27.01.2015 Views

Mitigating flow boiling instabilities in microchannels — research needs

Mitigating flow boiling instabilities in microchannels — research needs

Mitigating flow boiling instabilities in microchannels — research needs

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

NSF/ONR Workshop on Nano/Microscale Thermal Transport,<br />

March 4 th , 2012, GA Tech Global Learn<strong>in</strong>g Center, Atlanta, GA<br />

<strong>Mitigat<strong>in</strong>g</strong> <strong>flow</strong> <strong>boil<strong>in</strong>g</strong> <strong><strong>in</strong>stabilities</strong> <strong>in</strong><br />

<strong>microchannels</strong> — <strong>research</strong> <strong>needs</strong><br />

Yoav Peles<br />

Professor<br />

Rensselaer Polytechnic Institute, Troy, NY


Flow <strong>boil<strong>in</strong>g</strong> <strong><strong>in</strong>stabilities</strong><br />

• Flow <strong>boil<strong>in</strong>g</strong> <strong><strong>in</strong>stabilities</strong> are very notable at<br />

the micro scale<br />

• Flow <strong><strong>in</strong>stabilities</strong><br />

– Reduce the critical heat flux<br />

– Introduce transient surface temperature surges<br />

– Modify the average heat transfer coefficient<br />

– Introduce vibration<br />

– Compromise structural <strong>in</strong>tegrity<br />

• Several <strong>in</strong>stability modes are prevalent <strong>in</strong><br />

<strong>microchannels</strong><br />

Flow


Flow <strong>in</strong>stability modes<br />

• Rapid Bubble Growth<br />

• Led<strong>in</strong>egg (Excursive)<br />

• Parallel channel<br />

• Upstream Compressible Volume<br />

• Critical Heat Flux (CHF)


Rapid bubble growth<br />

Flow<br />

• Mechanism A- liquid superheat<br />

• Mechanism B- bubble dynamics


Mechanism A — Liquid Superheat<br />

Silicon sidewalls<br />

Deep reactive-ion etched structures<br />

exhibit a characteristic scalloped<br />

appearance with average roughness<br />

∼0.3 mm


Mechanism B — bubble dynamics<br />

r<br />

R<br />

Bubble<br />

Hickl<strong>in</strong>g and Plesset (1964)<br />

P ∞<br />

Inf<strong>in</strong>ite liquid<br />

Peak pressure:<br />

p<br />

p<br />

<br />

100R p m<br />

r


Led<strong>in</strong>egg (excursive) <strong>in</strong>stability<br />

G= constant<br />

Dp= constant<br />

T. Harirchian and Dr. S. V. Garimella


Inlet restrictors<br />

DP<br />

Inlet orifice<br />

Inlet orifice<br />

Channel demand curve<br />

Koşar, A., Kuo C.-J., and Peles, Y., “Suppression of <strong>boil<strong>in</strong>g</strong> <strong>flow</strong> oscillations <strong>in</strong> parallel <strong>microchannels</strong> with <strong>in</strong>let<br />

restrictors,” Journal of Heat Transfer, 128(3), pp. 251-260, 2006.<br />

G


Parallel channel<br />

Inlet plenum<br />

Exit plenum<br />

Pump<br />

Flow <strong>in</strong><br />

Flow out<br />

- In multiple channels arrangement, an <strong>in</strong>dividual channel will be subjected to<br />

constant pressure drop boundary conditions even with a constant displacement<br />

pump<br />

- Dynamic feedback <strong>in</strong>teraction between channels<br />

- Thermally connected<br />

- Thermally <strong>in</strong>sulated


q̎ s (W/m 2 )<br />

Critical heat flux (CHF) conditions<br />

q̎ max (also known as CHF condition)<br />

e<br />

g<br />

d<br />

f<br />

c<br />

q̎ m<strong>in</strong> (also known as the Leidenfrost Po<strong>in</strong>t)<br />

c̎<br />

b (also known as ONB)<br />

a<br />

1 5<br />

10 100 1000<br />

DT sat (°C)


Summary and future <strong>research</strong> <strong>needs</strong><br />

• Flow <strong>boil<strong>in</strong>g</strong> <strong><strong>in</strong>stabilities</strong> are qualitatively well understood<br />

at the micro scale. Better quantitative predictive methods<br />

need to be developed.<br />

• Need to develop applied methods to mitigate <strong>flow</strong><br />

<strong>in</strong>stability<br />

– Current methods are not applicable for many systems.<br />

• Advanced mitigation methods<br />

– Closed loop control methods<br />

• Need to engage the control eng<strong>in</strong>eer<strong>in</strong>g community<br />

– Flow control<br />

• Passive (reentrant cavities, better <strong>in</strong>let restrictors – low pressure drop check<br />

valves)<br />

• Active

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!