27.01.2015 Views

DISPLACEMENT-BASED SEISMIC DESIGN

DISPLACEMENT-BASED SEISMIC DESIGN

DISPLACEMENT-BASED SEISMIC DESIGN

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ISRAELI STRUCTURAL ENGINEERING CONFERENCE<br />

TEL AVIV, JUNE 2009<br />

<strong>DISPLACEMENT</strong>-<strong>BASED</strong> <strong>SEISMIC</strong><br />

<strong>DESIGN</strong><br />

Nigel Priestley<br />

European School for Advanced Studies in<br />

Reduction of Seismic Risk, Pavia, Italy<br />

1


Review of a 15 year research effort<br />

culminating in the preparation of a design text<br />

book:<br />

<strong>DISPLACEMENT</strong>-<strong>BASED</strong> <strong>SEISMIC</strong><br />

<strong>DESIGN</strong> OF STRUCTURES<br />

Priestley, Calvi and Kowalsky<br />

IUSS Press (May 2007)<br />

Available online (www.iusspress.it)<br />

2


WITHIN A PERFORMANCE-<strong>BASED</strong><br />

ENVIRONMENT:<br />

• WHAT SHOULD BE THE STRUCTURAL<br />

STRENGTH (BASE SHEAR FORCE)<br />

• HOW SHOULD THIS STRENGTH BE<br />

DISTRIBUTED<br />

• HOW CAN <strong>DESIGN</strong> BE ELEVATED<br />

ABOVE ANALYSIS<br />

• WHAT SHOULD BE THE STRENGTH<br />

OF CAPACITY-PROTECTED ACTIONS<br />

3


1. The Need for DDBD<br />

(Problems with Force-based Design)<br />

• Estimating Elastic Stiffness<br />

• Distribution of Required Strength based on Elastic<br />

Stiffness<br />

• Displacement-Equivalence Rules (equal displacement)<br />

• Specified Ductility or Force-Reduction Factors<br />

• Assumption that Increased Strength Reduces<br />

potential for damage<br />

Note: Damage is strain or drift (not strength)<br />

related<br />

4


Concrete Bridge under Longitudinal Seismic Excitation<br />

Spectral Acceleration S A(T)<br />

H A H<br />

H C<br />

B<br />

C<br />

A<br />

B<br />

Structure<br />

Elastic<br />

Ductile<br />

Period T (seconds)<br />

Acceleration Response Spectrum<br />

K<br />

long<br />

Stiffness:<br />

= K + K<br />

A<br />

Period:<br />

T = 2π m /<br />

F<br />

i<br />

B<br />

+<br />

K long<br />

K<br />

C<br />

=<br />

Base shear force:<br />

=<br />

F =<br />

m ⋅<br />

g ⋅ S<br />

R<br />

A ( T )<br />

Pier Shear Force:<br />

F<br />

K<br />

K<br />

i<br />

long<br />

Design Displacement:<br />

2<br />

T<br />

∆<br />

long<br />

= ⋅ S<br />

2 A(<br />

T )<br />

4π<br />

⋅ g<br />

∑<br />

A,<br />

B,<br />

C<br />

5<br />

12EI<br />

H<br />

3


T = 2π m /<br />

K long<br />

Concrete Bridge Under Longitudinal Response<br />

H A H B<br />

H C<br />

C<br />

A<br />

Stiffness:<br />

K<br />

long<br />

B<br />

= K<br />

A<br />

+<br />

K<br />

B<br />

+<br />

K<br />

C<br />

=<br />

∑<br />

A,<br />

B,<br />

C<br />

12EI<br />

H<br />

3<br />

Period:<br />

T = 2π m /<br />

K long<br />

Pier Strength:<br />

F =<br />

i<br />

F<br />

K<br />

K<br />

i<br />

long<br />

What value for EI What force-reduction<br />

factor Is the strength distribution logical<br />

6


STIFFNESS OF CONCRETE ELEMENTS:<br />

Stiffness is assumed to be independent of strength,<br />

and a fixed percentage (often 100% or 50%) of gross<br />

(uncracked) section stiffness<br />

7


Elastic Stiffness<br />

40000<br />

EI=M y /φ y<br />

50000<br />

40000<br />

Nu/f'cAg = 0.4<br />

Nu/f'cAg = 0.3<br />

Nu/f'cAg = 0.2<br />

Nu/f'cAg = 0.1<br />

Moment (kNm)<br />

30000<br />

20000<br />

Nu/f'cAg = 0.4<br />

Nu/f'cAg = 0.3<br />

Nu/f'cAg = 0.2<br />

Nu/f'cAg = 0.1<br />

Nu/f'cAg = 0<br />

Moment (kNm)<br />

30000<br />

20000<br />

Nu/f'cAg = 0<br />

10000<br />

10000<br />

0<br />

0<br />

0 0.002 0.004 0.006<br />

Curvature (1/m)<br />

(a) Reinforcement Ratio = 1%<br />

0 0.002 0.004 0.006<br />

Curvature (1/m)<br />

(b) Reinforcement Ratio = 3%<br />

SELECTED MOMENT-CURVATURE CURVES FOR<br />

CIRCULAR COLUMNS (D=2m,f’ c = 35MPa, f y = 450MPa)<br />

8


Dimensionless Moment (M N<br />

/f'cD 3 )<br />

0.2<br />

0.16<br />

0.12<br />

0.08<br />

0.04<br />

0<br />

ρ l<br />

= 0.04<br />

ρ l<br />

= 0.03<br />

ρ l<br />

= 0.02<br />

ρ l<br />

= 0.01<br />

ρ l = 0.005<br />

Dimensionless Curvature (φ y<br />

D/ε y<br />

)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Ave. +10%<br />

ρ l<br />

= 0.04<br />

Ave. -10%<br />

ρ l<br />

= 0.005<br />

Average φ y<br />

D/ε y<br />

= 2.25<br />

Average φ y<br />

D/ε y<br />

= 2.25<br />

0 0.1 0.2 0.3 0.4<br />

0 0.1 0.2 0.3 0.4<br />

Axial Load Ratio (N u<br />

/f'cA g<br />

)<br />

Axial Load Ratio (N u<br />

/f' c<br />

A g<br />

)<br />

(a) Nominal Moment<br />

(b) Yield Curvature<br />

DIMENSIONLESS NOMINAL MOMENT AND YIELD<br />

CURVATURE FOR CIRCULAR COLUMNS<br />

STRENGTH VARIES; YIELD CURVATURE IS CONSTANT<br />

9


1<br />

0.90<br />

0.8<br />

ρ l<br />

= 0.04<br />

Stiffness Ratio (EI/EI gross<br />

)<br />

0.6<br />

0.4<br />

ρ l<br />

= 0.03<br />

ρ l<br />

= 0.02<br />

ρ l<br />

= 0.01<br />

ρ l<br />

= 0.005<br />

EI eff = M N /φ y<br />

EI eff /EI gross<br />

=M N /φ y EI gross<br />

0.2<br />

0<br />

0.12<br />

0 0.1 0.2 0.3 0.4<br />

Axial Load Ratio (N u<br />

/f' c<br />

A g<br />

)<br />

EFFECTIVE STIFFNESS RATIO FOR<br />

CIRCULAR COLUMNS<br />

10


INTERDEPENDENCY OF STRENGTH AND STIFFNESS<br />

Stiffness EI = M/φ<br />

M<br />

M 1<br />

M<br />

M 1<br />

M 2<br />

M 2<br />

M 3<br />

M 3<br />

φ y3<br />

φ y2<br />

φ y1<br />

φ φ y<br />

φ<br />

(a) Design assumption<br />

(constant stiffness)<br />

(b) Realistic assumption<br />

(constant yield curvature)<br />

INFLUENCE OF STRENGTH ON MOMENT-CURVATURE RESPONSE<br />

11


Bridge Under Longitudinal Response: Elastic Strength<br />

Distribution<br />

Force-Based Design: Column Stiffness<br />

Force-Based Design: Column Moments:<br />

K = C EI<br />

i<br />

M = C V h =<br />

Bi<br />

h<br />

3<br />

1 i.<br />

eff<br />

/<br />

i<br />

C C<br />

EI<br />

h<br />

2<br />

2 i i 1 2 i.<br />

eff<br />

/<br />

i<br />

Short columns need highest long.rebar: stiffness increases: higher moment! 12


BRIDGE WITH UNEQUAL COLUMN HEIGHTS<br />

• Shortest piers are stiffest. Shear is in proportion to 1/h 3 .<br />

Therefore moments (and, approximately reinforcement ratio)<br />

are in proportion to 1/h 2 . Increasing the reinforcement ratio<br />

of the short piers relative to the long piers increases the<br />

relative stiffness of the short piers, attracting still higher<br />

shear in elastic response.<br />

• Allocating high shear to the short column increases its<br />

susceptibility to shear failure.<br />

• Displacement capacity of the short pier is DECREASED by<br />

increasing its reinforcement ratio<br />

• It doesn’t make sense to have a higher reinforcement ratio for<br />

the shorter columns than the longest columns (and in practice,<br />

they would probably have the same reinforcement ratio, for<br />

simplicity of construction)<br />

13


YIELD DRIFTS OF<br />

CONCRETE FRAMES<br />

ELASTIC DEFORMATION<br />

CONTRIBUTIONS TO DRIFT<br />

OF A BEAM/COLUMN<br />

JOINT SUBASSEMBLAGE<br />

Beam flexure and shear deform.<br />

Column flexure and shear deform.<br />

Joint shear deformation<br />

14


CONCRETE FRAME DRIFT EQUATION<br />

θ y = 0.5ε y (l b /h b )<br />

Equation Checked against test data with:<br />

• Column height/beam length aspect ratio (l c /l b ) : 0.4 – 0.86<br />

• Concrete compression strength (f’ c ) : 22.5MPa – 88MPa<br />

• Beam Reinforcement yield strength (f y ) : 276MPa – 611MPa<br />

• Maximum beam reinforcement ratio (A’ s /b w d) : 0.53% – 3.9%<br />

• Column axial load ratio (N u /f’ c A g ) : 0 – 0.483<br />

• Beam aspect ratio (l b /h b ) : 5.4 – 12.6<br />

15


θ y = 0.5ε y (l b /h b )<br />

EXPERIMENTAL DRIFTS OF BEAM/COLUMN<br />

TEST UNITS COMPARED WITH EQUATION<br />

16


DIMENSIONLESS YIELD CURVATURES<br />

AND DRIFTS<br />

• Circular column: φ = 2.25ε<br />

D<br />

y y<br />

/<br />

• Rectangular column: φ<br />

y<br />

= 2.10ε<br />

y<br />

/ hc<br />

• Rectangular cantilever walls: φ<br />

y<br />

= 2.00ε<br />

y<br />

/ lw<br />

• T-Section Beams: φ<br />

y<br />

= 1.70ε<br />

y<br />

/ hb<br />

Concrete Frames:<br />

Steel Frames:<br />

θ = 0. 5ε<br />

y<br />

y<br />

θ = 0. 65ε<br />

y<br />

y<br />

l<br />

h<br />

b<br />

b<br />

l<br />

h<br />

b<br />

b<br />

17


FORCE-REDUCTION FACTORS IN DIFFERENT<br />

COUNTRIES<br />

Structural Type and<br />

Material<br />

US West Coast Japan New**<br />

Zealand<br />

Europe<br />

Concrete Frame 8 1.8-3.3 9 5.85<br />

Conc. Struct. Wall 5 1.8-3.3 7.5 4.4<br />

Steel Frame 8 2.0-4.0 9 6.3<br />

Steel EBF* 8 2.0-4.0 9 6.0<br />

Masonry Walls 3.5 6 3.0<br />

Timber (struct. Wall) 2.0-4.0 6 5.0<br />

Prestressed Wall 1.5 - - -<br />

Dual Wall/Frame 8 1.8-3.3 6 5.85<br />

Bridges 3-4 3.0 6 3.5<br />

* Eccentrically Braced Frame **S P factor of 0.67 incorporated.<br />

18


FRAME DUCTILITY LIMITS<br />

NOTE: CODES LIMIT DRIFT TO 0.02-0.025<br />

Yield Drift:<br />

θ = 0. 5ε<br />

Example: l b = 6m, h b =0.6m, f y = 500MPa<br />

ε y = 500/200,000 = 0.0025;<br />

y<br />

y<br />

l<br />

h<br />

b<br />

b<br />

θ y = 0.5*0.0025*6.0/0.6 = 0.0125<br />

Thus ductility limit is 1.6 to 2.0<br />

Note: using high-strength reinforcement<br />

provides no benefit in reduced steel content!<br />

19


2. DIRECT <strong>DISPLACEMENT</strong> -<br />

<strong>BASED</strong> <strong>SEISMIC</strong> <strong>DESIGN</strong><br />

A RATIONAL <strong>SEISMIC</strong> <strong>DESIGN</strong><br />

APPROACH<br />

20


FORMULATION OF THE DIRECT<br />

<strong>DISPLACEMENT</strong>-<strong>BASED</strong> (DDBD)<br />

APPROACH<br />

DDBD is based on the observation that damage is directly<br />

related to strain (structural effects) or drift (nonstructural<br />

effects), and both can be integrated to obtain<br />

displacements. Hence damage and displacement can be<br />

directly related. The design approach ACHIEVES a<br />

specified damage limit state.<br />

It is not possible to formulate an equivalent relationship<br />

between strength (force) and damage. This is one of the<br />

major deficiencies of current force-based seismic design).<br />

The level of damage is uncertain<br />

21


ELASTIC RESPONSE OF STRUCTURES<br />

1<br />

0.5<br />

Acceleration a(T) (g)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Force-based design<br />

Displacement ∆(T) (m)<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

DDBD<br />

0<br />

0 1 2 3 4 5<br />

Period T (seconds)<br />

(a) Acceleration Spectrum for 5% damping<br />

0<br />

0 1 2 3 4 5<br />

Period T (seconds)<br />

(b Displacement Spectrum for 5% damping<br />

Elastic, Force Based: F = m.a(T).g; D = F/K<br />

Elastic, Displ. Based: F = K.D(T)<br />

22


COMPARISON OF ELASTIC FORCE AND<br />

<strong>DISPLACEMENT</strong>-<strong>BASED</strong> <strong>DESIGN</strong><br />

We require to know force (F) and displacement (∆)<br />

FORCE <strong>BASED</strong>: F =m.a (T) .g<br />

Calculate K,T,a (T) , F,∆<br />

∆= F/K<br />

(5 steps)<br />

<strong>DISPLACEMENT</strong> <strong>BASED</strong>: F = K.∆ (T)<br />

Calculate K,T,∆ (T) ,F<br />

(4 steps)<br />

23


FUNDAMENTALS OF DDBD<br />

F<br />

m e<br />

h e<br />

F u<br />

F n<br />

K e<br />

K i<br />

∆y ∆d<br />

(a) SDOF Simulation (b) Effective Stiffness K e<br />

Damping (%)<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

←<br />

Elasto-Plastic<br />

Steel Frame<br />

Concrete Frame<br />

Concrete Bridge<br />

Hybrid Prestress<br />

Displacement (m)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

∆ d<br />

→<br />

5%<br />

10%<br />

15%<br />

20%<br />

30%<br />

0<br />

0 2 4 6<br />

Displacement Ductility<br />

↑<br />

(c) Equivalent damping vs. ductility<br />

0<br />

↓<br />

T e<br />

0 1 2 3 4 5<br />

Period (seconds)<br />

(d) Design Displacement Spectra<br />

24


Damping (%)<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

←<br />

Elasto-Plastic<br />

Steel Frame<br />

Concrete Frame<br />

Concrete Bridge<br />

Hybrid Prestress<br />

Displacement (m)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

∆ d<br />

→<br />

5%<br />

10%<br />

15%<br />

20%<br />

30%<br />

0<br />

↑<br />

0<br />

↓<br />

T e<br />

0 2 4 6<br />

Displacement Ductility<br />

0 1 2 3 4 5<br />

Period (seconds)<br />

(c) Equivalent damping vs. ductility<br />

(d) Design Displacement Spectra<br />

Limit State Displacement; Ductility Damping<br />

Damping+Displacement T e ; K=4π 2 m e /T e<br />

2<br />

25


m e F u<br />

F F n rK i<br />

H e K i K e<br />

Limit State Displacement; Ductility Damping<br />

Damping+Displacement Te; K=4π 2 me/T e<br />

2<br />

∆ y ∆ d<br />

F u = K e ∆ d<br />

26


ELEMENTS OF DDBD: Multi-storey Building<br />

Effective Stiffness:<br />

K<br />

e<br />

=<br />

2 2<br />

4π<br />

me<br />

/ Te<br />

Base Shear Force:<br />

F<br />

=<br />

V Base<br />

= K e<br />

∆<br />

d<br />

MDOF Design Displacement:<br />

∆<br />

d<br />

=<br />

n<br />

∑<br />

i=<br />

1<br />

n<br />

( m ∆<br />

2 ) ∑( ∆ )<br />

i i<br />

/ mi<br />

i<br />

i=<br />

1<br />

Effective Mass:<br />

m<br />

n<br />

= ∑<br />

e<br />

m i<br />

i=<br />

1<br />

( ∆ )<br />

i<br />

/ ∆d<br />

Effective Height:<br />

H<br />

e<br />

=<br />

n<br />

∑<br />

i=<br />

1<br />

( m ) ∑<br />

i∆iH<br />

i<br />

/ ( mi∆i<br />

)<br />

n<br />

i=<br />

1<br />

27


3. EQUIVALENT VISCOUS DAMPING<br />

Relationships between displacement ductility and<br />

equivalent viscous damping have been determined by<br />

extensive inelastic time-history analyses, using two<br />

different approaches:<br />

• “Real” accelerograms, matching displacement of<br />

equivalent elastic system to inelastic displacement,<br />

on a record-by-record approach, then averaging the<br />

EVD over a very large number of records.<br />

• Spectrum compatible accelerograms averaging the<br />

inelastic response, and matching average equivalent<br />

elastic displacement.<br />

Results were nearly identical<br />

28


F F y<br />

βF y<br />

BASIC HYSTERESIS RULES CONSIDERED<br />

F<br />

F<br />

rk i<br />

k i k i<br />

∆<br />

∆<br />

(a) Elasto-plastic (EPP)<br />

(b) Bi-linear, r = 0.2 (BI)<br />

F<br />

k i<br />

k i µ −α<br />

∆<br />

F<br />

k i<br />

∆<br />

k i µ −α<br />

(c) Takeda “Thin” (TT) (d) Takeda “Fat” (TF)<br />

k i<br />

∆<br />

k i<br />

∆<br />

(e) Ramberg-Osgood (RO) (f) Flag Shaped (FS)<br />

29


RELATIONSHIPS FOR TANGENT-STIFFNESS<br />

DAMPING<br />

Concrete Wall Building, Bridges (TT):<br />

Concrete Frame Building (TF):<br />

Steel Frame Building (RO):<br />

Hybrid Prestressed Frame (FS,β=0.35):<br />

Friction Slider (EPP):<br />

Bilinear Isolation System (BI, r=0.2):<br />

ξ<br />

ξ<br />

ξ<br />

ξ<br />

ξ<br />

ξ<br />

eq<br />

eq<br />

eq<br />

eq<br />

eq<br />

eq<br />

⎛ µ −1⎞<br />

= 0.05 + 0.444⎜<br />

⎟<br />

⎝ µπ ⎠<br />

⎛ µ −1⎞<br />

= 0.05 + 0.565⎜<br />

⎟<br />

⎝ µπ ⎠<br />

⎛ µ −1⎞<br />

= 0.05 + 0.577⎜<br />

⎟<br />

⎝ µπ ⎠<br />

⎛ µ −1⎞<br />

= 0.05 + 0.186⎜<br />

⎟<br />

⎝ µπ ⎠<br />

⎛ µ −1⎞<br />

= 0.05 + 0.670⎜<br />

⎟<br />

⎝ µπ ⎠<br />

⎛ µ −1⎞<br />

= 0.05 + 0.519⎜<br />

⎟<br />

⎝ µπ ⎠<br />

30


4<br />

GENERAL FORM OF ELASTIC 5% <strong>DISPLACEMENT</strong><br />

SPECTRUM, FROM EC8<br />

∆ max<br />

Plateau<br />

∆ max<br />

T C Period T D T E<br />

∆ PG<br />

Displacement<br />

Corner<br />

Period<br />

Linear<br />

∆ PG<br />

T C Period T D T E<br />

31


.<strong>DESIGN</strong> <strong>DISPLACEMENT</strong> SPECTRA (1)<br />

• Can be approximately generated from design<br />

acceleration spectra (5% damping) using accelerationdisplacement<br />

relationships:<br />

∆ (T,5) = (T 2 /4π 2 ).g.a (T,5)<br />

• Values for damping other than 5% can be generated<br />

from relationships such as:<br />

∆<br />

T , ξ<br />

= ∆<br />

T ,5<br />

⋅<br />

⎛<br />

⎜<br />

⎝<br />

2<br />

7 ⎞ ⎟⎠<br />

+ ξ<br />

0.5<br />

“Normal” records, EC8 1998<br />

∆<br />

T , ξ<br />

= ∆<br />

T ,5<br />

⋅<br />

⎛<br />

⎜<br />

⎝<br />

2<br />

7 ⎞ ⎟⎠<br />

+ ξ<br />

0.25<br />

“Velocity pulse” records (Forward<br />

directionality) (tentative!)<br />

32


<strong>DESIGN</strong> <strong>DISPLACEMENT</strong> SPECTRA (4)<br />

• Based on Faccioli’s observations,the corner period T c<br />

appears to increase almost linearly with moment<br />

magnitude. For earthquakes with M W > 5.7, the<br />

following expression seems conservative:<br />

( 5.7)<br />

T 1.0<br />

+ 2.5 M −<br />

c<br />

=<br />

w<br />

seconds<br />

• Peak displacement at the corner period can be<br />

estimated from the following expression (firm ground):<br />

δ<br />

max<br />

=<br />

10<br />

( M −3.2)<br />

W<br />

r<br />

mm<br />

r = nearest<br />

distance to fault<br />

plane (km)<br />

33


Spectral Displacement (mm)<br />

2000<br />

1600<br />

1200<br />

800<br />

400<br />

0<br />

M = 7.5<br />

M = 7.0<br />

M = 6.5<br />

M = 6.0<br />

0 2 4 6 8 10<br />

Period (seconds)<br />

5% Damped Spectra Resulting from the<br />

Equations, at r = 10km<br />

34


Spectral Displacement (mm)<br />

2000<br />

1600<br />

1200<br />

800<br />

400<br />

0<br />

M = 7.5<br />

M = 7.0<br />

M = 6.5<br />

0 2 4 6 8 10<br />

Period (seconds)<br />

5% Damped spectra, Resulting from the<br />

Equations, at r = 20 km<br />

35


Spectral Displacement (mm)<br />

2000<br />

1600<br />

1200<br />

800<br />

400<br />

0<br />

M = 7.5<br />

M = 7.0<br />

M = 6.5<br />

0 2 4 6 8 10<br />

Period (seconds)<br />

5% Damped spectra Resulting from the<br />

Equations, at r = 40 km<br />

36


INFLUENCE OF DAMPING AND DUCTILITY ON<br />

SPECTRAL <strong>DISPLACEMENT</strong> RESPONSE<br />

Current EC8:<br />

1998 EC8:<br />

Newmark and Hall 1987:<br />

∆<br />

∆<br />

∆<br />

T , ξ<br />

T , ξ<br />

=<br />

∆<br />

= ∆<br />

T ,5<br />

T ,5<br />

⋅<br />

⋅<br />

⎛<br />

⎜<br />

⎝<br />

⎛<br />

⎜<br />

⎝<br />

10 ⎞ ⎟⎠<br />

5 + ξ<br />

2<br />

7 ⎞ ⎟⎠<br />

+ ξ<br />

0.5<br />

0.5<br />

( 1.31 ln )<br />

.ξ<br />

ξ<br />

= ∆T<br />

,5<br />

T ,<br />

−<br />

Independent analyses by Priestley et al, Kowalsky et al, Sullivan et<br />

al, support the 1998 EC8, not the 2003 Eqn,nor Newmark and Hall.<br />

Tentative Expression<br />

for Forward Directivity,<br />

Near field<br />

∆<br />

T , ξ<br />

= ∆<br />

T ,5<br />

⋅<br />

⎛<br />

⎜<br />

⎝<br />

2<br />

7 ⎞ ⎟⎠<br />

+ ξ<br />

0.25<br />

37


Recommended Spectral correction for Damping<br />

Relative Displacement ∆ T,ξ<br />

/∆ 4,5%<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

(Eq.(2.8))<br />

ξ= 0.05<br />

ξ= 0.10<br />

ξ= 0.15<br />

ξ= 0.20<br />

ξ= 0.30<br />

Relative Displacement ∆ T,ξ<br />

/∆ 4,5%<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

(Eq.(2.11))<br />

ξ= 0.05<br />

ξ= 0.10<br />

ξ= 0.15<br />

ξ= 0.20<br />

ξ= 0.30<br />

0 1 2 3 4 5<br />

Period T (seconds)<br />

(a) "Normal" Conditions<br />

0 1 2 3 4 5<br />

Period T (seconds)<br />

(b) Velocity Pulse Conditions<br />

K e =4π 2 m e /T e<br />

2<br />

; V base =K e ∆ d<br />

38


SCOPE OF RESEARCH AND BOOK<br />

The research study (and the text book) considered<br />

the following structural systems:<br />

• Frames (concrete, steel, infilled, braced, precast)<br />

• Structural walls (cantilever and coupled)<br />

• Dual Wall/Frame structures<br />

• Timber structures<br />

• Unreinforced masonry buildings<br />

• Structures with Seismic Isolation and added<br />

damping<br />

• Bridges<br />

• Marginal wharves<br />

39


CHAPTER 4<br />

ANALYSIS TOOLS FOR DIRECT<br />

<strong>DISPLACEMENT</strong>-<strong>BASED</strong> <strong>DESIGN</strong><br />

Deals with a number of particularly relevant issues:<br />

• Moment-curvature analysis (Cumbia on CD)<br />

• Equilibrium considerations<br />

• Section stiffness<br />

• Shear strength<br />

• Capacity design analyses<br />

• Inelastic time-history analyses (Ruaumoko, SeismoStruct<br />

on CD)<br />

• Pushover analyses (Ruaumoko, SeismoStruct)<br />

40


CHAPTER 5<br />

FRAME BUILDINGS<br />

Considers issues specially relevant to design of frames:<br />

• design displacement profiles<br />

• one way/two way frames<br />

• irregular frames<br />

• elastic response<br />

• combination with gravity-load effects (consider<br />

separately!<br />

• capacity design for columns, and beams<br />

• hybrid precast frames<br />

41


CHAPTER 6<br />

STRUCTURAL WALL BUILDINGS<br />

Issues specially relevant to wall buildings considered:<br />

• Yield displacement and elastically responding walls<br />

• Torsional response<br />

• Capacity design effects<br />

• Foundation rotational stiffness<br />

• Coupled wall design (based on equilibrium, not elastic<br />

stiffness)<br />

42


CHAPTER 7<br />

DUAL WALL/FRAME BUILDINGS<br />

(a) Plan View<br />

(b) Long Direction Model<br />

Issues: How to distribute lateral<br />

force between walls and frames<br />

(a designer’s choice –not based<br />

on elastic stiffness)<br />

How to distribute shear up the<br />

frame (also a designer’s choice)<br />

Analysis for design requires no<br />

information about relative<br />

stiffnesses, which are, in fact<br />

irrelevant.<br />

(c) Short Direction Model<br />

43


CHAPTER 8<br />

MASONRY BUILDINGS<br />

This chapter essentially deals with unreinforced, or very<br />

lightly reinforced buildings, such as are used extensively in<br />

Europe and Central and South America. Displacementbased<br />

design is a much more rational way of designing such<br />

structures than current force-based approaches. Coupling<br />

between walls by floor slabs and spandrels is rationally<br />

considered with an innovative design approach<br />

44


Chapter 9: DUCTILE TIMBER STRUCTURES<br />

F<br />

Joint<br />

Framing<br />

Shear<br />

Panel<br />

End View<br />

(a) Ductile Moment-Resisting Frame (b) Timber Shear Panel Bracing<br />

Ductile<br />

connectors<br />

Post-tensioning<br />

P<br />

P<br />

(c) Post-tensioned Timber Frame<br />

45


CHAPTER 10<br />

BRIDGES<br />

Consideration of aspects specially applicable to bridges:<br />

• Longitudinal/transverse design<br />

• Elastically responding bridges<br />

• Influence of bearings and foundation flexibility<br />

• P-∆ Effects<br />

• Different foundation conditions<br />

• Capacity design (Effective modal superposition)<br />

46


Isolator<br />

Isolated rigid<br />

structure<br />

Braced frame<br />

with added<br />

damping<br />

Isolated bridge<br />

Partially isolated bridge<br />

Foundation<br />

sliding on gravel<br />

layer<br />

Pier<br />

Gravel<br />

layer Soil<br />

Concrete<br />

Chapter 11<br />

ISOLATION<br />

Deck<br />

Rocking bridge bent<br />

47


CHAPTER 12<br />

WHARVES AND PIERS<br />

Design is dominated by soil/structure interaction effects<br />

Displacement-based design, to specified limit-strains in<br />

piles (two-level design)<br />

Torsional response is critical<br />

This chapter is the basis of the POLA seismic design code<br />

48


INELASTIC FORCE-<strong>DISPLACEMENT</strong> RESPONSE<br />

FROM PUSHOVER ANALYSIS<br />

Wharf Deck<br />

F E D C B A<br />

T F T E T D T C T B T A<br />

F L<br />

L Cl<br />

Ground<br />

L sp<br />

IG F<br />

IG E<br />

IG D<br />

IG C<br />

IG B<br />

IG A<br />

Piles<br />

Inelastic pile<br />

members<br />

Inelastic Soil<br />

Springs<br />

x F<br />

x E<br />

x D<br />

x C<br />

x B<br />

x A<br />

49


CHAPTER 13<br />

<strong>DISPLACEMENT</strong>-<strong>BASED</strong> <strong>SEISMIC</strong> ASSESSMENT<br />

The principles of displacement-based design are adapted to<br />

assessment of existing structures. Both buildings and<br />

bridges are considered in developing the topic, and in the<br />

design examples<br />

50


MDOF PLASTIC MECHANISMS<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Height<br />

Limit state<br />

∆ P,c<br />

Yield<br />

Plastic mechanism<br />

Displacement<br />

(a) Beam Sway, S i < 0.85, all levels (b) Beam Sway Displacement Profiles<br />

5<br />

4<br />

3<br />

2<br />

Height<br />

Yield<br />

Column sway<br />

at Level 1<br />

Column sway<br />

at Level 2<br />

1<br />

∆ P<br />

Plastic mechanism<br />

Displacement<br />

(c) Column Sway, S i > 1, Levels 1 or 2 (d) Column Sway Displacement<br />

51


CHAPTER 14<br />

DRAFT <strong>DISPLACEMENT</strong>-<strong>BASED</strong> CODE FOR<br />

<strong>SEISMIC</strong> <strong>DESIGN</strong> OF BUILDINGS<br />

Intended as a starting point for development of design<br />

codes.<br />

52


DIRECT DISPLACEMEMENT-<strong>BASED</strong> <strong>DESIGN</strong><br />

<strong>DESIGN</strong> <strong>DISPLACEMENT</strong><br />

Damage is strain dependent. (e.g. onset of concrete<br />

crushing: strain = 0.004, residual crack widths require<br />

grouting if peak reinforcement strain exceeds 0.015).<br />

From strains we can calculate curvature. We can<br />

integrate curvature to find displacement.<br />

Thus we can directly relate structural damage to<br />

displacement<br />

Non-structural damage can generally be related to<br />

drift (Drift = interstorey displacement divided by<br />

interstorey height). Drift can be integrated to find<br />

displacement.<br />

Thus we can relate non-structural damage to<br />

displacement<br />

53


EXAMPLE OF STRAIN LIMIT STATES<br />

Curvature from concrete<br />

compression:<br />

φ mc = ε cm /c<br />

Curvature from reinforcement<br />

tension:<br />

φ ms = ε sm /(d-c)<br />

Chose lesser of φ mc and φ ms ,<br />

Design Displacement is:<br />

∆ ds = ∆ y + ∆ p<br />

= φ y H 2 /3 + (φ m -φ y )L p H<br />

L p = plastic hinge length.<br />

54


CRITICAL <strong>DISPLACEMENT</strong>S<br />

•Frames: normally governed by structural or nonstructural<br />

drift in beams of lowest storey<br />

• Cantilever Wall buildings: normally governed by<br />

plastic rotation at the wall base (for longest wall),<br />

or drift in top storey<br />

• Bridges: normally governed by plastic rotation,<br />

or drift limit, of the shortest column<br />

55


FRAMES<br />

1.0<br />

n=4:<br />

δ<br />

i<br />

=<br />

H /<br />

i<br />

H<br />

n<br />

H/H n<br />

n>4:<br />

δ =<br />

i<br />

4<br />

3<br />

⎛<br />

⋅<br />

⎜<br />

⎝<br />

H<br />

H<br />

i<br />

n<br />

⎞ ⎛ ⎟ ⋅ ⎜1<br />

−<br />

⎠ ⎝<br />

Hi<br />

4H<br />

n<br />

⎞<br />

⎟<br />

⎠<br />

Mode displ. 1.0<br />

(Based on results of inelastic timehistory<br />

analysis. Note, in some cases<br />

it may be necessary to review the<br />

displacement profile after initial<br />

analysis)<br />

56


CANTILEVER WALL <strong>DESIGN</strong> PROFILES:<br />

If roof drift is less than the code drift limit θ c , the<br />

design displacement profile is:<br />

∆<br />

i<br />

= ∆<br />

yi<br />

+ ∆<br />

pi<br />

=<br />

ε y ⎛ H ⎞ ⎛<br />

i<br />

y<br />

Hi<br />

m<br />

lw<br />

H<br />

+ ε<br />

⎜ − ⎟<br />

⎜φ<br />

−<br />

2<br />

2<br />

1<br />

⎝ 3<br />

n ⎠ ⎝ lw<br />

⎟ ⎞<br />

L<br />

⎠<br />

p<br />

H<br />

i<br />

If the code drift limit governs the roof drift, the design<br />

displacement profile is:<br />

∆<br />

i<br />

= ∆<br />

yi<br />

+<br />

( − )<br />

y<br />

i<br />

y n<br />

H =<br />

2<br />

θ θ H ⎜1<br />

⎟ ⎜θc<br />

− Hi<br />

c<br />

yn<br />

i<br />

ε<br />

l<br />

w<br />

i<br />

⎛<br />

⎜ −<br />

⎝<br />

H<br />

3H<br />

n<br />

⎞ ⎛<br />

⎟ + ⎜<br />

⎠ ⎝<br />

ε H<br />

l<br />

w<br />

⎟ ⎞<br />

⎠<br />

57


BRIDGE CHARACTERISTIC MODE SHAPES<br />

∆<br />

∆ 1<br />

∆<br />

∆ 2<br />

∆ 3<br />

∆ 4<br />

∆ 5<br />

∆ 1<br />

∆ 2<br />

∆<br />

∆ 3<br />

∆<br />

∆<br />

(a) Symm., Free abuts. (b) Asymm., Free abuts. (c) Symm., free abuts.<br />

Rigid SS translation Rigid SS translation+rotation Flexible SS<br />

∆ 1 ∆ 1 ∆ 1<br />

∆ 2 ∆ 2 ∆ 2<br />

∆ 3 ∆ 3 ∆ 3<br />

∆ 4<br />

∆ 4 ∆ 4 ∆ 4<br />

∆ 5<br />

∆ 5<br />

∆ 5<br />

∆ 5<br />

(d) Symm,. Restrained abuts. (e) Internal movement joint (f) Free abuts., M.joint<br />

Flexible SS Rigid SS, Restrained abuts. Flexible SS<br />

58


ELASTIC RESPONSE OF FRAMES<br />

The shape of the displacement spectrum, with a peak displacement<br />

plateau, implies that in regions of moderate seismicity, tall frames<br />

will respond elastically<br />

Assuming start of the constant velocity slope of acceleration<br />

spectrum at T = 0.5 sec, and peak spectral acceleration = 2.5<br />

times PGA, then the plateau displacement can be written as:<br />

∆<br />

TC<br />

=<br />

0.031×<br />

PGA(1<br />

+ 2.5( M −1))<br />

W<br />

Taking a typical frame of n storeys with beam length/depth =10,<br />

f ye = 400MPa the equivalent yield displacement can be approximated<br />

as<br />

∆<br />

y<br />

= θ<br />

y.( 0.7×<br />

3.5n)<br />

= 0.01×<br />

0.7×<br />

3.5n<br />

= 0. 0245n<br />

59


1.6<br />

Displacement (m)<br />

1.2<br />

0.8<br />

0.4<br />

0<br />

Yield<br />

displacement<br />

Peak elastic spectral<br />

Displacement<br />

0.7g<br />

0.6g<br />

0.5g<br />

0.4g<br />

0.3g<br />

0.2g<br />

0.1g<br />

24 storeys<br />

20 storeys<br />

16 stories<br />

12 storeys<br />

8 storeys<br />

4 storeys<br />

6 6.4 6.8 7.2 7.6 8<br />

Moment Magnitude, M W<br />

60


DRIFT-LIMITED DUCTILITY FOR WALLS<br />

Maximum Design Ductility (µ)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

θ c =0.02<br />

Elastic<br />

θ c =0.025<br />

2 4 6 8 10<br />

Wall Aspect Ratio (A r =H n /l w )<br />

Maximum Design Ductility (µ)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

θ c =0.02<br />

Elastic<br />

θ c =0.02<br />

2 4<br />

Wall Aspec<br />

(a) Yield Drift = ε y A r (b) Yield Drift =<br />

61


ANALYSIS OF FRAMES UNDER LATERAL FORCES<br />

F 4 V B4 V B4<br />

Level 4<br />

Base Overturning Moment<br />

F 2<br />

F 3 V B3 V B3<br />

V B2 V B2<br />

Level 3<br />

Level 2<br />

OTM<br />

OTM<br />

OTM<br />

∑<br />

= Fi<br />

⋅ H<br />

i<br />

= T ⋅ Lb<br />

+<br />

= V ⋅ L<br />

∑<br />

Bi<br />

∑<br />

base<br />

M<br />

+<br />

Cj<br />

∑<br />

M<br />

Cj<br />

V B1 V B1<br />

F 1 Level 1<br />

V C1 V C2 V C3<br />

0.6H 1<br />

M C1 M C2 M C3<br />

T C<br />

L base<br />

Level 0<br />

H 3<br />

Lateral force distribution<br />

F<br />

i<br />

=<br />

V<br />

B<br />

( m ∆ ) ∑( ∆ )<br />

i i<br />

/ mi<br />

i<br />

n<br />

i=<br />

1<br />

62


PLASTIC <strong>DISPLACEMENT</strong> OF CANTILEVER WALLS<br />

l W<br />

( )<br />

Plastic<br />

Hinge<br />

H e<br />

∆ p<br />

L P<br />

L SP<br />

θ p<br />

0.5L P -L SP<br />

P<br />

φ p φ y<br />

(a) Wall (b) Curvature (c) Plastic Displacement<br />

P<br />

P<br />

( H − 0.5L<br />

− L ) = θ ( H − ( 0. L − L ))<br />

∆ = φ L<br />

5<br />

∆<br />

P<br />

P<br />

P<br />

e<br />

= φ L H = θ H<br />

P<br />

e<br />

P<br />

P<br />

e<br />

e<br />

SP<br />

63<br />

plastic hinge length: L = k ⋅ H + 0. 1l<br />

+ L k = 0.2(fu/fy – 1) =0.08<br />

W<br />

P<br />

SP<br />

e<br />

P<br />

SP<br />

(acceptable approximation)


LIMIT STATE CURVATURES FOR WALLS:<br />

From analyses:<br />

• Serviceability curvature:<br />

• Damage Control curvature:<br />

φ s<br />

⋅l<br />

w<br />

= 0.0175<br />

φ dc<br />

⋅l<br />

w<br />

= 0.072<br />

In both cases steel strain limit dominates. A general equation can be<br />

written:<br />

• General limit curvature:<br />

φ ⋅ =1.2ε<br />

ls<br />

l<br />

w s,<br />

ls<br />

Design Displacement<br />

profile is thus:<br />

ε H<br />

2<br />

y i ⎛ ∆<br />

i = ∆<br />

yi + ∆<br />

pi =<br />

l<br />

⎜1<br />

−<br />

w<br />

3<br />

⎝<br />

H<br />

i<br />

H<br />

n<br />

⎞<br />

⎟ + θ<br />

pH<br />

⎠<br />

i<br />

64


TORSIONAL RESPONSE OF WALL BUILDINGS WITH<br />

STRENGTH AND STIFFNESS ECCENTRICITY<br />

Z<br />

Wall 4<br />

k trans<br />

L Z =15m<br />

k Z1,<br />

C R<br />

C V<br />

Wall C M<br />

Wall 2<br />

V 1<br />

e VX Strength V2<br />

e RX<br />

V<br />

eccentricity<br />

Stiffness<br />

B<br />

k<br />

eccentricity<br />

trans<br />

Wall 3<br />

L X = 25 m<br />

k Z2<br />

X<br />

Both strength and stiffness eccentricity affect torsional response.<br />

In DDBD the design displacement at centre of mass is reduced to<br />

account for torsional response<br />

65


COUPLED WALLS -TYPICAL ELEVATION<br />

F i<br />

H i<br />

Gravity<br />

Frame<br />

1 2<br />

Coupled<br />

Walls<br />

(a) Structure and Lateral Forces<br />

66


COUPLING BEAM DRIFTS<br />

reinforcement<br />

Conventional<br />

θ W<br />

θ CB<br />

0.5l W L CB 0.5l W<br />

Diagonal<br />

reinforcement<br />

α<br />

α<br />

(a) Drift Geometry (b) Coupling Beam<br />

θ<br />

CB<br />

= θ<br />

W<br />

( 1+ l / L )<br />

W<br />

CB<br />

67


CAPACITY <strong>DESIGN</strong><br />

• Overstrength: Material strengths will generally<br />

exceed dependable strengths used for design;<br />

confinement and strain-hardening further<br />

increase flexural strength above design strength<br />

• Higher mode effects: Either not considered<br />

(equivalent lateral force approach), or incorrectly<br />

considered (elastic modal superposition) in current<br />

design.<br />

68


STRUCTURAL WALL<br />

FAILURE<br />

Inadequate transverse<br />

reinforcement in plastic<br />

hinge region<br />

69<br />

KOBE, 1995


INADEQUATE CONSIDER-<br />

ATION OF HIGHER MODE<br />

EFFECTS<br />

Hinge forms above base<br />

70<br />

VALPARAISO, 1985


HIGHER MODE EFFECTS<br />

Two effects in DDBD<br />

1. Drift amplification – A reduction to the design drift<br />

is applied to frames higher than about 10 storeys<br />

2. Moment and Shear amplification for capacityprotected<br />

actions and members. These have been<br />

extensively researched by inelastic time-history<br />

analysis. Results are found to depend on the effective<br />

structural displacement ductility demand. New design<br />

equations and simplified design approaches have been<br />

developed for different structural systems.<br />

71


EFFECTIVE MODAL SUPERPOSITION FOR<br />

HIGHER MODE EFFECTS<br />

A modal analysis procedure combining the inelastic<br />

first mode and ELASTIC higher modes by a SRSS<br />

approach provides good simulation of higher mode<br />

effects. The agreement is improved if the stiffness<br />

of plastic hinges is reduced to reflect the design<br />

ductility<br />

i.e. use EI/µ for members with plastic hinges.<br />

72


60<br />

30<br />

40<br />

MMS THA MMS THA MMS THA<br />

Height (m)<br />

20<br />

10<br />

Height (m)<br />

30<br />

20<br />

10<br />

Height (m)<br />

40<br />

20<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

0<br />

0<br />

0 1000 2000 3000 4000<br />

0 1000 2000 3000 4000<br />

Shear Force (kN)<br />

Shear Force (kN)<br />

Shear Force (kN)<br />

(m) Twelve-Storey Wall, IR=0.5 (q) Sixteen-Storey Wall, IR=0.5 (u) Twenty-Storey Wall, IR=0.5<br />

60<br />

30<br />

40<br />

Height (m)<br />

20<br />

10<br />

MMS THA<br />

Height (m)<br />

30<br />

20<br />

10<br />

THA MMS<br />

Height (m)<br />

40<br />

20<br />

THA MMS<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

0<br />

0<br />

0 1000 2000 3000 4000<br />

0 1000 2000 3000 4000<br />

Shear Force (kN)<br />

Shear Force (kN)<br />

Shear Force (kN)<br />

(n) Twelve-Storey Wall, IR=1.0 (r) Sixteen-Storey Wall, IR=1.0 (v) Twenty-Storey Wall, IR=1.0<br />

60<br />

MMS Shear Envelopes Compared with Time History Results<br />

30<br />

40<br />

for Different Seismic Intensity Ratios (IR=1= Design)<br />

ht (m)<br />

20<br />

ht (m)<br />

30<br />

ht (m)<br />

40<br />

83 73


DOES DDBD MAKE A DIFFERENCE<br />

• Determining moment demand by elastic modal<br />

analysis is inappropriate, resulting in poor<br />

distributions of lateral strength<br />

• Force-based design uses elastic stiffness which is<br />

NOT KNOWN at the start of the design. DDBD uses<br />

yield displacement or drift which IS known at the<br />

start of the design.<br />

• DDBD achieves a specified limit state at the design<br />

intensity; force-based design, at best, is bounded by<br />

the limit state, and vulnerability to damage is<br />

variable.<br />

• The design effort with DDBD is less than with<br />

force-based design.<br />

74


INFLUENCE OF <strong>SEISMIC</strong> INTENSITY ON <strong>DESIGN</strong><br />

FORCES<br />

Force-Based Design Displacement-Based Design<br />

V<br />

Z<br />

e 2<br />

=<br />

e1<br />

, but<br />

2<br />

b 2<br />

= V<br />

Z2<br />

b1<br />

Z<br />

Hence: K<br />

1<br />

e<br />

If Z 2<br />

= 0.5Z 1<br />

, V b2<br />

= 0.5V b1<br />

Hence:<br />

T<br />

T<br />

Z<br />

1<br />

V<br />

=<br />

K<br />

K<br />

e<br />

⎛ Z<br />

⎜<br />

=<br />

⎞<br />

2<br />

2 1 ⎟ e ⎜<br />

⎝ Z1<br />

⎠<br />

2<br />

= V<br />

⎛ Z<br />

⎜<br />

⎝<br />

⎞<br />

2<br />

2 1 ⎟ B B ⎜ Z1<br />

⎠<br />

2 2<br />

4π<br />

me<br />

/ Te<br />

2<br />

: V 75 b2<br />

= 0.25V b1


BRIDGE COLUMNS OF UNEQUAL HEIGHT<br />

`<br />

F H c<br />

H A H B H C<br />

H A<br />

C<br />

H B<br />

A<br />

B<br />

Force-Based Design Displacement-Based Design<br />

∆<br />

Stiffness: prop. to 1/H 3 prop. to 1/H<br />

Shear Force: prop. to 1/H 3 prop. to 1/H<br />

Moments: prop. to 1/H 2<br />

Rebar: prop. to 1/H 2<br />

equal<br />

equal<br />

Ductility: equal (!) prop. to 1/H 2<br />

76


CONCLUSIONS<br />

DOES DDBD MAKE A DIFFERENCE<br />

YES!<br />

Thank you<br />

77

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!