Handbook of Energy Storage for Transmission or ... - W2agz.com

Handbook of Energy Storage for Transmission or ... - W2agz.com Handbook of Energy Storage for Transmission or ... - W2agz.com

28.01.2015 Views

EPRI Proprietary Licensed Material Cost Assumptions 50 Cost Analysis 51 Cost and Benefit Comparison 51 References 53 Bibliography 53 Glossary 54 Appendix – Electrochemical Capacitor Technology 56 Traditional Capacitor Types 56 Ideal Capacitor and ESR 57 Deviations from Ideal Behavior 58 Two-Terminal Response 59 Symmetric and Asymmetrical Electrodes 61 Distribution of Cell Voltages 64 Cell Life Predicition 67 Electrochemical Capacitors iv

EPRI Proprietary Licensed Material LIST OF FIGURES Figure 1. Construction of a flooded electrochemical capacitor with a double-layer........ 10 Figure 2 Energy and power relationships for several large electrochemical capacitors (i.e., Ragone plots) ............................................................................................................ 15 Figure 3 Pulsed Ragone plot for several large electrochemical capacitors ..................... 16 Figure 4 ECOND capacitor 60F, 16V (six inch ruler also shown)................................... 26 Figure 5 Elit capacitor 0.8 F, 310 V, 19 kg (six inch ruler also shown)........................... 27 Figure 6 EPCOS family of EC capacitors and modules from 5000F at 2.5V to 150F at 42 V................................................................................................................................ 27 Figure 7 ESMA 10 cell module 1000F @ 14.5V (six inch ruler also shown)................. 28 Figure 8 Maxwell Capacitor 2700F, 2.5 V ....................................................................... 29 Figure 9 Samples of NEC Tokin products........................................................................ 30 Figure 10 NESS CAP 5000 F, 2.7 V (six inch ruler also shown)..................................... 30 Figure 11 ECaSS commercial capacitors, from left, Nissan Diesel (346Vdc, 35F, 6.3Wh/kg), Shizuki Electric “Faradcap” (FML-2A, 54V, 75F, 30Wh), Power Systems (HO2A, 54V, 65F, 6.5Wh/kg).................................................................... 31 Figure 12 Panasonic 2000 F, 2.3 V (six-inch ruler also shown)....................................... 32 Figure 13 Saft 3200 F, 2.5 V (six-inch ruler also shown) ................................................ 32 Figure 14 Hypothetical Ragone plots for battery and electrochemical capacitor............. 36 Figure 15 Comparison of physical packages of 12-V, 83A-hour, lead-acid cranking type battery (Delco 1150) and 42-V, 220 kJ, pulse type electrochemical capacitor (ESMA 30EC402) .................................................................................................................. 37 Figure 16 Comparison of Capacitor and Battery discharge and charge characteristics ... 37 Figure 17 Specific power in watts per kilogram versus discharge time to end voltage in seconds...................................................................................................................... 39 Figure 18 Specific energy in kiloJoules per kilogram versus discharge time to end voltage in seconds.................................................................................................................. 39 Figure 19 Loss of capacitor VAR output as a function of line voltage ............................ 41 Figure 20 Damping of Post Fault Oscillation with and without Energy Storage ............. 42 Figure 21 Voltage Performance Parameters from WSCC................................................ 43 Figure 22 Impacts of Induction Motors on System Oscillation [4] .................................. 43 Figure 23 Concept of Electrochemical capacitor-Based Mini-FACTS controllers Coupled to Utility Grid............................................................................................................ 44 Figure 24 Typical Interruption and Sag Rates as a Function of Voltage Magnitude ....... 46 Figure 25 Generic Circuit Configuration for a Substation Bridging Power System ........ 46 Figure 26 Capacitor System, ~2MJ, 133kW for 15-seconds, energy delivered from dc to dc converters at 600 Vdc, from 9 42Vdc, 220 F Modules operating from 42 to 21 Vdc............................................................................................................................ 47 Figure 27 Generic Circuit Configuration for a Substation Battery Support System ........ 50 Figure 28 Magnitude of the impedance as a function of frequency for a series-RLC circuit. ....................................................................................................................... 58 Figure 29 Energy dissipated as a function of power for series RC circuit versus a typical electrochemical capacitor.......................................................................................... 59 Figure 30 Simple equivalent circuit model showing series resistance and leakage current terms.......................................................................................................................... 60 Figure 31 Equivalent circuit model for an electrochemical capacitor. ............................. 60 Electrochemical Capacitors v

EPRI Proprietary Licensed Material<br />

LIST OF FIGURES<br />

Figure 1. Construction <strong>of</strong> a flooded electrochemical capacit<strong>or</strong> with a double-layer........ 10<br />

Figure 2 <strong>Energy</strong> and power relationships <strong>f<strong>or</strong></strong> several large electrochemical capacit<strong>or</strong>s (i.e.,<br />

Ragone plots) ............................................................................................................ 15<br />

Figure 3 Pulsed Ragone plot <strong>f<strong>or</strong></strong> several large electrochemical capacit<strong>or</strong>s ..................... 16<br />

Figure 4 ECOND capacit<strong>or</strong> 60F, 16V (six inch ruler also shown)................................... 26<br />

Figure 5 Elit capacit<strong>or</strong> 0.8 F, 310 V, 19 kg (six inch ruler also shown)........................... 27<br />

Figure 6 EPCOS family <strong>of</strong> EC capacit<strong>or</strong>s and modules from 5000F at 2.5V to 150F at 42<br />

V................................................................................................................................ 27<br />

Figure 7 ESMA 10 cell module 1000F @ 14.5V (six inch ruler also shown)................. 28<br />

Figure 8 Maxwell Capacit<strong>or</strong> 2700F, 2.5 V ....................................................................... 29<br />

Figure 9 Samples <strong>of</strong> NEC Tokin products........................................................................ 30<br />

Figure 10 NESS CAP 5000 F, 2.7 V (six inch ruler also shown)..................................... 30<br />

Figure 11 ECaSS <strong>com</strong>mercial capacit<strong>or</strong>s, from left, Nissan Diesel (346Vdc, 35F,<br />

6.3Wh/kg), Shizuki Electric “Faradcap” (FML-2A, 54V, 75F, 30Wh), Power<br />

Systems (HO2A, 54V, 65F, 6.5Wh/kg).................................................................... 31<br />

Figure 12 Panasonic 2000 F, 2.3 V (six-inch ruler also shown)....................................... 32<br />

Figure 13 Saft 3200 F, 2.5 V (six-inch ruler also shown) ................................................ 32<br />

Figure 14 Hypothetical Ragone plots <strong>f<strong>or</strong></strong> battery and electrochemical capacit<strong>or</strong>............. 36<br />

Figure 15 Comparison <strong>of</strong> physical packages <strong>of</strong> 12-V, 83A-hour, lead-acid cranking type<br />

battery (Delco 1150) and 42-V, 220 kJ, pulse type electrochemical capacit<strong>or</strong> (ESMA<br />

30EC402) .................................................................................................................. 37<br />

Figure 16 Comparison <strong>of</strong> Capacit<strong>or</strong> and Battery discharge and charge characteristics ... 37<br />

Figure 17 Specific power in watts per kilogram versus discharge time to end voltage in<br />

seconds...................................................................................................................... 39<br />

Figure 18 Specific energy in kiloJoules per kilogram versus discharge time to end voltage<br />

in seconds.................................................................................................................. 39<br />

Figure 19 Loss <strong>of</strong> capacit<strong>or</strong> VAR output as a function <strong>of</strong> line voltage ............................ 41<br />

Figure 20 Damping <strong>of</strong> Post Fault Oscillation with and without <strong>Energy</strong> <strong>St<strong>or</strong>age</strong> ............. 42<br />

Figure 21 Voltage Per<strong>f<strong>or</strong></strong>mance Parameters from WSCC................................................ 43<br />

Figure 22 Impacts <strong>of</strong> Induction Mot<strong>or</strong>s on System Oscillation [4] .................................. 43<br />

Figure 23 Concept <strong>of</strong> Electrochemical capacit<strong>or</strong>-Based Mini-FACTS controllers Coupled<br />

to Utility Grid............................................................................................................ 44<br />

Figure 24 Typical Interruption and Sag Rates as a Function <strong>of</strong> Voltage Magnitude ....... 46<br />

Figure 25 Generic Circuit Configuration <strong>f<strong>or</strong></strong> a Substation Bridging Power System ........ 46<br />

Figure 26 Capacit<strong>or</strong> System, ~2MJ, 133kW <strong>f<strong>or</strong></strong> 15-seconds, energy delivered from dc to<br />

dc converters at 600 Vdc, from 9 42Vdc, 220 F Modules operating from 42 to 21<br />

Vdc............................................................................................................................ 47<br />

Figure 27 Generic Circuit Configuration <strong>f<strong>or</strong></strong> a Substation Battery Supp<strong>or</strong>t System ........ 50<br />

Figure 28 Magnitude <strong>of</strong> the impedance as a function <strong>of</strong> frequency <strong>f<strong>or</strong></strong> a series-RLC<br />

circuit. ....................................................................................................................... 58<br />

Figure 29 <strong>Energy</strong> dissipated as a function <strong>of</strong> power <strong>f<strong>or</strong></strong> series RC circuit versus a typical<br />

electrochemical capacit<strong>or</strong>.......................................................................................... 59<br />

Figure 30 Simple equivalent circuit model showing series resistance and leakage current<br />

terms.......................................................................................................................... 60<br />

Figure 31 Equivalent circuit model <strong>f<strong>or</strong></strong> an electrochemical capacit<strong>or</strong>. ............................. 60<br />

Electrochemical Capacit<strong>or</strong>s<br />

v

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!