lesage_particle_filt.. - Sites personnels de TELECOM ParisTech

lesage_particle_filt.. - Sites personnels de TELECOM ParisTech lesage_particle_filt.. - Sites personnels de TELECOM ParisTech

telecom.paristech.fr
from telecom.paristech.fr More from this publisher

Particle Filters<br />

(Sequential Monte-Carlo Methods)<br />

Medical Imaging Team Seminar<br />

David Lesage<br />

05/03/07


Outline<br />

Introduction to Bayesian Filtering / Tracking<br />

Sequential Monte-Carlo Methods (Particle Filters)<br />

Problems and Extensions<br />

Applications and Illustrations<br />

2


Bayesian Filtering / Tracking<br />

Tracking of a dynamic process<br />

X t = {x 0 , x 1 , ..., x t }<br />

state vector<br />

x t<br />

Observation sequence<br />

Y t = {y 1 , y 2 , ..., y t }<br />

Dynamic System<br />

{<br />

Xt = F t (X t−1 , V t )<br />

Y t = H t (X t , W t )<br />

with<br />

V t , W t<br />

process and observation noises<br />

3


Bayesian Filtering / Tracking<br />

Hid<strong>de</strong>n Markov Mo<strong>de</strong>l (HMM)<br />

1st or<strong>de</strong>r<br />

p(x t |x 0:t−1 ) = p(x t |x t−1 )<br />

Observations i.i.d. given the state<br />

p(y t |x t , A) = p(y t |x t )<br />

Notation<br />

p(X t ) = p(x 0:t−1 )<br />

Observed<br />

y t−2 y t−1 y t<br />

p(y t |x t )<br />

Unobserved<br />

x t−2<br />

x t−1<br />

x t<br />

p(x t |x t−1 )<br />

4


Bayesian Filtering / Tracking<br />

Filtering = sequentially estimating the states<br />

w.r.t. a set of observations<br />

Y t<br />

X t<br />

of a system<br />

Posterior<br />

p(X t |Y t )<br />

Filtering (marginal) distribution<br />

Transition/dynamics <strong>de</strong>nsity of the process prior<br />

Observation likelihood<br />

p(y t |x t )<br />

p(x t |Y t )<br />

p(x t |x t−1 )<br />

Observed<br />

y t−2 y t−1 y t<br />

p(y t |x t )<br />

Unobserved<br />

x t−2<br />

x t−1<br />

x t<br />

p(x t |x t−1 )<br />

5


Bayesian Filtering / Tracking<br />

Recursive Estimation<br />

p(X t |Y t ) = p(X t−1 |Y t−1 ) p(y t|x t )p(x t |x t−1 )<br />

p(y t |Y t−1 )<br />

For the marginal distribution<br />

prediction<br />

p(x t |Y t−1 ) =<br />

∫<br />

likelihood<br />

transition <strong>de</strong>nsity<br />

p(x t |x t−1 )p(x t−1 |Y t−1 )dx t−1<br />

update<br />

p(x t |Y t ) = p(y t|x t )p(x t |Y t−1 )<br />

p(y t |Y t−1 )<br />

Simple but conceptual solution !<br />

6


Bayesian Filtering / Tracking<br />

Different integrals intractable in the general case<br />

(normalizing constants, some marginals of the posterior...<br />

Exceptions: optimal <strong>filt</strong>ers<br />

Kalman <strong>filt</strong>er<br />

(if F and H linear, posterior and noises Gaussian)<br />

{<br />

Xt = F t (X t−1 , V t )<br />

Y t = H t (X t , W t )<br />

Grid-based methods<br />

(for finite discrete state spaces)<br />

Strong limitations...<br />

7


Bayesian Filtering / Tracking<br />

“General” case<br />

F and H non linear<br />

{<br />

Xt = F t (X t−1 , V t )<br />

Y t = H t (X t , W t )<br />

No assumption on the noises and the state space<br />

Approximations<br />

Exten<strong>de</strong>d Kalman <strong>filt</strong>er (local linearization)<br />

Unscented Kalman <strong>filt</strong>er<br />

Approximate grid-based Methods<br />

Sequential Monte-Carlo Methods<br />

8


Sequential Monte-Carlo Methods<br />

Perfect Monte-Carlo Simulation<br />

i.i.d. samples (“<strong>particle</strong>s”)<br />

p(X t |Y t )<br />

{x (i)<br />

from<br />

0:t ; i = 1 : n} p(X t |Y t )<br />

X t<br />

discrete approximation<br />

p n (dx 0:t |Y t ) = 1 n<br />

n∑<br />

i=1<br />

δ x<br />

(i)<br />

0:t<br />

(dx 0:t ) −→ p(X t |Y t )<br />

n → ∞<br />

convergence a.s. and usually in distribution<br />

convergence rate in<strong>de</strong>pen<strong>de</strong>nt of the dimensionality !<br />

9


Sequential Monte-Carlo Methods<br />

Problem: we cannot sample from the true posterior<br />

p(X t |Y t )<br />

Sequential Importance sampling (SIS)<br />

sample from an importance/proposal distribution<br />

substitute in the recursive equations...<br />

q(X t |Y t )<br />

importance weights<br />

<strong>particle</strong> approximation<br />

weight update<br />

w(X t ) = p(X t|Y t )<br />

q(X t |Y t )<br />

n∑<br />

p n (dx 0:t |Y t ) =<br />

w (i)<br />

t<br />

∝ w (i)<br />

t−1<br />

i=1<br />

p(y t |x (i)<br />

t<br />

w (i)<br />

t δ (i) x<br />

(dx 0:t )<br />

0:t<br />

)p(x (i)<br />

t |x (i)<br />

t−1 )<br />

q(x (i)<br />

t |x (i)<br />

0:t−1 , Y t)<br />

10


Sequential Monte-Carlo Methods<br />

Fundamental properties<br />

handle non-linear Bayesian tracking problems<br />

non-parametric ()<br />

theoretically able to track any (multi-modal...) distribution<br />

map intractable integrals to sums of weighted <strong>particle</strong>s<br />

simple, recursive (efficient) and generic solution<br />

representation of the complete posterior distribution !<br />

p(X t |Y t )<br />

BUT...<br />

X t<br />

11


Problems and Extensions<br />

Number of <strong>particle</strong>s: <strong>de</strong>pends on the application<br />

adaptation w.r.t. the complexity of the distribution:<br />

KLD-sampling [Fox 01]<br />

12


Problems and Extensions<br />

Choice of the likelihood<br />

evaluated on the data<br />

p(y t |x t )<br />

need for smooth likelihood landscapes<br />

Choice of the transition mo<strong>de</strong>l<br />

<strong>de</strong>pends on the application<br />

classical “<strong>de</strong>fault” choice: Random Walk<br />

p(x t |x t−1 )<br />

13


Problems and Extensions<br />

Choice of the importance distribution<br />

critical <strong>de</strong>sign issue<br />

q(x t |X t−1 , Y t )<br />

classical choice:<br />

w (i)<br />

t<br />

q(x t |X t−1 , Y t ) = p(x t |x t−1 )<br />

∝ w (i)<br />

t−1<br />

p(y t |x (i)<br />

t<br />

)p(x (i)<br />

t |x (i)<br />

t−1 )<br />

q(x (i)<br />

t |x (i)<br />

0:t−1 , Y t)<br />

Bootstrap [Gordon 93], Con<strong>de</strong>nsation [Isard 98]...<br />

Simple, but does not integrate last observations<br />

14


Problems and Extensions<br />

Multiple proposals in the literature<br />

Anyways...<br />

the variance of the weights increases over time ! [Kong 94]<br />

Degeneracy Problem<br />

15


Problems and Extensions<br />

1st strategy: “good” importance functions<br />

“optimal” functions in constrained cases [Zaritskii 75]<br />

“good” generic solutions<br />

focus on heavy-tailed importance functions<br />

Auxiliary Particle Filter [Pitt 99]<br />

Unscented Particle Filter [van Der Merwe 00]<br />

16


Problems and Extensions<br />

2nd strategy: Selection / Resampling<br />

first introduced in the Bootstrap algorithm [Gordon 93]<br />

i<strong>de</strong>a: discard low weight samples, multiply high ones<br />

numerous resampling schemes in the literature<br />

most popular one: Sequential Importance Resampling (SIR)<br />

17


Problems and Extensions<br />

Sequential Importance Resampling (SIR)<br />

resample <strong>particle</strong>s w.r.t. their weights<br />

T<br />

evaluation (update)<br />

resampling<br />

prediction (transition)<br />

resampling not done<br />

at each step<br />

T+1<br />

18


Problems and Extensions<br />

Animation (sequential importance resampling)<br />

19


Problems and Extensions<br />

SIR does not solve everything...<br />

Problems: artificial noise and loss of diversity<br />

In practice, cannot track multi-modal distributions...<br />

Main issue: discrete approximation<br />

20


Problems and Extensions<br />

“Solutions” to the loss of diversity: not so discrete <strong>particle</strong>s<br />

Unscented <strong>particle</strong> <strong>filt</strong>er [van Der Merwe 00]<br />

Regularized <strong>particle</strong> <strong>filt</strong>er [Musso 01]<br />

Gaussian <strong>particle</strong> <strong>filt</strong>er [Kotecha 03]<br />

21


Problems and Extensions<br />

Endless extensions and combinations<br />

Rao-Blackwellisation<br />

Markov chain moves (MCMC)<br />

Markov (reversible) mo<strong>de</strong>l jumps<br />

...<br />

Links with other fields<br />

population-based optimization: genetic algorithms,<br />

<strong>particle</strong> swarms....<br />

Extensions to multi-target tracking<br />

problems of (temp.) object disappearance and<br />

appearance, collisions...<br />

22


Applications and Illustrations<br />

Generic tool: endless combinations with existing<br />

techniques for parameter optimization<br />

Mo<strong>de</strong>l selection for N.N. [Freitas 99]<br />

...<br />

Illustrations of “direct” applications<br />

23


Applications and Illustrations<br />

Finance (volatility...)<br />

24


Applications and Illustrations<br />

Vi<strong>de</strong>o tracking<br />

[Widynksi]<br />

25


Applications and Illustrations<br />

Vi<strong>de</strong>o tracking [Rensselear P.I., NY]<br />

26


Applications and Illustrations<br />

Vi<strong>de</strong>o tracking [Isard, Blake]<br />

27


Applications and Illustrations<br />

Vi<strong>de</strong>o tracking [Isard, Blake]<br />

28


Applications and Illustrations<br />

Vi<strong>de</strong>o tracking [Isard, Blake]<br />

29


Applications and Illustrations<br />

Vi<strong>de</strong>o + audio tracking (fusion) [IDIAP, MS Cambridge]<br />

30


Applications and Illustrations<br />

Face tracking and recognition [Mitsubishi Research]<br />

31


Applications and Illustrations<br />

Micro-tubule tracking [Smal, Niessen, Meijering 06]<br />

3 3<br />

6<br />

2µm<br />

2µm<br />

tracking microusing<br />

our teche-lapse<br />

studies).<br />

ithm to capture<br />

ct object disapof<br />

the algorithm<br />

X Y<br />

T<br />

Fig. 2. Visualization of a 2D+T fluorescence microscopy image<br />

sequence showing microtubules (bright, elongated spots) and the re-<br />

32


Applications and Illustrations<br />

Robotics [Fox, Washington]<br />

33


Applications and Illustrations<br />

Robotics [Fox, Washington]<br />

34


Applications and Illustrations<br />

Robotics [Fox, Washington]<br />

35


Applications and Illustrations<br />

“Geometric” tracking [Florin]<br />

Key i<strong>de</strong>a: time as a spatial dimension<br />

Application to coronary tracking<br />

36


Applications and Illustrations<br />

“Geometric” tracking [Florin]<br />

Dynamic stochastic shape mo<strong>de</strong>ls<br />

learn the spatial dynamics of a shape (2D slices to 3D)<br />

robustness to outlier and missing info (sparse info mo<strong>de</strong>ls)<br />

application to liver segmentation<br />

Phd Defense<br />

Tomorrow !!<br />

37


The Particle Family<br />

Oxford<br />

A. Blake (MS Cambridge), M. Isard (MS US), M. Pitt, N. Shephard<br />

Cambridge<br />

A. Doucet (British Columbia), N. <strong>de</strong> Freitas (B.C.), C. Andrieu (Bristol), N. Gordon<br />

Washington<br />

D. Fox<br />

France<br />

P. Del Moral (Sophia)<br />

O. Cappe, E. Moulines (ENST)<br />

38


Conclusion<br />

Simple, generic, efficient (), non-parametric ()<br />

numerous applications<br />

numerous frameworks<br />

numerous extensions<br />

Fundamental difficulties<br />

discrete approximation...<br />

Practical difficulties<br />

computational load (problem dimension and nb <strong>particle</strong>s)<br />

<strong>de</strong>sign issues !<br />

39


Questions <br />

Thank you for your attention<br />

40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!