28.01.2015 Views

Cost Effective use of UV-Peroxide for Geosmin and ... - Ohiowater.org

Cost Effective use of UV-Peroxide for Geosmin and ... - Ohiowater.org

Cost Effective use of UV-Peroxide for Geosmin and ... - Ohiowater.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>UV</strong>-<strong>Peroxide</strong> <strong>for</strong> Taste <strong>and</strong> Odor<br />

Control at Aqua PA’s 15 MGD<br />

Neshaminy Water Treatment Plant<br />

John F. Civardi, Vice President, HMM<br />

Marc Lucca, VP Production, Aqua PA<br />

Ohio American Water Works Association<br />

Annual Conference<br />

September, 2010


Its all about You<br />

The unification <strong>of</strong> speaker <strong>and</strong> listener<br />

is actually an extension <strong>and</strong><br />

enlargement <strong>of</strong> ourselves <strong>and</strong> new<br />

knowledge is gained from it<br />

‣ M. Scott Peck – The Road Less Traveled <strong>and</strong><br />

Beyond


Outline<br />

‣ Describe Existing Neshaminy WTP Process<br />

‣ Describe Improvements to Clarification <strong>and</strong><br />

Residuals H<strong>and</strong>ling Systems<br />

‣ Historical <strong>Geosmin</strong> <strong>and</strong> MIB Concentrations<br />

‣ Desktop Evaluation <strong>of</strong> T&O Options<br />

‣ <strong>UV</strong>-<strong>Peroxide</strong> System<br />

‣ Construction <strong>and</strong> Startup


Overview <strong>of</strong> Aqua PA<br />

‣ Subsidiary <strong>of</strong> Aqua America<br />

‣ Publically traded (NYSE: WTR)<br />

‣ Operations in 14-states serving 3-million people.<br />

‣ Aqua PA – SE Operations<br />

‣ Serves 350,000 customers in portions <strong>of</strong> the 5<br />

counties surrounding the City <strong>of</strong> Philadelphia<br />

‣ 8 Surface WTPs <strong>and</strong> 70 Wells<br />

‣ Total Delivered Water: 100 - 140 MGD


Case Study Neshaminy WTP<br />

‣ Neshaminy WTP<br />

‣ 15 MGD max day<br />

‣ Source Water: Neshaminy Creek<br />

‣ Serves ~ 40,000 customers in Bucks &<br />

Montgomery counties; 335,000 people live in the<br />

watershed.


Case Study Neshaminy WTP<br />

‣ Watershed<br />

‣ Drainage area is about 200 mi 2 ; 53% green space; 34%<br />

agriculture; <strong>and</strong> 11% developed;<br />

‣ Possible sources <strong>of</strong> contamination:<br />

‣ Treated/untreated sewage;<br />

‣ Reservoir algal contamination;<br />

‣ Urban/Reservoir/Ag Run<strong>of</strong>f;<br />

‣ Industrial Facilities; l<strong>and</strong>fills; <strong>and</strong><br />

‣ Spills & Vehicle Accidents


Case Study Neshaminy WTP<br />

‣ 1905: Original WTP operations constructed<br />

‣ Neshaminy Creek dam & headworks; <strong>and</strong><br />

‣ Pumping station & Transmission Main.<br />

‣ 1950’s Filters & Washwater Tank<br />

‣ 2003 Clearwell <strong>and</strong> HS Pumps


Case Study Neshaminy WTP<br />

‣ Conventional Treatment<br />

‣ Design Capacity: 15 MGD Max Day<br />

‣ Clarifier: 6 - 8hrs detention time<br />

‣ S<strong>and</strong>/Anthracite filtration<br />

‣ Lignite PAC is <strong>use</strong>d<br />

‣ Sludge Lagoon/drying beds<br />

‣ Solids Disposal in On-Site Mon<strong>of</strong>ill<br />

‣ 1 On-Site Super; 1 Utility; 1 Operator 4;<br />

<strong>and</strong> 1 Laborer


Operating Plan - 2006


Neshaminy<br />

Creek<br />

Intake, Screening<br />

& Raw Water Pumping<br />

Mixing<br />

Basins<br />

Coagulation<br />

Basin<br />

Low Lift<br />

Pumps<br />

PAC<br />

8 Hrs. Detention<br />

Sludge<br />

Transfer<br />

Pit<br />

Sedimentation<br />

Sludge Lagoon<br />

(Lagoon No. 1)<br />

Clearwell<br />

Pumps to<br />

Distribution<br />

Washwater Transfer Pit<br />

8 Gravity Filters &<br />

Clearwell<br />

Washwater Drying Lagoons<br />

(Lagoons Nos. 2 & 3)<br />

Existing Plant Schematic


Proposed Neshaminy WTP<br />

Improvements Project<br />

‣ Phase I - Installation <strong>of</strong> <strong>UV</strong>-<strong>Peroxide</strong> AOP (2010)<br />

‣ Phase II – Pretreatment & Solids H<strong>and</strong>ling (2012)<br />

‣ Replace Sedimentation Basin with Plate Settler with<br />

detention time <strong>of</strong> 45 min; <strong>and</strong><br />

‣ Replace mechanical dewatering facility including Belt<br />

Presses will replace the Lagoon No. 3.


Neshaminy Site<br />

New Residuals Facility<br />

Sedimentation<br />

Basin<br />

Filter Building<br />

Clearwell<br />

Intake


T&O at Neshaminy<br />

‣ Taste <strong>and</strong> odors consist primarily <strong>of</strong> the odorcausing<br />

compounds, 2-methylisoborneol (MIB)<br />

<strong>and</strong> <strong>Geosmin</strong>.<br />

‣ The typical odor threshold is 10 ng/L <strong>for</strong> <strong>Geosmin</strong><br />

<strong>and</strong> 4 ng/L <strong>for</strong> MIB.<br />

‣ T&O occurs seasonally generally between May<br />

<strong>and</strong> September with episodes ranging from a few<br />

days to several weeks.


T&O at Neshaminy from 2006 – 2008<br />

<strong>Geosmin</strong><br />

MIB<br />

Maximum 240 45<br />

4/15/2006 6/13/2006<br />

90 th Percentile 37 8<br />

95 th Percentile 55 11


Raw Water Quality (2009)<br />

‣ Turbidity<br />

‣ Raw TOC<br />

‣ Filtered TOC<br />

830 NTU Max. 14 NTU Avg.<br />

8.0 mg/L Max. 3.6 mg/L Avg.<br />

2.8 mg/L Max. 2.0 mg/L Avg.


<strong>Geosmin</strong><br />

‣ CAS # 197000-21-1<br />

‣ Molecular <strong>for</strong>mula C 12 H 22 O<br />

‣ Primary Odor: earthy<br />

‣ Secondary Odors: musty, corn, beet like<br />

‣ Odor Threshold 5-10 ng/L<br />

‣ Produced by many blue green algae as<br />

well as actinomycetes (filamentous<br />

bacteria)


MIB<br />

‣ 2-Methyl-2-bornanol<br />

‣ Abbreviations MIB<br />

‣ CAS # 2371-42-8<br />

‣ Properties<br />

‣ Molecular <strong>for</strong>mulaC 11 H 20 O<br />

‣ Odor Threshold 4 ng/L<br />

‣ Musty smell<br />

‣ Some algae, particularly blue-green algae<br />

(cyanobacteria) such as Anabaena, produce MIB<br />

together with other odorous chemicals such as<br />

geosmin.


What is to Be Done<br />

‣ Reduced detention would result in lower<br />

removals with PAC<br />

‣ Evaluated PAC Contact Tank <strong>and</strong> AOP


Impact <strong>of</strong> Reduced Detention Time<br />

‣ Removal <strong>of</strong> up to 90% <strong>Geosmin</strong> & MIB is<br />

desired at maximum plant capacity<br />

‣ Aqua <strong>and</strong> Carbon Supplier per<strong>for</strong>med jar<br />

tests with <strong>Geosmin</strong> to assess :<br />

‣ Potential competitive effects <strong>of</strong> alum on<br />

carbon usage<br />

‣ Optimum type <strong>of</strong> PAC<br />

‣ Optimum dose <strong>and</strong> detention time


PAC Testing Results<br />

‣ Dosing PAC together with alum results in<br />

significantly lower MIB removal (28%<br />

removal Alum/PAC vs 55% PAC then alum)<br />

‣ PAC should be added prior to alum<br />

‣ Optimum/Minimum PAC detention time is 45<br />

minutes<br />

‣ Min./Max. PAC dosage is 30 mg/L - 60 mg/L


Plant Impacts <strong>of</strong> Testing<br />

‣ 45 Minutes <strong>of</strong> Detention Time at 15 MGD<br />

requires at 500,000 gallon pre-carbon contact<br />

tank with mixers<br />

‣ 30 mg/L dosage results in an additional 3,800<br />

ppd <strong>of</strong> Dry Solids<br />

‣ This would double the plant solids production<br />

<strong>and</strong> require additional residuals treatment<br />

equipment<br />

‣ Dispose <strong>of</strong> residuals in Quarry


Neshaminy<br />

Creek<br />

Intake, Screening<br />

& Raw Water Pumping<br />

PAC<br />

PAC Contact Tank<br />

In-Line<br />

Mixers<br />

(Typ. <strong>of</strong> 2)<br />

2-Stage Flocculation<br />

(Typ. <strong>of</strong> 3)<br />

Plate Settler Unit w/ Chain & Flight<br />

Sludge Collectors (Typ. <strong>of</strong> 3)<br />

To Mechanical<br />

Dewatering<br />

Clearwell<br />

Pumps to<br />

Distribution<br />

Washwater Transfer Pit<br />

8 Gravity Filters &<br />

Clearwell<br />

Washwater Drying Lagoons<br />

(Lagoons Nos. 2 & 3)<br />

PAC Contact Tank Option


<strong>Cost</strong>s Associated with PAC Option<br />

‣ Capital <strong>Cost</strong>: $2.2 million<br />

‣ Operating <strong>Cost</strong>: $310,000/yr<br />

‣ Equivalent Uni<strong>for</strong>m Annual <strong>Cost</strong>: $475,000<br />

per year (20 yrs@ 4%)<br />

‣ Note Operating cost is based on a unit<br />

PAC cost <strong>of</strong> $0.95 per pound <strong>and</strong> 90-days<br />

per year at 12 MGD <strong>and</strong> does not include<br />

solids disposal costs.


Is AOP an option


AOP 101<br />

‣ AOPs are based on generation <strong>of</strong> hydroxyl<br />

radical (OH . ) intermediates.<br />

‣ AOPs include the application <strong>of</strong> ozone,<br />

hydrogen peroxide, <strong>and</strong> ultraviolet light,<br />

either individually or in combination O 3 /<strong>UV</strong>;<br />

H 2 O 2 /<strong>UV</strong>; <strong>and</strong> O 3 /H 2 O 2 /<strong>UV</strong>.<br />

‣ Creation <strong>of</strong> OH . by <strong>UV</strong><br />

<strong>UV</strong> + H 2 O 2 2HO .


Is AOP an option<br />

‣ Per<strong>for</strong>med desktop evaluation<br />

‣ Contacted Trojan, Calgon, <strong>and</strong> Wedeco<br />

‣ Evaluated capital, operating <strong>and</strong> lifecycle<br />

costs <strong>and</strong> compared to PAC option<br />

‣ Wedeco reactors are LPHO <strong>and</strong> space<br />

was not available <strong>for</strong> the reactors<br />

‣ Ozone AOPs not feasible due to cost <strong>of</strong><br />

generators <strong>and</strong> size <strong>of</strong> generators


Desktop Evaluation (cont)<br />

‣ If Ozone was being <strong>use</strong>d <strong>for</strong> DBP control<br />

then Ozone-AOP would have merited<br />

additional consideration<br />

‣ <strong>UV</strong>-<strong>Peroxide</strong> using medium pressure<br />

reactors were compact <strong>and</strong> <strong>use</strong>d a<br />

maximum 5 mg/L <strong>of</strong> peroxide


<strong>Cost</strong>s Associated with AOP<br />

‣ Capital <strong>Cost</strong>: $2.5 million<br />

‣ Operating <strong>Cost</strong>: $200,000/yr<br />

‣ Energy<br />

‣ <strong>Peroxide</strong><br />

‣ Lamp Replacement<br />

‣ Chlorine <strong>for</strong> Quenching<br />

‣ Equivalent Uni<strong>for</strong>m Annual <strong>Cost</strong>: $384,000 per<br />

year (20 yrs@ 4%)<br />

‣ Note Operating cost is based on a unit 90 days<br />

per year at 12 MGD <strong>and</strong> does not include<br />

savings <strong>for</strong> solids h<strong>and</strong>ling.


<strong>Cost</strong> Comparison AOP vs PAC<br />

<strong>UV</strong>-H 2 O 2<br />

PAC<br />

Capital $2.5 mil $2.2 mil<br />

O&M $200,000 $310,000<br />

Equivalent<br />

Uni<strong>for</strong>m<br />

Annual <strong>Cost</strong><br />

$384,000 $475,000


Comparison with PAC<br />

‣ No additional sludge h<strong>and</strong>ling is needed whereas<br />

the PAC process will generate approx 1.5 tons<br />

per day <strong>of</strong> dry solids (doubles)<br />

‣ Ability to provide 1 log <strong>and</strong> higher removal <strong>of</strong> MIB<br />

<strong>and</strong> <strong>Geosmin</strong><br />

‣ Ability to achieve additional microbial disinfection<br />

‣ Smaller footprint than the PAC option<br />

‣ Produces less than 25% CO 2 compared to<br />

<strong>UV</strong>/<strong>Peroxide</strong><br />

‣ Aqua Selected <strong>UV</strong>-<strong>Peroxide</strong>


Tons <strong>of</strong> C02 Equivalents<br />

A Bit About Carbon Footprint<br />

20 Year Total Carbon Footprint Comparing <strong>UV</strong>oxidation<br />

<strong>and</strong> PAC<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

PAC<br />

Taste <strong>and</strong> Odor Technology<br />

Trojan<strong>UV</strong>SwiftECT


Procurement <strong>of</strong> the <strong>UV</strong> System<br />

‣ Bench Testing Per<strong>for</strong>med by <strong>UV</strong> Suppliers<br />

‣ Bench Testing evaluated <strong>UV</strong><br />

Transmittance (<strong>UV</strong>T) along with<br />

contaminants that have peroxide dem<strong>and</strong><br />

‣ Owner issued a Bid Document to the<br />

vendors <strong>and</strong> selected vendor based on<br />

cost &experience specific <strong>for</strong> <strong>UV</strong> <strong>Peroxide</strong>.<br />

‣ Selected Trojan


Components <strong>of</strong> the <strong>UV</strong>-Hydrogen<br />

<strong>Peroxide</strong> Treatment Facility<br />

‣ <strong>UV</strong> Reactors<br />

‣ Hydrogen <strong>Peroxide</strong> Feed System<br />

‣ Feed pumps<br />

‣ Hydrogen <strong>Peroxide</strong> Tank<br />

‣ <strong>UV</strong>-<strong>Peroxide</strong> Treatment Chamber/Vault<br />

‣ Flow meters<br />

‣ Chlorine Feed


<strong>UV</strong> Reactors<br />

‣ <strong>UV</strong> reactors: 30-inch diameter units,<br />

constructed <strong>of</strong> stainless steel.<br />

‣ Each reactor contains 16 mediumpressure,<br />

high output lamps in quartz<br />

sleeves, mounted horizontally in a crossflow<br />

arrangement inside the reactor.


<strong>UV</strong> Reactors (Continued)<br />

‣ The selected number <strong>of</strong> lamps based on:<br />

‣ flow rate <strong>of</strong> 7.5 MGD per treatment train<br />

‣ 93% <strong>UV</strong> Transmittance (<strong>UV</strong>T) piping<br />

connection geometry<br />

‣ removal <strong>of</strong> 0.7-log <strong>of</strong> both <strong>Geosmin</strong> <strong>and</strong> MIB<br />

at max plant capacity<br />

Up to 1 log removals can be achieved at<br />

approximately 10 MGD


<strong>UV</strong> Reactors (Continued)<br />

‣ The output <strong>of</strong> the system’s high-intensity<br />

lamps can be controlled to compensate<br />

<strong>for</strong> changes in water quality or flow rate<br />

to automatically achieve the target dose.<br />

‣ Each reactor requires 200 kW.


Chemicals<br />

‣ 50% Hydrogen <strong>Peroxide</strong> – stored outside<br />

in double walled HDPE tank<br />

‣ Diaphragm metering pumps<br />

‣ Only 1-2 mg/L <strong>of</strong> peroxide is <strong>use</strong>d in the<br />

reaction<br />

‣ <strong>Peroxide</strong> residual is quenched using<br />

chlorine at 2:1 ratio


Neshaminy<br />

Creek<br />

Intake, Screening<br />

& Raw Water Pumping<br />

In-Line<br />

Mixers<br />

(Typ. <strong>of</strong> 2)<br />

2-Stage Flocculation<br />

(Typ. <strong>of</strong> 3)<br />

Plate Settler Unit w/ Chain & Flight<br />

Sludge Collectors (Typ. <strong>of</strong> 3)<br />

To Mechanical<br />

Dewatering<br />

Clearwell<br />

Pumps to<br />

Distribution<br />

Washwater Transfer Pit<br />

8 Gravity Filters &<br />

Clearwell<br />

Sulfur Dioxide<br />

Chlorine<br />

Washwater Drying Lagoons<br />

(Lagoons Nos. 2 & 3)<br />

Hydrogen<br />

<strong>Peroxide</strong><br />

<strong>UV</strong> Reactors


Neshaminy Site<br />

New Residuals Facility<br />

Sedimentation<br />

Basin<br />

<strong>UV</strong> Facility<br />

Clearwell<br />

Filter Building<br />

Intake


<strong>UV</strong> Process Layout<br />

Existing Filter Discharge to Clearwell<br />

NC<br />

Flowmeter<br />

<strong>UV</strong> Reactor


Construction<br />

‣ Pre-Purchased <strong>UV</strong>-<strong>Peroxide</strong> System Fall 2009<br />

‣ GC Awarded Installation Contract Jan 2010<br />

‣ <strong>UV</strong> Equipment Delivered Spring 2010<br />

‣ Construction Complete August 2010<br />

‣ Startup August/Sept 2010


<strong>UV</strong> Reactor Chamber


Chemical Feed


Startup<br />

‣ <strong>UV</strong> Supplier Install Lamps <strong>and</strong> Wipers – 1 week<br />

‣ <strong>UV</strong> System I&C startup<br />

‣ Calibrate Chlorination System without peroxide<br />

due to new piping layout<br />

‣ Calibrate Sulfur Dioxide System without<br />

peroxide<br />

‣ <strong>UV</strong>-<strong>Peroxide</strong> Startup (depends on background<br />

<strong>Geosmin</strong> <strong>and</strong> MIB <strong>and</strong> site specific water quality


<strong>UV</strong>-<strong>Peroxide</strong> Startup<br />

‣ <strong>Geosmin</strong> @ startup 10-15 ng/L<br />

‣ <strong>UV</strong>T 93% to 95%<br />

‣ Trials with low peroxide dose to quench<br />

chlorine residual <strong>and</strong> establish<br />

rechlorination dose <strong>and</strong> response time<br />

‣ Operated only one reactor<br />

‣ Re-optimize when <strong>Geosmin</strong> levels<br />

increase


Summary<br />

‣ AOPs gaining in popularity <strong>for</strong> drinking water<br />

applications;<br />

‣ PAC especially lignite based provide greater<br />

<strong>Geosmin</strong> removal efficiencies if added PRIOR<br />

to coagulant addition;<br />

‣ AOPs can be cost effective:<br />

‣ <strong>for</strong> T&O especially if a component <strong>of</strong> the AOP<br />

such as O 3 is being <strong>use</strong>d <strong>for</strong> DBP control;<br />

‣ <strong>UV</strong> is also being <strong>use</strong>d <strong>for</strong> disinfection;<br />

‣ when considering costs <strong>of</strong> solids h<strong>and</strong>ling.


Summary<br />

‣ The Neshaminy <strong>UV</strong>/<strong>Peroxide</strong> System:<br />

‣ Provides superior T&O removal compared to PAC;<br />

‣ Provides the operational flexibility to provide<br />

additional disinfection capabilities which may be<br />

required to adjust to changing raw water quality;<br />

‣ Generates 50% less solids compared to PAC<br />

thereby saving labor & disposal costs; <strong>and</strong><br />

‣ Produces less than 25% CO 2 compared to<br />

<strong>UV</strong>/<strong>Peroxide</strong>


Acknowledgements<br />

‣ Ed Fortner – Water Quality Manager<br />

‣ Curt Steffy – Manager <strong>of</strong> Production<br />

‣ Tom Walton – Plant Superintendent<br />

‣ Dave Hughes – Manager <strong>of</strong> Construction<br />

‣ Terry Keep – Trojan Technologies<br />

‣ Mike Polito - HMM Project Engineer


Questions<br />

Contact In<strong>for</strong>mation<br />

John Civardi<br />

973.912.2418<br />

John.Civardi@hatchmott.com


<strong>UV</strong>-OXIDATION – OPERATIONAL PHILOSOPHY<br />

‣ More <strong>UV</strong> is required <strong>for</strong> T&O control than <strong>for</strong> disinfection<br />

‣ For T&O events, more <strong>UV</strong> lamps are turned on <strong>and</strong> H 2 O 2 is injected<br />

upstream <strong>of</strong> the <strong>UV</strong> chamber<br />

‣ T&O events typically last <strong>for</strong> only a limited time – remainder <strong>of</strong> year<br />

can be in disinfection mode or turned <strong>of</strong>f.<br />

‣ <strong>UV</strong> system located post-filtration increases efficiency due to improved<br />

<strong>UV</strong> transmittance<br />

‣ Treatment occurs nearly instantaneously inside the reactor<br />

H 2 O 2<br />

Added


Application <strong>of</strong> <strong>UV</strong>-<strong>Peroxide</strong> @<br />

Neshaminy<br />

‣ <strong>UV</strong> System installed post-filtration <strong>and</strong> be<strong>for</strong>e<br />

clearwells.<br />

‣ Consists <strong>of</strong> dosing H2O2 followed by the application<br />

<strong>of</strong> <strong>UV</strong> light.<br />

‣ <strong>UV</strong> in conjunction with hydrogen peroxide will<br />

provide up to 1-log <strong>and</strong> higher removal <strong>of</strong> taste <strong>and</strong><br />

odor causing compounds without producing<br />

residuals or other byproducts<br />

‣ <strong>UV</strong>-peroxide <strong>for</strong> T&O requires approx. 4 times the<br />

<strong>UV</strong> dose required <strong>for</strong> disinfection


Application <strong>of</strong> <strong>UV</strong>-<strong>Peroxide</strong><br />

‣ <strong>UV</strong> systems can lower the dose simply by<br />

turning lamps on or <strong>of</strong>f or by reducing the<br />

power per lamp.<br />

‣ Where <strong>UV</strong> is being implemented <strong>for</strong><br />

disinfection, it may be cost effective to size<br />

the reactors <strong>for</strong> the higher dose required<br />

<strong>for</strong> taste <strong>and</strong> odor <strong>and</strong> during normal<br />

operation operate the <strong>UV</strong> reactor at the<br />

lower dose needed only <strong>for</strong> disinfection.


Bench Testing <strong>of</strong> Filtered Water<br />

‣ <strong>UV</strong>T normally 93%<br />

‣ Aqua continues to monitor<br />

‣ Manufacturers optimized <strong>UV</strong> <strong>and</strong> peroxide<br />

dose


Commissioning Schematic<br />

4” COOLING WATER INLET<br />

C1<br />

FILTER<br />

EFFLUENT<br />

WET WELL<br />

Cl 2<br />

H 2 O 2<br />

30”<br />

HV-9011<br />

30”<br />

HV-9012<br />

48”<br />

FV-9003<br />

S<br />

2”<br />

S<br />

FV-9004<br />

2”<br />

S1<br />

OPTI-VIEW<br />

<strong>UV</strong><br />

REACTOR<br />

NO. 1<br />

<strong>UV</strong><br />

REACTOR<br />

NO. 2<br />

FE-9001<br />

MAG<br />

S<br />

FV-9005<br />

2”<br />

MAG<br />

FE-9002<br />

S<br />

FV-9006<br />

2”<br />

30”<br />

HV-9013<br />

30”<br />

HV-9014<br />

4”<br />

4” COOLING<br />

WATER OUTLET<br />

C2<br />

48”<br />

Cl 2<br />

SO 2<br />

FINISHED<br />

WATER<br />

CLEARWELL<br />

HV-9010<br />

S2<br />

TO Cl 2 ANALYZER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!