14.11.2012 Views

Phosphate cathodes and lithium storage batteries - Phostech ...

Phosphate cathodes and lithium storage batteries - Phostech ...

Phosphate cathodes and lithium storage batteries - Phostech ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Phosphate</strong> <strong>cathodes</strong> <strong>and</strong><br />

energy-<strong>storage</strong> <strong>lithium</strong> <strong>batteries</strong><br />

Michel Gauthier<br />

President <strong>Phostech</strong> Lithium<br />

Inno 09<br />

Montréal, April 23-24, 2009


Presentation plan<br />

• Energy source <strong>and</strong> <strong>storage</strong> by carbon<br />

• Electrochemical energy <strong>storage</strong><br />

• Why a <strong>lithium</strong> battery for transportation ?<br />

• <strong>Phostech</strong>, C-LiFePO4 <strong>and</strong> large Li-<strong>batteries</strong><br />

• <strong>Phostech</strong>’s status & market development<br />

• <strong>Phostech</strong>’s vision of the future


Energy sources <strong>and</strong> C-<strong>storage</strong><br />

The sun is the source of most<br />

energy on earth<br />

Nature uses carbon chemistry<br />

to convert <strong>and</strong> store energy in<br />

complex processes:<br />

6H2O + 6CO2 + γ (CH2O)6 Fatty acids (<strong>storage</strong>)<br />

Fatty acid or (CH2O) 6 ATP <br />

6H2O + 6CO2 + energy<br />

Man gets energy <strong>and</strong> power<br />

from bio or fossil C-<strong>storage</strong> at a<br />

price…:<br />

The Cell, Garl<strong>and</strong>,


Electrochemical <strong>storage</strong> of energy<br />

With Galvani, Volta, Planté, electricity <strong>and</strong> electrochemical<br />

<strong>storage</strong> became available to mankind:<br />

La bioélectrogénèse<br />

Galvani, 1780, Fe-Cu<br />

Volta, 1800<br />

Zn/Cu<br />

Lead-acid battery<br />

Planté, 1859, Pb-PbO2


Energy <strong>storage</strong> <strong>and</strong> transportation<br />

Edison <strong>and</strong> the electric vehicle<br />

No progress from 1913 to ~ 1970<br />

Specific Power (W/kg)<br />

1000<br />

100<br />

10<br />

Specific Power-Energy representation<br />

of vehicle speed <strong>and</strong> range.<br />

30km/h<br />

60<br />

Electric vehicule<br />

120 Km/h<br />

10<br />

100 1000<br />

Specific energy (Wh/kg)


From lead to <strong>lithium</strong> <strong>and</strong> why ?<br />

Free energy of reaction<br />

= <strong>storage</strong> capacity<br />

ΔG = -n F E<br />

Specific energy<br />

(Wh/kg) = n F E / ΣR wt<br />

Specific power<br />

(W/kg) = V I / ΣR wt<br />

Lead Lithium Advantage/inconvenient<br />

207 gr/at. 7 gr/at. +++ Higher specific energy <strong>and</strong> power<br />

Max 2.2V Up to 5.2V +++ High energy <strong>and</strong> power<br />

Large ionic radius Smallest r ion = 0.06nm +++ Favorable to insertion structures<br />

Multivalent ion Monovalent ion +++ Favorable to Li + diffusion<br />

Water electrolyte Aprotic electrolyte --++ Organic solvents/polymers, Li salts<br />

Toxic element Non-toxic element +++ Sustainability <strong>and</strong> environment compatible


Li battery evolution in 50 years !<br />

Primary cells<br />

Li o -MnO 2<br />

Li o -SO 2 , SOCl 2<br />

Organic LE<br />

Li o -MoS 2 rech.<br />

Li o -MnO 2 rech.<br />

Molten salts<br />

LiAl/LiCl-KCl/FeS<br />

Lithium-ion<br />

Lithium metal<br />

Polymer Electrolyte<br />

Li o -polymère-VOx<br />

Li o -polymère-LiFePO 4<br />

Organic LE<br />

LiC 6 -LiCoO 2<br />

LiC 6 -Li(CoMnNi)O 2<br />

LiC 6 -LiFePO 4<br />

Gel LE<br />

LiC6-LiCoO 2<br />

LiC 6 -LiFePO 4<br />

Argo-Tech EV Blue Car<br />

HQ Avestor B0<br />

=>Bathium<br />

1960 1970 1980 1990<br />

2000 2010<br />

LE Rocking-chair<br />

Li 5 Ti 4 O 12 -LiMPO 4<br />

HEV-PHEV-EV<br />

Ionic LE<br />

Li o -LiMPO 4<br />

SLI, HEV<br />

Grid?<br />

-LiMPO 4<br />

?


The challenges of<br />

large <strong>lithium</strong> <strong>batteries</strong>:<br />

Challenges Status of <strong>lithium</strong>-ion <strong>batteries</strong><br />

1 Specific energy (Wh/kg) √ √ 3-4 times the lead acid demonstrated<br />

2 Specific power (W/kg) √√ Sustained, pulse & regen power achieved<br />

3 Cyclability (>> 2000, 100% DOD) √ Demonstrated at cell level<br />

4 Safety (cell <strong>and</strong> battery system) √ Achieved at the cell level<br />

5 Sustainability/environment compatibility √ Non-toxic <strong>and</strong> available elements, recycling?<br />

6 +10 years life (-30 to 60 o C, shocks..) Material thermal, chemical & physical stability?<br />

7<br />

Material & manufacturing costs<br />

($/kWh or $/kW)<br />

Components, design & process optimization need the<br />

benefit of large scale production<br />

The solution: LiFePO 4 ?


LiFePO4, Goodenough strikes again!<br />

Building on Whittingham’s discovery of<br />

the LiTiS2 intercalation electrode, J. B.<br />

Goodenough invented LiCoO 2 layered<br />

oxide (3.7V) that made possible the<br />

first Li-ion battery by Sony<br />

15 years later, he came back with a<br />

one-dimentional diffusion iron-based<br />

cathode LiFePO4 operating at 3.4V<br />

Cobalt based Lithium-ion<br />

-<br />

é<br />

C<br />

LiC6<br />

W e<br />

Li +<br />

é<br />

L iC oO 2<br />

C oO 2<br />

+<br />

++ Stable Li-reversible structure<br />

++ Widely available elements<br />

++ High voltage (3.4V) with Fe !!<br />

++ Covalent P-O bound, no O 2 ↑<br />

++ Two-phase flat voltage<br />

-- Low electronic conductivity<br />

-- Low Li-ion diffusion<br />

Triphylite LiFePO4 Heterosite Fe(Mn)PO4<br />

Synthetic triphylite<br />

<strong>Phostech</strong>, 1000 o C<br />

Iron b ased Lithium-ion<br />

é é<br />

W e<br />

Li +<br />

C LiFePO<br />

4<br />

LiC6<br />

FePO<br />

4


Li +<br />

<strong>Phostech</strong> Lithium’s short history<br />

1997: Hydro-Québec (HQ) obtains an exclusive license on patent from UT<br />

1999: C-LiFePO 4 patented by Université de Montréal (UdM), HQ <strong>and</strong> CNRS<br />

2001: UdM researchers set up <strong>Phostech</strong> after obtaining exclusive licenses to<br />

make/sell C-LiFePO 4 from HQ, UT, UdM <strong>and</strong> CNRS<br />

Süd-Chemie independantly initiates R&D on LiFePO 4 in Germany<br />

2003: Süd-Chemie patents a wet-process for making LiFePO 4<br />

2004: <strong>Phostech</strong> starts manufacturing in Québec on a solid-state process (P1)<br />

Süd-Chemie starts pilot operation on a wet-process (P2) in Germany<br />

Süd-Chemie initiates relationship (MOU) with <strong>Phostech</strong> Lithium<br />

2005: Süd-Chemie initial investment into <strong>Phostech</strong> Lithium<br />

2008: <strong>Phostech</strong> Lithium 100% owned subsidiary of Süd-Chemie


C-LiFePO 4 <strong>and</strong> <strong>Phostech</strong> Lithium<br />

After Goodenough, UdM-HQ solved the<br />

LiFePO4 low electronic conductivity with a<br />

pyrolytic C nano-deposit: C-LiFePO 4<br />

In parallel, UdM, <strong>Phostech</strong>/Süd-Chemie<br />

developed processes to make sub-micron C-<br />

LiFePO 4 particles solving the low D Li +<br />

limitation: the result, high power (up to 7 kW/<br />

kg peaks) <strong>and</strong> regen capability<br />

In 2001 <strong>Phostech</strong> was incorporated to<br />

develop <strong>and</strong> manufacture C-LiFePO 4 under<br />

exclusive licenses from UT/HQ/UdM/CNRS<br />

<strong>Phostech</strong> products P1 <strong>and</strong> P2 are sold<br />

worldwide <strong>and</strong> presently qualified by major<br />

Lithium battery manufacturers<br />

C ≈ 2nm<br />

C-LiFePO4<br />

LiFePO 4<br />

1-2 µ agglomerate


<strong>Phostech</strong>’s products <strong>and</strong> customers<br />

• <strong>Phostech</strong> produces an energy grade<br />

P1 (EV's, e-bike, <strong>storage</strong>,...) at its St-<br />

Bruno plant (600t/y capacity)<br />

• <strong>Phostech</strong> produces a power grade P2<br />

for Power tools <strong>and</strong> HEV applications<br />

at Süd-Chemie in Moosburg,<br />

Germany (150 t/y capacity)<br />

• Most St-Bruno plant sales are<br />

exported to Asia<br />

• Power grade P2 product/process is<br />

presently being qualified by major<br />

battery manufacturers<br />

• Discussions with governmental<br />

authorities concerning a new 2400 t/y<br />

plant in C<strong>and</strong>iac are being actively<br />

pursued


VL25Fe Cell based on LiFePO 4 P2<br />

Cell optimized for<br />

Medium Power/Medium Energy<br />

applications


C-LiFePO 4 cathode & large Li-Ion<br />

• Of all known <strong>cathodes</strong>, LiFePO 4 is<br />

the most stable <strong>and</strong> safest in a<br />

complete battery<br />

• Only LiFePO 4 <strong>and</strong> LiMn 2 O 4 are made<br />

of widely available elements<br />

required for EV <strong>and</strong> energy <strong>storage</strong><br />

needs<br />

• With scale <strong>and</strong> volume, the low<br />

cost synthesis of pure LiFePO 4 is<br />

possible<br />

• LiFePO 4 stability, low voltage <strong>and</strong><br />

abuse cycling tolerance make cell/<br />

battery design easier <strong>and</strong> will help<br />

decrease the overall battery cost<br />

Sources: Rocky Mountain Institute


Large cell cost optimization<br />

To meet PHEV/EV cost requirements all battery elements must be optimized<br />

or redesigned:<br />

Active <strong>and</strong> passive components: cost, cycle <strong>and</strong> calendar life (10-15 years…)<br />

Manufacturing processes: electrodes <strong>and</strong> cell<br />

Battery system design <strong>and</strong> safety<br />

The challenge: the interactive chemistry between all cell elements, eg:<br />

A low-voltage-cathode compatible salt must be anode compatible (SEI?)<br />

Contaminant from cathode might affect the anode performance (eg water ppm vs HF)<br />

Low cost current collector (Al) depends on salt or anode selection Li 4 Ti 5 O 12 vs LiC 6 ...


<strong>Phostech</strong>’s status as C-LiFePO 4 supplier<br />

• Strong IP position<br />

• Unique expertise on different synthesis processes<br />

• International network of suppliers <strong>and</strong> customers<br />

• <strong>Phostech</strong>'s products in qualification by major manufacturers of<br />

Li-ion <strong>batteries</strong>, including extensive Q/C procedure at every level<br />

in the manufacturing chain<br />

• Commitment to R&D, recent UdM/NSERC Chair announcement<br />

• <strong>Phostech</strong> provides a key element of Li-ion future<br />

• <strong>Phostech</strong> is working with US/Canadian cell/battery<br />

manufacturers, OEM users <strong>and</strong> governments to accelerate large<br />

Li-battery manufacturing in North America


<strong>Phostech</strong>’s key-IP summary


Process families to make LiFePO 4<br />

P1<br />

P2<br />

P3<br />

Fe source + Li source + P source


<strong>Phostech</strong>’s status as C-LiFePO 4 supplier<br />

• Strong IP position<br />

• Unique expertise on different synthesis processes<br />

• International network of suppliers <strong>and</strong> customers<br />

• <strong>Phostech</strong>'s products in qualification by major manufacturers of<br />

Li-ion <strong>batteries</strong>, including extensive Q/C procedure at every level<br />

in the manufacturing chain<br />

• Commitment to R&D, recent UdM/NSERC Chair announcement<br />

• <strong>Phostech</strong> provides a key element of Li-ion future<br />

• <strong>Phostech</strong> is working with US/Canadian cell/battery<br />

manufacturers, OEM users <strong>and</strong> governments to accelerate large<br />

Li-battery manufacturing in North America


<strong>Phostech</strong> employee’s vision !!!<br />

We do not speak<br />

about g reenhouse<br />

effect, we work on it!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!