtained for an applied<br />

electric field <str<strong>on</strong>g>of</str<strong>on</strong>g> 7.5 V/µm. This fast electrooptical tuning can be very attractive for<br />

wavelength locking and laser stabilizati<strong>on</strong>. The sec<strong>on</strong>d regime <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trol is a<br />

trans<strong>format</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bragg grating spectral resp<strong>on</strong>se. The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

external electric field <str<strong>on</strong>g>of</str<strong>on</strong>g> the same magnitude (7.5 V/µm), but opposite polarity to different<br />

halves <str<strong>on</strong>g>of</str<strong>on</strong>g> the grating produces the average refractive index disc<strong>on</strong>tinuity that results in<br />

maximum transmittance at the central wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the grating reflecti<strong>on</strong> band. Thus the<br />

fast electrooptical switching from the stop-band mode to the pass-band mode has been<br />

dem<strong>on</strong>strated. This mode <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong> is very attractive for building optical Add/Drop<br />

multiplexers, wavelength selective electrically c<strong>on</strong>trolled optical attenuators for optical<br />

power equalizers, and electrooptical modulators (allowing modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e specific<br />

wavelength channel without affecting the other channels). A high wavelength selectivity<br />

(0.1 ÷ 0.01 nm), fast electrooptical c<strong>on</strong>trol (to 10 ns), relatively low c<strong>on</strong>trolling voltages,<br />

an integrated optical implementati<strong>on</strong>, compatibility with other comp<strong>on</strong>ents in modern<br />

optical networks, and possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> mass producti<strong>on</strong> make this device extremely promising<br />

as a key building block <str<strong>on</strong>g>of</str<strong>on</strong>g> various optical systems intended for c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> narrow-band<br />

spectral channels in WDM telecommunicati<strong>on</strong> systems.<br />

The financial support <str<strong>on</strong>g>of</str<strong>on</strong>g> the INTAS (Grant Nr 04-83-3429) and Council <str<strong>on</strong>g>of</str<strong>on</strong>g> the grants<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> President <str<strong>on</strong>g>of</str<strong>on</strong>g> Russian Federati<strong>on</strong> for support <str<strong>on</strong>g>of</str<strong>on</strong>g> young russian scientists and leading<br />

scientific schools (Grants NSH-98.2003.2 and MK-1520.2004.9) is gratefully<br />

acknowledged.


8 OPTOINFORMATICS’05<br />

OPTOELECTRONIC GATES ON BIPHOTONS<br />

Yu. A. Asikritova, I.D. Balatsky, V.N. Gorbachev, A.I Trubilko<br />

Nor'Westerly Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Printing <str<strong>on</strong>g>of</str<strong>on</strong>g> St.-Petersburg State<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology and Design 13, Djambula, St.-Petersburg,<br />

191180, Russia Tel: (+7 812) 164-6556 Fax: (+7 812) 164-6556<br />

Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> Quantum In<strong>format</strong>i<strong>on</strong> and Computati<strong>on</strong>, St.-Petersburg<br />

State University <str<strong>on</strong>g>of</str<strong>on</strong>g> AeroSpace Instrumentati<strong>on</strong>, 67, Bolshaya<br />

Morskaya, St.-Petersburg, 190000<br />

E-mail: vn@vg3025.spb.edu<br />

A set <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement-based gates exploiting bipartite entanglement is<br />

c<strong>on</strong>sidered. These gates allow to perform any operati<strong>on</strong>s <strong>on</strong> given input states<br />

and can be implemented from biphot<strong>on</strong>s.<br />

Biphot<strong>on</strong>s or pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g correlated phot<strong>on</strong>s are well known in quantum optics<br />

and there is a significant progress in their generating and manipulating. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>classical<br />

correlati<strong>on</strong> between phot<strong>on</strong>s their state is entangled and known as EPR (Einstein-<br />

Podolsky-Rosen) pair, that is a main resource <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum in<strong>format</strong>i<strong>on</strong> processing. In our<br />

work we exploit the correlati<strong>on</strong> to achieve a set <str<strong>on</strong>g>of</str<strong>on</strong>g> logical gates with optical input and<br />

output. The gates proceed via measurement <strong>on</strong> the phot<strong>on</strong>s, when the measurement<br />

outcomes or photocurrent <str<strong>on</strong>g>of</str<strong>on</strong>g> detectors carry out the gate operati<strong>on</strong>.<br />

Our gates bel<strong>on</strong>g to the class <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement based circuits, that perform<br />

computati<strong>on</strong>s using quantum measurement as primitive. This idea has been introduced by<br />

Gottesman and Chuang [1] and developed by many authors. In fact, any gate changes the<br />

input state by transforming it into output. The state <str<strong>on</strong>g>of</str<strong>on</strong>g> the physical system can be changed<br />

by two ways. First is an unitary evoluti<strong>on</strong> due from interacti<strong>on</strong> between physical systems,<br />

sec<strong>on</strong>d is quantum projective measurement. Now there are two models <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement<br />

based computati<strong>on</strong>. First is teleportati<strong>on</strong> quantum computati<strong>on</strong> (TQC) [1,2] with gates based<br />

<strong>on</strong> teleportati<strong>on</strong>. Sec<strong>on</strong>d is <strong>on</strong>e-way quantum computer (1WQC) introduced Briegel [3] in<br />

which computati<strong>on</strong> proceeds via local single-qubit measurements <strong>on</strong> the multiparticle<br />

entangled states, known as cluster or graph states. An experimental implementati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1WQC using four-qubit optical cluster states have been dem<strong>on</strong>strated by Zeilinger [4] .<br />

We c<strong>on</strong>sider a versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement based gates using biphot<strong>on</strong>s. The key idea<br />

is a str<strong>on</strong>g correlati<strong>on</strong> between pair <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s A and B from biphot<strong>on</strong>. Let phot<strong>on</strong> A is<br />

measured, then the remainder phot<strong>on</strong> B is projected into a state dependent from the<br />

measurement outcome. Therefore there is a str<strong>on</strong>g correlati<strong>on</strong> between the quantum state <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

B phot<strong>on</strong> and the measurement outcomes (or photocurrent <str<strong>on</strong>g>of</str<strong>on</strong>g> detector) which are nice<br />

electr<strong>on</strong>ic replica <str<strong>on</strong>g>of</str<strong>on</strong>g> B.


SAINT-PETERSBURG, October 17 – 20, 2005 9<br />

Then we can combine outcomes or photocurrents from different biphot<strong>on</strong>s to achieve<br />

the desired relati<strong>on</strong>ship between the states <str<strong>on</strong>g>of</str<strong>on</strong>g> B phot<strong>on</strong>s. This is a gate, that transforms the<br />

phot<strong>on</strong> state from <strong>on</strong>e to another. We focus <strong>on</strong> the next questi<strong>on</strong>s: 1/ which is a structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the gates from biphot<strong>on</strong>s, 2/ which <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong>s can be performed. We found that<br />

deterministic gates have to include a set <str<strong>on</strong>g>of</str<strong>on</strong>g> retrieval operators to correct the output state<br />

when unwanted outcomes arise. It due from the probabilistic nature <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum<br />

measurement. We show that the gates are scalable and can perform any operati<strong>on</strong> <strong>on</strong> given<br />

input states, they differ from gates <str<strong>on</strong>g>of</str<strong>on</strong>g> TQC and 1WQC models.<br />

In experiment with a pulsed-pump laser biphot<strong>on</strong>s are generated with some<br />

probability. Next estimati<strong>on</strong>s are true. Let be the laser with pulse <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 fs, repetiti<strong>on</strong> rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 100 MHz and the average power 200 mW. Then probability <str<strong>on</strong>g>of</str<strong>on</strong>g> generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pair is<br />

about 10 -4 or <strong>on</strong>e biphot<strong>on</strong> per 10 000 pulses and the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biphot<strong>on</strong>s is<br />

10 4 per sec<strong>on</strong>d. This is a high rate and it is attractive for real quantum communicati<strong>on</strong>s.<br />

This work was supported in part by Delzell Foundati<strong>on</strong>, Inc.<br />

1. D. Gottesman and I. Chuang. Quantum teleportati<strong>on</strong> as a universal computati<strong>on</strong>al<br />

primitive. Nature 1999. V. 402. P. 390-393.<br />

2. M. A. Nielsen. Quantum computati<strong>on</strong> by measurement and quantum memory. Phys.<br />

Lett. A. 2003. V. 308. P. 96–100. D. W. Leung. Quantum computati<strong>on</strong> by<br />

measurements. Int. J. Quant. Inf. 2004 V. 2. P.33-43. D. W. Leung. Two qubit<br />

projective measurements are universal for quantum computati<strong>on</strong>. arXiv:quantph/0111122.<br />

2001.<br />

3. R. Raussendorf and H. J. Briegel. A <strong>on</strong>e-way quantum computer. Phys. Rev. Lett.<br />

2001. V. 86. P. 5188–5191. Raussendorf, D. E. Browne, and H. J. Briegel.<br />

Measurement-based quantum computati<strong>on</strong> with cluster states. Phys.Rev. A. 2003. V.<br />

68. P.022312.<br />

4. P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M.<br />

Aspelmeyer, .Zeilinger. Experimental One-Way Quantum Computing. arXiv:quantph/0503126.<br />

2005.


10 OPTOINFORMATICS’05<br />

UNCERTAINTY RELATIONSHIPS FOR ANGULAR POSITION AND<br />

ANGULAR MOMENTUM OF LIGHT<br />

Eric Yao and Miles Padgett,<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics and Astr<strong>on</strong>omy, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Glasgow, Glasgow, Scotland<br />

S<strong>on</strong>ja Franke-Arnold and Stephen Barnett,<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Strathclyde, Glasgow, Scotland<br />

E-mail: e.yao@physics.gla.ac.uk<br />

We c<strong>on</strong>firm both the form <str<strong>on</strong>g>of</str<strong>on</strong>g> the angular uncertainty relati<strong>on</strong>ship and the<br />

Fourier-nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the relati<strong>on</strong>ship for more complex aperture functi<strong>on</strong>s. The<br />

angular uncertainty relati<strong>on</strong> suggests a new method for secure free space<br />

optical communicati<strong>on</strong>s.<br />

Heisenberg’s uncertainty principle is comm<strong>on</strong>ly encountered as a relati<strong>on</strong>ship<br />

between the standard deviati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum and positi<strong>on</strong>, ∆x ∆p<br />

≥ h 2<br />

[1] . Although<br />

frequently associated with quantum mechanics, it applies to any pair <str<strong>on</strong>g>of</str<strong>on</strong>g> variables that are<br />

related by a Fourier-transform, whether they be classical or quantum observables.<br />

Momentum and positi<strong>on</strong> are both unbounded and c<strong>on</strong>tinuous variables and the relati<strong>on</strong>ship<br />

between them is a c<strong>on</strong>tinuous Fourier-transform. Angular momentum is more complicated<br />

since its c<strong>on</strong>jugate variable, angle, is a repeating functi<strong>on</strong> within a 2π range. We show<br />

that, when applied to light beams, measurements in the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> angular momentum<br />

states are subject to a discrete Fourier-transform relati<strong>on</strong>ship with angular positi<strong>on</strong>. The 2π<br />

cyclic nature <str<strong>on</strong>g>of</str<strong>on</strong>g> angular measurement raises issues with the formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an angular<br />

uncertainty relati<strong>on</strong>ship which stem from the fact that angle is an unbounded variable and<br />

its associated standard deviati<strong>on</strong> is ill-defined. However, in keeping with the work <str<strong>on</strong>g>of</str<strong>on</strong>g> Pegg<br />

and Barnett [2] , if <strong>on</strong>e defines angle <strong>on</strong>ly over the 2π range, <strong>on</strong>e discovers a self-c<strong>on</strong>sistent<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong>ships that provide predictive formulae relating to the limiting accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

possible measurements.<br />

One area <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum physics where angular momentum is becoming <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme<br />

importance is that <str<strong>on</strong>g>of</str<strong>on</strong>g> optical beams. For a beam with helical phase fr<strong>on</strong>ts described by<br />

exp(il φ) the orbital angular momentum is lh per phot<strong>on</strong> and can be measured in a variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ways. Most simply, diffractive comp<strong>on</strong>ents can c<strong>on</strong>firm whether or not a particular<br />

beam, or indeed phot<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light, is described by a specific value <str<strong>on</strong>g>of</str<strong>on</strong>g> l .<br />

We have previously measured the angular momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> an l =0 light beam after<br />

passage through an angular restricti<strong>on</strong> [3] . We c<strong>on</strong>firmed that the resulting spread in orbital<br />

angular momentum states has a Fourier relati<strong>on</strong>ship with the angular transmissi<strong>on</strong> functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the aperture. Furthermore, for an aperture centred at φ =0, with a width characterised by<br />

a standard deviati<strong>on</strong> over a 2π range, the relative uncertainties obey the relati<strong>on</strong>ship<br />

∆L∆φ<br />

≥ h 1−<br />

2πP(<br />

−π<br />

) 2 - an expressi<strong>on</strong> compatible with the Pegg Barnett Phase.


SAINT-PETERSBURG, October 17 – 20, 2005 11<br />

In this work we c<strong>on</strong>centrate <strong>on</strong> single phot<strong>on</strong>s, initially with n<strong>on</strong>-zero l , and measure<br />

the statistical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l -states after transmissi<strong>on</strong> through generalised apertures.<br />

Experimentally we generate a low intensity laser beam in a precise l -state using a He-Ne<br />

laser whose beam is collimated and expanded to fill the aperture <str<strong>on</strong>g>of</str<strong>on</strong>g> an addressable spatial<br />

light modulator. The modulator is programmed with a diffracti<strong>on</strong> grating c<strong>on</strong>taining a fork<br />

dislocati<strong>on</strong> to produce a beam with a helical phase in the first diffracti<strong>on</strong> order. A sec<strong>on</strong>d<br />

spatial light modulator is used to analyse the l -state. If the index <str<strong>on</strong>g>of</str<strong>on</strong>g> the analysing<br />

hologram is opposite to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the incoming beam, it transforms the beam back into a<br />

plane wave which can be focused to pass through a diffracti<strong>on</strong> limited pinhole. Cycling<br />

through various indices whilst m<strong>on</strong>itoring the power transmitted through the pinhole<br />

allows the l -state <str<strong>on</strong>g>of</str<strong>on</strong>g> the incoming beam to be deduced. The same analysing hologram can<br />

be combined with the angular aperture giving a single optical comp<strong>on</strong>ent that both sets the<br />

angular aperture and measures the resulting l -distributi<strong>on</strong>. We count the individual<br />

phot<strong>on</strong>s transmitted through the pinhole using a phot<strong>on</strong> counter.<br />

We c<strong>on</strong>firm experimentally both the form <str<strong>on</strong>g>of</str<strong>on</strong>g> the angular uncertainty relati<strong>on</strong>ship and<br />

the Fourier-nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the relati<strong>on</strong>ship for more complex aperture functi<strong>on</strong>s.<br />

1. E. Merzbacher, Quantum Mechanics (John Wiley & S<strong>on</strong>s, Brisbane,1998).<br />

2. S.M. Barnett and D.T. Pegg, “Quantum theory <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong> angles”, Phys.Rev.A 41,<br />

3427 (1990).<br />

3. S. Frank-Arnold, S.M. Barnett, E. Yao, J. Leach, J. Courtial and M.J. Padgett,<br />

“Uncertainty principle for angular positi<strong>on</strong> and angular momentum”, New J. Phys. 6,<br />

103 (2004).


12 OPTOINFORMATICS’05<br />

OPTICAL CORRELATION SYSTEMS FOR SECURITY<br />

VERIFICATION<br />

Muravsky L.I.<br />

Karpenko Physico-Mechanical Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> NAS Ukraine, Lviv, Ukraine<br />

“Optical Security Systems”<br />

The overview <str<strong>on</strong>g>of</str<strong>on</strong>g> recent advances in optical image processing technologies for<br />

security verificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> documents and products is represented. The most<br />

typical optical correlati<strong>on</strong> systems for fingerprint and random phase mask<br />

identificati<strong>on</strong> are c<strong>on</strong>sidered.<br />

The recent advances in development <str<strong>on</strong>g>of</str<strong>on</strong>g> optical image processing technologies for<br />

security verificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> documents and products are analyzed in this lecture. As a rule,<br />

biometric images and phase masks are used as optical security elements (optical marks) in<br />

these technologies. The optical marks are attached to an object that should be protected<br />

from a counterfeiting. Because such marks are the transparent patterns, the optical<br />

correlati<strong>on</strong> methods can be simply adopted for their identificati<strong>on</strong>. A Vander Lugt<br />

correlator and a joint transform correlator architectures are widely used for these<br />

purposes. [1-4] But the hybrid optical-digital realizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> menti<strong>on</strong>ed above architectures<br />

are the most hopeful for creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high-speed and reliable security verificati<strong>on</strong> systems.<br />

Two main directi<strong>on</strong>s in the development <str<strong>on</strong>g>of</str<strong>on</strong>g> optoelectr<strong>on</strong>ic correlati<strong>on</strong> systems for<br />

security verificati<strong>on</strong> are c<strong>on</strong>sidered in this report. First directi<strong>on</strong> is represented by<br />

correlati<strong>on</strong> methods and systems for identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biometric images, in particular,<br />

fingerprints and faces. Sec<strong>on</strong>d directi<strong>on</strong> includes the in<strong>format</strong>i<strong>on</strong> technologies for<br />

identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> random, pseudorandom or deterministic phase masks and composed<br />

patterns c<strong>on</strong>taining both phase mask and a fingerprint. First directi<strong>on</strong> was developed after<br />

inventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> holographic matched filters. However absence <str<strong>on</strong>g>of</str<strong>on</strong>g> high-performance portable<br />

devices for input-output <str<strong>on</strong>g>of</str<strong>on</strong>g> optical in<strong>format</strong>i<strong>on</strong> those years has not allowed creating <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

high-reliability automatic identificati<strong>on</strong> systems. Recently, the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> high-speed<br />

spatial light modulators and video cameras based <strong>on</strong> CCD- and CMOS-sensors has<br />

stimulated creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid optical-digital correlati<strong>on</strong> systems for fingerprint<br />

identificati<strong>on</strong>. The “True Recogniti<strong>on</strong> System” (Mytec Technologies Inc.) [1] and the<br />

compact correlati<strong>on</strong> system for fingerprint recogniti<strong>on</strong> (Hamamatsu Phot<strong>on</strong>ics K.K.) [2] are<br />

the typical examples <str<strong>on</strong>g>of</str<strong>on</strong>g> good results in this directi<strong>on</strong>. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>d directi<strong>on</strong> was<br />

initiated by Horner and Javidi. [3,4] The high-performance experimental setups <str<strong>on</strong>g>of</str<strong>on</strong>g> optical<br />

and hybrid systems for identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> random phase masks were created in last years.<br />

So-called transformed phase mask [5,6] can be c<strong>on</strong>sidered as the improved modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

random phase mask. If a random phase mask is identified, <strong>on</strong>ly <strong>on</strong>e sharp and narrow<br />

correlati<strong>on</strong> peak is formed at the optical correlator output. But if we use a transformed<br />

phase mask for identificati<strong>on</strong>, several sharp peaks are produced. The relative positi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these peaks generates the spatial protective code that can be represented as a feature vector.<br />

The identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a presenting transformed phase mask is realized by comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

feature vector with a reference feature vector. Such property <str<strong>on</strong>g>of</str<strong>on</strong>g> a transformed PM allows<br />

raising the security level <str<strong>on</strong>g>of</str<strong>on</strong>g> a protected object.<br />

The hybrid optical-digital system created in Karpenko Physiko-Mechanical Institute<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NAS Ukraine is intended for security verificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> credit cards and other similar<br />

products. [7-10] This system is built up <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> a joint transform correlator<br />

architecture. It c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> an optical Fourier processor, a CCD-camera, and a PC with


SAINT-PETERSBURG, October 17 – 20, 2005 13<br />

developed s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware for realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the 512×512-pixel Fast Fourier transform. A<br />

transformed phase mask is used in this device as an optical mark b<strong>on</strong>ded to a credit card to<br />

be identified. This mask is intended for protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> valuable papers and documents from<br />

counterfeiting. The time <str<strong>on</strong>g>of</str<strong>on</strong>g> an optical mark identificati<strong>on</strong> in this system is about 500 ms for<br />

a Pentium144Hz PC.<br />

Creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> correlati<strong>on</strong> systems for identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reflecting phase masks and<br />

optical marks fabricated <strong>on</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> transparent phase masks was the next step in<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> new optical security in<strong>format</strong>i<strong>on</strong> technologies. For example, the<br />

optoelectr<strong>on</strong>ic verificati<strong>on</strong> system based <strong>on</strong> an optical joint Fourier transform (Physical<br />

Optics Corp.) [11] is the high-performance tool for identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reflecting random phase<br />

masks. Another approach for identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reflecting optical marks c<strong>on</strong>sists in usage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reflecting joint power spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a transformed and reference phase masks recorded <strong>on</strong> a<br />

chalcogenide glass. [12] The simple Fourier processor can be used as a security device for<br />

identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such marks.<br />

Thus, the proposed overview indicated the wide possibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> optoelectr<strong>on</strong>ic<br />

correlati<strong>on</strong> systems for security verificati<strong>on</strong>. Besides the protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> documents, products<br />

and things from counterfeiting, the c<strong>on</strong>sidered in<strong>format</strong>i<strong>on</strong> technologies can be used for<br />

creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> optoelectr<strong>on</strong>ic locks and image encrypti<strong>on</strong> devices.<br />

1. A. Stoianov, C. Soutar, A.Graham, Opt. Eng. 38, №1, 99-107, (1999).<br />

2. Y. Kobayashi, H.Toyoda, Opt. Eng. 38, №7, 1205-1210, (1999).<br />

3. J.L. Horner, B. Javidi, Euro-American Workshop <strong>on</strong> Optical Pattern Recogniti<strong>on</strong>, 193-<br />

203 // Eds. Javidi B. and Réfrégier P., Bellingham. SPIE Optical Engineering Press,<br />

(1994).<br />

4. B. Javidi, J.L. Horner, Opt. Eng. 33, №6, 1752-1756, (1994).<br />

5. L.I. Muravsky, V.M. Fitio, M.V. Shovgenyuk, P.A. Hlushak, Proc. SPIE. 3466, 267-<br />

277, (1998).<br />

6. L.I. Muravsky, T.I. Vor<strong>on</strong>yak, V.M. Fitio, M.V. Shovgenyuk, Opt. Eng. 38, №1, 25-<br />

32, (1999).<br />

7. L.I. Muravsky, Proc. SPIE. 4535, 132-136, 2001.<br />

8. L.I. Muravsky, Ya.P. Kulynych, O.P. Maksymenko, T.I. Vor<strong>on</strong>yak, F.L. Vladimirov,<br />

S.A.Kostyukevych, V.M. Fitio, Semic<strong>on</strong>d. Phys., Quantum Electr. & Optoelectr<strong>on</strong>ics.<br />

5, №2, 222-230, (2002).<br />

9. А.А. Акаев, С.Б. Гуревич, К.М. Жумалиев, Л.И. Муравский, С.Н. Смирнова,<br />

Голография и оптическая обработка информации: избранные разделы //<br />

Бишкек, Санкт-Петербург. Учкун. 2003.<br />

10. Л.И. Муравский, А.П. Максименко, Т.И. Вороняк, А.Г. Куць, С.А. Костюкевич,<br />

Оптич. журн. 70, №8, 34-39, (2003).<br />

11. R. Shie, SPIE’s oemagazine. March, 2004.<br />

12. L.I. Muravsky, S.O. Kostyukevych, T.I. Vor<strong>on</strong>yak, P.E. Shepeliavyi, Proc. SPIE,<br />

5310, 377-386, (2004).


14 OPTOINFORMATICS’05<br />

DETERMINATION OF SPECKLE DISPLACEMENT BY HYBRID<br />

OPTICAL-DIGITAL SPECKLE CORRELATOR<br />

Sakharuk O. M., Fityo N. V., Muravsky L. I., Yezhov P. V.*<br />

Karpenko Physico-Mechanical Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> NAS <str<strong>on</strong>g>of</str<strong>on</strong>g> Ukraine, Lviv, Ukraine<br />

*Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> NAS <str<strong>on</strong>g>of</str<strong>on</strong>g> Ukraine, Kiev, Ukraine<br />

The comparative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the hybrid optical-digital speckle correlati<strong>on</strong><br />

technique and digital speckle correlati<strong>on</strong> technique is carried out. Descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the hybrid optical-digital speckle correlator (ODSC) with first digital stage<br />

and sec<strong>on</strong>d optical stage is represented. The systematic and random errors <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

speckle pattern’s displacements obtained by ODSC are analyzed.<br />

Recently, methods <str<strong>on</strong>g>of</str<strong>on</strong>g> digital speckle correlati<strong>on</strong> have been used for variety <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>destructive<br />

testing problem soluti<strong>on</strong>s [1] . However, the traditi<strong>on</strong>al digital speckle correlati<strong>on</strong><br />

(DSC) techniques doesn’t cover advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear trans<strong>format</strong>i<strong>on</strong> and spatial<br />

filtrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> image spectrum for improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> correlator performance, namely decrease<br />

noise and narrow correlati<strong>on</strong> peak, which lead to exact definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> peak positi<strong>on</strong> and thus<br />

displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> an image. Only Chen et al. [2] have used the Kumar-Hasselbrook filter [3] to<br />

improve DSC performance. Later, Muravsky et al. [4] have proposed optical speckledisplacement<br />

correlati<strong>on</strong> technique based <strong>on</strong> joint transform correlator architecture for<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> in-plane speckle displacements, where n<strong>on</strong>linear trans<strong>format</strong>i<strong>on</strong> (median and<br />

subset median binarizati<strong>on</strong>) and filtrati<strong>on</strong> (fringe adjusted filter) <str<strong>on</strong>g>of</str<strong>on</strong>g> a joint power spectrum<br />

(JPS) <str<strong>on</strong>g>of</str<strong>on</strong>g> two input images were used.<br />

We have created hybrid optical-digital speckle correlator with digital first stage and<br />

optical sec<strong>on</strong>d stage that possess advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear spatial trans<strong>format</strong>i<strong>on</strong> and<br />

filtrati<strong>on</strong>. This correlator is combined with a tensile-testing machine, which apply the<br />

external loading to studied specimen <str<strong>on</strong>g>of</str<strong>on</strong>g> structural material. A strainless surface S 1 and a<br />

strained surface S 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> the specimen are illuminated by a light source. The CMOS-camera<br />

captures the speckle patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> these surfaces and enters these patterns into the PC (ODSC<br />

first stage). To study systematic and random errors, we have used computer-generated<br />

speckle patterns r and g. The PC divide speckle patterns r and g into the equal quantity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

identical subimages r mn , and g m , n and produces the joint spectrum (JS) <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

corresp<strong>on</strong>ding pair <str<strong>on</strong>g>of</str<strong>on</strong>g> these subimages R * m,n S m,n . Then PC performs JS interpolati<strong>on</strong> and<br />

n<strong>on</strong>linear trans<strong>format</strong>i<strong>on</strong> to raise accuracy definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> correlati<strong>on</strong> peak positi<strong>on</strong> at output<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ODSC. Further, the transformed JS is inserted into an electrically addressed spatial light<br />

modulator (EASLM), which can be treated as the sec<strong>on</strong>d stage's input. The sec<strong>on</strong>d stage is<br />

an optical Fourier processor OFP c<strong>on</strong>taining a laser diode and Fourier lens. The<br />

transformed JS is recorded <strong>on</strong> the EASLM and is read by a laser beam. A correlati<strong>on</strong><br />

resp<strong>on</strong>se is produced <strong>on</strong> the ODSC output. The correlati<strong>on</strong> peak is detected by a sensor<br />

array <str<strong>on</strong>g>of</str<strong>on</strong>g> a camera and its coordinates are defined by using PC. Usage <str<strong>on</strong>g>of</str<strong>on</strong>g> time-c<strong>on</strong>suming<br />

algorithm <str<strong>on</strong>g>of</str<strong>on</strong>g> subpixel resoluti<strong>on</strong> for peak determinati<strong>on</strong> can be omitted in given system by<br />

recording <str<strong>on</strong>g>of</str<strong>on</strong>g> correlati<strong>on</strong> peak with the whole array <str<strong>on</strong>g>of</str<strong>on</strong>g> camera.


SAINT-PETERSBURG, October 17 – 20, 2005 15<br />

So, the elaborated ODSC allows accelerating the time-c<strong>on</strong>suming processes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

subimage cross-correlati<strong>on</strong> and high-precisi<strong>on</strong> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> correlati<strong>on</strong> peak locati<strong>on</strong>.<br />

The performance <str<strong>on</strong>g>of</str<strong>on</strong>g> this system was studied by analysing the computer generated speckle<br />

patterns introduced at the correlator’s input. The systematic and random errors <str<strong>on</strong>g>of</str<strong>on</strong>g> speckle<br />

pattern’s displacements obtained by ODSC were analyzed.<br />

Presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper was partially supported by ICO travel-grant program.<br />

1. Digital speckle pattern interferometry and related techniques / Ed. by P.K.Rastogi. –<br />

Chichester: John Wiley and S<strong>on</strong>s, 2001.<br />

2. Chen D.J., Chiang F.P., Tan F.P., D<strong>on</strong> H.S. Digital speckle-displacement measurement<br />

using a complex spectrum method // Appl. Opt., 32, 1839-1949, (1993).<br />

3. B. V. K. Vijaya Kumar, L. Hassebrook Performance measures for correlati<strong>on</strong> filters //<br />

Appl. Opt., 29, 2997-3006, (1990).<br />

4. L.I. Muravsky, O.P. Maksymenko, O.M. Sakharuk, “Use <str<strong>on</strong>g>of</str<strong>on</strong>g> a joint transform correlator<br />

architecture for study <str<strong>on</strong>g>of</str<strong>on</strong>g> speckle displacements,” Optics Communicati<strong>on</strong>, 240, №4-6,<br />

275-291, (2004).


16 OPTOINFORMATICS’05<br />

MODELLING THE SPECKLE PATTERNS OF DEFORMABLE<br />

SURFACE FOR RIGID BODY MOTION ELIMINATION<br />

Fityo N. V.<br />

Karpenko Physico-Mechanical Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> NAS <str<strong>on</strong>g>of</str<strong>on</strong>g> Ukraine, Lviv, Ukraine<br />

Technique for determinati<strong>on</strong> and eliminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rigid body moti<strong>on</strong> (RBM)<br />

during study <str<strong>on</strong>g>of</str<strong>on</strong>g> surface de<strong>format</strong>i<strong>on</strong> fields is described. Performance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

given technique is shown by using computer-generated speckle-patterns.<br />

The digital speckle correlati<strong>on</strong> (DSC) technique is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the techniques for study<br />

surface de<strong>format</strong>i<strong>on</strong> in fracture mechanics [1] . DSC technique is based <strong>on</strong> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

speckle-patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> specimen surfaces before and after loading. This technique allows us to<br />

receive 2D discrete field <str<strong>on</strong>g>of</str<strong>on</strong>g> displacements using cross-correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the initial specklepattern<br />

subimages and appropriate subimages <str<strong>on</strong>g>of</str<strong>on</strong>g> the strained surface speckle-pattern.<br />

However, such procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> displacement field determinati<strong>on</strong> leads to the situati<strong>on</strong> when<br />

displacement fields will c<strong>on</strong>tain not <strong>on</strong>ly field <str<strong>on</strong>g>of</str<strong>on</strong>g> de<strong>format</strong>i<strong>on</strong>s, but also the displacement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> whole pattern, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten called rigid body moti<strong>on</strong> (RBM) [2] . This paper represents the new<br />

technique for determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RBM proposed by the author. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the given<br />

technique <str<strong>on</strong>g>of</str<strong>on</strong>g> RBM determinati<strong>on</strong> is performed with a help <str<strong>on</strong>g>of</str<strong>on</strong>g> computer generated specklepatterns.<br />

In order to analyze menti<strong>on</strong>ed above technique, the test speckle-patterns were<br />

generated according to [3] . The dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the patterns were 512 by 512 pixels. Taking<br />

into account possible n<strong>on</strong>uniformities <str<strong>on</strong>g>of</str<strong>on</strong>g> the specimen surface and other errors during<br />

experiments, the random errors were introduced al<strong>on</strong>g both x- and y- axis. De<strong>format</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the pattern was introduced <strong>on</strong>ly al<strong>on</strong>g x-axis: left edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the pattern was fixed and right<br />

edge was stretched. The area with the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> de<strong>format</strong>i<strong>on</strong> was also formed in the<br />

image. Speckle-patterns before and after loading were divided into the equal quantity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

subimages with dimensi<strong>on</strong>s 32 by 32 pixels. To achieve the subpixel resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

displacement determinati<strong>on</strong>, the interpolati<strong>on</strong> algorithm represented in [3] was used.<br />

We have found the dependence between the values <str<strong>on</strong>g>of</str<strong>on</strong>g> de<strong>format</strong>i<strong>on</strong> (in pixels) and<br />

RBM (in pixels) for appropriate determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zero order de<strong>format</strong>i<strong>on</strong> area by this<br />

technique. Reas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> improper or impossible determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zero order de<strong>format</strong>i<strong>on</strong><br />

areas for given parameters were analyzed.<br />

Presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper was partially supported by ICO travel-grant program.<br />

1. Digital speckle pattern interferometry and related techniques / Ed. by P.K.Rastogi. –<br />

Chichester: John Wiley and S<strong>on</strong>s, 2001.<br />

2. Муравський Л.И., Фитьо Н.В. Оценка перемещений поверхностей<br />

деформируемых объектов и твердых тел техникой оптической спекл-корреляции<br />

// Оптический журнал, 72, №5, 67-72, (2005).<br />

3. Sjödahl M., Benckert L.R. Electr<strong>on</strong>ic speckle photography: analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> an algorithm<br />

giving the displacement with subpixel accuracy // Appl. Opt., 32, 2278-2284, (1993).


SAINT-PETERSBURG, October 17 – 20, 2005 17<br />

IMAGE ENHANCEMENT BY IMPROVED CONTRAST-<br />

STRETCHING TECHNIQUE<br />

Ching-Chung Yang, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>ic Engineering, Far East College,<br />

49 Chung Hua Road, Hsin-Shih, Tainan, Taiwan, R. O. C.<br />

E-mail: yang10.cc@msa.hinet.net<br />

We dem<strong>on</strong>strate a modified c<strong>on</strong>trast-stretching method to enhance a n<strong>on</strong>uniformly<br />

illuminated image. Low-frequency in<strong>format</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the image is still<br />

processed by the c<strong>on</strong>venti<strong>on</strong>al technique, while the high-frequency in<strong>format</strong>i<strong>on</strong><br />

is exaggerated by the log trans<strong>format</strong>i<strong>on</strong>. The final image improves the c<strong>on</strong>trast<br />

to a better extent.<br />

This article dem<strong>on</strong>strates a brand new approach to sharpening a n<strong>on</strong>-uniformly<br />

illuminated image. The proposed method at first separates the original image matrix to two<br />

sub-matrices representing the high and low frequency in<strong>format</strong>i<strong>on</strong>. The low frequency submatrix<br />

is then processed by the c<strong>on</strong>trast-stretching manipulati<strong>on</strong>, while the high frequency<br />

sub-matrix processed by the log trans<strong>format</strong>i<strong>on</strong>. At last we rec<strong>on</strong>struct these two new submatrices<br />

to derive the enhanced final image.<br />

The element in the high frequency sub-matrix is represented by (I 1 -I 2 )/2, and that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the low frequency is (I 1 +I 2 )/2. Where I 1 I 2 are any two near-by pixels am<strong>on</strong>g the original<br />

image matrix.<br />

In this study, the low frequency in<strong>format</strong>i<strong>on</strong> is processed by the c<strong>on</strong>venti<strong>on</strong>al rubberband<br />

trans<strong>format</strong>i<strong>on</strong> to raise the image’s c<strong>on</strong>trast. In the meantime, the near-by pixels’<br />

visibility [(I 1 -I 2 )/(I 1 +I 2 )] is also improved for that the high frequency in<strong>format</strong>i<strong>on</strong> is<br />

simultaneously enhanced by the log trans<strong>format</strong>i<strong>on</strong>. Thus the original image could be<br />

further sharpened <strong>on</strong> the bases <str<strong>on</strong>g>of</str<strong>on</strong>g> the traditi<strong>on</strong>al algorithm.<br />

We illustrate our method by employing a temple’s image that is partially shaded<br />

indoors as shown in Figure 1(a). The original image looks unclear in the shaded area owing<br />

to the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> illuminati<strong>on</strong>. Our method could sharpen the whole image to a better extent in<br />

comparis<strong>on</strong> with the c<strong>on</strong>venti<strong>on</strong>al c<strong>on</strong>trast-stretching approach. This is shown in Figure<br />

1(b)1(c).<br />

To quantitatively evaluate our method, we compare the histograms <str<strong>on</strong>g>of</str<strong>on</strong>g> the processed<br />

images by Matlab 6.0. It is clear that the original picture gathers its pixels in lower graylevels<br />

as shown in Figure 2(a). Although the c<strong>on</strong>venti<strong>on</strong>al method shifts these pixels<br />

toward the higher gray-level as shown in Figure 2(b), the disc<strong>on</strong>tinuity happening in the<br />

lower gray-level regi<strong>on</strong> somehow degrades its own c<strong>on</strong>trast. While by using our method,<br />

the final image c<strong>on</strong>tinuously spreads its pixels from lower to higher gray-levels without<br />

any disc<strong>on</strong>tinuity as shown in Figure 2(c). This would help to increase the overall c<strong>on</strong>trast<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the original image.<br />

We also calculate the statistical data including the mean value, standard deviati<strong>on</strong>,<br />

minimum, and maximum. The calculated mean value implies that our method is essentially<br />

based <strong>on</strong> the c<strong>on</strong>venti<strong>on</strong>al c<strong>on</strong>trast-stretching approach. While by comparis<strong>on</strong> with the<br />

standard deviati<strong>on</strong>s, it is obvious that our image has better performance in the c<strong>on</strong>trast<br />

property. This is also shown in Table 1.


18 OPTOINFORMATICS’05<br />

(a) (b) (c)<br />

Figure 1: (a) The original image. (b) Image (a) processed by the c<strong>on</strong>venti<strong>on</strong>al c<strong>on</strong>trast-stretching<br />

method. (c) Image (a) processed by our method.<br />

(a) (b) (c)<br />

Figure 2: (a)-(c) are histograms <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 1(a)-(c) respectively<br />

Table 1: Statistical data <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 1(a)-(c) respectively<br />

Figure 1(a) Figure 1(b) Figure 1(c)<br />

Minimum 1 2 0<br />

Maximum 255 255 255<br />

Mean 64.23 102.23 101.79<br />

Standard deviati<strong>on</strong> 58.64 59.13 65.72<br />

1. Ching Chung Yang. Improving the sharpness <str<strong>on</strong>g>of</str<strong>on</strong>g> an image with n<strong>on</strong>-uniform<br />

illuminati<strong>on</strong>. Optics and Laser Technology. 2005. vol. 37. p. 235.<br />

2. Ching Chung Yang. Image enhancement by modified c<strong>on</strong>trast-stretching manipulati<strong>on</strong>.<br />

Optics and Laser Technology. in press.<br />

3. Eugene Hecht. Optics. 2nd ed. Massachusetts: Addis<strong>on</strong>-Wesley; 1987. p. 507.


SAINT-PETERSBURG, October 17 – 20, 2005 19<br />

FOTOBIOFTAL-1: A DATA ACQUISITION, PROCESSING AND<br />

STORAGE SYSTEM FOR AN OPHTHALMIC INSTRUMENT<br />

S. Miclos, M. Mustata, D. Savastru, C. Cotirlan, T. Brezeanu, E. Ristici,<br />

A. Stefanescu-Dima*<br />

Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> R&D for Optoelectr<strong>on</strong>ics<br />

* Bucharest Clinical Eye Hospital<br />

E-mail: es<str<strong>on</strong>g>of</str<strong>on</strong>g>ina@inoe.inoe.ro<br />

Fotobi<str<strong>on</strong>g>of</str<strong>on</strong>g>tal-1 system is an instrument c<strong>on</strong>taining an optical stereomicroscope<br />

and a data acquisiti<strong>on</strong>, processing and storage system. Using EPCO 2000<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware, the obtained in<strong>format</strong>i<strong>on</strong> leads to optimal treatments for different<br />

diseases in the ophthalmologic therapies.<br />

In this paper we have followed data acquisiti<strong>on</strong> <strong>on</strong> eye crystalline lens. If the aspect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the crystalline lens may be put into evidence by a n<strong>on</strong>invasive optical device, then the<br />

obtained results lead to the possibility for opening the necessary investigati<strong>on</strong>s and<br />

therapies [1,2,3] using a correct technique that can prevent the developing <str<strong>on</strong>g>of</str<strong>on</strong>g> the diseases<br />

(opacity).<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the medical therapies is based <strong>on</strong> laser [4] . It is a surgical operati<strong>on</strong> that can be<br />

d<strong>on</strong>e also in clinics and ambulatory.<br />

Fotobi<str<strong>on</strong>g>of</str<strong>on</strong>g>tal-1 is a n<strong>on</strong>invasive instrument based <strong>on</strong> a stereomicroscope combined<br />

with a data acquisiti<strong>on</strong>, processing and storage system (c<strong>on</strong>taining CCD camera and PC<br />

computer). The real time images allow knowing the grade <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the disease and<br />

regarding <str<strong>on</strong>g>of</str<strong>on</strong>g> it, the ophthalmologist may get a real c<strong>on</strong>clusi<strong>on</strong> <strong>on</strong> the therapy which must<br />

be used.<br />

The experimental set–up is a useful combinati<strong>on</strong> between a stereomicroscope and an<br />

image acquisiti<strong>on</strong> system.<br />

The data acquisiti<strong>on</strong>, processing and storage system allows to get real time images<br />

and these images may be used during a l<strong>on</strong>g period <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the patients. The<br />

device comprises a digital photo camera attached by an adaptor to a stereomicroscope in a<br />

lateral regi<strong>on</strong>, a PC or a note-book with USB interface and also the s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. A schematic<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the medical process is presented in Fig.1.<br />

Adaptor module for digital<br />

camera<br />

DIGITAL<br />

CCD camera<br />

PC or NOTE-BOOK<br />

P<br />

A<br />

C<br />

I<br />

E<br />

N<br />

T<br />

Ophthalmic<br />

stereomicroscope<br />

ophthalmologist<br />

diagnostic<br />

data base<br />

imaging<br />

Fig. 1. Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> data acquisiti<strong>on</strong>, processing and storage system <str<strong>on</strong>g>of</str<strong>on</strong>g> Fotobi<str<strong>on</strong>g>of</str<strong>on</strong>g>tal-1<br />

The operating mode <str<strong>on</strong>g>of</str<strong>on</strong>g> the data system c<strong>on</strong>sists in obtaining <str<strong>on</strong>g>of</str<strong>on</strong>g> the images from the<br />

visual plane in order to transmit them through the adaptor digital CCD camera that will<br />

transmit the image to PC or note-book through the USB interface.


20 OPTOINFORMATICS’05<br />

Special s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware will process all these images and then these data and images will be<br />

stored in a data base. The optical scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fotobi<str<strong>on</strong>g>of</str<strong>on</strong>g>tal -1 is presented in Fig.2.<br />

f ob γ L f aux f oc<br />

f F<br />

Fig. 2. Optical scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fotobi<str<strong>on</strong>g>of</str<strong>on</strong>g>tal -1<br />

The data processing system uses the s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware EPCO 2000. This s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware is used to<br />

determine the opacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the posterior capsule (OPC) using the morphological evaluati<strong>on</strong>.<br />

The opacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the posterior capsule is an ordinary complicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the post surgical effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the crystalline implantati<strong>on</strong> (Fig.3 a).<br />

a<br />

b<br />

Fig. 3. The regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> opacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the posterior capsule<br />

Using the pencil/mouse and colored regi<strong>on</strong>s the image can be easier specified (Fig.3<br />

b). The program computes directly the opacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the posterior capsule and the ophthalmist<br />

can decide the necessary therapy.<br />

The system allows the following facilities: scanning <str<strong>on</strong>g>of</str<strong>on</strong>g> the cristaline lens; the<br />

identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different regi<strong>on</strong>s by colors which are displayed <strong>on</strong> the screen <str<strong>on</strong>g>of</str<strong>on</strong>g> the PC<br />

computer; recording <str<strong>on</strong>g>of</str<strong>on</strong>g> the cristaline lens different regi<strong>on</strong>s; obtaining <str<strong>on</strong>g>of</str<strong>on</strong>g> a data base for the<br />

patients. Also, the EPCO 2000 is good to determine the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the used implant types<br />

and another factors in developing <str<strong>on</strong>g>of</str<strong>on</strong>g> the posterior capsule.<br />

1. Stefanescu-Dima, Cristina Stoica, Luminita Ursea, “Posterior Capsulotomy: When<br />

Where How”, ”Ophtalmology”, No. 3, pp. 93-100, 2003.<br />

2. P.I.Grecu, A. Stefanescu-Dima, Cristina Stoica, Luminita Ursea, Biolaser-1 Romanian<br />

initiative in domain <str<strong>on</strong>g>of</str<strong>on</strong>g> photodisruptive ophthalmic lasers, Nat. C<strong>on</strong>f. for<br />

Ophtalmology, Sept. 2002, Cluj, Romania.<br />

3. Zachary S. Sacks, Frieder Loesel et al., “Transscleral photodisrupti<strong>on</strong> for treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glaucoma”, Proc. SPIE, Vol. 3726, pp. 516-521, 1998.<br />

4. D. Savastru, S. Miclos, C. Cotirlan, E. Ristici, M. Mustata, M. Mogildea, G. Mogildea,<br />

T. Dragu, R. Morarescu, „Nd:YAG Laser System for Ophthalmology: Biolaser-1”, J. <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Optoelectr<strong>on</strong>ics and Advances Materials Vol. 6, No. 2, June 2004, p 497-502.


SAINT-PETERSBURG, October 17 – 20, 2005 21<br />

3-D MEASUREMENT OF AUTOMOTIVE GLASS BY USING A<br />

REFLECTIVE FRINGE TECHNIQUE<br />

Oleksandr A. Skydan, Michael J. Lalor and David R. Burt<strong>on</strong><br />

General Engineering Research Institute, Liverpool John Moores University,<br />

James Pars<strong>on</strong>s Building, Byrom Street, Liverpool, L3 3AF, England, UK<br />

There has been much interest in the automotive industry in developing n<strong>on</strong>-c<strong>on</strong>tact<br />

techniques for measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> reflective surfaces to provide in-line glass shape quality<br />

c<strong>on</strong>trol system. This presentati<strong>on</strong> describes a technique for the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> fullfield<br />

reflective surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> automotive glass by using a reflective fringe technique. The<br />

theoretical principles <str<strong>on</strong>g>of</str<strong>on</strong>g> phase demodulati<strong>on</strong> using a basic four-steps algorithm and further<br />

3-D height rec<strong>on</strong>structi<strong>on</strong> procedures in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring surfaces with specular<br />

reflective properties like curved glass are explained.<br />

Physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement surfaces do not allow us to apply optical<br />

geometries used in existing techniques for surface measurement based up<strong>on</strong> direct fringe<br />

pattern illuminati<strong>on</strong>. However, this property <str<strong>on</strong>g>of</str<strong>on</strong>g> surface reflectivity can be used to<br />

implement similar ideas from existing techniques in a new improved method. In other<br />

words the reflective surface can be used as a mirror to reflect illuminated fringe patterns<br />

<strong>on</strong>to a screen behind. It has been found that in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> implementing the reflective<br />

fringe technique, the phase shift distributi<strong>on</strong> depends not <strong>on</strong>ly <strong>on</strong> the height <str<strong>on</strong>g>of</str<strong>on</strong>g> the object<br />

but also <strong>on</strong> the slope in each measurement point. This requires the solving <str<strong>on</strong>g>of</str<strong>on</strong>g> differential<br />

equati<strong>on</strong>s to find the surface slope and height distributi<strong>on</strong>s in the x and y directi<strong>on</strong>s and<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> the additi<strong>on</strong>al height rec<strong>on</strong>structi<strong>on</strong> algorithms.<br />

The main focus has been made <strong>on</strong> developing a mathematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> the optical<br />

sub-system and discussing ways for its practical implementati<strong>on</strong> including calibrati<strong>on</strong><br />

routines, and possible problems which may arise during real measurement processes.<br />

Figure 1 shows the optical system used in the reflected-fringe technique.<br />

Camera<br />

Screen<br />

x<br />

Projector A 2<br />

z<br />

Surface element<br />

y<br />

H<br />

Figure 1. Fringe reflecti<strong>on</strong> optical system<br />

A surface point A is observed by the CCD camera. The beam from a point <strong>on</strong> the<br />

screen A 1 reflects via surface point A to the CCD camera. By tilting the surface element at<br />

a different angle α and changing the surface element height the surface point A will reflect<br />

point A 2 from the screen <strong>on</strong>to the CCD camera. This means that the shift between the<br />

reference point and the measured point <str<strong>on</strong>g>of</str<strong>on</strong>g> the object is proporti<strong>on</strong>al to the surface slope<br />

and its height. When a fringe pattern is illuminated by the LCD projector, for example, the<br />

fringes are distorted in accordance with the slope and height <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement object in<br />

the x and y directi<strong>on</strong>s.<br />

h<br />

A<br />

R<br />

θ<br />

α<br />

z y<br />

A 1


22 OPTOINFORMATICS’05<br />

A number <str<strong>on</strong>g>of</str<strong>on</strong>g> implemented image processing algorithms for system calibrati<strong>on</strong> and<br />

data analysis are discussed and several experimental results are given for automotive glass<br />

surfaces with different shapes and defects. A measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> a spherical mirror with<br />

known radius has been used for calibrati<strong>on</strong> purposes and also has been included to show<br />

the precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the developed technique.<br />

A video projector was used in the system with a resoluti<strong>on</strong> 1024x768 pixels. A<br />

progressive scan camera was applied for image recording. The digitisati<strong>on</strong> resoluti<strong>on</strong> is<br />

768x576 pixels. Figure 2 shows some key stages during the process <str<strong>on</strong>g>of</str<strong>on</strong>g> specular surface<br />

measurement. A piece <str<strong>on</strong>g>of</str<strong>on</strong>g> automotive glass (800 x 500mm) has been measured. A number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fringe patterns are grabbed shifted in both directi<strong>on</strong>s, see figure 2 (a) and (b) and the<br />

wrapped phase is calculated for the x and y directi<strong>on</strong>s, as shown in figures 2 (c) and (d). A<br />

masking algorithm separates the background area from the measurement object. The<br />

unwrapped phase is obtained by applying the unwrapping algorithm to the wrapped phase<br />

distributi<strong>on</strong>. Calculated surface height map distributi<strong>on</strong> and its scaled pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile view are<br />

shown in figure 2 (e) and (f) respectively.<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

(f)<br />

Figure 2. Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the automotive side glass<br />

Finally, aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> implementing the reflective fringe technique are discussed in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> further development and c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement system for the needs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the glass industry. This technique showed the ability to provide accurate n<strong>on</strong>-destructive<br />

3-D shape and defect inspecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the reflective measurement surface <str<strong>on</strong>g>of</str<strong>on</strong>g> curved or flat<br />

glass and can be used as a key element for glass quality c<strong>on</strong>trol system <strong>on</strong>-line or in a<br />

laboratory envir<strong>on</strong>ment.


SAINT-PETERSBURG, October 17 – 20, 2005 23<br />

THE APPLICATION OF DIRECT INTEGRAL-GEOMETRIC<br />

METHODS FOR THE ANALYSIS OF SOME EXPERIMENTAL<br />

INTERFEROMETRIC IMAGES<br />

A.A. Aliverdiev<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Daghestan Scientific Center <str<strong>on</strong>g>of</str<strong>on</strong>g> Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> the Science<br />

367003, Russia, Daghestan, Makhachkala, 94 Yaragskogo Street<br />

E-mail: aliverdi@frascati.enea.it, URL: http://aliverdi.rusf.net<br />

Here we present our approach to apply the direct integral-geometric methods in<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> interferometric images. These approaches give the possibility to<br />

increase the precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> further physical analysis, and the automati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

steps <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis.<br />

In our resent works we have c<strong>on</strong>sidered the use <str<strong>on</strong>g>of</str<strong>on</strong>g> the back [1-4] and direct [4-10] Rad<strong>on</strong><br />

transform for the different physical applicati<strong>on</strong>s. Here we report some new data about the<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the direct Rad<strong>on</strong> transform for the interferometric image analysis, which we<br />

already tested for the experimental data diagnostic <str<strong>on</strong>g>of</str<strong>on</strong>g> laser plasma and for the ESPI<br />

measurements.<br />

We already reported [11] some results <str<strong>on</strong>g>of</str<strong>on</strong>g> an experimental investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

temporal evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plasmas produced by laser irradiati<strong>on</strong>. The experimental set up<br />

includes a Nd:glass high power laser system with typical intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 14 W/cm 3 and<br />

durati<strong>on</strong> 600 ps, a probe beam (Nd:YAG c<strong>on</strong>verted to 2ω) coupled to an interferometer<br />

and to a streak-camera with ps/µm resoluti<strong>on</strong>. The density <str<strong>on</strong>g>of</str<strong>on</strong>g> free electr<strong>on</strong>s in that<br />

c<strong>on</strong>diti<strong>on</strong>s could be c<strong>on</strong>sidered proporti<strong>on</strong>al to the phase shift in the interferometric a<br />

streak-camera image. So, the precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phase shift is the crucial<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> the analysis. But unfortunately the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> real experimental interferograms is<br />

not good. The separate time-dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the streak-camera image intensity for the<br />

certain x 0 doesn't c<strong>on</strong>tain the full in<strong>format</strong>i<strong>on</strong> about the real phase shift cause <str<strong>on</strong>g>of</str<strong>on</strong>g> presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a str<strong>on</strong>g noise, which can be resulted and in the neglecting or shift <str<strong>on</strong>g>of</str<strong>on</strong>g> a real extremes,<br />

both in the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> a false extremes. But from other hand, the averaging by axis x<br />

doesn't give the good results, because <str<strong>on</strong>g>of</str<strong>on</strong>g> it smoothes the picture. To overcome this problem<br />

we <str<strong>on</strong>g>of</str<strong>on</strong>g>fer the averaging with time shifts, with a characteristic velocity more or less<br />

corresp<strong>on</strong>dent to real velocity. The peculiarities <str<strong>on</strong>g>of</str<strong>on</strong>g> this method are discussed in the present<br />

report for the first time.<br />

We also present the method <str<strong>on</strong>g>of</str<strong>on</strong>g> image analysis for the automatic set up <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

Electr<strong>on</strong>ic Speckle Pattern Interferometry (ESPI). The idea <str<strong>on</strong>g>of</str<strong>on</strong>g> our method is to make a<br />

direct Rad<strong>on</strong>-like trans<strong>format</strong>i<strong>on</strong> for each pixel (x 0 , y 0 ) a 2D field <str<strong>on</strong>g>of</str<strong>on</strong>g> an image brightness<br />

s0<br />

B(x,y): g( x y s = ∫ B x + s ⋅ − p ⋅ y + s ⋅ + p ⋅ dp<br />

0,<br />

0 )( , φ ) ( 0 cos( φ)<br />

sin( φ),<br />

0 sin( φ)<br />

cos( φ))<br />

, where<br />

−s0<br />

( s , φ)<br />

are the normal co-ordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> the Rad<strong>on</strong>-like trans<strong>format</strong>i<strong>on</strong>, p is the variable <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

integrati<strong>on</strong>, and then we calculate the rms spatial deviati<strong>on</strong> by s<br />

2<br />

2<br />

σ s ( φ)<br />

= ( g(<br />

s,<br />

φ)<br />

− g(<br />

s,<br />

φ)<br />

) , the maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> which determines two value: (i)<br />

s<br />

s<br />

immediate max φ ( σ s ), and (ii) the corresp<strong>on</strong>ded angle φ (( σ s )<br />

max<br />

) . Similar trans<strong>format</strong>i<strong>on</strong><br />

we already used in some other applicati<strong>on</strong>s. So, from 2D functi<strong>on</strong> B(x,y) we have two


24 OPTOINFORMATICS’05<br />

functi<strong>on</strong>s depended from same 2D field, but, how it is shown after, gives a clear defect<br />

locati<strong>on</strong>. The experimental results, made in the frameworks <str<strong>on</strong>g>of</str<strong>on</strong>g> the Internati<strong>on</strong>al Project<br />

GLAST, are presented.<br />

Our investigati<strong>on</strong>s show a perspective <str<strong>on</strong>g>of</str<strong>on</strong>g> our approach. The submitted results have<br />

both methodological and applied significance for the pattern analysis.<br />

Author is very grateful to the Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. C. Moric<strong>on</strong>i, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. D. Batani, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

M.G. Karimov, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. N.A. Ashurbekov, Dr. M.A. Cap<strong>on</strong>ero, and Dr. E. Bacchi for the<br />

teamwork and fruitful discussi<strong>on</strong>s. The work was supported by the Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Russia program “The development <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential <str<strong>on</strong>g>of</str<strong>on</strong>g> Higher School” (34054).<br />

1. A.A. Aliverdiev. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity spectrum to a spatiotemporal study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

high-speed processes. // Technical Physics, No. 9, 1997, p.1102-1103.<br />

2. A.A. Aliverdiev. On the Possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Using the Velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> Recorded Signal for<br />

Tomographic Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Excited Media. // Radiophysics and Quantum Electr<strong>on</strong>ics, 40,<br />

No. 6, 1997, p. 504-509.<br />

3. G.K. Makhtimagomedov, M.G. Karimov, A.A. Aliverdiev, R.M. Batyrov, G.M.<br />

Khalilulaev, A.A. Amirova, M.M. Akhmedov, M.M. Ataev. About the modelling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spatial-temporal tomographic rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sphere <str<strong>on</strong>g>of</str<strong>on</strong>g> phase transiti<strong>on</strong>s. // Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Internati<strong>on</strong>al C<strong>on</strong>ference "Phase Transiti<strong>on</strong>s and Critical Phenomena in C<strong>on</strong>densed<br />

Matter", Makhachkala, Russia, 1998, B3-6.<br />

4. Aliverdiev. Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the time-resolved integral-geometric methods for the<br />

composite materials diagnostic. // “Scientific Israel – Technological Advantages”,<br />

2002, No. 4, p. 108-111.<br />

5. A.A. Aliverdiev. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the direct Rad<strong>on</strong> trans<strong>format</strong>i<strong>on</strong> for handling a<br />

spatially - time dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous radiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a nanosec<strong>on</strong>d breakdown. //<br />

Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g>. 25th Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Phenomena in I<strong>on</strong>ized Gases, Nagoya,<br />

Japan, July 17 - 22, V. 4, 2001, p. 59-60.<br />

6. Aliverdiev, M. Cap<strong>on</strong>ero, C. Moric<strong>on</strong>i. Speckle Velocimeter for a Self-Powered<br />

Vehicle, Technical Physics, 2002, No.8, p. 1044-1048.<br />

7. Aliverdiev; M. Cap<strong>on</strong>ero, C. Moric<strong>on</strong>i. Speckle-velocimeter for robotized vehicles,<br />

<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> SPIE, Volume 5147, 2003, pp. 140-147.<br />

8. Aliverdiev, M. Cap<strong>on</strong>ero, and С. Moric<strong>on</strong>i. Some Issues C<strong>on</strong>cerning the Development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a Speckle Velocimeter, Technical Physics, Vol. 48, No. 11, 2003, pp. 1460–1463.<br />

9. A.A. Aliverdiev, R.D. C<strong>on</strong>za, M.A. Cap<strong>on</strong>ero, and C. Moric<strong>on</strong>i. About<br />

authomatisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic Electr<strong>on</strong>ic Speckle Pattern Interferometry measurements in<br />

applicati<strong>on</strong> to defect detecti<strong>on</strong> // Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> LOYS, June 30- July 4, 2003, St. Petersburg,<br />

Russia, p. 29.<br />

10. A. Aliverdiev, N. A. Ashurbekov, Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Direct Rad<strong>on</strong> Transform for<br />

Processing <str<strong>on</strong>g>of</str<strong>on</strong>g> a Spatiotemporal Dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> Sp<strong>on</strong>taneous Emissi<strong>on</strong> from a<br />

Nanosec<strong>on</strong>d Discharge in L<strong>on</strong>g Tubes, Russian Physics Journal, 47, Issue 3, March,<br />

2004, pp. 331 - 332.<br />

11. Aliverdiev, D. Batani, V. Malka, T. Vinci, M. Koenig, A. Benuzzi-Mounaix. About the<br />

temporal evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plasmas, produced from solid targets by high-power laser<br />

irradiati<strong>on</strong> // Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> Internati<strong>on</strong>al C<strong>on</strong>ference “Phase transiti<strong>on</strong>, critical and n<strong>on</strong>-linear<br />

phenomena in c<strong>on</strong>densed media” Makhachkala, Russia, 2004, pp. 332-335.


SAINT-PETERSBURG, October 17 – 20, 2005 25<br />

LASER PHOTOACOUSTIC MICROSCOPY OF MECHANICAL<br />

STRESSES IN MODERN MATERIALS<br />

K.L.Muratikov, A.L.Glazov<br />

Physical-Technical Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> RAS,<br />

Polytekhnicheskaya 26, 194021, St.Petersburg, Russia<br />

E-mail: klm@holo.i<str<strong>on</strong>g>of</str<strong>on</strong>g>fe.rssi.ru<br />

The main c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> modern photoacoustic and photothermal microscopy are<br />

described. The problem <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical stress detecti<strong>on</strong> and imaging by<br />

photoacoustic microscopy is analyzed both theoretically and experimentally.<br />

Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoacoustic microscopy applicati<strong>on</strong> for stress detecti<strong>on</strong> in<br />

brittle and ductile materials are presented.<br />

Recently photoacoustic and photothermal microscopy methods have been<br />

successfully used for the diagnostics <str<strong>on</strong>g>of</str<strong>on</strong>g> defects in the bulk and near subsurface layers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

various materials. Photoacoustic and photothermal microscopies are able to provide<br />

important in<strong>format</strong>i<strong>on</strong> about local elastic, thermal and thermoelastic properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

materials. These methods proved to be effective in detecting cracks, voids, delaminated<br />

layers, and foreign inclusi<strong>on</strong>s. The main advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> these methods are n<strong>on</strong>destructive<br />

character, ability to detect subsurface defects and high spatial resoluti<strong>on</strong>. Essentially less<br />

attenti<strong>on</strong> has been paid to the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical stress detecti<strong>on</strong> by photoacoustic and<br />

photothermal methods.The main purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this work is to present our results in the field<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical stresses detecti<strong>on</strong> by photoacoustic method. The problem <str<strong>on</strong>g>of</str<strong>on</strong>g> residual and<br />

mechanical stresses detecti<strong>on</strong> is an important problem <str<strong>on</strong>g>of</str<strong>on</strong>g> modern material physics,<br />

mechanics and engineering. Various methods such as optical, ultras<strong>on</strong>ic, Raman<br />

spectroscopy, magnetic, X-ray and neutr<strong>on</strong> diffracti<strong>on</strong> methods, stress pattern analysis by<br />

measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal emissi<strong>on</strong> (SPATE), are usually used for this purpose. Hole drilling<br />

and compliance methods are also actively investigated at present for residual stress<br />

detecti<strong>on</strong>. Recently holographic interferometry based <strong>on</strong> the hole drilling method in<br />

c<strong>on</strong>juncti<strong>on</strong> with holographic or speckle interferometry has attracted serious attenti<strong>on</strong> for<br />

soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this problem. These methods have been already implemented effectively for the<br />

residual stress detecti<strong>on</strong> while the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> most <str<strong>on</strong>g>of</str<strong>on</strong>g> them is limited substantially by<br />

the physical nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the used effect.<br />

The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoacoustic thermoelastic effect for the diagnostics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mechanical stresses is c<strong>on</strong>sidered at present with growing interest [1-3] . The main advantage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the photoacoustic thermoelastic method lies in its universal character and in the<br />

possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> to objects <str<strong>on</strong>g>of</str<strong>on</strong>g> different nature at microscopic and mesoscopic<br />

scales. Many important details <str<strong>on</strong>g>of</str<strong>on</strong>g> the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> residual stress detecti<strong>on</strong> by photoacoustic<br />

and photothermal methods are not solved up to now. In this work both experimental and<br />

theoretical investigati<strong>on</strong>s are presented which are able to clear up the situati<strong>on</strong> in this field.<br />

Experimental investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the work are based <strong>on</strong> new multimode approach<br />

proposed by us recently [3-5] which is able to provide an important opportunity to c<strong>on</strong>trol<br />

elastic, thermal and thermoelastic parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> materials independently and locally.<br />

Different types <str<strong>on</strong>g>of</str<strong>on</strong>g> photoacoustic and photothermal experiments have been performed. They<br />

can be classified into three types:<br />

(a) Photoacoustic and photothermal measurements and imaging performed in regi<strong>on</strong>s near<br />

Vickers indentati<strong>on</strong>s.


26 OPTOINFORMATICS’05<br />

(b) Photoacoustic and photothermal measurements under annealing <str<strong>on</strong>g>of</str<strong>on</strong>g> samples.<br />

(c) Photoacoustic and photothermal measurement and imaging <str<strong>on</strong>g>of</str<strong>on</strong>g> samples under the given<br />

external loading.<br />

These experiments are performed <strong>on</strong> metals and ceramics. The 2D photodeflecti<strong>on</strong>,<br />

photoreflectance and photoacoustic piezoelectric images <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>s near Vickers<br />

indentati<strong>on</strong>s in metals and ceramics are obtained by using different modes <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

our microscope. It is shown, for example, that external normal and shear stresses influence<br />

<strong>on</strong> the photoacoustic signal near the radial crack tips in ceramics. It is also shown that the<br />

main features <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoacoustic piezoelectric 2D images <str<strong>on</strong>g>of</str<strong>on</strong>g> Vickers indentati<strong>on</strong> z<strong>on</strong>es in<br />

ceramics are very similar to the images obtained by SPATE method and by Raman<br />

microscopy <str<strong>on</strong>g>of</str<strong>on</strong>g> the Vickers indentati<strong>on</strong>s in the crystalline silic<strong>on</strong>. Our experiments<br />

dem<strong>on</strong>strate the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> stress <strong>on</strong> the photoacoustic effect in various materials. The<br />

obtained experimental results can be used for an estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

photoacoustic method to mechanical stresses in ductile and brittle materials.<br />

The model <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoacoustic thermoelastic effect in solids with residual stresses is<br />

proposed by us and used for the explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the obtained results. It is based <strong>on</strong> the<br />

modified Murnaghan model <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear elastic bodies which takes into account a possible<br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermoelastic c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> a material <strong>on</strong> stress. The proposed model is<br />

applied to investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoacoustic signal behavior near the radial crack tips in<br />

modern ceramics. The analytical expressi<strong>on</strong>s for the photoacoustic signal in 3D case are<br />

obtained within the framework <str<strong>on</strong>g>of</str<strong>on</strong>g> the perturbati<strong>on</strong> theory. It is dem<strong>on</strong>strated that the<br />

developed theoretical model for the photoacoustic piezoelectric effect agrees qualitatively<br />

with the available experimental data for ceramics and metals. The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

obtained experimental and theoretical results to the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the stress<br />

intensity factors near the crack tips is discussed.<br />

In c<strong>on</strong>clusi<strong>on</strong>, in this work we have analyzed the situati<strong>on</strong> in the field <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical<br />

stress measurement and imaging. The n<strong>on</strong>linear theoretical model <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoacoustic<br />

effect in stressed materials has been developed which explains the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> stresses <strong>on</strong><br />

the photoacoustic effect with the thermoelastic coefficient dependence <strong>on</strong> stress. The<br />

influence <str<strong>on</strong>g>of</str<strong>on</strong>g> external and residual stresses <strong>on</strong> the photoacoustic effect was established for<br />

brittle and ductile materials.<br />

This research was supported by the RFBR under award No. 04-02-17622.<br />

1. K.L.Muratikov, A.L.Glazov, D.N.Rose, J.E.Dumar, and G.H.Quay, Tech. Phys. Lett.<br />

23, 188 (1997).<br />

2. K.L.Muratikov, A.L.Glazov, D.N.Rose, and J.E.Dumar, Tech. Phys. Lett. 24, 846<br />

(1998).<br />

3. K.L.Muratikov, A.L.Glazov, D.N.Rose, and J.E.Dumar, J. Appl. Phys. 88, 2948<br />

(2000).<br />

4. K.L.Muratikov, A.L.Glazov, Proc. SPIE. 4680, 167 (2002).<br />

5. K.L.Muratikov, A.L.Glazov, D.N.Rose, and J.E.Dumar, Rev. Sci. Instrum. 74, 722<br />

(2003).


SAINT-PETERSBURG, October 17 – 20, 2005 27<br />

ESTIMATION OF INFLUENCE OF STATISTICAL ERRORS ON AN<br />

ACURACY OF CALIBRATION OF THE SPACE SOLAR PATROL<br />

INSTRUMENTATION AT A SYNCHROTRON RADIATION SOURCE<br />

Afanas’ev I.M., S.I. Vavilov State Optical Institute, Tuchkov lane, 1; St. Petersburg,<br />

199034, Russia; e-mail: afanasy@rambler.ru<br />

In the article the values <str<strong>on</strong>g>of</str<strong>on</strong>g> statistical errors, dealt with random character both<br />

emitting <str<strong>on</strong>g>of</str<strong>on</strong>g> synchrotr<strong>on</strong> radiati<strong>on</strong> (SR) in a storage ring, and registrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

SR by a receiving tract <str<strong>on</strong>g>of</str<strong>on</strong>g> the Space Solar patrol (SSP) instrumentati<strong>on</strong>, are<br />

evaluated.<br />

The SSP instrumentati<strong>on</strong> has been created to m<strong>on</strong>itor the i<strong>on</strong>izing radiati<strong>on</strong> from the<br />

Sun in the spectral range 0,14 – 198 nm from space apparatus. It c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a Radiometer<br />

with 20 filters and two grating spectrometers [1] . The absolute spectral calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

SSP instrumentati<strong>on</strong> in the spectral range from 0,25 up to 122 nm (5000 - 10 eV) has been<br />

preparing by the special metrological stati<strong>on</strong>s at the SR sources <str<strong>on</strong>g>of</str<strong>on</strong>g> the storage rings<br />

VEPP-3 and VEPP-4 (at the G.I. Budker Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear Physics, Novosibirsk,<br />

Russia) [2] . All SSP measuring channels have "solar-blind" detectors – open sec<strong>on</strong>daryelectr<strong>on</strong><br />

multipliers (SEM), which have high sensitivity to radiati<strong>on</strong> below 160 nm [1] . The<br />

registrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> by the SSP instrumentati<strong>on</strong> is realized with SEM in pulse mode.<br />

The aleatory variable <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> counting rate f (which is the SSP output<br />

signal [3] ) is taken into account by the apparatus error σ app , which is distributed accordingly<br />

normal law. It is stipulated by random character both SR beam intensity I, and losses in the<br />

SSP registering channel η. [3] In the given calculati<strong>on</strong>, the losses are admitted to the<br />

c<strong>on</strong>stant value η=τ⋅γ=10 -4 electr<strong>on</strong>/phot<strong>on</strong> (thus, not taking into account their spectral<br />

character), where τ - effective transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the SSP channel (mainly, filters for the<br />

Radiometer and a polychromator for spectrometers; for both cases τ is about 10 -2 ) [4] , and γ<br />

- quantum efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> the SEM photocathode (average value is about 10 -2 ) [4] . Thus, the<br />

signal <str<strong>on</strong>g>of</str<strong>on</strong>g> counting rate will amount to f=I⋅η=10 4 pulses/sec, at the SR beam intensity I=10 8<br />

phot<strong>on</strong>/sec (see, table). The root-mean-square deviati<strong>on</strong> f from the expected aleatory<br />

variable f is "noise" <str<strong>on</strong>g>of</str<strong>on</strong>g> the SSP output signal, which hinders the measured signal the more,<br />

the lower value <str<strong>on</strong>g>of</str<strong>on</strong>g> a counting rate (i.e. the lower level a loading <str<strong>on</strong>g>of</str<strong>on</strong>g> a SSP registering<br />

channel).<br />

For unambiguous explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calibrati<strong>on</strong> results it must be used the <strong>on</strong>e-electr<strong>on</strong><br />

mode at measurements. The two-electr<strong>on</strong> event is c<strong>on</strong>sidered as a certain hindering factor -<br />

"noise". It should be noticed, that the multi-electr<strong>on</strong> events at the given estimati<strong>on</strong> are not<br />

c<strong>on</strong>sidered. As a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> fact, the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e and two-electr<strong>on</strong> events<br />

P(1)/P(2) is the "signal-to-noise merit", inverse value <str<strong>on</strong>g>of</str<strong>on</strong>g> which is the statistical error σ stat .<br />

It is supposed, that probability distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aleatory variable <str<strong>on</strong>g>of</str<strong>on</strong>g> appearing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e,<br />

m −λ<br />

two, etc. photoelectr<strong>on</strong> events at experiment is described by the Poiss<strong>on</strong> law: λ ⋅e<br />

P(<br />

m)<br />

= ;<br />

m!<br />

where λ - expectati<strong>on</strong>, which is the multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the SR beam intensity I<br />

(including its modulati<strong>on</strong> with frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> circulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> beam f VEPP-4 at the<br />

VEPP-4 storage ring about 1 MHz) [3] by attenuati<strong>on</strong> losses at the registering tract η;<br />

m – value <str<strong>on</strong>g>of</str<strong>on</strong>g> acts <str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectr<strong>on</strong> emissi<strong>on</strong> from the SEM photocathode (i.e.<br />

appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e-electr<strong>on</strong> event (OEE) if m=1, two-electr<strong>on</strong> event (TEE) if m=2, etc).


28 OPTOINFORMATICS’05<br />

Table. Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> summary errors depending <strong>on</strong> loading <str<strong>on</strong>g>of</str<strong>on</strong>g> the SSP registering tracts<br />

Intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> SR Counting rate, Probability Probability<br />

beam I, phot<strong>on</strong>/sec pulses/sec <str<strong>on</strong>g>of</str<strong>on</strong>g> OEE, Р(1) <str<strong>on</strong>g>of</str<strong>on</strong>g> TEE, Р(2) P(1)/P(2) Apparatus Statistical Summary<br />

error, % error, % error, %<br />

10 4 10 0 10 -6 5⋅10 -13 2⋅10 6 100 5⋅10 -5 100<br />

10 5 10 1 10 -5 5⋅10 -11 2⋅10 5 31,6 5⋅10 -4 31,6<br />

10 6 10 2 10 -4 5⋅10 -9 2⋅10 4 10 5⋅10 -3 10<br />

10 7 10 3 10 -3 5⋅10 -7 2⋅10 3 3,2 5⋅10 -2 3,2<br />

10 8 10 4 9,9⋅10 -3 4,95⋅10 -5 2⋅10 2 1 5⋅10 -1 1,1<br />

10 9 10 5 9⋅10 -2 4,52⋅10 -3 2⋅10 1 0,3 5⋅10 0 5<br />

10 10 10 6 3,68⋅10 -1 1,84⋅10 -1 2⋅10 0 0,1 5⋅10 1 50<br />

Figure. The functi<strong>on</strong>al dependences <str<strong>on</strong>g>of</str<strong>on</strong>g> apparatus, statistical and summary errors from counting rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> output signal (i.e. level <str<strong>on</strong>g>of</str<strong>on</strong>g> loading <str<strong>on</strong>g>of</str<strong>on</strong>g> the SSP registering channels)<br />

2 2<br />

The summary error σ sum is evaluated the following way: σ<br />

sum<br />

= σ app + σ . The<br />

stat<br />

calculated values <str<strong>on</strong>g>of</str<strong>on</strong>g> apparatus, statistical and summary errors, depending <strong>on</strong> the level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

loading <str<strong>on</strong>g>of</str<strong>on</strong>g> the registering channel, are given in the table. So, the figure clearly<br />

dem<strong>on</strong>strates character <str<strong>on</strong>g>of</str<strong>on</strong>g> these errors. The figure shows, that the minimum summary error<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> measurements (and c<strong>on</strong>sequently, the most exact measurements at the SSP calibrati<strong>on</strong>)<br />

can be obtained at the counting rate 10 4 pulses/sec, that requires to set the SR beam<br />

intensity from the VEPP-4 storage ring about 10 8 phot<strong>on</strong>/sec (see, table).<br />

Acknowledgments. This work has been supported by the grant <str<strong>on</strong>g>of</str<strong>on</strong>g> Internati<strong>on</strong>al<br />

Science and Technology Center through the Project #2500 «Calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Space Solar<br />

Patrol apparatus at the synchrotr<strong>on</strong> source». The author is grateful to pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. S.V. Avakyan<br />

and collegues: Mir<strong>on</strong>ov A.I., Chernikov D.A. and Zotkin I.A.<br />

1. Afanas’ev I.M., Avakyan S.V., et al. Achievements in creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Space patrol<br />

apparatus <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izing radiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Sun, Nuc. Ins. & Meth. in Ph. Res., 543, 312-316,<br />

2005.<br />

2. I. Afanas’ev, et al. Some results <str<strong>on</strong>g>of</str<strong>on</strong>g> developments to realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calibrati<strong>on</strong> trials <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

SSP instrumentati<strong>on</strong>. Articles <str<strong>on</strong>g>of</str<strong>on</strong>g> the 4 th Int. c<strong>on</strong>f. “Optics-2005”, Russia, 2005. In press.<br />

3. Afanas'ev I.M., et al. Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> statistic aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> SR beam to calibrate the<br />

SSP instrumentati<strong>on</strong>, Articles <str<strong>on</strong>g>of</str<strong>on</strong>g> the 6th Int. c<strong>on</strong>f. “Applied optics”, 1 (2), 425-428, 2004.<br />

4. Avakyan S. V., Andreev E. P., Afanas'ev I. M., et al. Laboratory studies <str<strong>on</strong>g>of</str<strong>on</strong>g> apparatus for<br />

m<strong>on</strong>itoring i<strong>on</strong>izing solar radiati<strong>on</strong> from space, J. Opt. Technol. 68 (2), 81-88, 2001.


SAINT-PETERSBURG, October 17 – 20, 2005 29<br />

THE X-RAY/EUV MULTIPLIERS IN THE SPACE SOLAR PATROL<br />

APPARATUS<br />

I.A.Zotkin<br />

Birzhevaya line, 12, Saint-Petersburg, 199034, Russia<br />

Vavilov State Optical Institute<br />

E-mail: i.a.zotkin@bk.ru<br />

In the report a brief descripti<strong>on</strong> and motivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> using <str<strong>on</strong>g>of</str<strong>on</strong>g> the open sec<strong>on</strong>dary<br />

electr<strong>on</strong>ical multipliers for the tasks <str<strong>on</strong>g>of</str<strong>on</strong>g> the Space Solar Patrol are stressed.<br />

The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> complex <str<strong>on</strong>g>of</str<strong>on</strong>g> the Space Solar Patrol (SSP) apparatus included [1,2] the<br />

measuring instruments that are intended for the spectroradiometric measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> solar<br />

flux variati<strong>on</strong>s in the spectral range from 0.14 to 157 nm. In the SSP apparatus as receivers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> solar radiati<strong>on</strong> are used open sec<strong>on</strong>dary electr<strong>on</strong>ical multipliers (SEM) with a beryllium<br />

copper photocathode. This photoreceivers has the highest level <str<strong>on</strong>g>of</str<strong>on</strong>g> “solar blindness”<br />

(minimum sensitivity in the near ultraviolet (UV) and visible ranges and, opposite,<br />

maximum sensitivity in the work spectral regi<strong>on</strong> – s<str<strong>on</strong>g>of</str<strong>on</strong>g>t X-ray and Extreme UV) in compare<br />

with others domestically produced and foreign receivers <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izing radiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Sun [2] .<br />

The technology <str<strong>on</strong>g>of</str<strong>on</strong>g> producing <str<strong>on</strong>g>of</str<strong>on</strong>g> these receivers was made in 1950-60s at the Vavilov<br />

SOI <strong>on</strong> the base <str<strong>on</strong>g>of</str<strong>on</strong>g> the reports <str<strong>on</strong>g>of</str<strong>on</strong>g> the domestic maker <str<strong>on</strong>g>of</str<strong>on</strong>g> the SEM – A.M. Tyutikov. This<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> SEM with the dynodes from activated alloy <str<strong>on</strong>g>of</str<strong>on</strong>g> CuBe has been recommended as a<br />

photoreceiver <str<strong>on</strong>g>of</str<strong>on</strong>g> short-wave solar radiati<strong>on</strong>, situated <strong>on</strong> satellites. The SEM <str<strong>on</strong>g>of</str<strong>on</strong>g> open type<br />

with 14 dynodes, photocathode and anode, has higher stability in compare with the<br />

comm<strong>on</strong> devices, that were made from another materials. The main is c<strong>on</strong>diti<strong>on</strong> that this<br />

SEM allows repeated laps <str<strong>on</strong>g>of</str<strong>on</strong>g> the atmosphere air in the device.<br />

Pulse quantum yield, electr<strong>on</strong> / quantum<br />

1,E-01<br />

1,E-03<br />

1,E-05<br />

1,E-07<br />

1,E-09<br />

1,E-11<br />

Diam<strong>on</strong>d<br />

BeO<br />

SiC<br />

1,E-13<br />

0 100 200 300 400 500 600<br />

Wavelength, nm<br />

Fig. 1. The comparative characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> some photoreceivers in the<br />

spectral range from 95 to 600 nm


30 OPTOINFORMATICS’05<br />

Figure 1 shows the comparative characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

photoreceivers <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izing radiati<strong>on</strong>: BeO photocathode using at the open SEM and<br />

photodiodes <strong>on</strong> the base <str<strong>on</strong>g>of</str<strong>on</strong>g> Si [3] and diam<strong>on</strong>d [3] . It have been seen that the quantum<br />

efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> BeO photocathode begins to decrease from 120 nm whereas the same <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

others photoreceivers does not.<br />

At the present time the work <str<strong>on</strong>g>of</str<strong>on</strong>g> research <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum sensitivity and calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

open SEM at synchrotr<strong>on</strong> radiati<strong>on</strong> source is carried out at the Budker Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear<br />

Physics, Novosibirsk. In the paper the comparative characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

photoreceivers for registrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solar i<strong>on</strong>izing radiati<strong>on</strong> will be reported. Also the<br />

privilege <str<strong>on</strong>g>of</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> the open SEM for the tasks <str<strong>on</strong>g>of</str<strong>on</strong>g> the SSP apparatus is described. The<br />

preliminary results <str<strong>on</strong>g>of</str<strong>on</strong>g> SEM calibrati<strong>on</strong> at the synchrotr<strong>on</strong> radiati<strong>on</strong> source are c<strong>on</strong>sidered.<br />

The technical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the open SEM: multiplicati<strong>on</strong> factor up to 10 8 , the<br />

working range 0.1-160 nm, working voltage 3000 – 4000 V, material <str<strong>on</strong>g>of</str<strong>on</strong>g> dynodes CuBe,<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> dynodes 14.<br />

As a c<strong>on</strong>clusi<strong>on</strong>, the SEM has the best spectral characteristic and radiati<strong>on</strong> hardness<br />

for the task <str<strong>on</strong>g>of</str<strong>on</strong>g> the SSP.<br />

1. Avakyan S.V., Afanas’ev I.M et al. Nuclear Inst. and Methods in Physics Research,<br />

Secti<strong>on</strong> A. – No. 543, 2005. – P. 312−316.<br />

2. S.V. Avakyan, N.A. Vor<strong>on</strong>in et al., Opticheskij Zhurnal, 1998, V. 65, No. 12, P. 124 -<br />

131.<br />

3. J.-F. Hochedez, P.Lemaire, E.Pace, U.Schuhle, E.Verwichte; Wide Bandgap EUV And<br />

VUV Imagers For The Solar Orbiter In: “The Radiometric Calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SOHO”,<br />

Bern, Eds.: Anushka Pauluhn, Martin C.E. Huber and Rudolf <str<strong>on</strong>g>of</str<strong>on</strong>g> Steiger, ISSI Scient.<br />

Report, August, 2002, pp. 245-250.


SAINT-PETERSBURG, October 17 – 20, 2005 31<br />

STUDY OF PULSED HOLOGRAM RECORDING<br />

ON THE PHOTOPOLYMERIC MATERIAL<br />

V.N.Mikhailov, O.V.Bandyuk, D.A.Kozlovsky<br />

Research center «S.I.Vavilov State Optical Institute», Saint-Petersburg, Russia<br />

viktormikhailov@yahoo.com<br />

Results <str<strong>on</strong>g>of</str<strong>on</strong>g> research <str<strong>on</strong>g>of</str<strong>on</strong>g> pulsed recording <str<strong>on</strong>g>of</str<strong>on</strong>g> holograms with use <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

photosensitive compositi<strong>on</strong> <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> polyvinyl alcohol with acrylamide<br />

are presented. The possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> practical use <str<strong>on</strong>g>of</str<strong>on</strong>g> the given photopolymeric<br />

material for record <str<strong>on</strong>g>of</str<strong>on</strong>g> pulsed holograms is shown.<br />

The photopolymeric photosensitive compositi<strong>on</strong> <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> polyvinyl alcohol<br />

with acrylamide is known enough for a l<strong>on</strong>g time [1,2] and was recommended as quite<br />

suitable for recording <str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong> holograms by use <str<strong>on</strong>g>of</str<strong>on</strong>g> cw lasers. However, till now its<br />

use for record <str<strong>on</strong>g>of</str<strong>on</strong>g> pulsed holograms has been shown <strong>on</strong>ly under a high frequency lasing<br />

mode [3] , actually approaching result <str<strong>on</strong>g>of</str<strong>on</strong>g> sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the big number <str<strong>on</strong>g>of</str<strong>on</strong>g> pulses to a cw<br />

recording. In the given work we studied dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> recording <str<strong>on</strong>g>of</str<strong>on</strong>g> pulsed holograms by use<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> short pulses <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> (10 ns), which durati<strong>on</strong> much less than characteristic times <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diffusi<strong>on</strong> known by results <str<strong>on</strong>g>of</str<strong>on</strong>g> earlier works with use <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous radiati<strong>on</strong> [4] . The results<br />

received in work have shown essential differences <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> recording <str<strong>on</strong>g>of</str<strong>on</strong>g> holograms<br />

by use <str<strong>on</strong>g>of</str<strong>on</strong>g> short laser pulses in comparis<strong>on</strong> with cw exposure. The basic differences are: 1)<br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> the inducti<strong>on</strong> period which is typical for cw recording, and also 2) dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> efficiency to pulse recording from value <str<strong>on</strong>g>of</str<strong>on</strong>g> preliminary exposure (fig.1). Efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the pulsed hologram essentially raised in comparis<strong>on</strong> with a case <str<strong>on</strong>g>of</str<strong>on</strong>g> absence preliminary<br />

exposure. The mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> such behavior can be explained taking into account the<br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> polymerizati<strong>on</strong> during pulsed exposure. It is shown that preliminary pulse<br />

exposure could be replaced <strong>on</strong> equivalent cw pre-exposure. It is dem<strong>on</strong>strated also, that at<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> a series <str<strong>on</strong>g>of</str<strong>on</strong>g> pulses effective recording <str<strong>on</strong>g>of</str<strong>on</strong>g> the superimposed holograms is possible<br />

(fig.2). Work was supported by grant ТО2-02.5-1441 <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Russia.<br />

1. J.R.Lawrence, F.T.O'Neill, J.T.Sheridan, "Photopolymer holographic recording<br />

material" // Optik, 2001, №10, pp.449-463.<br />

2. C.A. Feely, S. Martin, V. Toal, "Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an acrylamide-based dry<br />

photopolymer holographic recording material", SPIE Proc., 1996, V.2688, pp.22-33.<br />

3. C. Garcia, I. Pascual, A. Costela, I. Garcia-Moreno, A. Fimia, R. Rastre, “Experimental<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> the acrylamide photopolymer with a pulsed laser" // Opt. Commun., 2001, №<br />

.188, pp.163-166.<br />

4. J.H. Kw<strong>on</strong>, H.C. Hwang, K.C. Woo, "Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> temporal behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> beams<br />

diffracted by volume gratings formed in photopolymers" // JOSA B, 1999, V.16, №<br />

.10, pp.1651-1657.


32 OPTOINFORMATICS’05<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

DE, %<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

0 1000 2000 3000 4000 5000<br />

t, ms<br />

Fig. 1.<br />

Dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> diffracti<strong>on</strong> efficiency DE from time t at c<strong>on</strong>secutive<br />

recording <str<strong>on</strong>g>of</str<strong>on</strong>g> four holograms by a series <str<strong>on</strong>g>of</str<strong>on</strong>g> pulses.<br />

The dotted line shows stati<strong>on</strong>ary value DE.<br />

0,7<br />

0,6<br />

b)<br />

DE, %<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

а)<br />

0,0<br />

1 2 3 4 5<br />

№ hologram<br />

Fig. 2.<br />

а) Diffracti<strong>on</strong> efficiency DE <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 pulsed superimposed holograms during<br />

recording stage (dots, λ rec =532 nm) and stati<strong>on</strong>ary DE (columns) measured after recording.<br />

Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> DE was carried by use <str<strong>on</strong>g>of</str<strong>on</strong>g> He-Ne laser (λ=633 nm).<br />

b) Images <str<strong>on</strong>g>of</str<strong>on</strong>g> objects restored by each <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 superimposed holograms at reading<br />

by radiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tinuous laser (λ=532 nm).


SAINT-PETERSBURG, October 17 – 20, 2005 33<br />

ELECTRICAL AND OPTICAL PROPERTIES OF HOLOGRAMS<br />

RECORDED IN CONDUCTOR POLYMER.<br />

M.A. Flores-Vázquez, M.P. Hernández-Garay, A. Olivares-Pérez, I. Fuentes-Tapia, S.<br />

Toxqui–López, Instituto Naci<strong>on</strong>al de Astr<str<strong>on</strong>g>of</str<strong>on</strong>g>ísica Óptica y Electrónica, Optic Department,<br />

T<strong>on</strong>antzintla, 72000, Puebla, México<br />

E-mail: kore-m<strong>on</strong>@hotmail.com, mgaray@inaoep.mx, olivares@inaoep.mx<br />

We present some results obtained in the electrical and optical characterizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the polyvinyl alcohol doped with metallic salts, c<strong>on</strong>trolling his chemical and<br />

physical properties to different c<strong>on</strong>centrati<strong>on</strong>s. Wanting to optimize the doped<br />

polymer, c<strong>on</strong>trolling and registering his properties, therefore to increase his<br />

electrical c<strong>on</strong>ductivity and his life time at envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s. Whit this<br />

material we storage images and holograms, showing his diffracti<strong>on</strong> efficiency.<br />

The polyvinyl alcohol is a synthetic resin produced by polymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the acetate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vinyl (VAM) and later for the hydrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> polyacetate <str<strong>on</strong>g>of</str<strong>on</strong>g> vinyl [1] . Exist some<br />

compounds that have the aptitude to agree or d<strong>on</strong>ate electr<strong>on</strong>s, this reacti<strong>on</strong> is named<br />

oxidati<strong>on</strong> – reducti<strong>on</strong>. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> this characteristic is very useful to be able to<br />

observe quantitatively that it happens in the course <str<strong>on</strong>g>of</str<strong>on</strong>g> the tests in laboratory that we realize.<br />

In this work we present the characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ductive resultant polymer its<br />

combinati<strong>on</strong> polyvinyl alcohol with the salt [2] : FeCl2, AgNO 3, NaCl, KBr, NiCl 2; and<br />

storage images and holograms with some c<strong>on</strong>ductive polymers.<br />

At this moment to characterized the c<strong>on</strong>ductive polymer with some electro chemicals<br />

methods and spectroscopic, where we present some obtained results. We realize different<br />

soluti<strong>on</strong>s with PVA’s + every salt, with same quantities the solute and solvent, in the table<br />

1 present some <str<strong>on</strong>g>of</str<strong>on</strong>g> their characteristics.<br />

Table 1. Some characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the liquid soluti<strong>on</strong>s for different salts.<br />

Liquid soluti<strong>on</strong> pH Refracti<strong>on</strong> Index Appearance<br />

PVA+NiCl 2 4.42 1.4750<br />

PVA+KBr 7.38 1.5125<br />

PVA+NaCl 6.09 1.5195<br />

PVA+AgNO 3 3.15 1.5220<br />

PVA+ FeCl 2 1.34 1.3745<br />

All the simples were prepared under normal laboratory c<strong>on</strong>diti<strong>on</strong>s (22 o C - 25 o C,<br />

relative humidity ≈ 40%-45%). Is important to menti<strong>on</strong> that the characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

c<strong>on</strong>ductive polymer is restricted to superficial technologies, being specially worn the<br />

electrochemical methods <str<strong>on</strong>g>of</str<strong>on</strong>g> optical and spectroscopic.<br />

Given the c<strong>on</strong>ductive nature <str<strong>on</strong>g>of</str<strong>on</strong>g> these materials, the superficial c<strong>on</strong>ductivity is so well<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the habitual parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> characterizati<strong>on</strong> being the methods <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 tops and 4 tops<br />

the more used (resistivity <str<strong>on</strong>g>of</str<strong>on</strong>g> volume). The resistivity <str<strong>on</strong>g>of</str<strong>on</strong>g> volume (VR) is measured by base<br />

to the norm ASTM D4496 [3] , and is calculated bearing in mind the geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electrodes like it shows in the figure 1, in agreement with the equati<strong>on</strong> (1) [4] .


34 OPTOINFORMATICS’05<br />

VR = R * S / L (1)<br />

Where:<br />

VR = resistivity <str<strong>on</strong>g>of</str<strong>on</strong>g> volume (Ohm.cm)<br />

R = resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> the material to the flow <str<strong>on</strong>g>of</str<strong>on</strong>g> load (Ohm)<br />

S = surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the electrode (cm 2 ) defined like S = W * t<br />

L = distance between electrodes (cm)<br />

Figure 1. Volume resistivity<br />

technique <str<strong>on</strong>g>of</str<strong>on</strong>g> two points<br />

The test was realized <str<strong>on</strong>g>of</str<strong>on</strong>g> resistivity <str<strong>on</strong>g>of</str<strong>on</strong>g> volume for 5 different types <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s<br />

soluti<strong>on</strong>, spilling in our model 4ml <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> for every test. For the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

resistivity <str<strong>on</strong>g>of</str<strong>on</strong>g> volume for every soluti<strong>on</strong>, we use 3 different types <str<strong>on</strong>g>of</str<strong>on</strong>g> electrodes, tin (Sn),<br />

copper (Cu) and aluminium (Al). Obtaining 10000 readings in real time for every test,<br />

hereby to be able to observe the change and the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ductive polymer with<br />

regard to the resistivity in the time.<br />

Of the results obtained in the graphic 1 it was possible to observe that the resistivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the polymer with tin electrodes presents the reacti<strong>on</strong> named oxide - reducti<strong>on</strong> with major<br />

stability, figure 2 (acceptance and not so changeable d<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s) [5] .<br />

Figure 2. Resistivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the polymer with tin<br />

electrodes and reducti<strong>on</strong> with major stability<br />

In general we can observe <str<strong>on</strong>g>of</str<strong>on</strong>g> 6 graphs that there is major stability for the majority <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the soluti<strong>on</strong>s and minor values <str<strong>on</strong>g>of</str<strong>on</strong>g> resistivity for the case without dampness.<br />

In the development <str<strong>on</strong>g>of</str<strong>on</strong>g> this process for the present time we can say that the dampness<br />

is a determinant factor in the resistivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the polymer, as what it is necessary to have<br />

major c<strong>on</strong>trol <strong>on</strong> this <strong>on</strong>e. We realize storage <str<strong>on</strong>g>of</str<strong>on</strong>g> holograms with the NiCl 2 , changing the<br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> polymerizati<strong>on</strong> and time <str<strong>on</strong>g>of</str<strong>on</strong>g> treated. In the Figure 3, shows the curves <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diffracti<strong>on</strong> efficiency obtained up to the moment.<br />

Figure 3. Curves <str<strong>on</strong>g>of</str<strong>on</strong>g> diffracti<strong>on</strong> efficiency with NiCl 2<br />

1. Available< htttp://www.clariant.com/corporate/internet.nsf/direct/homeopendocument>.<br />

2. Available.<br />

3. B. Ruiz-Limón, Arturo Olivares Pérez, F Silva Andrade, I Fuentes Tapia, Juan Carlos Ibarra<br />

Torres, “Polyvinyl alcohol doped with nickel chloride hexahydrate as c<strong>on</strong>ductor polymer”,<br />

SPIE, Vol. 5351.<br />

4. Available .<br />

5. John R Dyer, “Aplicaci<strong>on</strong>es de espectroscopia de absorción en compuestos orgánicos”, first<br />

Ed. Prentice Hall Internaci<strong>on</strong>al, New Jersey USA, 1973.


SAINT-PETERSBURG, October 17 – 20, 2005 35<br />

HIGH-EFFECTIVE MULTIPLEX HOLOGRAMS IN VOLUME<br />

POLYMER MEDIA<br />

O.V. Andreeva, A.P. Kushnarenko*, B.B. Lesnichij**, A.P. Nacharov**,<br />

A.A. Param<strong>on</strong>ov**<br />

S.I. Vavilov State Optical Institute, 12 Birzhevaya linija, St. Petersburg, Russia, 197198<br />

*Saint-Petersburg State University, 1, Uljanovskaja str., Petrodvorets, St. Petersburg,<br />

Russia, 198504<br />

**Saint-Petersburg State University <str<strong>on</strong>g>of</str<strong>on</strong>g> In<strong>format</strong>i<strong>on</strong> Technology, Mechanics and Optics,<br />

49 Kr<strong>on</strong>verkskij ave., St. Petersburg, Russia, 197101<br />

E-mail: ali@phoi.ifmo.ru, kushnarenko@fr<strong>on</strong>t.ru<br />

At present paper the technique developed for record <str<strong>on</strong>g>of</str<strong>on</strong>g> high-effective<br />

superposed holograms in polymer medium “Difphen” is reported. The results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hologram that was obtained by means <str<strong>on</strong>g>of</str<strong>on</strong>g> angular<br />

multiplexing with technology developed are presented. The possibilities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

such holograms usage for in<strong>format</strong>i<strong>on</strong> storage and producing <str<strong>on</strong>g>of</str<strong>on</strong>g> elements with<br />

special properties based <strong>on</strong> regular and fractal structures are shown.<br />

At the last time because <str<strong>on</strong>g>of</str<strong>on</strong>g> tremendous growth <str<strong>on</strong>g>of</str<strong>on</strong>g> optical in<strong>format</strong>i<strong>on</strong> technologies<br />

the interest to high-resoluti<strong>on</strong> holographic recording media also increases. Volume<br />

holography suggests effective methods for storage, trans<strong>format</strong>i<strong>on</strong> and processing <str<strong>on</strong>g>of</str<strong>on</strong>g> huge<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> data. The development <str<strong>on</strong>g>of</str<strong>on</strong>g> that area is impossible without development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

technologies for recording media engineering and methods <str<strong>on</strong>g>of</str<strong>on</strong>g> hologram producing. On the<br />

other hand, interest to recording media is maintained by the fact that there is the possibility<br />

to apply holographic media for creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metamaterials or left-handed materials i.e.<br />

structurally organized substance with properties that are unusual for c<strong>on</strong>venti<strong>on</strong>al natural<br />

materials [1] .<br />

The polymeric recording medium with post-exposure amplificati<strong>on</strong> “Difphen” [2] (<strong>on</strong><br />

basis <str<strong>on</strong>g>of</str<strong>on</strong>g> phenanthroquin<strong>on</strong>e) was developed at the S.I. Vavilov Optical Institute and<br />

possesses the number <str<strong>on</strong>g>of</str<strong>on</strong>g> peculiarities: high resoluti<strong>on</strong> (more 5000 mm -1 ), high value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phase modulati<strong>on</strong>, ability to record interference patterns without distorti<strong>on</strong>s within wide<br />

dynamic range, stability <str<strong>on</strong>g>of</str<strong>on</strong>g> performance attributes.<br />

Polymeric media <strong>on</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> phenanthroquin<strong>on</strong>e have well-known abilities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

recording <str<strong>on</strong>g>of</str<strong>on</strong>g> a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> superposed holograms. Here holograms, recorded <strong>on</strong> the<br />

same area <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample, are subjected to post-exposure treatment simultaneously and have<br />

small value <str<strong>on</strong>g>of</str<strong>on</strong>g> efficiency. When low-effective superposed holograms are recorded, the<br />

dynamic range <str<strong>on</strong>g>of</str<strong>on</strong>g> material allows to record a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> holograms with identical<br />

characteristics. But it is impossible to use this way for recording <str<strong>on</strong>g>of</str<strong>on</strong>g> superposed identical<br />

holograms with diffracti<strong>on</strong> efficiency close to 100% since changes <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

light-sensitive substrate c<strong>on</strong>centrati<strong>on</strong> after recording <str<strong>on</strong>g>of</str<strong>on</strong>g> each hologram.


36 OPTOINFORMATICS’05<br />

The technology without above menti<strong>on</strong>ed lack for receiving <str<strong>on</strong>g>of</str<strong>on</strong>g> superposed<br />

holograms <strong>on</strong> the same area <str<strong>on</strong>g>of</str<strong>on</strong>g> sample is proposed. The registrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each superposed<br />

hologram takes place <strong>on</strong> the recording area <str<strong>on</strong>g>of</str<strong>on</strong>g> multiplex hologram that possesses<br />

homogeneous distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light-sensitive substrate.<br />

There was shown an ability <str<strong>on</strong>g>of</str<strong>on</strong>g> recording from 5 up to 8 holograms with diffracti<strong>on</strong><br />

efficiency more 70% and selectivity c<strong>on</strong>tour close to calculated [3] . This method with<br />

multibeam record combinati<strong>on</strong> allows to multiplex <str<strong>on</strong>g>of</str<strong>on</strong>g> different interference patterns for the<br />

purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic and fractal structure design <str<strong>on</strong>g>of</str<strong>on</strong>g> predetermined c<strong>on</strong>figurati<strong>on</strong>. Elements<br />

<strong>on</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> above structures with specific properties could be required in different areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

science and technology.<br />

1. C. R. Simovski, P. A. Belov. Low-frequency spatial dispersi<strong>on</strong> in wire media, //Phys.<br />

Rev. E 70, 046616, 2004.<br />

2. O. V. Andreeva, O. V. Bandyuk, A. A. Param<strong>on</strong>ov, et al. Transmissive volume<br />

holograms in a polymeric medium with phenanthroquin<strong>on</strong>e, //Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Optical<br />

Technology, 67(12), 1043, 2000.<br />

3. Kogelnik H. Coupled Wave Theory for Thick Hologram Gratings, //The Bell System<br />

Technical Journal, 48(9), 2909-2947, 1969.


SAINT-PETERSBURG, October 17 – 20, 2005 37<br />

DIGITAL HOLOGRAMS REPLICATIONS WITH POLYVINYL<br />

ALCOHOL<br />

M.P. Hernández-Garay, A. Olivares-Pérez, I. Fuentes-Tapia, S. Toxqui-López,<br />

Instituto Naci<strong>on</strong>al de Astr<str<strong>on</strong>g>of</str<strong>on</strong>g>ísica Óptica y Electrónica, Optic Department,<br />

T<strong>on</strong>antzintla, 72000, Puebla, México<br />

E-mail: mgaray@inaoep.mx, olivares@inaoep.mx<br />

Many applicati<strong>on</strong>s in the industry have the polyvinyl alcohol (PVA). It is<br />

known as material for holographic register [1] . We present the analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

influence <str<strong>on</strong>g>of</str<strong>on</strong>g> some variants in the record process. Obtaining as final result the<br />

quantitative results <str<strong>on</strong>g>of</str<strong>on</strong>g> the diffracti<strong>on</strong> efficiency parameter in the replicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

digital holograms under envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s.<br />

Process operates <strong>on</strong> the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> free radical chain polymerisati<strong>on</strong>; subsequent<br />

hydrolysis c<strong>on</strong>verts the polyvinyl acetate to polyvinyl alcohol [1] . In partially hydrolysed<br />

grades the vinyl alcohol c<strong>on</strong>tent is such that the entire molecule is freely soluble in water<br />

and depends his degree <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrolysis and viscosity is applicati<strong>on</strong> area. Taking advantage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the polymer and c<strong>on</strong>trolling his physical and chemical properties, the PVA<br />

is used like holographic recording material determining the efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> the gratings for<br />

every compositi<strong>on</strong> and procedure [2] . Since the late 1960s, a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> photopolymer<br />

materials have been used to fabricate holograms [3] .<br />

For our case two indispensable processes exist in the replicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the holograms,<br />

the heat and the radiati<strong>on</strong> to which the samples surrender. The polymerizati<strong>on</strong> is realized<br />

by two activati<strong>on</strong> processes, the heat (thermo treated) and radiati<strong>on</strong> (photo treated); every<br />

activati<strong>on</strong> process is applied in a different way during the method that we have used doing<br />

a c<strong>on</strong>trol <strong>on</strong> these. Three types <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s were obtained, with different three PVA's<br />

c<strong>on</strong>centrati<strong>on</strong> (hydrolysed). The base film was obtained realized first changing the time <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dried in muffle and thickness for every case as follows:<br />

The basic PVA material was dissolved in bi-distilled water heater at 90 o C to<br />

obtaining a PVA aqueous soluti<strong>on</strong>. With three different PVA c<strong>on</strong>centrati<strong>on</strong>s: These three<br />

soluti<strong>on</strong>s have the following characteristics; you can see the Table 1. We prepared films<br />

with an area <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 x 2 cm 2 , <strong>on</strong> glass substrate <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 x 4 cm 2 . In the first instance the<br />

polymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the films were realized by direct heat in muffle, with a temperature<br />

between 70 o C and 80 o C.<br />

Table 1. Characteristics at different soluti<strong>on</strong>s<br />

Liquid<br />

soluti<strong>on</strong><br />

pH Density<br />

(grs/ml)<br />

Refracti<strong>on</strong><br />

index<br />

1 7.13 0.914 1.3449<br />

2 7.20 2.16 1.3515<br />

3 7.01 1.447 1.3385<br />

The appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the record films and their pattern result <str<strong>on</strong>g>of</str<strong>on</strong>g> storage processes under<br />

the c<strong>on</strong>diti<strong>on</strong>s and characteristics shown in the table 1 appear in the figure 1. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

film’s thickness in the process <str<strong>on</strong>g>of</str<strong>on</strong>g> storage is an important parameter to realize the process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

photopolymerizati<strong>on</strong>, determining the sensitivity and the storage capacity. [4] The soluti<strong>on</strong>s<br />

2 and 3 it has PVA's major c<strong>on</strong>centrati<strong>on</strong> therefore it is difficult and not viable to realize<br />

the storage in these soluti<strong>on</strong>s. The difficulties in the storage for these soluti<strong>on</strong>s were<br />

precisely to the thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the film were much major then soluti<strong>on</strong> 1, with a degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hydrolysis minor, impeding the process <str<strong>on</strong>g>of</str<strong>on</strong>g> polymerizati<strong>on</strong>.


38 OPTOINFORMATICS’05<br />

Once obtained the base films with the soluti<strong>on</strong> 1, the process <str<strong>on</strong>g>of</str<strong>on</strong>g> storage realized for the<br />

reply <str<strong>on</strong>g>of</str<strong>on</strong>g> digital holograms. The c<strong>on</strong>diti<strong>on</strong>s in which the process was realized, was under<br />

normal c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> laboratory it is 22 o C - 25 o C, relative humidity ≈ 35%-40, is important<br />

the dampness that is obtained in the films in the moment to be storage. Using a mask<br />

master [3] , the temperature that generates in the fricti<strong>on</strong> process was about 35 o C ≈ 38 o C.<br />

Holographic recording in this material (PVA) is the base <strong>on</strong> the polymerizati<strong>on</strong> [5] . The<br />

polymerizati<strong>on</strong> was realized by two processes <str<strong>on</strong>g>of</str<strong>on</strong>g> activati<strong>on</strong>, the heat (thermo treated) and<br />

radiati<strong>on</strong> (photo treated). The process finishes with the polymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the films<br />

realizing it for three methods; in muffle, radiati<strong>on</strong> with UV and radiati<strong>on</strong> with incandescent<br />

lamp. To record optical in<strong>format</strong>i<strong>on</strong> in any material, phot<strong>on</strong>s must be absorbed by that<br />

material and cause chemical changes. These are primary photochemical reacti<strong>on</strong>s and can<br />

be described by the first and sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> photochemistry [6] . For what the process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

drying <str<strong>on</strong>g>of</str<strong>on</strong>g> the holographic recording is varied, determining the diffracti<strong>on</strong> efficiency<br />

regarding the time <str<strong>on</strong>g>of</str<strong>on</strong>g> exhibiti<strong>on</strong> for each case, that can be observed in the graph 1.<br />

100<br />

90<br />

80<br />

Muffle<br />

UV radiati<strong>on</strong><br />

Lamp<br />

Diffracti<strong>on</strong> Efficiency %<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

( a )<br />

Figure 1. Appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the film for soluti<strong>on</strong>s 1 and<br />

his pattern result <str<strong>on</strong>g>of</str<strong>on</strong>g> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> storage<br />

10<br />

0<br />

5 10 15 20 25 30 35 40 45 50<br />

Dried time (minutes)<br />

Graph 1. Diffracti<strong>on</strong> efficiency for three different dried methods<br />

We observed that, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> obtained orders and the quality visual <str<strong>on</strong>g>of</str<strong>on</strong>g> these, are<br />

determined by the type <str<strong>on</strong>g>of</str<strong>on</strong>g> dried obtained to final process in the holographic register [7] .<br />

The thickness film <str<strong>on</strong>g>of</str<strong>on</strong>g> the polymer, the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the mask master and the time <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fricti<strong>on</strong> in the storage are determinant factors for the reply <str<strong>on</strong>g>of</str<strong>on</strong>g> the master. We leave these<br />

c<strong>on</strong>stant factors in the process changing the time <str<strong>on</strong>g>of</str<strong>on</strong>g> exhibiti<strong>on</strong> to the radiati<strong>on</strong> in every<br />

sample. Although many factors intervene in the modulati<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> holographic<br />

recording, we realize the c<strong>on</strong>trol and record <str<strong>on</strong>g>of</str<strong>on</strong>g> three factors were repeatable and<br />

reproducible.<br />

1. Available .<br />

2. Available .<br />

3. W.S. Colburn, Review <str<strong>on</strong>g>of</str<strong>on</strong>g> materials for holographic optics, J. Imag. Sci. Technol., 41, p. 443,<br />

1997.<br />

4. S. Blaya, L. Carretero, R.F. Madrigal, A. Fimia, Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a photopolymerizable<br />

holographic recording material base d<strong>on</strong> polyvinylalcohol using angular resp<strong>on</strong>ses, Optical<br />

Materials, 23, 529-538, 2003.<br />

5. S. Blaya et al., Appl. Opt., 25, p. 7604, 1998.<br />

6. V. Weiss, A.A. Friesem, and a. Peled, Inorganic Materials for archival holographic recording, J.<br />

Imag. Sci. Technol., 41 (4), p.355, 997.<br />

7. John R Dyer, “Aplicaci<strong>on</strong>es de espectroscopia de absorción en compuestos orgánicos”, first Ed.<br />

Prentice Hall Internaci<strong>on</strong>al, New Jersey USA, 1973.


SAINT-PETERSBURG, October 17 – 20, 2005 39<br />

NANOPOROUS SHRINKPROOF MEDIA FOR RECORDING AND<br />

STORAGE OF INFORMATION<br />

N.V. Andreeva, A.P. Kushnarenko*, O.V. Andreeva**<br />

Saint-Petersburg State University <str<strong>on</strong>g>of</str<strong>on</strong>g> In<strong>format</strong>i<strong>on</strong> Technology, Mechanics and Optics,<br />

49 Kr<strong>on</strong>verkskij ave., St. Petersburg, Russia, 197101<br />

*Saint-Petersburg State University, 1, Uljanovskaja str., Petrodvorets, St. Petersburg,<br />

Russia, 198504<br />

**S.I. Vavilov State Optical Institute, 12 Birzhevaya linija, St. Petersburg, Russia, 197198<br />

E-mail: klub-optoinf@yandex.ru, AndreevaNV_3@mail.ru<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> researching shrinkpro<str<strong>on</strong>g>of</str<strong>on</strong>g> silver halide photomaterials <strong>on</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nanoporous glasses are reported.<br />

Volume recording media which were developed in State Optical Institute for the aims <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

volume holography find their applicati<strong>on</strong>s in different scientific and technological<br />

activities. [1] Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> these materials open new opportunities <str<strong>on</strong>g>of</str<strong>on</strong>g> their using that<br />

overstep the limits <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> recording media <strong>on</strong>ly for holography. Recording media<br />

for holography with the thickness about 1 mm should be shrinkpro<str<strong>on</strong>g>of</str<strong>on</strong>g>, have a sensitivity to<br />

the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent radiati<strong>on</strong> sources which are in existence, allow the opportunity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong>destructive reading and in<strong>format</strong>i<strong>on</strong> storage, not change their parameters during l<strong>on</strong>g<br />

exploitati<strong>on</strong> and etc.<br />

Silver halide compositi<strong>on</strong> with gelatin as a protective colloid supplies the photosensitivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> porous silver recording medium. [2] Up to now photographic silver media for totality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameters stay unexcelled light-sensitive materials in different fields <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>temporary<br />

scientific and technological activity. Porous silver halide photomaterials add <strong>on</strong>e more<br />

opportunity to the list <str<strong>on</strong>g>of</str<strong>on</strong>g> major parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> silver halide photomaterials – the opportunity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> getting shrinkpro<str<strong>on</strong>g>of</str<strong>on</strong>g> samples which allow post-exposure development by chemicophotographic<br />

soluti<strong>on</strong>s. Such an opportunity supplies solid-state crystal carcass – porous<br />

glass which physical-chemical strength is close to the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> silicate glass.<br />

Light-sensitive compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> volume porous photomaterials represents a hardphase<br />

covering which is hard c<strong>on</strong>nected with silica carcass internal sides and occupies <strong>on</strong>ly part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pores free volume and it supplies the access <str<strong>on</strong>g>of</str<strong>on</strong>g> reagent soluti<strong>on</strong>s inside the sample<br />

during its chemico-photographic development. At present time the main principles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carrying out the synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> light-sensitive compositi<strong>on</strong> are developed and the c<strong>on</strong>diti<strong>on</strong>s<br />

were emerged too by variating <str<strong>on</strong>g>of</str<strong>on</strong>g> which we can change characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> receiving<br />

photomaterials and holograms recorded <strong>on</strong> them.


40 OPTOINFORMATICS’05<br />

The experiments showed that during the chemico-photographic development <str<strong>on</strong>g>of</str<strong>on</strong>g> porous<br />

silver halide media the developed particles form in the form <str<strong>on</strong>g>of</str<strong>on</strong>g> colloid silver particles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spherical shape, the size <str<strong>on</strong>g>of</str<strong>on</strong>g> these particles must not be more than maximum pore diameter<br />

that is the given medium after its development must not c<strong>on</strong>tain silver particles with the<br />

size more than 20 nm. [3] This is the principle difference <str<strong>on</strong>g>of</str<strong>on</strong>g> porous photomaterials from<br />

standard photomaterials with light-sensitive compositi<strong>on</strong> which is formed in the gelatin<br />

soluti<strong>on</strong> and is drifted <strong>on</strong> the substrate. During forming silver halide particles in the<br />

soluti<strong>on</strong> their size usually has lower limit that is c<strong>on</strong>diti<strong>on</strong>ed from processes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

thermodynamic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> solidphase during the synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> silver halide form the<br />

soluti<strong>on</strong> and from the c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> chemico-photographic development but at the same<br />

time process <str<strong>on</strong>g>of</str<strong>on</strong>g> forming big particles that greatly exceeded the middle diameter can happen<br />

unc<strong>on</strong>trolled and doesn’t have strict limits. The principle advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> silver porous media<br />

over the porous media with other light-sensitive compositi<strong>on</strong>s is an opportunity <str<strong>on</strong>g>of</str<strong>on</strong>g> lightdiffusing<br />

decreasing <str<strong>on</strong>g>of</str<strong>on</strong>g> porous samples by filling pores free volume with an immersi<strong>on</strong><br />

with refractive-index equaled to the refractive-index <str<strong>on</strong>g>of</str<strong>on</strong>g> the carcass. At the same time<br />

changing to the worse parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> recording in<strong>format</strong>i<strong>on</strong> doesn’t take place. It makes<br />

c<strong>on</strong>diti<strong>on</strong>s for getting high-effective elements in visible and near infrared spectrum band<br />

possessing low light-diffusing.<br />

Labour-intensiveness and complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> getting silver halide porous photomaterials and<br />

optical elements <strong>on</strong> their base can be compensate by the totality <str<strong>on</strong>g>of</str<strong>on</strong>g> received parameters<br />

which are unachievable when using other recording media and processing methods.<br />

1. V.I. Sukhanov, M.V. Khazova, A.M. Kursakova, O.V. Andreeva, “Volume capillary<br />

recording media with the latent image”, //Optics and Spectroscopy, V.65, #2, P.474,<br />

1988.<br />

2. O.V. Andreeva, “Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Focar-tipe silver halide heterogeneous media”, //SPIE,<br />

V.1238, P. 231-234, 1989.<br />

3. O.V. Andreeva, Yu.L. Korzinin, V.N. Nazarov, E.R. Gavrilyuk, A.M. Kursakova,<br />

“Angular selectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> silver porous holograms in red and infra-red spectral regi<strong>on</strong>s”,<br />

// Optics and Spectroscopy, V.81, #5, P.856-860, 1996.


SAINT-PETERSBURG, October 17 – 20, 2005 41<br />

CdF 2 :In: A FAST-RESPONSE MEDIUM OF THE REAL-TIME<br />

HOLOGRAPHY<br />

A.E. Angervaks, S.A. Dimakov * , S.I. Kliment’ev * , A.S. Shcheulin, A.I Ryskin<br />

S.I. Vavilov State Optical Institute, 199034 12, Birghevaya Line, Saint-Petersburg, Russia<br />

* Institute for Laser Physics, 199034 12, Birghevaya Line, Saint-Petersburg, Russia<br />

E-mail: angervax@mail.ru<br />

Opportunities <str<strong>on</strong>g>of</str<strong>on</strong>g> use semic<strong>on</strong>ductor CdF 2 crystals with bistable indium centers<br />

as a high-frequency medium <str<strong>on</strong>g>of</str<strong>on</strong>g> the real-time holography is discussed.<br />

Indium i<strong>on</strong>s in semic<strong>on</strong>ductor CdF 2 crystals form bistable centers having two states,<br />

ground (the “deep”) state and excited (the “shallow”) state. Two states <str<strong>on</strong>g>of</str<strong>on</strong>g> the center are<br />

separated with a potential barrier, due to which the excited state has a metastable nature.<br />

The str<strong>on</strong>g photoi<strong>on</strong>izati<strong>on</strong> absorpti<strong>on</strong> band is tied with each <str<strong>on</strong>g>of</str<strong>on</strong>g> two center states: in the<br />

ultraviolet-visible (UV-VIS) range <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum for the deep state and in the infrared<br />

(IR) range for the shallow state. These bands are due to electr<strong>on</strong> transfer from the<br />

corresp<strong>on</strong>ding center state to c<strong>on</strong>ducti<strong>on</strong> band <str<strong>on</strong>g>of</str<strong>on</strong>g> the crystal. The photoinduced c<strong>on</strong>versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the deep centers into the shallow centers corresp<strong>on</strong>d to transforming an electr<strong>on</strong> from<br />

the tightly bound into weakly bound state with corresp<strong>on</strong>ding change <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong><br />

spectrum and refractive index <str<strong>on</strong>g>of</str<strong>on</strong>g> the crystal. This c<strong>on</strong>versi<strong>on</strong> underlies the process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hologram writing in the crystals with bistable centers [1,2] . The hologram decay is due to the<br />

thermoinduced c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the shallow centers into the deep centers. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

small height <str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier the decay time is very short: at room temperature it is <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 10 -7 s.<br />

Due to this dynamical holograms written in CdF 2 :In, crystal can follow processes with<br />

frequency up to ~ 10 MHz [3,4] .<br />

High spatial resoluti<strong>on</strong> (> 5000 lines/mm), cubic symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the crystal,<br />

unrestricted number <str<strong>on</strong>g>of</str<strong>on</strong>g> writing/reading cycles, and opportunity <str<strong>on</strong>g>of</str<strong>on</strong>g> growing crystals <str<strong>on</strong>g>of</str<strong>on</strong>g> large<br />

dimensi<strong>on</strong>s and good optical quality make CdF 2 :In a promising medium <str<strong>on</strong>g>of</str<strong>on</strong>g> the real-time<br />

holography.<br />

One may show two fields <str<strong>on</strong>g>of</str<strong>on</strong>g> using this medium. The first <strong>on</strong>e is dynamical<br />

holographic correcti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the optical image. The CdF 2 :In-based dynamical PC mirror used<br />

for this purpose ensures resp<strong>on</strong>se time about 15 ns at reflecti<strong>on</strong> coefficient up to 2%. The<br />

gain in the beam divergence at compensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> model large-scale distorti<strong>on</strong>s is 20 times at<br />

the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> compensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.05 [5] .<br />

CdF 2 :In crystal with renewed holograms can also be used as a dynamical holographic<br />

filter in problems <str<strong>on</strong>g>of</str<strong>on</strong>g> the image recogniti<strong>on</strong> and optical processing <str<strong>on</strong>g>of</str<strong>on</strong>g> in<strong>format</strong>i<strong>on</strong>. In the<br />

model experiment comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two transparencies has been executed during the 20 ns<br />

pulse <str<strong>on</strong>g>of</str<strong>on</strong>g> YAG:Nd laser [6] .<br />

1. R.A. Linke et al., Appl. Phys. Lett., 65, №1, 16-19, (1994).<br />

2. A.I. Ryskin et al., Appl. Phys. Lett., 67, №1, 31-33, (1995).<br />

3. S.A. Kazanskii et al., Physica B, 308-310, 1035-1037, (2001).<br />

4. A.S. Shcheulin et al., Opt. and Spectr., 92, №1, 133-141, (2002).<br />

5. A.E. Angervaks et al., Opt. and Spectr., in press.<br />

6. A.S. Shcheulin et al., Opt. and Spectr., in press.


42 OPTOINFORMATICS’05<br />

STRONGLY NONLINEAR REVERSIBLE HOLOGRAPHIC<br />

RECORDING AT THE STRUCTURES Sb 2 S 3 – LC AND As 40 Se 60 -LC<br />

L. P. Amosova, A. N. Chaika, N. I. Pletneva<br />

All-Russian Research Center S. I. Vavilov State Optical Institute<br />

12, Birgevaya line, St. Petersburg, 199034 Russia<br />

FAX: +7-812-3283720, E-mail: l_amosova@mail.ru<br />

The task <str<strong>on</strong>g>of</str<strong>on</strong>g> creating a medium for the reversible recording <str<strong>on</strong>g>of</str<strong>on</strong>g> holograms with a<br />

n<strong>on</strong>linear modulati<strong>on</strong> characteristic is essentially opposite to the traditi<strong>on</strong>al trend <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ensuring maximum linearity <str<strong>on</strong>g>of</str<strong>on</strong>g> a holographic recording medium. The need for a new<br />

medium is related to the use <str<strong>on</strong>g>of</str<strong>on</strong>g> a holographic correlator for c<strong>on</strong>structing fuzzy algebra<br />

algorithms in artificial intelligence simulators. This requires a medium suitable for writing<br />

Fourier holograms and possessing n<strong>on</strong>linear properties [1] . Previously [2] it was dem<strong>on</strong>strated<br />

that such media are <str<strong>on</strong>g>of</str<strong>on</strong>g>fered by optically c<strong>on</strong>trolled structures <str<strong>on</strong>g>of</str<strong>on</strong>g> photoc<strong>on</strong>ductor (PC)-<br />

nematic liquid crystal (LC) type with a planar initial orientati<strong>on</strong>. In these structures the<br />

modulati<strong>on</strong> characteristic, representing the dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the diffracti<strong>on</strong> efficiency <strong>on</strong> the<br />

recording light intensity in the first order <str<strong>on</strong>g>of</str<strong>on</strong>g> diffracti<strong>on</strong>, has a substantially n<strong>on</strong>linear shape<br />

with rising and falling regi<strong>on</strong>s if the phase modulati<strong>on</strong> depth is sufficiently large.<br />

We have carried out the competitive investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two types <str<strong>on</strong>g>of</str<strong>on</strong>g> the Optically<br />

Addressed Liquid Crystal Spatial Light Modulators (OA LC SLM), optimized for the<br />

holographic applicati<strong>on</strong>: with Sb 2 S 3 and As 40 Se 60 as a photoc<strong>on</strong>ductor. The spectral<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> these semic<strong>on</strong>ductors allow a highly sensitive recording medium to be<br />

obtained for writing holograms using He-Ne laser radiati<strong>on</strong>.<br />

OASLM c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> thin layers sandwiched between two glass substrates:<br />

a photoc<strong>on</strong>ductor (PC), a liquid crystal (LC), alignment layers and transparent electrodes.<br />

When DC voltage is applied to the electrodes, it is divided between the photoc<strong>on</strong>ductor<br />

and liquid crystal according to the exposure. This enables the optical activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the liquid<br />

crystal layer to be modulated to produce an image. The OASLM based <strong>on</strong> nematic LC<br />

have perfect characteristics and high optical quality. The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the LC layer should<br />

be enough to provide the phase shift not less than 2π at the wave length <str<strong>on</strong>g>of</str<strong>on</strong>g> read out light<br />

(814 nm in our case).<br />

We used a holographic technique for studying the modulati<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

OASLM. A He-Ne laser (λ= 633 nm) was used to write in a holographic grating. The<br />

writing beams had equal intensity, and their diameter in the plane <str<strong>on</strong>g>of</str<strong>on</strong>g> photo-semic<strong>on</strong>ductor<br />

was equal to 10 mm. An interference pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> two plane wave fr<strong>on</strong>ts was formed at the<br />

photoc<strong>on</strong>ductor-LC boundary. The intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> the reference and object beams were<br />

equal. The readout was performed by radiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the semic<strong>on</strong>ductor laser <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

wavelength λ= 814 nm in a transmissi<strong>on</strong> mode. We studied the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the diffracti<strong>on</strong><br />

efficiency in the first order <str<strong>on</strong>g>of</str<strong>on</strong>g> diffracti<strong>on</strong> depending <strong>on</strong> the write light intensity. The value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> diffracti<strong>on</strong> efficiency was determined as the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> read-out radiati<strong>on</strong><br />

transmitted in the first diffracti<strong>on</strong> order to the corresp<strong>on</strong>ding value <str<strong>on</strong>g>of</str<strong>on</strong>g> the transmitted from<br />

OASLM radiati<strong>on</strong> in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> the holographic grating. These light intensities were<br />

measured with a help <str<strong>on</strong>g>of</str<strong>on</strong>g> photomultiplier, which was placed in the Fourier-lens focal plane.<br />

The sample structure was arranged in the optical scheme so that the LC director orientati<strong>on</strong><br />

would coincide with the polarizati<strong>on</strong> vector directi<strong>on</strong> in the readout beam.<br />

The curves <str<strong>on</strong>g>of</str<strong>on</strong>g> diffracti<strong>on</strong> efficiency as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the writing light intensity for<br />

different values <str<strong>on</strong>g>of</str<strong>on</strong>g> applied voltage exhibit a rising regi<strong>on</strong> and a falling regi<strong>on</strong>, in which the


SAINT-PETERSBURG, October 17 – 20, 2005 43<br />

diffracti<strong>on</strong> efficiency drops by more than 100 times in comparis<strong>on</strong> with the maximum<br />

value.<br />

The diffracti<strong>on</strong> efficiency is highly dependent <strong>on</strong> the voltage applied to the<br />

modulator. The angle between the liner segment <str<strong>on</strong>g>of</str<strong>on</strong>g> our curve and the abscess axis<br />

increases with the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> applied voltage. Corresp<strong>on</strong>dingly the maximum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diffracti<strong>on</strong> efficiency removes to the side <str<strong>on</strong>g>of</str<strong>on</strong>g> the writing light low intensities. The slope <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the falling part <str<strong>on</strong>g>of</str<strong>on</strong>g> the curves depends <strong>on</strong> applied voltage according the same law: the larger<br />

bias – the steeper curve. This fact means that the applied voltage and the writing light<br />

intensity compensate each other in some reas<strong>on</strong>able limits. The total acting voltage is<br />

summing up from the applied voltage and from the generated by writing light charge in the<br />

photoc<strong>on</strong>ductor, witch can be comparable with the external bias in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> PC. For the present instance we can observe the same picture as if we applied<br />

the bias larger than operating: the diffracti<strong>on</strong> efficiency and the c<strong>on</strong>trast decreases rapidly.<br />

The maximum diffracti<strong>on</strong> efficiency achieved with As 40 Se 60 PC was equal to 42%<br />

and with Sb 2 S 3 PC –up to 40%. Such high value <str<strong>on</strong>g>of</str<strong>on</strong>g> diffracti<strong>on</strong> efficiency is c<strong>on</strong>nected with<br />

the diffracti<strong>on</strong> orders asymmetry. In our case the recording medium corresp<strong>on</strong>ds to the<br />

criteri<strong>on</strong> for thin holograms. The diffracti<strong>on</strong> efficiency higher than the theoretical limit for<br />

thing holograms is achieved owing to the deviati<strong>on</strong> from symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the holographic<br />

grating strokes formed in the LC. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure with Sb 2 S 3 PC we are able to<br />

increase the maximum diffracti<strong>on</strong> efficiency in the “first plus” order (η max+1 ) utilizing the<br />

writing beams modulati<strong>on</strong> in the time. The writing radiati<strong>on</strong> pulses were 5 sec l<strong>on</strong>g and<br />

their repetiti<strong>on</strong> period c<strong>on</strong>sists 10-15 sec. The resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stibnite structures grows<br />

substantially in the whole range <str<strong>on</strong>g>of</str<strong>on</strong>g> the spatial frequencies. As about the structures with the<br />

As 40 Se 60 PC, the writing beam modulati<strong>on</strong> gives no result: the diffracti<strong>on</strong> efficiency and<br />

resoluti<strong>on</strong> remain the same as in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>stant writing beam.<br />

We have investigated the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the LC layer thickness <strong>on</strong> the OASLM<br />

characteristics. The minimum thickness was chosen in such a way that a calculated phase<br />

shift c<strong>on</strong>sists no less than 2π for reading out radiati<strong>on</strong>. In our case we have manufactured<br />

and measured the samples with 6,5 µm, 10µm and 15µm LC layers thick. The structure<br />

resoluti<strong>on</strong> decreases with the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> LC layer thickness, but the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitivity<br />

and diffracti<strong>on</strong> efficiency is not so simple: the structures with 10µm LC layer poses the<br />

best characteristics.<br />

1. A.V. Pavlov “On Algebraic Foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Fourier Holography”// Opt. Spectrrosc. 90<br />

(2001), p.452.<br />

2. N. Chaika and F.L. Vladimirov, "N<strong>on</strong>linear hologram recording <strong>on</strong> an optically<br />

c<strong>on</strong>trolled transparency <str<strong>on</strong>g>of</str<strong>on</strong>g> the glassy chalcogenide semic<strong>on</strong>ductor-liquid crystal tipe,"<br />

Tech. Phys., Let..,. 26, No 2, p. 139, 2000.


44 OPTOINFORMATICS’05<br />

ABOUT SIMILARITY OF THE VOLUME SUPERPOSED<br />

HOLOGRAMS TO THE HUMAN MEMORY<br />

V.V.ORLOV<br />

Vavilov Optical Institute, State Scientific Center <str<strong>on</strong>g>of</str<strong>on</strong>g> Russian Federati<strong>on</strong>,<br />

St.Petersburg, 190164, Russia<br />

E-mail: orlov@soi.spb.su<br />

It is suggesti<strong>on</strong> in the psychology that the shapes stored in the human memory<br />

form the groups which have the property <str<strong>on</strong>g>of</str<strong>on</strong>g> completeness and that few shapes<br />

have some new in<strong>format</strong>i<strong>on</strong> which is not c<strong>on</strong>tained in the separate shapes. In<br />

our report we showed, that the same property has the hologram if the<br />

in<strong>format</strong>i<strong>on</strong> was recoded into it by the method, which remove the cross-talk.<br />

It is already early in the development <str<strong>on</strong>g>of</str<strong>on</strong>g> holography similarity was noted <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the hologram and the human memory. Both the hologram and the human<br />

memory have properties <str<strong>on</strong>g>of</str<strong>on</strong>g> associativity and distributivity. In this case associativity means<br />

ability to restore all shape by it small part, distributivity means that the in<strong>format</strong>i<strong>on</strong> about<br />

shape are distributed <strong>on</strong> all hologram volume, corresp<strong>on</strong>dingly brain, but is not<br />

c<strong>on</strong>centrated in their small part. If it assumes that the processes in brain have the wave<br />

nature and similar to the processes in holography then this similarity in the first place<br />

treated to the superposed holograms. Indeed, shapes in the brain as the superposed<br />

holograms superposed in the space as they occupy the same volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the brain.<br />

In<strong>format</strong>i<strong>on</strong> recording density <str<strong>on</strong>g>of</str<strong>on</strong>g> superposed holograms a lot more <strong>on</strong>e when each<br />

hologram recorded in separate place. Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the volume superposed holograms<br />

showed that they have cross-talk caused by multiple wave diffracti<strong>on</strong> [1] . Intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

cross-talk is lowered efficiently if hologram object waves are mutually orthog<strong>on</strong>al. The<br />

cross-talk are absent if the holograms object waves are described by unitary matrix. For<br />

this goal the random initial matrix, which describe the in<strong>format</strong>i<strong>on</strong>, is completed to the<br />

unitary matrix by adding rows and columns [2] . Each row <str<strong>on</strong>g>of</str<strong>on</strong>g> the matrix describes <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

object waves <str<strong>on</strong>g>of</str<strong>on</strong>g> the holograms.<br />

Shapes stored in the brain corresp<strong>on</strong>d to the object waves <str<strong>on</strong>g>of</str<strong>on</strong>g> the superposed<br />

hologram. For decreasing the holograms cross-talk their object waves should be made<br />

mutually orthog<strong>on</strong>al by adding new comp<strong>on</strong>ents, which complex amplitudes are chose<br />

from the mutually orthog<strong>on</strong>ality c<strong>on</strong>diti<strong>on</strong>. This property <str<strong>on</strong>g>of</str<strong>on</strong>g> the superposed holograms<br />

corresp<strong>on</strong>d to the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> the gestalt psychology that the few shapes have some new<br />

in<strong>format</strong>i<strong>on</strong>, which is not c<strong>on</strong>tained in the separate shapes [3,4] . The new in<strong>format</strong>i<strong>on</strong> in the<br />

brain corresp<strong>on</strong>d to the in<strong>format</strong>i<strong>on</strong> in the additi<strong>on</strong>al comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the object waves.<br />

Representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the in<strong>format</strong>i<strong>on</strong> recorded in the holograms in form <str<strong>on</strong>g>of</str<strong>on</strong>g> the unitary matrix<br />

corresp<strong>on</strong>d to the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> the gestalt psychology that shapes in memory to form groups<br />

which have the property <str<strong>on</strong>g>of</str<strong>on</strong>g> completeness [3,4] . The completeness means that n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> form<br />

can be removed from group or add to group. This corresp<strong>on</strong>ds to the property <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

completeness <str<strong>on</strong>g>of</str<strong>on</strong>g> the unitary matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> the object waves in holography.<br />

Additi<strong>on</strong>al in<strong>format</strong>i<strong>on</strong> needed in the holography for getting mutual orthog<strong>on</strong>al<br />

waves and in the end the unitary matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> the object waves corresp<strong>on</strong>d in psychology the<br />

in<strong>format</strong>i<strong>on</strong> arising as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> higher forms <str<strong>on</strong>g>of</str<strong>on</strong>g> psychological activity, in particular the<br />

intellectual activity. This in<strong>format</strong>i<strong>on</strong> completes that parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the shapes, which formed <strong>on</strong><br />

the base <str<strong>on</strong>g>of</str<strong>on</strong>g> the sensory sensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the man. Beside that, this in<strong>format</strong>i<strong>on</strong> is used to form<br />

shapes which do not c<strong>on</strong>tain in<strong>format</strong>i<strong>on</strong> obtained from the organs <str<strong>on</strong>g>of</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> the man. For


SAINT-PETERSBURG, October 17 – 20, 2005 45<br />

example, mathematicians use the shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> purely intellectual origin in their work. These<br />

shapes corresp<strong>on</strong>d to recording the new superposed holograms, which object waves<br />

complete the initial matrix to the unitary matrix by adding new rows.<br />

It is essential, that the infinite number <str<strong>on</strong>g>of</str<strong>on</strong>g> the unitary matrixes <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong>e order can be<br />

obtained from <strong>on</strong>e initial matrix. This n<strong>on</strong>-uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> the unitary matrix creati<strong>on</strong> in<br />

holography corresp<strong>on</strong>d in psychology that different people in identical c<strong>on</strong>diti<strong>on</strong>s getting<br />

the same in<strong>format</strong>i<strong>on</strong> from their organs <str<strong>on</strong>g>of</str<strong>on</strong>g> sense perceive these c<strong>on</strong>diti<strong>on</strong>s to a certain<br />

degree differently, depending <strong>on</strong> their individual peculiarity.<br />

SUMMARY<br />

It was established that the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the superposed holograms corresp<strong>on</strong>d to the<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> human brain to store shapes in form <str<strong>on</strong>g>of</str<strong>on</strong>g> the complete group and property <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the group <str<strong>on</strong>g>of</str<strong>on</strong>g> shapes to have some new in<strong>format</strong>i<strong>on</strong>, which is not c<strong>on</strong>tained in the separate<br />

shapes.<br />

1. Orlov V.V. Mode Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Three-Dimensi<strong>on</strong>al Holograms: III. Holograms Crosstalk<br />

//Optics and Spectroscopy. Vol. 92 No. 6 2002. pp 948-955. Translated from Optica i<br />

Spektroskopiya Vol. 92. No. 6. pp. 1024-1032. (2002).<br />

2. Орлов В.В. Метод записи информации на объёмных наложенных голограммах,<br />

обеспечивающий считывание информации без искажений и ассоциативных<br />

помех. // Письма в ЖТФ. Том 18. вып. 14. с.23-25. (1992) (Translated to English as<br />

“Technical Physics Letters”).<br />

3. Вертгеймер М. Продуктивное мышление. М. С.336 (1987). (Wertheimer Max.<br />

Productive Thinking. Happer & Brothers Publishers, New York).<br />

4. Ребер Артур. Большой толковый психологический словарь. М. Вече. (2000)<br />

(Arthur S. Reber. The Penguin Dicti<strong>on</strong>ary <str<strong>on</strong>g>of</str<strong>on</strong>g> Psychology).


46 OPTOINFORMATICS’05<br />

DENTAL RESIN HOLOGRAMS<br />

S. Toxqui-López, A. Olivares-Pérez, N. Grijalva y Ortiz, M. P. Hernández-Garay,<br />

B. Ruiz -Limón, I. Fuentes-Tapia<br />

Instituto Naci<strong>on</strong>al de Astr<str<strong>on</strong>g>of</str<strong>on</strong>g>ísica Óptica y Electrónica (INAOE),<br />

Calle Luis Enrique Erro No. 1 T<strong>on</strong>antzintla, Puebla, México<br />

E-mail: stoxqui@inaoep.mx, olivares @inaoep.mx<br />

The “Point 4 KERR ® ” is a light cured resin based <strong>on</strong> composite dental restorative can<br />

be used as replayed recording holographic medium applied c<strong>on</strong>venti<strong>on</strong>al<br />

microlithography techniques with ultraviolet light, his material provides advantages in<br />

producti<strong>on</strong> time and unit cost to replica with high diffracti<strong>on</strong> efficiency Hologram.<br />

There are different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> photopolymer resin to be found in the market. One <str<strong>on</strong>g>of</str<strong>on</strong>g> them is<br />

“Point 4 KERR ® ” has a specify applicati<strong>on</strong> in the od<strong>on</strong>tology area, however it has other<br />

applicati<strong>on</strong> as such as holography, it is a composite resin that c<strong>on</strong>tains approximately 77%<br />

by weight (59% by volume) inorganic filler with an average particle size <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.4 micr<strong>on</strong>s,<br />

their main comp<strong>on</strong>ents are bishhenol A- glycidyl methacrylate (Bis-GMA) resin matrix,<br />

urethane dimethacrylate (UEDMA) and (TGDMA) [1,2,3] .<br />

We doped the resin with solvent given result a liquid soluti<strong>on</strong>, this soluti<strong>on</strong> is analyzed by<br />

IR spectroscopy (figure 1).<br />

100.6<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

3413.84<br />

3413.15<br />

2964.01<br />

2962.62 2177.28 2173.38<br />

3020.81<br />

2019.14<br />

1996.17<br />

1636.77 1637.23<br />

1509.52 1509.57<br />

1415.79<br />

1453.70<br />

1319.57<br />

1320.63<br />

1362.46<br />

1297.39<br />

1249.69<br />

1296.61<br />

830.87<br />

814.24<br />

829.60<br />

812.46<br />

666.82<br />

60<br />

55<br />

%T<br />

50<br />

2<br />

1718.07<br />

1217.54<br />

1161.22<br />

45<br />

40<br />

35<br />

1713.24<br />

1<br />

1163.77<br />

30<br />

25<br />

20<br />

p<br />

prueba2<br />

1 IR spectrum from “Point 4 KERR ® ”.<br />

2 IR spectrum from “Point 4 KERR ® ” doped.<br />

15<br />

749.24<br />

10<br />

6.3<br />

4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 650.0<br />

cm-1<br />

Figure 1. Infrared spectrums from the resin<br />

In 3413.15 appear vibrati<strong>on</strong> from de b<strong>on</strong>d CH that corresp<strong>on</strong>d a dimmer polymer, the<br />

regi<strong>on</strong> 3020.81-2962.62 is due to asymmetry vibrati<strong>on</strong> from b<strong>on</strong>d CH 3 -, the str<strong>on</strong>g<br />

absorpti<strong>on</strong> at 1713.24 which corresp<strong>on</strong>d to the carb<strong>on</strong>yl group C=O <str<strong>on</strong>g>of</str<strong>on</strong>g> group ester, - C=Cis<br />

a medium in 1636.77, 1637.23 that imply an aromatic rings, the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> –C-O-C<br />

from ester group occur in 1040.44-999.55, also an absorpti<strong>on</strong> band with a high intensity in<br />

749.24.UV spectrum is obtained (figure 2) we can observed important differences after UV<br />

radiati<strong>on</strong> the soluti<strong>on</strong> presents a change <str<strong>on</strong>g>of</str<strong>on</strong>g> density in the regi<strong>on</strong> 190-250 nm, therefore this<br />

show that it is a photosensitive material.<br />

1040.44<br />

999.55<br />

Coating film without UV expositi<strong>on</strong>.<br />

1.2<br />

-------Coating film after expositi<strong>on</strong>.<br />

1.0<br />

Absorbance(a.u)<br />

0.8<br />

0.6<br />

0.4<br />

Figure 2. UV spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the resin.<br />

0.2<br />

0.0<br />

100 200 300 400 500 600 700 800 900 1000<br />

wavelength (nm)


SAINT-PETERSBURG, October 17 – 20, 2005 47<br />

The replicated hologram is obtained by the next technique, first a digital patter by<br />

computer simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Fourier hologram (figure 3) generated later with lithographic<br />

tools this is photoreduced to obtaining gray-scale transmissi<strong>on</strong> masks. The soluti<strong>on</strong> (Point<br />

4 KERR ®¨ modifiable resin) is poured by Spin coater <strong>on</strong> commune substrate then the mask<br />

is aligner with the layer resin that is cured by exposure to UV light, finally the mass takes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f and the hologram pattern is transferred <strong>on</strong>to layer substrate without some develop<br />

process after that the hologram is rec<strong>on</strong>structed (figure 5).<br />

Figure 3. Microstructure Fourier<br />

Hologram<br />

Figure 4. Object used to obtain<br />

digital hologram<br />

Figure 5. Diffracti<strong>on</strong> pattern<br />

optical rec<strong>on</strong>structi<strong>on</strong><br />

Figure 7 shows the diffracti<strong>on</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> an absorpti<strong>on</strong> hologram as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

energy. The diffracti<strong>on</strong> efficiency increased in functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the UV irradiance expositi<strong>on</strong>,<br />

the maximum efficiency is obtained at 40 sec<strong>on</strong>ds exposure time that corresp<strong>on</strong>d a 0.29<br />

joules/cm 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> energy this is 82.7%, after that decrease.<br />

80<br />

Diffracti<strong>on</strong> efficiency(%)<br />

60<br />

40<br />

20<br />

0<br />

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45<br />

Energy (Joules/cm 2 )<br />

Figure 6. Diffracti<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> a single grating<br />

Figure 7. Diffracti<strong>on</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> the grating array<br />

“The Point 4 KERR ® ” is a composite resin, this have a organic phase (matrix), the disperse<br />

phase (filler), and the interfacial phase coupling agent. This resin can be used as layer film<br />

and the method present in this paper is simple and faster for obtaining a replayed<br />

hologram.<br />

1. Tani Y, New technology <str<strong>on</strong>g>of</str<strong>on</strong>g> composite resins developed in Japan, Trans. Sec<strong>on</strong>d Int<br />

Cog Dent Mater 1993, 54-61.<br />

2. Ruyter IE, Oysaed H. Composite for use in posterior teeth: Compositi<strong>on</strong> and<br />

c<strong>on</strong>versi<strong>on</strong>, J Biomed mater Res 1987, 21(1), 11-23.<br />

3. Hosada H. Yamada, Inokoshi S. SEM and elemental analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> composites resins. J<br />

Prosthet Dent 1990, 64(6), 669-676.<br />

4. Svetlana S. and Dejan P. Relief hologram replicati<strong>on</strong> using a dental composite as an<br />

embossing tool, Optics Express 2005, 13(7), 2747-2754.<br />

5. A Guide for using Point 4 Optimized Particle Composite System, Keer Corpotati<strong>on</strong>.


48 OPTOINFORMATICS’05<br />

MILK HOLOGRAMS<br />

I. Olvera-Bautista 1 , S. Toxqui-López 2 , A. Olivares-Pérez 2 , M. Ortiz-Palacios 1 ,<br />

E. L. P<strong>on</strong>ce-Lee 2 , M. P. Hernández-Garay 2 , I. Fuentes-Tapia 2<br />

1 Instituto Tecnológico Superior de Atlixco (ITSA), Prol<strong>on</strong>gación Heliotropo No. 1201<br />

Col. Vista Hermosa, Atlixco, Puebla<br />

2 Instituto Naci<strong>on</strong>al de Astr<str<strong>on</strong>g>of</str<strong>on</strong>g>ísica Óptica y Electrónica (INAOE), Calle Luis Enrique Erro<br />

No. 1 T<strong>on</strong>antzintla, Puebla, México<br />

E-mail: ivet_yvy17@yahoo.com.mx, stoxqui@inaoep.mx, olivares@inaoep.mx<br />

The studies preliminary show that milk can be us as replayed holographic<br />

recording medium c<strong>on</strong>sequently, we present analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the properties and<br />

preliminary experimental results.<br />

Milk is a very complex food with over 100,000 different molecular species found [1] . There<br />

are many factors that can affect milk compositi<strong>on</strong> such as breed variati<strong>on</strong>s (With all this in<br />

mind, <strong>on</strong>ly an approximate compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> milk can be given [2] : 87.3% water (range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

85.5% - 88.7%) , 3.9 % milkfat (range <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.4% - 5.5%) and8.8% solids-not-fat (range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

7.9 - 10.0%) 3 , the carotenoid precursor <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin A, ß -carotene, c<strong>on</strong>tained in milk fat, is<br />

resp<strong>on</strong>sible for the 'creamy' colour <str<strong>on</strong>g>of</str<strong>on</strong>g> milk. Rib<str<strong>on</strong>g>of</str<strong>on</strong>g>lavin imparts a greenish colour to whey [4] .<br />

Refractive index (RI) is normally determined at 20° C with the D line <str<strong>on</strong>g>of</str<strong>on</strong>g> the sodium<br />

spectrum. The refractive index <str<strong>on</strong>g>of</str<strong>on</strong>g> milk is 1.3440 to 1.3485 and can be used to estimate<br />

total solids [5] .<br />

In this research pasteurized milk used as coating holographic film. The coating film is<br />

obtained when the milk is poured into a substrate, the poured can be in different form <strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> then is per gravity other is used a spinner.<br />

We obtained the IR spectrum from the sample (milk) as a holographic film (Graphic 1).<br />

97.8<br />

97<br />

96<br />

95<br />

94<br />

93<br />

892.69<br />

783.98<br />

705.61<br />

92<br />

91<br />

3281.44<br />

1993.29<br />

1539.88<br />

1462.15<br />

1241.57<br />

90<br />

%T<br />

89<br />

88<br />

2166.12<br />

1638.37<br />

87<br />

86<br />

1153.29<br />

85<br />

84<br />

2853.10<br />

1032.97<br />

83<br />

82<br />

1744.06<br />

81<br />

80<br />

2921.10<br />

78.8<br />

4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 650.0<br />

cm-1<br />

Graphic 1. IR spectrum transmittance Milk<br />

The spectrum shows diverse groups that corresp<strong>on</strong>d basically from amino acids these have<br />

a comm<strong>on</strong> part into molecule that they c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> a group amino (NH3) which appear at<br />

892.65 cm -1 , 783.98 cm - 1, 705.61 cm - 1, 1539.881 cm -1 ,1638.37 cm -1 , acid group<br />

(COOH) [6] 3281.44 cm -1 , OH group in 1462.15 cm -1 , other bands indicate the uni<strong>on</strong> carb<strong>on</strong><br />

- hydrogen <str<strong>on</strong>g>of</str<strong>on</strong>g> the principal chains that they form, also some groups typical <str<strong>on</strong>g>of</str<strong>on</strong>g> some amino<br />

acids as SH group basically in the cysteine at 1032.97 cm -1 , and some comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

milk as the phosphate at1241.57 cm -1 . [7]<br />

We get the thickness from the coating holographic milk film as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all milk<br />

c<strong>on</strong>tains (Graphic 2), also the index refracti<strong>on</strong> as functi<strong>on</strong> drying time (graphic 3) and the


SAINT-PETERSBURG, October 17 – 20, 2005 49<br />

diffracti<strong>on</strong> efficiency that can be obtained when replicated some holograms depending <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

like the holographic film is obtained (Graphic 4, 5).<br />

Film thickness milk<br />

Index refracti<strong>on</strong> change<br />

% Dif f r acti<strong>on</strong> Ef f iciency Milk (Emptied<br />

gr avity)<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

0 0.2 0.4 0.6<br />

Ser i es1<br />

1.356<br />

1.355<br />

1.354<br />

1.353<br />

1.352<br />

1.351<br />

1.35<br />

1.349<br />

1.348<br />

0 5 10 15<br />

Ser i es1<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2 0 5 10 15<br />

Ser i es 1<br />

ml . mi l k<br />

Time (s)<br />

Time (s)<br />

Graphic 2. Film thickness milk<br />

Graphic 3. Milk index refracti<strong>on</strong><br />

change<br />

Graphic4. Diffracti<strong>on</strong> efficiency milk<br />

(emptied gravity)<br />

The sample(milk) is put <strong>on</strong> substrate 6.25cm 2 area, and the thickness increased in<br />

agreement to quantity added sample s let us determine the quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> sample that we need<br />

to recording hologram the good thickness is in 0.01 mm that corresp<strong>on</strong>d 0.01 ml .<br />

Diffracti<strong>on</strong> efficiency milk<br />

(sec<strong>on</strong>ds)<br />

10<br />

5<br />

0<br />

0 2 4 6<br />

Serie<br />

1<br />

Time exposure( s)<br />

Graphic 5. Diffracti<strong>on</strong> efficiency milk (s)<br />

We can observed that the gravity method has efficiency is 13.92 % to 4 sec<strong>on</strong>ds, <strong>on</strong> the<br />

other hand the spinner method, the diffracti<strong>on</strong> efficiency is 9.08 % when the film exposure<br />

2 sec<strong>on</strong>d.<br />

The results present a good viability to record holograms in milk however it presents a low<br />

efficiency nevertheless this <strong>on</strong>e to future can be doped increase diffracti<strong>on</strong> efficiency.<br />

1. Badui, D. S Dicci<strong>on</strong>ario de tecnología de los alimentos; 1 a Editi<strong>on</strong> Addis<strong>on</strong> Wesley<br />

L<strong>on</strong>gman, México 1998; p 185.<br />

2. R. A. Day Jr, A. L. Underwood. Química analítica cuantitativa; 1 a Editi<strong>on</strong> Pretice Hall;<br />

México, 1989; p 466.<br />

3. http://www.foodsci.uoguelph.ca/dairyedu/chem.html<br />

4. Douglas A. S., et al; Química analítica; Sexta edición; Editorial Mc Graw Hill;<br />

Colombia; 1998, p 612.<br />

5. Badui D. S, Química de los alimentos: 1 a Editi<strong>on</strong> Pears<strong>on</strong> Educación;México, 1993,<br />

p36.<br />

6. Osborne y P. Voogt, Análisis de los Nutrientes de los Alimentos; 1 a Editi<strong>on</strong>, Acribia,<br />

S.A. Zaragoza, España 1986.p 125.<br />

7. http://www.sso.cl/alimentos2.htm<br />

8. http://www.sagarpa.gob.mx/Dgg/NOM/nom155scfi.<strong>pdf</strong>


50 OPTOINFORMATICS’05<br />

LIGHT EMISSION BY THE NANOMETER-SCALE STRUCTURES<br />

T.A.Kudykina, A.I.Pervak<br />

University “Ukraina”, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering Technologies,<br />

vul. Horiva, 1 Γ , Kiev-71, Ukraine, 04071<br />

E-mail: tkudykina@ukr.net<br />

It is shown that the nanometer-scale structures (quantum wells, dots, porous<br />

silic<strong>on</strong>, thin films) are the oscillatory systems with the natural frequencies in<br />

the spectral regi<strong>on</strong> from ultraviolet to infrared.<br />

The visible luminescence <str<strong>on</strong>g>of</str<strong>on</strong>g> the nanometer-scale objects and the radiowave<br />

generati<strong>on</strong> by an oscillatory circuit are the similar processes but in the different regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1<br />

frequencies. The natural frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> a circuit is equal to ω<br />

0<br />

= ( where L and C are<br />

LC<br />

its inductance and capacity). The natural frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample with a thickness d is equal<br />

c<br />

to ω0 = (where ε and µ are a dielectric c<strong>on</strong>stant and a magnetic susceptibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

d εµ<br />

a medium).<br />

The natural frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> a thin metal or semic<strong>on</strong>ductor layers with d = 1 ÷ 100 nm<br />

are situated in the spectral regi<strong>on</strong> from ultraviolet to infrared.<br />

Our calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the thickness dependencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the indices <str<strong>on</strong>g>of</str<strong>on</strong>g> refracti<strong>on</strong> n(d) and<br />

the coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong> α (d)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> thin metal and semic<strong>on</strong>ductor films based <strong>on</strong> our<br />

analogues <str<strong>on</strong>g>of</str<strong>on</strong>g> Fresnel’s formulas for absorbing media [1] and the experimental data <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reflecti<strong>on</strong> and transmissi<strong>on</strong> for these materials show the res<strong>on</strong>ance maxima <str<strong>on</strong>g>of</str<strong>on</strong>g> n(d) and the<br />

λ0<br />

2πc<br />

res<strong>on</strong>ance minima <str<strong>on</strong>g>of</str<strong>on</strong>g> α (d ) . All <str<strong>on</strong>g>of</str<strong>on</strong>g> them take place when d<br />

res<br />

= , ( λ0<br />

= ).<br />

2πn(<br />

d<br />

res<br />

) ω0<br />

Investigati<strong>on</strong> show that silic<strong>on</strong> has the best emissi<strong>on</strong> ability am<strong>on</strong>g the investigated<br />

materials (Ag, Al, Fe, Si, Ge, Se, Te). Silver has greater negative absorpti<strong>on</strong> than silic<strong>on</strong>,<br />

but the luminescence decay in Ag (calculated coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> a time decay <str<strong>on</strong>g>of</str<strong>on</strong>g> a wave α<br />

1<br />

) is<br />

α1 cn<br />

greater too. The c<strong>on</strong>diti<strong>on</strong> =


SAINT-PETERSBURG, October 17 – 20, 2005 51<br />

Fig.1. Dimensi<strong>on</strong> dependences <str<strong>on</strong>g>of</str<strong>on</strong>g> the coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong> α (d) <str<strong>on</strong>g>of</str<strong>on</strong>g> thin layers:<br />

х – tellurium; + - germanium; о – selenium; □ – silic<strong>on</strong>.<br />

The wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the incident light is λ =580 nm.<br />

Fig.2. Dimensi<strong>on</strong> dependences <str<strong>on</strong>g>of</str<strong>on</strong>g> the coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thin layers:<br />

□ - silver; ○ - aluminum; + - ir<strong>on</strong>.<br />

The wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the incident light is λ =546.1 nm.


52 OPTOINFORMATICS’05<br />

IMPACT OF TILT OF A PHASE DOE ON THE PROPERTIES OF<br />

THE LASER BEAMS MATCHED WITH THE ANGULAR<br />

HARMONICS BASIS<br />

Almazov A.A., Kh<strong>on</strong>ina S.N., Kotlyar V.V.<br />

Samara State Aerospace University,<br />

Image Processing Systems Institute, Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences,<br />

151 Molodogvardejskaya, Samara 443001, Russia<br />

E-mail: AAASkald@yandex.ru, kh<strong>on</strong>ina@smr.ru<br />

We discuss the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> singular laser beams using the phase diffractive<br />

optical elements (DOEs) [1] . Am<strong>on</strong>g laser modes with helical singularity there<br />

are well-known higher-order Gauss-Laguerre [2] and Bessel [3] modes. Those<br />

modes c<strong>on</strong>tain optical vortices [4] providing the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an orbital angular<br />

momentum. In this paper, we c<strong>on</strong>sider new types <str<strong>on</strong>g>of</str<strong>on</strong>g> laser beams with orbital<br />

angular momentum, namely, optical vortices "imbedded" in a plane or<br />

Gaussian beam. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> various types <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbances (DOE tilt, system<br />

misalignment, and inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transparent obstacles) <strong>on</strong> the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

resulting laser beams with optical vortices or angular harm<strong>on</strong>ics [5] with varying<br />

amplitude comp<strong>on</strong>ents is numerically studied.<br />

In Ref. [6] generati<strong>on</strong> and detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> laser beams with angular harm<strong>on</strong>ics using<br />

phase DOEs was c<strong>on</strong>sidered. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> some types <str<strong>on</strong>g>of</str<strong>on</strong>g> distorti<strong>on</strong>s <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> beam<br />

generati<strong>on</strong> and detecti<strong>on</strong> was simulated. It was dem<strong>on</strong>strated that using phase DOEs it is<br />

possible to provide high accuracy in detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the various-order angular harm<strong>on</strong>ics in<br />

the laser beams: the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> signal in the diffracti<strong>on</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> the harm<strong>on</strong>ics under detecti<strong>on</strong><br />

to that in the empty diffracti<strong>on</strong> order was about 10 5 -10 3 .<br />

In real optical systems, a frequently found distorti<strong>on</strong> is that the DOE is not<br />

perpendicular to the optical axis. Here, two types <str<strong>on</strong>g>of</str<strong>on</strong>g> distorti<strong>on</strong> take place simultaneously.<br />

First, the DOE is virtually "compressed" al<strong>on</strong>g a transverse coordinate, generating an<br />

astigmatic output beam. Sec<strong>on</strong>d, an effect <str<strong>on</strong>g>of</str<strong>on</strong>g> increased DOE relief depth occurs, with the<br />

subsequent phase delay <str<strong>on</strong>g>of</str<strong>on</strong>g> the light transmitted (see Fig. 1).<br />

ϕ( x ) = 2π<br />

h( x) (1) λ ϕ ( )<br />

Perpendicular incidence<br />

( x)<br />

2<br />

( α ) λ<br />

h π<br />

′ x = (2)<br />

cos<br />

Oblique incidence<br />

Fig. 1. An illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the perpendicular and oblique incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> light <strong>on</strong> the DOE


SAINT-PETERSBURG, October 17 – 20, 2005 53<br />

The designati<strong>on</strong>s in Fig. 1 are as follows: h(x) is the functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the DOE relief<br />

depth, x is the transverse coordinate (for simplicity, a 1D case is shown).<br />

F r, ϕ = A r,<br />

ϕ exp iΦ<br />

r,<br />

ϕ is transformed as<br />

In the general case, the field ( ) ( ) ( ( ))<br />

⎛ iΦ′<br />

( ) ( )<br />

( r,<br />

ϕ )<br />

( ) ⎟ ⎞<br />

F накл<br />

r,<br />

ϕ = A′<br />

r,<br />

ϕ exp⎜<br />

, where A′ ( r,ϕ ), ( r,ϕ )<br />

⎝ cos α ⎠<br />

distorted functi<strong>on</strong>s A ( r,ϕ ), Ф ( r,ϕ )<br />

Ф′ are the astigmatically<br />

. Thus, with increasing angle <str<strong>on</strong>g>of</str<strong>on</strong>g> the DOE tilt, α, the<br />

DOE singularity order is changed. Note that generally speaking, the singularity order<br />

ceases to be integral in this case. Hence, while possessing the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> an astigmatic<br />

laser beam, the light field generated with the tilted DOE, will simultaneously show<br />

peculiar properties, which are more pr<strong>on</strong>ounced for greater DOE tilt.<br />

In Ref. [7] the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> optical vortices in illuminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a spiral phase plate<br />

with a plane or Gaussian beam was discussed. In the present paper, experimental studies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> singular beams in oblique illuminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> similar spiral phase plates are<br />

c<strong>on</strong>ducted. Figure 2b-e illustrates some results <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments in oblique illuminati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the third-order phase plate (Fig. 2a) with a c<strong>on</strong>verging laser beam.<br />

a b c d e<br />

Fig. 2. Experimental results with oblique illuminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the third-order phase plate (a) under<br />

different angles from 5 grad to 35 grad (b-e)<br />

The work is financially supported by the CRDF (grant REC-SA-014-02), the<br />

presidential grant <str<strong>on</strong>g>of</str<strong>on</strong>g> Russian Federati<strong>on</strong> NS-1007.2003.1 and the grant <str<strong>on</strong>g>of</str<strong>on</strong>g> the Russian<br />

Foundati<strong>on</strong> for Basic Research 05-01-96505.<br />

1. Methods for Computer Design <str<strong>on</strong>g>of</str<strong>on</strong>g> Diffractive Optical Elements, ed. Victor A. Soifer –<br />

John Wiley & S<strong>on</strong>s, Inc., New York, 2002, 765 p.<br />

2. A.E. Siegman, Lasers, University Science, Mill Valley, CA, 1986.<br />

3. K. Volke-Sepulveda, V. Garces-Chavez, S. Chavez-Cerda, J. Arlt, K. Dholakia,<br />

“Orbital angular momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> a high-order Bessel light beam”, J. Opt. B: Quantum<br />

Semiclass. Opt., 4, S82–S89, 2002.<br />

4. M.S. Soskin, M.S. Vasnetsov, Singular optics, Progress in Optics 42, E. Wolf ed.,<br />

2001.<br />

5. Kotlyar V.V., Kh<strong>on</strong>ina S.N., Soifer V.A., “Light field decompositi<strong>on</strong> in angular<br />

harm<strong>on</strong>ics by means <str<strong>on</strong>g>of</str<strong>on</strong>g> diffractive optics”, J. Mod. Opt. 45(7), 1495-1506 (1998).<br />

6. A. Almazov, S. N. Kh<strong>on</strong>ina, V. V. Kotlyar, Generati<strong>on</strong> and selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> laser beams<br />

represented as a superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an arbitrary number <str<strong>on</strong>g>of</str<strong>on</strong>g> angular harm<strong>on</strong>ics with<br />

diffractive optical elements, Optical Journal, v. 72, # 5, 2005.<br />

7. V.V. Kotlyar, A.A. Almazov, S.N. Kh<strong>on</strong>ina, V.A. Soifer, H. Elfstrom, J. Turunen,<br />

Generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phase singularity through diffracting a plane or Gaussian beam by a<br />

spiral phase plate, J. Opt. Soc. Am. A, Vol. 22, No. 5, pp. (2005).


54 OPTOINFORMATICS’05<br />

MODELLING RIGOROUS DIFFRACTION FROM 3D<br />

SUB-WAVELENGTH STRUCTURES<br />

J.M. Brok a & H.P. Urbach a,b<br />

a<br />

Delft University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, PO Box 5046, 2600 GA Delft, The Netherlands<br />

b<br />

Philips Research Laboratories, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Holstlaan 4, 5656 AA Eindhoven, The<br />

Netherlands<br />

E-mail: j.m.brok@tnw.tudelft.nl<br />

We present a rigorous method to calculate the electromagnetic field that is<br />

scattered from a perfectly c<strong>on</strong>ducting layer with finite thickness, c<strong>on</strong>taining<br />

multiple, rectangular, 3D pits and holes. Plasm<strong>on</strong> effects and polarisati<strong>on</strong><br />

phenomena are shown.<br />

In the rigorous modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> diffracti<strong>on</strong> from 3D sub-wavelength metallic structures, the<br />

methods that are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used are based <strong>on</strong> meshing the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interest and applying the<br />

finite-difference time-domain or the finite-element method. When calculating a (large) 3D<br />

volume, these methods are computati<strong>on</strong>ally (very) costly. Therefore, the modelled<br />

structures usually c<strong>on</strong>sist either <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly a single scatterer (such as a pit or hole) or else <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

periodic (2D) array <str<strong>on</strong>g>of</str<strong>on</strong>g> identical scattering objects. However, when we want to understand<br />

for example the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> neighbouring pits in optical recording or the extraordinary<br />

transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light through sub-wavelength holes [1] , it is important to study the mutual<br />

interacti<strong>on</strong> between two or more scatterers at varying distances. When the scatterers are<br />

rectangular holes or pits in a very good c<strong>on</strong>ductor, we describe a mode expansi<strong>on</strong><br />

technique that is a very efficient alternative to the numerical techniques menti<strong>on</strong>ed above.<br />

C<strong>on</strong>sider a perfectly c<strong>on</strong>ducting<br />

metallic layer <str<strong>on</strong>g>of</str<strong>on</strong>g> thickness D,<br />

with rectangular pits and holes.<br />

The materials above and below<br />

the layer, as well as inside the<br />

pits and holes, are homogeneous<br />

dielectrics. The incident field can<br />

be a simple plain wave or a<br />

complicated spot. The field<br />

z<br />

above and below the layer is written as an integral over a c<strong>on</strong>tinuum <str<strong>on</strong>g>of</str<strong>on</strong>g> propagating and<br />

evanescent plane waves. The pits and holes can be c<strong>on</strong>sidered finite, metallic waveguides.<br />

The field inside such waveguides can be written as a sum over propagating and evanescent<br />

waveguide modes <str<strong>on</strong>g>of</str<strong>on</strong>g> the infinitely l<strong>on</strong>g waveguide with the same cross-secti<strong>on</strong>. The<br />

tangential comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> these two expansi<strong>on</strong>s are matched at the upper and lower<br />

surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> the layer. With this mode expansi<strong>on</strong> technique [2,3] , a 3D diffracti<strong>on</strong> problem is<br />

turned into a 2D numerical problem. It turns out that the coefficients for the plane waves<br />

can be eliminated from the system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s and hence, we end up with a fairly small<br />

system for <strong>on</strong>ly the coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> the waveguide modes. Solving this system is a matter <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sec<strong>on</strong>ds <strong>on</strong> a modern desktop computer.<br />

y<br />

x<br />

Fig. 1 Problem definiti<strong>on</strong>. Multiple rectangular pits (with depth<br />

smaller than D) or holes are modelled.<br />

D<br />

Lx<br />

Ly


SAINT-PETERSBURG, October 17 – 20, 2005 55<br />

First setup<br />

Incident E perpendicular to line that c<strong>on</strong>nects centers <str<strong>on</strong>g>of</str<strong>on</strong>g> holes<br />

2.6<br />

two holes<br />

2.4<br />

three holes<br />

Sec<strong>on</strong>d<br />

Figure 2 shows some results for two<br />

setups: in the first we have two<br />

identical holes and in the sec<strong>on</strong>d we<br />

have three identical holes, both with<br />

their centers aligned. The holes are<br />

cubic: L x = L y = D = λ/4, with λ the<br />

wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the incident light. The<br />

distance between the centers <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

holes is varied. We show the energy<br />

flux through <strong>on</strong>e hole (the center<br />

hole for the sec<strong>on</strong>d case), normalised<br />

by the energy flux through an<br />

identical, solitary hole. Note that this<br />

energy need not reach the far field, it<br />

may scatter into evanescent<br />

c<strong>on</strong>tributi<strong>on</strong>s below the layer. In the<br />

top figure, the incident field is a<br />

perpendicular incident, S-polarised<br />

plane wave. In the lower figure, the<br />

incident field is P-polarised.<br />

Enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy flux<br />

occurs <strong>on</strong>ly for holes that are very<br />

near for the S-polarised incident<br />

field, whereas for P-polarisati<strong>on</strong>,<br />

both enhancement and attenuati<strong>on</strong><br />

occur for larger distances between<br />

0.8<br />

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

distance (units <str<strong>on</strong>g>of</str<strong>on</strong>g> wavelengths) between centers <str<strong>on</strong>g>of</str<strong>on</strong>g> holes<br />

Fig. 2. Normalised energy flux through a hole as a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> distance between the holes. Solid line for the case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

two identical holes, dotted line for three identical holes.<br />

the holes. This points to the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plasm<strong>on</strong> effects in the latter case, whereas for<br />

S-polarisati<strong>on</strong> enhancement is mainly due to evanescent fields.<br />

This research was supported by the Dutch Technology Foundati<strong>on</strong> STW.<br />

normalized energy flux<br />

normalized energy flux<br />

2.2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio and P.A. Wolff, Extraordinary<br />

optical transmissi<strong>on</strong> through sub-wavelength hole arrays, Nature 391, 667-669<br />

(1998).<br />

2. A. Roberts, Electromagnetic theory <str<strong>on</strong>g>of</str<strong>on</strong>g> diffracti<strong>on</strong> by a circular aperture in a thick,<br />

perfectly c<strong>on</strong>ducting screen, J. Opt. Soc. Am. A, Vol. 4, No. 10, 1970-1983, (1987).<br />

3. J.M. Brok and H.P. Urbach, A mode expansi<strong>on</strong> technique for rigorously calculating the<br />

scattering from 3D structures in optical recording, J. Mod. Opt., Vol. 51, No 14, 2059-<br />

2077 (2004).<br />

2<br />

1<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

Incident E parallel to line that c<strong>on</strong>nects centers <str<strong>on</strong>g>of</str<strong>on</strong>g> holes<br />

two holes<br />

three holes<br />

0.2<br />

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

distance (units <str<strong>on</strong>g>of</str<strong>on</strong>g> wavelengths) between centers <str<strong>on</strong>g>of</str<strong>on</strong>g> holes


56 OPTOINFORMATICS’05<br />

LIDAR SIGNAL PROCESSING<br />

G. J. Ciuciu, D.N. Nicolae, C. Talianu, M. Ciobanu, V. Babin<br />

Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> R&D for Optoelectr<strong>on</strong>ics, 1 Atomistilor Str., Bucharest – Magurele,<br />

P.O. Box MG-5, RO-077125, Romania<br />

Tel/Fax: 40-21-457 45 22, E-mail: jeni@inoe.inoe.ro, URL: http://inoe.inoe.ro<br />

This paper presents LiSA method for Lidar signal processing. It is a combined<br />

method, based <strong>on</strong> the Fernald-Klett algorithm and optical atmospheric model.<br />

The purpose is to provide some atmospheric parameters: backscattering and<br />

extincti<strong>on</strong> coefficients.<br />

LIDAR technique is an active remote sensing method and is based <strong>on</strong> the emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> short<br />

laser pulses (ns or fs durati<strong>on</strong>) to the atmosphere under study. The laser phot<strong>on</strong>s<br />

backscattered by the atmospheric volume under study are collected by a receiving optical<br />

telescope. The signals are acquired and digitized in the analog and/or the phot<strong>on</strong> counting<br />

mode by fast transient recorders and subsequently transferred to a pers<strong>on</strong>al computer for<br />

further analysis and storing.<br />

Recently, at the Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> R&D for Optoelectr<strong>on</strong>ics – Romania, a compact<br />

backscatter lidar was installed. LiSA system can work separately or simultaneous <strong>on</strong> two<br />

wavelengths. It is made to detect from distance (max. 10 Km) micr<strong>on</strong>ic aerosols, with a<br />

spatial resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 6 m, using as sounding radiati<strong>on</strong> the beam <str<strong>on</strong>g>of</str<strong>on</strong>g> a Nd:YAG laser with<br />

sec<strong>on</strong>d harm<strong>on</strong>ic.<br />

To analyze the return signal in laser remote sensing means to find soluti<strong>on</strong>s for the<br />

equati<strong>on</strong> which relates the characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the received and emitted signal, and the<br />

propagati<strong>on</strong> medium. The form <str<strong>on</strong>g>of</str<strong>on</strong>g> the equati<strong>on</strong> depends <str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong> type [1] . For those<br />

applicati<strong>on</strong>s which involves scattering (elastic or inelastic), the form <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong> is quite<br />

simple:<br />

Z<br />

β ( Z ) ⋅ exp[ − 2∫<br />

α( z)<br />

dz]<br />

Z0<br />

S ( Z ) = C ( Z ) ⋅<br />

+ S<br />

(1)<br />

S<br />

Z<br />

2<br />

bg<br />

where Z is the distance to the scattering point, S(Z) is the Lidar signal (power), C S (Z) is the<br />

so-called system functi<strong>on</strong>, β(Z) is the backscattering atmospheric coefficient at distance Z,<br />

α(Z) is the extincti<strong>on</strong> atmospheric coefficient at distance Z and S bg is the background<br />

signal (power).<br />

In writing this equati<strong>on</strong>, the multiple scattering was neglected. The main problem is that<br />

we have two unknown parameters - β(Z) and α(Z) – and <strong>on</strong>e equati<strong>on</strong>, so that is necessary<br />

to postulate a relati<strong>on</strong> between the two. For this, the Lidar ratio S a ( Z ) = α( Z ) β ( Z ) is used.<br />

This parameter is dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> the scatterer dimensi<strong>on</strong> and, if is known, the equati<strong>on</strong> can<br />

be solved. To know Sa values over entire investigati<strong>on</strong> distance is mostly impossible.<br />

In 1972, Fred Fernald [2] realised that Lidar equati<strong>on</strong> is a Bernoulli equati<strong>on</strong> <strong>on</strong> first rang<br />

and obtained its soluti<strong>on</strong> in ‘forward’ form, choosing for calibrati<strong>on</strong> the closest point Z 0 in<br />

the investigati<strong>on</strong> interval. This method works well if the backscattering coefficient in Z 0<br />

can be provided by complementary measurements. In 1981, Klett [3] proved that this<br />

soluti<strong>on</strong> becomes unstable if atmospheric extincti<strong>on</strong> is important and in that case it<br />

diverges with increases <str<strong>on</strong>g>of</str<strong>on</strong>g> the distance. He suggested an ‘inversi<strong>on</strong>’ <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>, that means<br />

to choose the references point Z ∞ at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the investigati<strong>on</strong> interval. Rearrangement <str<strong>on</strong>g>of</str<strong>on</strong>g>


SAINT-PETERSBURG, October 17 – 20, 2005 57<br />

integrati<strong>on</strong> limits and changing the divisor sign stabilize the soluti<strong>on</strong>, but difficult to obtain<br />

data in far field is requested.<br />

LiSA system signal processing method is based <strong>on</strong> Fernald-Klett combined, instead <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

complementary measurements data, with optical model <str<strong>on</strong>g>of</str<strong>on</strong>g> the atmosphere developed by<br />

Russel and all. in 1979 [4] . The new parameter used in this case is the altitude pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Lidar ratio for aerosols scattering θ a ( Z ) = 1 S a ( Z ). The altitude pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular<br />

extincti<strong>on</strong> coefficient α m ( h)<br />

is presumed known. In this case, Fernald-Klett soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Lidar equati<strong>on</strong> can be written:<br />

F(<br />

Z)<br />

2<br />

2<br />

β a ( z)<br />

= −α<br />

m ( Z)<br />

θ m + β ( Z ∞ ) T m ( Z,<br />

Z ∞ ) T a ( Z,<br />

Z<br />

F(<br />

Z )<br />

∞<br />

(2)<br />

where T m ( Z,<br />

Z ∞ ) is the molecular transmissi<strong>on</strong>, and T a ( Z,<br />

Z ∞ ) is the aerosol transmissi<strong>on</strong><br />

corrected with atmospheric model. From eq. (2) we find that Fernald-Klett soluti<strong>on</strong> allows<br />

2<br />

to include the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aerosols extincti<strong>on</strong> through T a ( Z,<br />

Z ∞ ) factor, this being the<br />

unique soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lidar equati<strong>on</strong>.<br />

Lidar systems can be very useful in envir<strong>on</strong>mental investigati<strong>on</strong>s, especially <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

atmosphere, due to the large covered area and the real time resp<strong>on</strong>se. The accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

obtained in<strong>format</strong>i<strong>on</strong> is dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> technical performances <str<strong>on</strong>g>of</str<strong>on</strong>g> the device and <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sensibility <str<strong>on</strong>g>of</str<strong>on</strong>g> data processing method, which can be critical in some cases.<br />

Presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper was partially supported by ICO travel-grant program.<br />

∞<br />

)<br />

1. R.M. Measures, Laser Remote Sensing. Fundamentals and Applicati<strong>on</strong>s, Krieger<br />

Publishing Company, Malabar, Florida, 1992, p. 237.<br />

2. F.G. Fernald, B.M. Herman, and J.A. Reagan, Determinati<strong>on</strong> Of Aerosol Height<br />

Distributi<strong>on</strong> By Lidar, J. Appl. Meteorol. 11(1972)482.<br />

3. J.D. Klett, Stable Analytical Inversi<strong>on</strong> Soluti<strong>on</strong> For Processing Lidar Returns, Appl.<br />

Opt. 20(1981)211.<br />

4. P.B. Russell, T. J. Swissler, and M. P. McCormick, Methodology for error analysis and<br />

simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lidar aerosol measurements, Appl.Opt., 18(1979)3783.


58 OPTOINFORMATICS’05<br />

A Nd:YAG SURGICAL LASER FOR OPHTHALMOLOGIC<br />

STEREOMICROSCOPE<br />

D. Savastru, S. Miclos, C. Cotirlan, M. Mustata, E. Ristici, Teodara Brezeanu, Sim<strong>on</strong>a<br />

D<strong>on</strong>tu, M. Rusu, V. Savu, A. Stefanescu*<br />

Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> R&D for Optoelectr<strong>on</strong>ics –INOE-2000, Romania<br />

* Eye Clinical Hospital <str<strong>on</strong>g>of</str<strong>on</strong>g> Bucharest, Romania<br />

E-mail: dsavas@inoe.inoe.ro<br />

A surgical laser system used in ophthalmology for posterior capsulotomy and<br />

pupil membranectomy is presented. BIOLASER allows stereoscopic<br />

examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eye’s transparent medium and the executi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

microsurgical procedures in the anterior and posterior chambers.<br />

The system yields an infrared laser beam <str<strong>on</strong>g>of</str<strong>on</strong>g> 1064 nm wavelength (Fig.1). A Q-switch<br />

Nd:YAG laser has been designed and built [1] . This laser delivers a chosen amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

energy to a focal point <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 10 micr<strong>on</strong>s diameter producing a plasma effect<br />

and thus an acoustic wave. This acustic wave disrupts the adjacent tissue. This is known as<br />

the “photodisruptive effect” [2,3,4] . As the treatment energy increases the size <str<strong>on</strong>g>of</str<strong>on</strong>g> created<br />

plasma also increases, causing a larger acoustic wave and also a str<strong>on</strong>ger effect. The<br />

system works both in m<strong>on</strong>o pulse or double pulse regime. The laser beam was spatial<br />

filtered in order to obtain the TEM oo and it is focused at 150 micr<strong>on</strong>s behind the object<br />

plane to reduce the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> pitting the intraocular lens when performing posterior<br />

capsulotomy. The aiming system uses a laser diode with 635 nm wavelength, less than 1<br />

mW output power, splitted into two beams and then directed through the objective marking<br />

the object plane. This aiming system presents the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the diameter and the<br />

positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nd:YAG laser pulse and also <str<strong>on</strong>g>of</str<strong>on</strong>g> the depth where the focal point <str<strong>on</strong>g>of</str<strong>on</strong>g> the laser<br />

pulse is located.<br />

P2<br />

P1<br />

Beam expander<br />

Nd:YAG rod<br />

Step-by-step<br />

motor<br />

Gears<br />

Beam splitter prisms<br />

From binocular<br />

Circular variable neutral<br />

density filter<br />

Objective<br />

Focal plane<br />

Laser beam<br />

Red light<br />

deflecting mirror<br />

laser diode<br />

Fig. 1. BIOLASER schematics


SAINT-PETERSBURG, October 17 – 20, 2005 59<br />

The adjustment is made by superposing the two red laser diode beams in the object<br />

visible plane, the Nd:YAG laser beam strikes in the central part <str<strong>on</strong>g>of</str<strong>on</strong>g> them. The laser beam<br />

(1064 nm) is passed through a beam expander with a 12x magnificati<strong>on</strong> coefficient, than<br />

attenuated by a circular variable neutral filter, and finally, it is focused by the objective <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the microscope in about 10 micr<strong>on</strong>s focal area diameter. We obtained energies from 0.8 mJ<br />

to 8.2 mJ for capsulotomy and iridotomy in less than ±10 % energy variati<strong>on</strong>s.<br />

1. C. Cotîrlan, D. Savastru, Marina Mustatã, S. Miclos, Es<str<strong>on</strong>g>of</str<strong>on</strong>g>ina Ristici, M. Garais, A.<br />

Stefãnescu-Dima, I.P. Grecu, "Nd:YAG Laser Ophtalmic System", Laser Florence<br />

C<strong>on</strong>ference, 6-8 nov. 2003, Florenta, Italia.<br />

2. D. Savastru, S. Miclos, C. Cotirlan, E. Ristici, M. Mustata, M. Mogildea, G. Mogildea,<br />

T. Dragu, R. Morarescu, „Nd:YAG Laser System for Ophthalmology: Biolaser-1”, J. <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Optoelectr<strong>on</strong>ics and Advances Materials Vol. 6, No. 2, June 2004, p 497-502.<br />

3. Stefanescu-Dima, Cristina Stoica, Luminita Ursea, “Posterior Capsulotomy: When<br />

Where How”, ”Ophtalmology”, No. 3, pp. 93-100, 2003.<br />

4. Zachary S. Sacks, Frieder Loesel et al., “Transscleral photodisrupti<strong>on</strong> for treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glaucoma”, Proc. SPIE, Vol. 3726, pp. 516-521, 1998.


60 OPTOINFORMATICS’05<br />

ANALYSIS OF EDGE DETECTION ALGORITHM FOR ANALOG<br />

REALIZATION<br />

Evgeniya Serova<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Design Problems in Microelectr<strong>on</strong>ics <str<strong>on</strong>g>of</str<strong>on</strong>g> RAS, 8a Mazhorov per, Moscow,<br />

RF,105023<br />

E-mail: serova@ippm.ru<br />

Various mathematical operators for edge detecti<strong>on</strong> was analyzed, compared<br />

and simulated to select best operator for analog realizati<strong>on</strong> in focal plane <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CMOS-APS imagers <strong>on</strong> given complex criteria.<br />

Perspective directi<strong>on</strong> in area <str<strong>on</strong>g>of</str<strong>on</strong>g> digital image processing is compressi<strong>on</strong>,<br />

segmentati<strong>on</strong>, intensificati<strong>on</strong> c<strong>on</strong>trast and processing target, moti<strong>on</strong>-detecti<strong>on</strong>, search and<br />

recogniti<strong>on</strong> given object, image processing. These tasks are resolved with help smart<br />

machine visi<strong>on</strong> system.<br />

The c<strong>on</strong>tours <str<strong>on</strong>g>of</str<strong>on</strong>g> the image are very in<strong>format</strong>i<strong>on</strong>al and allows to process <str<strong>on</strong>g>of</str<strong>on</strong>g> the image<br />

for solving tasks <str<strong>on</strong>g>of</str<strong>on</strong>g> image recogniti<strong>on</strong> at real time. Edge detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the image allows<br />

improving the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the image, to definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial objects <strong>on</strong> the image, to<br />

reduce the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> data by means <str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong> <strong>on</strong>ly the in<strong>format</strong>i<strong>on</strong> about a c<strong>on</strong>tour.<br />

For design circuit it needs development method <str<strong>on</strong>g>of</str<strong>on</strong>g> processing. On this case we<br />

developed the complex criteria for choice the best operator <str<strong>on</strong>g>of</str<strong>on</strong>g> edge detecti<strong>on</strong>. The complex<br />

criteria c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> following limited. At first it c<strong>on</strong>nected with analog realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

algorithm: for minimum number <str<strong>on</strong>g>of</str<strong>on</strong>g> parallel processing image elements (pixels), simply<br />

mathematic operati<strong>on</strong>s such as additi<strong>on</strong>al, subtracti<strong>on</strong>, and module. At sec<strong>on</strong>d it c<strong>on</strong>nected<br />

with task <str<strong>on</strong>g>of</str<strong>on</strong>g> image analysis is criteria for estimati<strong>on</strong> receive c<strong>on</strong>tour image quality.<br />

The methods <str<strong>on</strong>g>of</str<strong>on</strong>g> masks are used for edge detecti<strong>on</strong>. It is algorithms <str<strong>on</strong>g>of</str<strong>on</strong>g> the discovery<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tour, when the mask has a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the image with some weighting coefficient and<br />

determines the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tour by the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the mask. In their turn these<br />

methods are divided <strong>on</strong> usual differential operators and methods <str<strong>on</strong>g>of</str<strong>on</strong>g> the comparis<strong>on</strong> with<br />

the standard (approximating methods). The formers indicate the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tour,<br />

other indicates besides the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tour.<br />

In respect to image recogniti<strong>on</strong> the c<strong>on</strong>tours presents the more in<strong>format</strong>ive.<br />

Procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> Edge detecti<strong>on</strong> permit to improve quality – get rid <str<strong>on</strong>g>of</str<strong>on</strong>g> noises, reduce image<br />

size (binary image take the less memories). At detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tours <strong>on</strong> images with noises<br />

differential operators are used. In this case it is necessary to define thresholds <str<strong>on</strong>g>of</str<strong>on</strong>g> detecti<strong>on</strong><br />

that is to define what resp<strong>on</strong>se <strong>on</strong> the operator (mask) testifies to presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>tour and<br />

what is not present. The knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> thresholds gives objective comparis<strong>on</strong> masks<br />

methods <str<strong>on</strong>g>of</str<strong>on</strong>g> detecti<strong>on</strong>. As criteri<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> comparis<strong>on</strong> threshold c<strong>on</strong>trast that is the<br />

characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> difference <str<strong>on</strong>g>of</str<strong>on</strong>g> the brightness which are found out by the operator is<br />

accepted, at the set size <str<strong>on</strong>g>of</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> false detecti<strong>on</strong> (Р l0 ). The best is the method which<br />

at set Р l0 gives the minimal value <str<strong>on</strong>g>of</str<strong>on</strong>g> threshold c<strong>on</strong>trast. Special s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware for simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mathematical methods <str<strong>on</strong>g>of</str<strong>on</strong>g> edge detecti<strong>on</strong> was created. The program realizes five described<br />

above mathematical methods c<strong>on</strong>tours (Zobel method, Kirsha method, Laplas method,<br />

Robertes method (2 versi<strong>on</strong>).


SAINT-PETERSBURG, October 17 – 20, 2005 61<br />

PITTING CORROSION MONITORING WITH ELECTRONIC-<br />

SPECKLE PHOTOGRAPHY<br />

Frankevych L. F.<br />

Karpenko Physico-Mechanical Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> NAS <str<strong>on</strong>g>of</str<strong>on</strong>g> Ukraine, Lviv, Ukraine<br />

The new method <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial-temporal electr<strong>on</strong>ic speckle-photography was<br />

proposed to research the pitting corrosi<strong>on</strong> processes. The experimental setup<br />

for realizati<strong>on</strong> this method was calculated and created. Appearance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

corrosi<strong>on</strong> pitting was registered for a steel beam specimen.<br />

Crevice corrosi<strong>on</strong> and corrosi<strong>on</strong> fatigue <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> materials bel<strong>on</strong>g to the most<br />

dangerous types <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong>-mechanical damages [1] . Pitting corrosi<strong>on</strong> is an initial stage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

corrosi<strong>on</strong> fatigue and reduces to destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> materials. It is very difficult to expose<br />

intercrystalline, transcrystalline or mixed type <str<strong>on</strong>g>of</str<strong>on</strong>g> crack by the existent methods <str<strong>on</strong>g>of</str<strong>on</strong>g> fault<br />

detecti<strong>on</strong>. Therefore, the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> the new methods for diagnostics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

corrosi<strong>on</strong> fatigue <strong>on</strong> the initial stages is enough actual. Now there are some electr<strong>on</strong>ical<br />

and optical methods for research <str<strong>on</strong>g>of</str<strong>on</strong>g> this type <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong>-mechanical destructi<strong>on</strong>.<br />

However they are enough laborious and need a l<strong>on</strong>g time for researches and can’t use for<br />

real – time m<strong>on</strong>itoring.<br />

To research the processes <str<strong>on</strong>g>of</str<strong>on</strong>g> pitting and corrosi<strong>on</strong> ulcers nucleati<strong>on</strong>, we have<br />

proposed the hybrid optical-digital method <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial-temporal electr<strong>on</strong>ic specklephotography<br />

[2] , which is quite simple and does not yield other <strong>on</strong> the explored parameters.<br />

For this purpose, the experimental setup for realizati<strong>on</strong> this method was calculated and<br />

created. It c<strong>on</strong>tains the loading setting and spatial-temporal speckle-correlator. The studied<br />

specimen is situated in a glass cuvette with a liquid. One end <str<strong>on</strong>g>of</str<strong>on</strong>g> a specimen is fixed to the<br />

cantilever <str<strong>on</strong>g>of</str<strong>on</strong>g> the loading setting. The calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spatial-temporal specklecorrelator’s<br />

optical system was c<strong>on</strong>ducted, which provided the necessary scale <str<strong>on</strong>g>of</str<strong>on</strong>g> images<br />

and sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> speckle (the average size <str<strong>on</strong>g>of</str<strong>on</strong>g> speckle must be larger then pixel size). The optical<br />

system was located <strong>on</strong> a holder, which is hardly fastened to immobile part <str<strong>on</strong>g>of</str<strong>on</strong>g> the loading<br />

setting. Such fastening provides immobility <str<strong>on</strong>g>of</str<strong>on</strong>g> optics relatively to the studied specimen.<br />

The experiments were c<strong>on</strong>ducted for steel 12H1MF <str<strong>on</strong>g>of</str<strong>on</strong>g> the pipeline systems <str<strong>on</strong>g>of</str<strong>on</strong>g> power<br />

equipment, from which studied specimen were d<strong>on</strong>e with a smooth cut for localizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the corrosi<strong>on</strong> processes. The specimen was immersed into 3% water soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NaCl with<br />

additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> HCl and NaOH for achievement <str<strong>on</strong>g>of</str<strong>on</strong>g> value pH=6,5. And it was loading with<br />

cyclic frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> equal to 0,1 Hertz. To test the rectangular grating <str<strong>on</strong>g>of</str<strong>on</strong>g> cross-correlati<strong>on</strong><br />

peaks obtained as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> temporal changes <str<strong>on</strong>g>of</str<strong>on</strong>g> studied surface; at first we have produced<br />

the rectangular grating <str<strong>on</strong>g>of</str<strong>on</strong>g> autocorrelati<strong>on</strong> peaks by autocorrelati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface fragments<br />

(subimages) <str<strong>on</strong>g>of</str<strong>on</strong>g> the explored area in initial c<strong>on</strong>diti<strong>on</strong>. The next stage <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments<br />

c<strong>on</strong>sists in producing <str<strong>on</strong>g>of</str<strong>on</strong>g> gratings <str<strong>on</strong>g>of</str<strong>on</strong>g> cross-correlati<strong>on</strong> peaks during fatigue loading <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

specimen. The reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> cross-correlati<strong>on</strong> peaks in relati<strong>on</strong> to intensities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

autocorrelati<strong>on</strong> peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> the proper fragments carried in<strong>format</strong>i<strong>on</strong> about the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

corrosive damages (pittings) <strong>on</strong> the studied specimen area. Appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong> ulcer<br />

and its trans<strong>format</strong>i<strong>on</strong> in microcrack was registered.


62 OPTOINFORMATICS’05<br />

Substantial advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> the proposed method above known c<strong>on</strong>sists in possibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>ducting the quantitative n<strong>on</strong>-destructive c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> pitting corrosi<strong>on</strong> process <strong>on</strong> the<br />

studied specimen surface. The other advantage c<strong>on</strong>sists in possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> the real time data<br />

acquisiti<strong>on</strong> about the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> pitting and development <str<strong>on</strong>g>of</str<strong>on</strong>g> microcrack.<br />

Presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper was partially supported by ICO travel-grant program.<br />

1. І.М. Дмитрах, В.В. Панасюк, Вплив корозійних середовищ на локальне руйнування<br />

металів біля концентраторів напружень, Львів: Вид. ФМІ НАН України, 341,<br />

(1999).<br />

2. M. Sjödahl, Some Recent Advances in Electr<strong>on</strong>ic Speckle Photography // Opt. Las.<br />

Eng., 29, 125-144, (1998).


SAINT-PETERSBURG, October 17 – 20, 2005 63<br />

THE ANALYSIS OF RESOLUTION CAPABILITY OF THE OPTICAL<br />

COHERENT TOMOGRAPH<br />

K.L. Khohlov, V.K. Sokolov<br />

Baltic State Technical University,<br />

1 st Krasnoarmeyskaya str.1, 198005, St.Petersburg, Russia<br />

E-mail: xkl1478@mail.ru<br />

In the report questi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> resoluti<strong>on</strong> enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> a coherent laser optical<br />

tomograph <str<strong>on</strong>g>of</str<strong>on</strong>g> high-resoluti<strong>on</strong> capability in short-range infrared a band are c<strong>on</strong>sidered. The<br />

tomograph focused <strong>on</strong> use for early diagnostics <str<strong>on</strong>g>of</str<strong>on</strong>g> pathological modificati<strong>on</strong> in a thyroid<br />

gland <str<strong>on</strong>g>of</str<strong>on</strong>g> the human. Traditi<strong>on</strong>al methods <str<strong>on</strong>g>of</str<strong>on</strong>g> ultras<strong>on</strong>ic do not provide in this case, the<br />

required resoluti<strong>on</strong> in tens micr<strong>on</strong>, and X-ray methods cannot be used because <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

harm for the patient.<br />

The carried out analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> methods <str<strong>on</strong>g>of</str<strong>on</strong>g> an optical tomography has shown, that to the<br />

most suitable for the soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a task in view, the method optical coherent tomography<br />

with use optical heterodyne. The method allows to detect the ballistic phot<strong>on</strong>s forming the<br />

shadow image <str<strong>on</strong>g>of</str<strong>on</strong>g> a stratum <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue, similar to the X-ray image. At use short-range<br />

infrared areas (700-1300 nanometers), relevant to a spectral window <str<strong>on</strong>g>of</str<strong>on</strong>g> the s<str<strong>on</strong>g>of</str<strong>on</strong>g>t tissue <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the human, depth <str<strong>on</strong>g>of</str<strong>on</strong>g> penetrati<strong>on</strong> can achieve 10-12 cm. Magnificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the resoluti<strong>on</strong><br />

can be achieved in two stages:<br />

1. The diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> fibers in sourcing and detecting arrays can be reduced. It allows to<br />

reduce scanning aperture. The accessible type <str<strong>on</strong>g>of</str<strong>on</strong>g> fibers and length <str<strong>on</strong>g>of</str<strong>on</strong>g> waves restrict<br />

resoluti<strong>on</strong> capability.<br />

2. Realizati<strong>on</strong> posterior processing <str<strong>on</strong>g>of</str<strong>on</strong>g> the received images, implemented electr<strong>on</strong>ic or<br />

optoelectr<strong>on</strong>ic processor working in actual time. We use the optical processor which<br />

represents the televisi<strong>on</strong> system covered with an optical back coupling and implementing<br />

algorithm inverse filtering.<br />

At the given stage <str<strong>on</strong>g>of</str<strong>on</strong>g> our work we analyzes with help <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical models the<br />

opportunities <str<strong>on</strong>g>of</str<strong>on</strong>g> the first method. The inverse filtrati<strong>on</strong> means gathering some additi<strong>on</strong>al<br />

in<strong>format</strong>i<strong>on</strong> <strong>on</strong> a transfer functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> imaging system and about properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the object <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

observati<strong>on</strong>.<br />

The dependences <str<strong>on</strong>g>of</str<strong>on</strong>g> the resoluti<strong>on</strong> <strong>on</strong> a standing <str<strong>on</strong>g>of</str<strong>on</strong>g> an objective plane c<strong>on</strong>cerning a<br />

plane <str<strong>on</strong>g>of</str<strong>on</strong>g> the image and source, dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the resoluti<strong>on</strong> <strong>on</strong> character <str<strong>on</strong>g>of</str<strong>on</strong>g> allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

complex amplitudes under the aperture <str<strong>on</strong>g>of</str<strong>on</strong>g> a fibril are analysed. The model allows to take<br />

into account influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the aperture <str<strong>on</strong>g>of</str<strong>on</strong>g> an emitter, the receiver <strong>on</strong> the<br />

resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tomograph. The criteri<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the resoluti<strong>on</strong> is diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> a spot <str<strong>on</strong>g>of</str<strong>on</strong>g> the image<br />

is formed in a image plane. The boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> a spot is defined or <strong>on</strong> the first minimum in<br />

the diffracti<strong>on</strong> pattern, or <strong>on</strong> a level exp 1 − .<br />

Further we plan measuring coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong> and dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> medium <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

observati<strong>on</strong> and improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> a model, terminating c<strong>on</strong>necti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a transfer functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

figuring system and definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> methods <str<strong>on</strong>g>of</str<strong>on</strong>g> its compensati<strong>on</strong>.<br />

1. Edited by Steve Webb. “The Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Imaging”. M.:”Mir”, 1991 - 408с.<br />

2. F. Stuart Foster, Charles J. Pavlin “Advances in ultrasound biomicroscopy”:<br />

Ultrasound in Med. and Biol., vol. 26, No. 1, pp. 1-27, 2000.<br />

3. V.I.Danilenko, A.A.Shmarin. ”New morphological spheroids objects and a<br />

morphgenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> pathological body height <str<strong>on</strong>g>of</str<strong>on</strong>g> tissues”.


64 OPTOINFORMATICS’05<br />

4. Yoshiaki Sasaki, Hiroki Inage, Ryota Emory, Masaki Goto, eds., “Correcti<strong>on</strong> Method<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Surface Effects in Infra-Red Laser Transilluminati<strong>on</strong> CT Imaging”, SPIE Opt. Eng.<br />

Press, Bellinggham, WA, 2004, vol.5368, pp. 939-949.<br />

5. Radio engineering chains and signals: I.S.G<strong>on</strong>orovsky, M.P.Dyomin - M.:Éáñ¿« and<br />

c<strong>on</strong>necti<strong>on</strong>, 1994. - 480с.<br />

6. J.W. Goodman. “Introducti<strong>on</strong> to Fourier Optics”, - M.:”Mir”, 1970 - 364с.<br />

7. V.F. Relin . The thesis: “Coherently - optical a posteriori handling <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray<br />

microscopical images”: - L.1986.<br />

8. V.Tuchin, “Tissue Optics: Light Scattering Methods and Instruments for Medical<br />

Diagnosis”, TT38, SPIE Opt. Eng. Press, Bellinggham, WA, 2000.<br />

9. A.N.Bashkatov, E.A.Genina, V.I.Kochubey, V.V.Tuchin, E.E.Tchikin, A.B.Knyazev,<br />

O.V.Maraev. Optical properties mucos in a spectral diapas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 350-2000 nanometers.<br />

Publishing house: Optician and a spectroscopy, 2004г. Т. 97.№6. с1037-1042.<br />

10. G.G.Levin, G.N.Vishnjakov. “An optical tomography”. М.,: “Mir”., 1989.<br />

11. Yoshiaki Sasaki, Hiroki Inage, Ryota Emory, Masaki Goto, eds., “Infra-Red Laser<br />

Transilluminati<strong>on</strong> CT imaging System Using Parallel Fiber Arrays and Optical<br />

Switches for Finger Joint Imaging”, SPIE Opt. Eng. Press, Bellinggham, WA, 2004,<br />

vol.5368, pp.817-826.<br />

12. Harris<strong>on</strong> H. Barrett, William Swindell, “Radiological Imaging. The theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Image<br />

Formati<strong>on</strong>, detecti<strong>on</strong>, and Processing”, Academic Press, 1981, pp.117-142.


SAINT-PETERSBURG, October 17 – 20, 2005 65<br />

GENERATION OF THE DISCRETE SPECTRAL<br />

SUPERCONTINUUM IN TWO INTENSIVE ULTRASHORT PULSES<br />

INTERACTION<br />

M. A. Bakhtin, S. A. Kozlov<br />

St.Petersburg State University <str<strong>on</strong>g>of</str<strong>on</strong>g> In<strong>format</strong>i<strong>on</strong> Technologies, Mechanics and Optics<br />

Kr<strong>on</strong>verksky pr. 49, St.Petersburg, 197101, Russia<br />

E-mail: bakhtin@rain.ifmo.ru<br />

It is shown that n<strong>on</strong>linear interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two intensive few-cycle pulses in<br />

waveguide can result in high repetiti<strong>on</strong> rate optical sequence generati<strong>on</strong> with<br />

quasi-discrete spectrum that can be used for in<strong>format</strong>i<strong>on</strong> encoding.<br />

The fiber optical systems have gained more and more popularity for data<br />

transmissi<strong>on</strong>. Wave density multiplexing systems are widely used now to achieve high<br />

bandwidths for optical channels. Current WDM implementati<strong>on</strong>s require many optical<br />

sources (<strong>on</strong>e for every channel). In present paper we c<strong>on</strong>sider a method <str<strong>on</strong>g>of</str<strong>on</strong>g> generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

very high frequency optical signal sequence based <strong>on</strong> interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two few-cycle laser<br />

pulses propagating collinearly in transparent n<strong>on</strong>linear media with different group<br />

velocities. The spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> generated sequence is quasi-discrete that allows using it as<br />

multiple light sources with different wavelengths. Fig. 1 dem<strong>on</strong>strates the interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

two few-cycle pulses with central wavelengths 780 nm and 390 nm with input intensities<br />

2·10 13 W/cm 2 in fused silica.<br />

Fig. 1. Spatial evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electric field envelope ε ( z , t ) for the pulses interacti<strong>on</strong> with peak<br />

input intensity I 1 =I 2 =2·10 13 W/cm 2<br />

Fig. 2. Quasi-discrete spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> generated sequence<br />

The interacti<strong>on</strong> was modeled by n<strong>on</strong>linear equati<strong>on</strong>s describing the temporal<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light pulse electrical fields and their spatial - temporal spectra up<strong>on</strong> the pulses


66 OPTOINFORMATICS’05<br />

propagati<strong>on</strong> in fused silica fiber [1] . Pulses initially separated by time delay, but since they<br />

have different central wavelengths the lower frequency pulse overtakes higher frequency<br />

<strong>on</strong>e and interacti<strong>on</strong> takes place. The spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> resulting sequence is shown <strong>on</strong> Fig. 2.<br />

The width <str<strong>on</strong>g>of</str<strong>on</strong>g> each spectral peak that corresp<strong>on</strong>ds single pulse in output sequence is about<br />

20 nm that is similar to standard coarse WDM systems channel width. But such sequences<br />

are interested not <strong>on</strong>ly as optical source for WDM systems, they can be used al<strong>on</strong>e as<br />

method <str<strong>on</strong>g>of</str<strong>on</strong>g> encode and transmit data packages in practically <strong>on</strong>e optical signal (Fig. 3) not<br />

splitting it by several channels. However since the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> complete sequence is very<br />

wide the applicati<strong>on</strong> area is limited to short distances.<br />

Fig. 3. Example <str<strong>on</strong>g>of</str<strong>on</strong>g> bit package encoding by “cutting <str<strong>on</strong>g>of</str<strong>on</strong>g>f” specific spectral comp<strong>on</strong>ents from quasidiscrete<br />

spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> output sequence (a) and corresp<strong>on</strong>ding spectrum (b)<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> pulses in the output sequence can easily be managed just by changing<br />

the time distance between input pulses. Further analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> two pulses interacti<strong>on</strong> in<br />

n<strong>on</strong>linear media shows that not <strong>on</strong>ly pulses collisi<strong>on</strong> and passing <strong>on</strong>e through another is<br />

important, but ultrabroadening <str<strong>on</strong>g>of</str<strong>on</strong>g> their spectrums and interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> separate spectral<br />

comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> each pulses plays a significant role. If both pulses spectrums are in normal<br />

group dispersi<strong>on</strong> range their fr<strong>on</strong>t c<strong>on</strong>tains lower-frequency comp<strong>on</strong>ents, then the tail –<br />

higher frequencies. Thus it is possible to use not <strong>on</strong>ly pulses with different mean<br />

wavelengths, but similar pulses also. The principle <str<strong>on</strong>g>of</str<strong>on</strong>g> sequence generati<strong>on</strong> remains the<br />

same – the generati<strong>on</strong> takes place because <str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pulse fragments with<br />

different spectral compositi<strong>on</strong>.<br />

Thus, the work shows that interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two intensive few-cycle laser pulses in<br />

n<strong>on</strong>linear media may result in generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> ultrashort signals. The sequence<br />

has a quasi-discrete spectrum that allows effectively usage <str<strong>on</strong>g>of</str<strong>on</strong>g> such sequence for<br />

in<strong>format</strong>i<strong>on</strong> encoding.<br />

The work is supported by Grant N 05-02-16556 <str<strong>on</strong>g>of</str<strong>on</strong>g> the Russian Foundati<strong>on</strong> for Basic<br />

Research.<br />

1. Shpolyanskiy Yu.A., Belov D.L., Bakhtin M.A., Kozlov S.A. Analytic study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tinuum spectra pulse dynamics in optical waveguides // Appl. Phys. B: Lasers and<br />

Optics. 2003. V.77. N.2 3, P. 349 355.


SAINT-PETERSBURG, October 17 – 20, 2005 67<br />

THE PHYSICS AND ENGINEERING ASPECTS OF VIBRATION<br />

ISOLATION SYSTEM DESIGNS FOCUSING THE<br />

APPLICATIONS FROM DIMENSIONAL TO QUANTUM<br />

METROLOGY SET UPS IN INDUSTRIAL ENVIRONMENT<br />

S. N. Bagchi<br />

Vibrati<strong>on</strong> Engineering- Design Secti<strong>on</strong>,<br />

RPL., B-103, Sector – 5, Noida – 201 301, India<br />

E-mail: sales@resist<str<strong>on</strong>g>of</str<strong>on</strong>g>lexindia.com<br />

This is an industrial applicati<strong>on</strong> oriented presentati<strong>on</strong> <strong>on</strong> the trends in vibrati<strong>on</strong><br />

and shock isolati<strong>on</strong> system design . The applicati<strong>on</strong>s are wide spread from QC labs<br />

near mechanical workshop area to micro-biology and Laser fluorescence<br />

microscope laboratory set ups to study the chromosomes in a medical centre. In<br />

additi<strong>on</strong> to this any surge<strong>on</strong> also need a vibrati<strong>on</strong> isolated operati<strong>on</strong> table to<br />

perform a delicate brain or heart surgery in a hospital.<br />

Just 100 years ago in 1905 Albert Einstein had published his outstanding<br />

c<strong>on</strong>tributi<strong>on</strong>s in the field Quantum Physics, Photo electric effect, Special and General<br />

theory <str<strong>on</strong>g>of</str<strong>on</strong>g> relativity which later formed the backb<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> modern technological<br />

advancement and have c<strong>on</strong>nectivity to almost all facets <str<strong>on</strong>g>of</str<strong>on</strong>g> our life in the form <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

understanding the Universal laws <str<strong>on</strong>g>of</str<strong>on</strong>g> nature and space & <strong>on</strong> the other hand<br />

Optical communicati<strong>on</strong> to CD player hardware. So a menti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Space –Time<br />

dimensi<strong>on</strong>s, Mass – Energy equivalence is made to keep the c<strong>on</strong>nectivity to World<br />

year <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics (WYP 2005) and Quantum Physics during introducti<strong>on</strong> phase.<br />

Also an attempt is made to highlight the c<strong>on</strong>nectivity between mechanical science<br />

and Physics c<strong>on</strong>cepts. An analogy <str<strong>on</strong>g>of</str<strong>on</strong>g> Machine vibrati<strong>on</strong> and Molecular Vibrati<strong>on</strong><br />

spectra presented . Industrial Spring Damper supported system design for a heavy<br />

coal crusher <str<strong>on</strong>g>of</str<strong>on</strong>g> any power plant compared to the requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> a sensitive<br />

Micro- Electr<strong>on</strong>ic fabricati<strong>on</strong> workshop or Nano - Technology experimental set up.<br />

The Physical and Mathematical aspects are briefed and limited to a moderate level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Newt<strong>on</strong>ian Mechanics and Quantum Mechanics in view <str<strong>on</strong>g>of</str<strong>on</strong>g> better interacti<strong>on</strong><br />

with the audience from multi disciplinary branches and subjects . N<strong>on</strong> Linear systems<br />

used for isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shock <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Fuzzy and Generic<br />

Logic c<strong>on</strong>cepts are used to bring out the close c<strong>on</strong>nectivity between Theory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Chaos , Symmetry c<strong>on</strong>cepts in Physics and Machine designs.<br />

Glimpses <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s in other areas are shown in the c<strong>on</strong>cluding slides.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!