26.01.2015 Views

Modelling the impact of roads on regional population of Moor frogs ...

Modelling the impact of roads on regional population of Moor frogs ...

Modelling the impact of roads on regional population of Moor frogs ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

university <str<strong>on</strong>g>of</str<strong>on</strong>g> copenhagen<br />

Maj-Britt P<strong>on</strong>toppidan<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology<br />

<str<strong>on</strong>g>Modelling</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> <strong>on</strong><br />

regi<strong>on</strong>al populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong><br />

(Rana arvalis)


FACULTY OF SCIENCE<br />

UNIVERSITY OF COPENHAGEN<br />

PhD <str<strong>on</strong>g>the</str<strong>on</strong>g>sis<br />

Maj-Britt P<strong>on</strong>toppidan<br />

Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology & Evoluti<strong>on</strong><br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology<br />

<str<strong>on</strong>g>Modelling</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> <strong>on</strong> regi<strong>on</strong>al<br />

populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong> (Rana arvalis)<br />

A <str<strong>on</strong>g>the</str<strong>on</strong>g>sis submitted to <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen in accordance with <str<strong>on</strong>g>the</str<strong>on</strong>g> requirements for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PhD at <str<strong>on</strong>g>the</str<strong>on</strong>g> Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Copenhagen, Denmark to be defended publicly before a panel <str<strong>on</strong>g>of</str<strong>on</strong>g> examiners<br />

Academic advisor: Gösta Nachman<br />

Submitted: January 2013


Preface<br />

Preface<br />

In this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis I present my work carried out during a 3-year PhD fellowship funded by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Danish Road Directorate. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> project has been to develop a management tool<br />

for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> <strong>on</strong> <strong>Moor</strong> frog populati<strong>on</strong>s. During my PhD-work, I have<br />

been based at <str<strong>on</strong>g>the</str<strong>on</strong>g> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, Secti<strong>on</strong> for Ecology and Evoluti<strong>on</strong> and I have been<br />

supervised by Dr. Gösta Nachman.<br />

The end product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> project is an individual based model called SAIA (Spatial Amphibian<br />

Impact Assessment). The model has evolved in close and c<strong>on</strong>tinuous dialogue with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> project group, which c<strong>on</strong>tains members from <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish Nature Agency, <str<strong>on</strong>g>the</str<strong>on</strong>g> Road Directorate<br />

as well as specialists <strong>on</strong> envir<strong>on</strong>mental <str<strong>on</strong>g>impact</str<strong>on</strong>g> assessments (EIA) and amphibians. Not<br />

being a herpetologist nor road ecologist myself, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is always <str<strong>on</strong>g>the</str<strong>on</strong>g> danger that <str<strong>on</strong>g>the</str<strong>on</strong>g> dazzling<br />

model you have come up with is just a tiny bit far reached. During <str<strong>on</strong>g>the</str<strong>on</strong>g> design process, it has<br />

been extremely important for me c<strong>on</strong>tinuously to have <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity to give my model and<br />

its comp<strong>on</strong>ents a "reality check". Hence, discussi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> project group with amphibian experts<br />

and end users <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> validity and usefulness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model behaviour and output has been<br />

an integrated part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model development.<br />

The <str<strong>on</strong>g>the</str<strong>on</strong>g>sis c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a synopsis and three chapters. In <str<strong>on</strong>g>the</str<strong>on</strong>g> synopsis, I give an overview<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> background <str<strong>on</strong>g>the</str<strong>on</strong>g>ory and <str<strong>on</strong>g>the</str<strong>on</strong>g> model development. The chapters each c<strong>on</strong>tain a manuscript<br />

submitted to a scientific journal. The manuscript in chapter <strong>on</strong>e has been peer reviewed and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> enclosed versi<strong>on</strong> is now under revisi<strong>on</strong>. The two remaining manuscripts are in <str<strong>on</strong>g>the</str<strong>on</strong>g> process<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> peer review. The appendix c<strong>on</strong>tains examples <str<strong>on</strong>g>of</str<strong>on</strong>g> SAIA’s output files.<br />

Maj-Britt P<strong>on</strong>toppidan<br />

Copenhagen, January 2013<br />

3


Index<br />

Index<br />

ACKNOWLEDGEMENTS ........................................................................................................................ 7<br />

ENGLISH SUMMARY ............................................................................................................................ 9<br />

DANSK RESUME ................................................................................................................................. 11<br />

SYNOPSIS .............................................................................................................................. 13<br />

BACKGROUND ................................................................................................................................... 15<br />

Fragmentati<strong>on</strong> .............................................................................................................................. 15<br />

C<strong>on</strong>nectivity .................................................................................................................................. 16<br />

Objective ....................................................................................................................................... 18<br />

DESIGNING SAIA .............................................................................................................................. 19<br />

C<strong>on</strong>ceptual model ......................................................................................................................... 19<br />

The habitat patch .......................................................................................................................... 21<br />

Dispersal behaviour ..................................................................................................................... 22<br />

SAIA v1.0 ...................................................................................................................................... 23<br />

CONCLUSION ..................................................................................................................................... 25<br />

REFERENCES ...................................................................................................................................... 27<br />

CHAPTER ONE ..................................................................................................................... 33<br />

CHAPTER TWO .................................................................................................................... 59<br />

CHAPTER THREE ............................................................................................................... 95<br />

APPENDIX ........................................................................................................................... 143<br />

5


Acknowledgements<br />

Acknowledgements<br />

This project would not have been possible without <str<strong>on</strong>g>the</str<strong>on</strong>g> goodwill and assistance <str<strong>on</strong>g>of</str<strong>on</strong>g> many people.<br />

I would like to express my heartfelt thanks to all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m:<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish Road Directorate for funding <str<strong>on</strong>g>the</str<strong>on</strong>g> project and giving me this w<strong>on</strong>derful opportunity.<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> project group: Marianne Ujvari, Martin Schneekloth, Agnete Jørgensen<br />

and Martin Hesselsøe. It’s been a joy working with you.<br />

to AmphiC<strong>on</strong>sult for sharing your expertise with me.<br />

to Volker Grimm and Uta Berger for introducing me to <str<strong>on</strong>g>the</str<strong>on</strong>g> intriguing world <str<strong>on</strong>g>of</str<strong>on</strong>g> NetLogo and<br />

Individual Based <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> beautiful regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Swiss Sax<strong>on</strong>y. Special thanks to<br />

Uta for encouraging and inspiring talks and for keeping me <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IBM-track.<br />

to Bjørn Hermansen for patiently helping me with GIS.<br />

to Henning Bang Madsen and Ruth Bruus Jakobsen for your readiness to help out and<br />

your generous limousine service.<br />

to Marianne Philipp for providing refuge in stressful times and for sharing your anem<strong>on</strong>es<br />

with me.<br />

to all my colleagues at <str<strong>on</strong>g>the</str<strong>on</strong>g> secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology & Evoluti<strong>on</strong> for good company and for so generously<br />

letting me pick your brains and books.<br />

And, last but not least, to my supervisor Gösta Nachman for embarking <strong>on</strong> this journey with<br />

me and for always having an open door. I’ve enjoyed our time toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r and I’ll miss all your<br />

anecdotes.<br />

7


English summary<br />

English summary<br />

Over <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade a growing amount <str<strong>on</strong>g>of</str<strong>on</strong>g> literature has documented <str<strong>on</strong>g>the</str<strong>on</strong>g> severe <str<strong>on</strong>g>impact</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transport infrastructure <strong>on</strong> biodiversity, populati<strong>on</strong> persistence and gene flow, and <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an<br />

increasing awareness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> finding agreement between nature c<strong>on</strong>servati<strong>on</strong> and<br />

land use. To ensure ecologically sustainable road planning c<strong>on</strong>servati<strong>on</strong> measures must be<br />

taken into c<strong>on</strong>siderati<strong>on</strong> already in <str<strong>on</strong>g>the</str<strong>on</strong>g> earliest phases <str<strong>on</strong>g>of</str<strong>on</strong>g> road development. This requires adequate<br />

tools for assessment, preventi<strong>on</strong> and mitigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>impact</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure. For this<br />

reas<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish Road Directorate decided to finance a PhD project with <str<strong>on</strong>g>the</str<strong>on</strong>g> objective <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

developing a management tool that could be used to substantiate that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> status<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> annex IV species would be unaffected by <str<strong>on</strong>g>the</str<strong>on</strong>g> a given road project. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> project<br />

was to provide a standardized and scientifically well founded basis for decisi<strong>on</strong>s c<strong>on</strong>cerning<br />

road lay-out and mitigati<strong>on</strong> measures. As model species was chosen <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Moor</strong> frog (Rana<br />

arvalis). Populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong> are assumed to follow a pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> metapopulati<strong>on</strong> dynamics,<br />

with col<strong>on</strong>isati<strong>on</strong>, extincti<strong>on</strong> and recol<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable habitat patches. Thus,<br />

road c<strong>on</strong>structi<strong>on</strong>s must be expected to have implicati<strong>on</strong> <strong>on</strong> both local and regi<strong>on</strong>al persistence;<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> former due to habitat destructi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> latter because <str<strong>on</strong>g>of</str<strong>on</strong>g> disrupted dispersal between<br />

subpopulati<strong>on</strong>s due to barrier effects.<br />

The result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> project was <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model presented in this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis. The<br />

model, called SAIA (Spatial Amphibian Impact Assessment), c<strong>on</strong>siders a landscape mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

breeding habitat, summer habitat and uninhabitable land. As input I use a GIS-map <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

landscape with informati<strong>on</strong> <strong>on</strong> land cover. In additi<strong>on</strong>, data <strong>on</strong> observed frog populati<strong>on</strong>s in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> survey area are needed. The dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> juvenile <strong>frogs</strong> is simulated by means <str<strong>on</strong>g>of</str<strong>on</strong>g> individual-based<br />

modelling, while a populati<strong>on</strong>-based model is used for simulating l<strong>on</strong>g-term populati<strong>on</strong><br />

dynamics. In combinati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> two types <str<strong>on</strong>g>of</str<strong>on</strong>g> models generate output <strong>on</strong> landscape c<strong>on</strong>nectivity<br />

and populati<strong>on</strong> viability. To assess road <str<strong>on</strong>g>impact</str<strong>on</strong>g>s two scenarios have to be c<strong>on</strong>structed<br />

and analysed. The first scenario should be a map <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area as it is before <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

planned road c<strong>on</strong>structi<strong>on</strong> (scenario 0). This analysis measures <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological performance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> original landscape and is a reference against which o<str<strong>on</strong>g>the</str<strong>on</strong>g>r scenarios are to be compared.<br />

The sec<strong>on</strong>d map (scenario 1) should show <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape as it is expected to be after <str<strong>on</strong>g>the</str<strong>on</strong>g> road<br />

c<strong>on</strong>structi<strong>on</strong>s. In combinati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> scenario 0 and scenario 1 make it possible to<br />

assess <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> road c<strong>on</strong>structi<strong>on</strong> <strong>on</strong> c<strong>on</strong>nectivity and populati<strong>on</strong> persistence. The analyses<br />

9


English summary<br />

also c<strong>on</strong>stitute <str<strong>on</strong>g>the</str<strong>on</strong>g> basis for planning <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigati<strong>on</strong> measures. Analyses and comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

several alternative road projects can identify <str<strong>on</strong>g>the</str<strong>on</strong>g> least harmful soluti<strong>on</strong>. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigati<strong>on</strong><br />

measures, such as new breeding p<strong>on</strong>ds and tunnels, can be evaluated by incorporating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>m in <str<strong>on</strong>g>the</str<strong>on</strong>g> maps, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby enhancing <str<strong>on</strong>g>the</str<strong>on</strong>g> utility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model as a management tool in Envir<strong>on</strong>mental<br />

Impact Assessments.<br />

The <str<strong>on</strong>g>the</str<strong>on</strong>g>sis c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a synopsis and three manuscripts for scientific journals. An appendix<br />

c<strong>on</strong>tains examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> result files SAIA produces. In <str<strong>on</strong>g>the</str<strong>on</strong>g> synopsis, I give an overview<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> background <str<strong>on</strong>g>the</str<strong>on</strong>g>ory and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ceptual model development.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> first manuscript I introduce an alternative patch c<strong>on</strong>cept, <str<strong>on</strong>g>the</str<strong>on</strong>g> complementary<br />

habitat patch, and use a simple model to explore how intra-patch heterogeneity affects immigrati<strong>on</strong><br />

and emigrati<strong>on</strong> probabilities. I find that <str<strong>on</strong>g>the</str<strong>on</strong>g> realised c<strong>on</strong>nectivity depends <strong>on</strong> internal<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>the</str<strong>on</strong>g> target and <str<strong>on</strong>g>the</str<strong>on</strong>g> source patch as well as <strong>on</strong> how habitat quality is affected<br />

by patch structure. Although fragmentati<strong>on</strong> is generally thought to have negative effects <strong>on</strong><br />

c<strong>on</strong>nectivity, <str<strong>on</strong>g>the</str<strong>on</strong>g> results suggest that, depending <strong>on</strong> patch structure and habitat quality, positive<br />

effects <strong>on</strong> c<strong>on</strong>nectivity may occur.<br />

The sec<strong>on</strong>d manuscript uses a light-versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SAIA and explores how changes in road<br />

mortality and road avoidance behaviour affect local and regi<strong>on</strong>al c<strong>on</strong>nectivity in a populati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong>. The results indicate that road mortality has a str<strong>on</strong>g negative effect <strong>on</strong> regi<strong>on</strong>al<br />

c<strong>on</strong>nectivity, but <strong>on</strong>ly a small effect <strong>on</strong> local c<strong>on</strong>nectivity. Regi<strong>on</strong>al c<strong>on</strong>nectivity is positively<br />

affected by road avoidance and <str<strong>on</strong>g>the</str<strong>on</strong>g> effect becomes more pr<strong>on</strong>ounced as road mortality decreases.<br />

Road avoidance also has a positive effect <strong>on</strong> local c<strong>on</strong>nectivity. When road avoidance<br />

is total and <str<strong>on</strong>g>the</str<strong>on</strong>g> road functi<strong>on</strong>s as a 100% barrier regi<strong>on</strong>al c<strong>on</strong>nectivity is close to zero, while<br />

local c<strong>on</strong>nectivity exhibit very elevated values. The results suggest that <str<strong>on</strong>g>roads</str<strong>on</strong>g> may affect not<br />

<strong>on</strong>ly regi<strong>on</strong>al or metapopulati<strong>on</strong> dynamics but also have a direct effect <strong>on</strong> local populati<strong>on</strong><br />

dynamics.<br />

The third manuscript describes <str<strong>on</strong>g>the</str<strong>on</strong>g> full SAIA model. By means <str<strong>on</strong>g>of</str<strong>on</strong>g> a case study I dem<strong>on</strong>strate<br />

how SAIA can be used for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> road <str<strong>on</strong>g>impact</str<strong>on</strong>g> and evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> which management<br />

measures would be best to mitigate <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape fragmentati<strong>on</strong> caused by<br />

road c<strong>on</strong>structi<strong>on</strong>s.<br />

10


Dansk resumé<br />

Dansk resume<br />

En stadigt tættere infrastruktur præger vores landskaber og er blevet en kraftig trussel mod<br />

biodiversiteten. Der er en stigende bevids<str<strong>on</strong>g>the</str<strong>on</strong>g>d om nødvendigheden af at anlæggelse af veje<br />

må være bæredygtig. For at opnå dette er det nødvendigt allerede i de tidligste faser af vejprojekter<br />

at inddrage overvejelser omkring bevarelsesforanstaltninger. Dette kræver, at der er<br />

passende værktøjer til rådighed, hvormed det er muligt at vurderer effekten på naturen af såvel<br />

den kommende vej som mulige afværgeforanstaltninger. På denne baggrund besluttede<br />

Vejdirektoratet at finansierer et PhD projekt, hvis formål var at udvikle et modelværktøj, der<br />

kunne underbygge et ensartet og fagligt baseret beslutningsgrundlag ved valg af linjeføring.<br />

Endvidere skulle værkstøjet kunne understøtte beslutninger vedrørende afværgeforanstaltninger,<br />

deres antal og placering. Spidssnudet frø (Rana arvalis) blev valgt som model-art. En<br />

populati<strong>on</strong> af Spidssnudet frø antages at bestå af et netværk af delpopulati<strong>on</strong>er, samt at følge<br />

en metapopulati<strong>on</strong>sdynamik med k<strong>on</strong>tinuert kol<strong>on</strong>isering, udryddelse og rekol<strong>on</strong>isering af<br />

egnede habitatområder. Nye vejanlæg kan forventes at påvirke en populati<strong>on</strong>s levedygtighed,<br />

både lokalt ved at ødelægge habitatområder og regi<strong>on</strong>alt ved at virke som en barriere for<br />

spredning af individer mellem delpopulati<strong>on</strong>erne.<br />

Resultatet af projektet blev modellen som præsenteres i denne afhandling. Modellen,<br />

kaldet SAIA (Spatial Amphibian Impact Assessment), tager udgangspunkt i et landskab bestående<br />

af en mosaik af ynglehabitat, sommer habitat og ubeboeligt habitat. Som input til modellen<br />

bruger jeg GIS-kort, der indeholder informati<strong>on</strong>er om arealanvendelse. Derudover skal<br />

der bruges data på populati<strong>on</strong>en af Spidssnudet frø i undersøgelsesområdet. Jeg bruger individ-baseret<br />

modellering til at simulerer spredningen af nyforvandlede frøer samt en populati<strong>on</strong>sbaseret<br />

model til at simulerer populati<strong>on</strong>sdynamikken i de enkelte populati<strong>on</strong>er. Tilsammen<br />

genererer de to modeller output om landskabets k<strong>on</strong>nektivitet og om populati<strong>on</strong>ens levedygtighed.<br />

For at kunne evaluerer k<strong>on</strong>sekvenserne af et kommende vejanlæg kræves to scenarier.<br />

Det første scenarie fungerer som reference og skal være et kort over landskabet, som det ser<br />

ud før det planlagte vejanlæg. Det andet scenarie er et kort over landskabet, som det forventes<br />

at se ud, når vejprojektet er udført. Ved at sammenligne resultaterne fra de to analyser er det<br />

muligt at vurdere, hvordan vejanlægget vil påvirker landskabets k<strong>on</strong>nektivitet og frø-<br />

11


Dansk resumé<br />

populati<strong>on</strong>ens levedygtighed. Analyserne kan samtidigt danne basis for planlægning af afværgeforanstaltninger.<br />

Analyser og evaluering af scenarie med alternative lineføringer eller<br />

forskellige afværgeforanstaltninger giver mulighed for identificerer de bedste løsninger og<br />

resultaterne kan indgå i f.eks. VVM-undersøgelser.<br />

Afhandling består af en synopsis, tre videnskabelige artikler samt et appendiks det indeholder<br />

eksempler på de resultat-filer SAIA genererer. I synopsen giver jeg et overblik over<br />

den k<strong>on</strong>ceptuelle udvikling af SAIA-modellen samt den bagvedliggende teori.<br />

I den første artikel beskriver jeg, hvordan et habitatområde kan betragtes som sammensat<br />

af forskellige habitat typer og introducerer et alternativt habitat begreb, det komplementære<br />

habitatområde. Jeg bruger en simpel model til at udforske, hvordan sammensætningen af et<br />

komplementært habitat påvirker sandsynligheden for immigrati<strong>on</strong> til og emigrati<strong>on</strong> fra habitatet.<br />

Resultaterne viser, at strukturen såvel som kvaliteten i et habitatområde har stor betydning<br />

for landskabets k<strong>on</strong>nektivitet. Desuden finder jeg, at fragmentering under visse forhold kan<br />

have en positiv effekt på k<strong>on</strong>nektiviteten.<br />

I den anden artikel bruger jeg en forenklet versi<strong>on</strong> af SAIA til at afsøge, hvordan ændringer<br />

i vejdødelighed og dyrs evne til at undvige veje påvirke k<strong>on</strong>nektiviteten mellem bestande,<br />

både lokalt og regi<strong>on</strong>al. Resultaterne viser, at vejdødeligheden har en kraftig negativ<br />

effekt på regi<strong>on</strong>al k<strong>on</strong>nektivitet, men kun lille effekt lokalt. Afværgeadfærd har en positiv<br />

effekt på både regi<strong>on</strong>al og lokal k<strong>on</strong>nektivitet - effekten er dog mest udtalt, når vejdødeligheden<br />

er lav. Hvis afværgeadfærden er så kraftig, at vejen reelt fungerer som en 100 % barrierer,<br />

er den regi<strong>on</strong>al k<strong>on</strong>nektivitet dog tæt på nul, mens det lokale k<strong>on</strong>nektivitet opnår meget høje<br />

værdier. Resultaterne peger på, at veje kan påvirke populati<strong>on</strong>sdynamikken både lokalt og<br />

regi<strong>on</strong>alt.<br />

Den tredje artikel beskriver den fulde SAIA model. Ved hjælp af et case-studie dem<strong>on</strong>strerer<br />

jeg ,hvordan modellen kan anvendes til vurdere effekten af et planlagt vejanlæg på en<br />

bestand af spidssnudet frø, samt hvilke afværgeforanstaltninger der kan modvirke effekten<br />

12


SYNOPSIS


Synopsis<br />

Background<br />

Roads are everywhere. An extensive and expanding infrastructural network c<strong>on</strong>nects human<br />

activities; it enables us to reach <str<strong>on</strong>g>the</str<strong>on</strong>g> fur<str<strong>on</strong>g>the</str<strong>on</strong>g>st parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world and gives us access to <str<strong>on</strong>g>the</str<strong>on</strong>g> resources<br />

we need. They bring us to our friends and family, our working places and recreati<strong>on</strong>al<br />

activities. We use <str<strong>on</strong>g>the</str<strong>on</strong>g>m to go shopping and to enjoy a walk in <str<strong>on</strong>g>the</str<strong>on</strong>g> forest. But while infrastructure<br />

binds <str<strong>on</strong>g>the</str<strong>on</strong>g> human society toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, <str<strong>on</strong>g>roads</str<strong>on</strong>g> also act as barriers – cutting through home<br />

ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> animals and crossing <str<strong>on</strong>g>the</str<strong>on</strong>g>ir migrati<strong>on</strong> or dispersal routes. Roads restrict animals’<br />

access to resources and affect <str<strong>on</strong>g>the</str<strong>on</strong>g>ir behaviour and movement patterns [1, 2].<br />

Today’s huge network <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> is a major threat to many species. Animals trying to<br />

cross a road experience a very high mortality risk, and many populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> (mostly large)<br />

mammals, birds and amphibians are negatively affected by road killings [3-7]. Especially species<br />

with large ranges or with high mobility seem to be most vulnerable to road mortality [8,<br />

9]. Increased mortality caused by <str<strong>on</strong>g>roads</str<strong>on</strong>g> may not <strong>on</strong>ly reduce populati<strong>on</strong> sizes, but – at least in<br />

amphibians – also shift age distributi<strong>on</strong>s toward younger age classes resulting in reduced reproducti<strong>on</strong><br />

[10]. Even though road killings reduce road crossing some movement across <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

road may occur; <str<strong>on</strong>g>the</str<strong>on</strong>g> barrier effect will not be total unless road mortality is 100%.<br />

Many species are able to detect <str<strong>on</strong>g>roads</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby actively avoid <str<strong>on</strong>g>the</str<strong>on</strong>g>m [11]. While this<br />

behaviour reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> road-killing, it also limits access to resources and fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r isolates<br />

populati<strong>on</strong>s <strong>on</strong> <strong>on</strong>e side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> road [12]. Thus, animals’ behavioural resp<strong>on</strong>ses to <str<strong>on</strong>g>roads</str<strong>on</strong>g> may<br />

enhance <str<strong>on</strong>g>the</str<strong>on</strong>g> barrier effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> road. C<strong>on</strong>sequently, road effects <strong>on</strong> populati<strong>on</strong> persistence<br />

may depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> between road mortality and road avoidance [13, 14].<br />

Fragmentati<strong>on</strong><br />

The barrier effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> fragments <str<strong>on</strong>g>the</str<strong>on</strong>g> natural habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> species; c<strong>on</strong>sistently dividing c<strong>on</strong>tinuous<br />

areas <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat into smaller and more isolated fragments. Today, fragmentati<strong>on</strong> and<br />

habitat loss are c<strong>on</strong>sidered <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest threat to biodiversity and populati<strong>on</strong> persistence [15].<br />

All else being equal, habitat loss will reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> resources and c<strong>on</strong>sequently also<br />

populati<strong>on</strong> sizes [16]. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, fragmentati<strong>on</strong> divides a populati<strong>on</strong> into several smaller<br />

subpopulati<strong>on</strong>s. Small populati<strong>on</strong>s are more vulnerable to envir<strong>on</strong>mental and demographic<br />

stochasticity and thus have a higher risk <str<strong>on</strong>g>of</str<strong>on</strong>g> extincti<strong>on</strong>. [17-20] C<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>tinuous<br />

habitat area into several smaller also results in more edge area and a higher perimeter:area<br />

15


Synopsis<br />

ratio. This affects <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> a habitat patch and <str<strong>on</strong>g>the</str<strong>on</strong>g> area effectively available to a populati<strong>on</strong><br />

may be reduced [21]. The fragmentati<strong>on</strong> process changes <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape compositi<strong>on</strong> by<br />

substituting habitat with n<strong>on</strong>-habitat, and this may affect <str<strong>on</strong>g>the</str<strong>on</strong>g> movements <str<strong>on</strong>g>of</str<strong>on</strong>g> animals. Individuals<br />

may not move into n<strong>on</strong>-habitat at all, or if <str<strong>on</strong>g>the</str<strong>on</strong>g>y do <str<strong>on</strong>g>the</str<strong>on</strong>g> changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial arrangement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> habitat fragments may increase <str<strong>on</strong>g>the</str<strong>on</strong>g> time it takes to find resources, sometimes causing significantly<br />

higher transit mortalities [22-26]. Hence, fragmentati<strong>on</strong> impedes movement and<br />

isolates habitat fragments from each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. However, movement is an important part <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

organisms’ ecology. Individuals need to move to find necessary resources such as food, protecti<strong>on</strong>,<br />

mates, breeding sites or space, and <str<strong>on</strong>g>the</str<strong>on</strong>g> success in finding <str<strong>on</strong>g>the</str<strong>on</strong>g>se resources will determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> density and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong> [27, 28]. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> viability <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong><br />

will depend <strong>on</strong> how well resource patches are linked toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, and <str<strong>on</strong>g>the</str<strong>on</strong>g> term “c<strong>on</strong>nectivity” is<br />

frequently used to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> those linkages.<br />

C<strong>on</strong>nectivity<br />

C<strong>on</strong>nectivity depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> patchiness and <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape and it is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>refore a central c<strong>on</strong>cept in “spatial” disciplines like Metapopulati<strong>on</strong> ecology and Landscape<br />

ecology [29, 30]. Even though both disciplines are c<strong>on</strong>cerned with <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>nectivity<br />

<strong>on</strong> populati<strong>on</strong> persistence, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir focus is not quite <str<strong>on</strong>g>the</str<strong>on</strong>g> same [31].<br />

Metapopulati<strong>on</strong> ecology c<strong>on</strong>siders populati<strong>on</strong>s c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a network <str<strong>on</strong>g>of</str<strong>on</strong>g> subpopulati<strong>on</strong>s.<br />

Some or all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subpopulati<strong>on</strong>s repeatedly experience decreasing populati<strong>on</strong> sizes or<br />

even extincti<strong>on</strong> and may be rescued or recol<strong>on</strong>ized by immigrants from neighbouring subpopulati<strong>on</strong>s.<br />

The persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> whole populati<strong>on</strong> relies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals<br />

am<strong>on</strong>g subpopulati<strong>on</strong>s. Within <str<strong>on</strong>g>the</str<strong>on</strong>g> metapopulati<strong>on</strong> framework subpopulati<strong>on</strong>s are c<strong>on</strong>sidered<br />

to inhabit patches <str<strong>on</strong>g>of</str<strong>on</strong>g> homogenous habitat embedded in a homogenous matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-habitat.<br />

C<strong>on</strong>nectivity is regarded as <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a local populati<strong>on</strong> receiving an immigrant from<br />

ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r populati<strong>on</strong>. In its basic form c<strong>on</strong>nectivity depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> distance to and <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> d<strong>on</strong>or populati<strong>on</strong> (<str<strong>on</strong>g>of</str<strong>on</strong>g>ten measured as <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch) [29, 32-35], and thus<br />

c<strong>on</strong>nectivity is defined as a property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subpopulati<strong>on</strong> (or habitat patch).<br />

In Landscape ecology <str<strong>on</strong>g>the</str<strong>on</strong>g> focus is <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape. Habitat patches<br />

do not exist in a homogenous background matrix but is part <str<strong>on</strong>g>of</str<strong>on</strong>g> a landscape mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

habitats and structures [27]. The movement paths <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial arrangement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> habitats. Some habitat types are avoided, o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs are preferred; structures may<br />

16


Synopsis<br />

obstruct accessibility or incur high mortality. Thus, accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> resource patches does not<br />

<strong>on</strong>ly depend <strong>on</strong> distance but also <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> properties and c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix in between<br />

patches [22, 36]. Landscape ecology defines c<strong>on</strong>nectivity as <str<strong>on</strong>g>the</str<strong>on</strong>g> degree to which <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape<br />

facilitates or impedes movement am<strong>on</strong>g resource patches [30]. C<strong>on</strong>nectivity is regarded as a<br />

landscape property describing <str<strong>on</strong>g>the</str<strong>on</strong>g> permeability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mosaic, and opposite to metapopulati<strong>on</strong><br />

ecology does not c<strong>on</strong>tain any demographic indicators [37].<br />

Maintaining c<strong>on</strong>nectivity is generally regarded as an essential goal <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

c<strong>on</strong>servati<strong>on</strong> [38], and methods for quantifying c<strong>on</strong>nectivity are, thus, important. Improved<br />

computer power, advancing use <str<strong>on</strong>g>of</str<strong>on</strong>g> remote sensing and GIS have allowed for increasing use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spatially explicit methods, and <str<strong>on</strong>g>the</str<strong>on</strong>g>re is now a range <str<strong>on</strong>g>of</str<strong>on</strong>g> tools available for assessing fragmentati<strong>on</strong><br />

or c<strong>on</strong>nectivity [39-41]. Graph and circuit <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical approaches have been used to c<strong>on</strong>struct<br />

networks with habitat patches represented as nodes and links between nodes (edges)<br />

representing inter-node c<strong>on</strong>nectivity [42-44]. Network characteristics can <str<strong>on</strong>g>the</str<strong>on</strong>g>n be used as metrics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> landscape c<strong>on</strong>nectivity. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r methods are based <strong>on</strong> metapopulati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory and use<br />

incidence functi<strong>on</strong>s to model c<strong>on</strong>nectivity [45, 46]. In all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above menti<strong>on</strong>ed approaches<br />

c<strong>on</strong>nectivity between habitat patches can be based <strong>on</strong> dispersal distance al<strong>on</strong>e [47], but o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

species specific parameters can be included. This can be indices <strong>on</strong> populati<strong>on</strong> size or habitat<br />

resistance to movement [48]. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, least cost analysis can be used to substitute<br />

Euclidean distances with optimal movement paths between patches [49-51].<br />

Recently <str<strong>on</strong>g>the</str<strong>on</strong>g>re has been a growing interest in individual (or agent) based methods<br />

(IBM) in ecological modelling [52-55]. Recognising that movement patterns and, thus, also<br />

c<strong>on</strong>nectivity depend <strong>on</strong> individual behaviour, landscape c<strong>on</strong>figurati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir interacti<strong>on</strong><br />

[22, 40] individual based modelling seems a promising method for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>nectivity.<br />

IBM has been used to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> <strong>on</strong> dispersal success <str<strong>on</strong>g>of</str<strong>on</strong>g> for example<br />

Eurasian lynx [56] and Elk [57]. Graf, et al. [58] assessed <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity between patchy<br />

populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Capercaillie embedded in a mountainous landscape. A generic individual based<br />

model to simulate dispersal (J-Walk) has been developed by Gardner and Gustafs<strong>on</strong> [59] and<br />

used to estimate c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> species, e.g. Delmarva fox squirrel [60],<br />

Black bears [61] and American marten [62]. FunC<strong>on</strong> [63] is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r individual based c<strong>on</strong>nectivity<br />

tool which can be applied <strong>on</strong> bird species.<br />

17


Synopsis<br />

Objective<br />

Over <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade a growing amount <str<strong>on</strong>g>of</str<strong>on</strong>g> literature has documented <str<strong>on</strong>g>the</str<strong>on</strong>g> severe <str<strong>on</strong>g>impact</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transport infrastructure <strong>on</strong> biodiversity, populati<strong>on</strong> persistence and gene flow [1, 2, 12, 64-<br />

66], and <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an increasing awareness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> finding agreement between<br />

nature c<strong>on</strong>servati<strong>on</strong> and land use. In Europe, <str<strong>on</strong>g>the</str<strong>on</strong>g> EU Habitats directive enjoins member states<br />

to safeguard <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological performance <str<strong>on</strong>g>of</str<strong>on</strong>g> breeding sites and resting places <str<strong>on</strong>g>of</str<strong>on</strong>g> species protected<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> Habitat directive annex IV [67]. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, according to EU legislati<strong>on</strong>, all<br />

major projects, including infrastructure projects, are subject to Envir<strong>on</strong>mental Impact Assessment<br />

(EIA) [68]. Infra Eco Network Europe (IENE), a network <str<strong>on</strong>g>of</str<strong>on</strong>g> specialists, governmental<br />

agencies, scientists and NGOs, enables cross-boundary and interdisciplinary cooperati<strong>on</strong><br />

<strong>on</strong> issues regarding ecologically sustainable transportati<strong>on</strong> systems. A prominent result from<br />

IENE has been <str<strong>on</strong>g>the</str<strong>on</strong>g> European review <str<strong>on</strong>g>of</str<strong>on</strong>g> Habitat Fragmentati<strong>on</strong> due to Linear Transportati<strong>on</strong><br />

Infrastructure [69] as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> European handbook <strong>on</strong> sustainable road planning [70]; both<br />

published by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Communities.<br />

To ensure ecologically sustainable road planning, c<strong>on</strong>servati<strong>on</strong> measures must be taken<br />

into c<strong>on</strong>siderati<strong>on</strong> already in <str<strong>on</strong>g>the</str<strong>on</strong>g> earliest phases <str<strong>on</strong>g>of</str<strong>on</strong>g> road development. This requires adequate<br />

tools for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>impact</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure and <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigati<strong>on</strong> measures<br />

[71-73]. For this reas<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish Road Directorate decided to finance a PhD project<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> objective <str<strong>on</strong>g>of</str<strong>on</strong>g> developing a management tool which could be used to substantiate that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> status <str<strong>on</strong>g>of</str<strong>on</strong>g> annex IV species would remain unaffected by a given road project<br />

[67]. The <strong>Moor</strong> frog (Rana arvalis) was chosen as <str<strong>on</strong>g>the</str<strong>on</strong>g> model species. This p<strong>on</strong>d breeding amphibian<br />

is listed in annex IV <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Habitats directive, but is relatively comm<strong>on</strong>, at least in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

eastern part <str<strong>on</strong>g>of</str<strong>on</strong>g> Denmark. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g>re will <str<strong>on</strong>g>of</str<strong>on</strong>g>ten be a need to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> new<br />

road c<strong>on</strong>structi<strong>on</strong>s <strong>on</strong> local populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong>.<br />

The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> project was to provide a standardized and scientifically well founded<br />

basis for decisi<strong>on</strong>s c<strong>on</strong>cerning road lay-out and mitigati<strong>on</strong> measures. The management tool<br />

should support decisi<strong>on</strong> making by enabling caseworkers<br />

to find <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal locati<strong>on</strong> and road lay-out for a specific species<br />

to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> need for mitigati<strong>on</strong> measures, such as tunnels, fences and compensati<strong>on</strong> habitat<br />

for a specific species<br />

to identity <str<strong>on</strong>g>the</str<strong>on</strong>g> best locati<strong>on</strong> for tunnels, fences and compensati<strong>on</strong> habitat<br />

18


Synopsis<br />

to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigati<strong>on</strong> measure <strong>on</strong> ecological performance<br />

The project resulted in <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> a spatially explicit and individual based model<br />

called SAIA (Spatial Amphibian Impact Assessment).<br />

Designing SAIA<br />

When assessing ecological performance <str<strong>on</strong>g>the</str<strong>on</strong>g> most obvious metrics are populati<strong>on</strong> size and<br />

persistence [74]. In general, <str<strong>on</strong>g>roads</str<strong>on</strong>g> can affect amphibian populati<strong>on</strong>s in three ways – by destructi<strong>on</strong><br />

and fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat, by road kills, or by disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> movement patterns<br />

[5, 7, 75]. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> first step in <str<strong>on</strong>g>the</str<strong>on</strong>g> model development has been to c<strong>on</strong>struct a c<strong>on</strong>ceptual<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> possible effects <str<strong>on</strong>g>of</str<strong>on</strong>g> road c<strong>on</strong>structi<strong>on</strong> <strong>on</strong> a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong>.<br />

C<strong>on</strong>ceptual model<br />

The <strong>Moor</strong> frog is a p<strong>on</strong>d breeding amphibian that needs aquatic as well as terrestrial habitat to<br />

complete its life cycle. The first phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> life cycle, as egg and larva, takes place in shallow<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten ephemeral p<strong>on</strong>ds. The remaining part takes place in terrestrial habitat while p<strong>on</strong>ds<br />

are <strong>on</strong>ly visited during breeding [76, 77]. The life cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Moor</strong> frog is characterized by<br />

two types <str<strong>on</strong>g>of</str<strong>on</strong>g> movement: migrati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>al intrapopulati<strong>on</strong>al movement <str<strong>on</strong>g>of</str<strong>on</strong>g> adult individuals<br />

between summer habitat and breeding p<strong>on</strong>ds and dispersal, <str<strong>on</strong>g>the</str<strong>on</strong>g> interpopulati<strong>on</strong>al<br />

movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> newly metamorphosed <strong>frogs</strong> away from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal p<strong>on</strong>d [77-81]. Many amphibian<br />

populati<strong>on</strong>s are c<strong>on</strong>sidered to be organised as a metapopulati<strong>on</strong> [82-85]. This has not<br />

been studied explicitly for <strong>Moor</strong> <strong>frogs</strong>, but it is generally assumed by experts (pers. comm.)<br />

that <strong>Moor</strong> <strong>frogs</strong> form regi<strong>on</strong>al networks <str<strong>on</strong>g>of</str<strong>on</strong>g> subpopulati<strong>on</strong>s. Thus, regi<strong>on</strong>al populati<strong>on</strong> persistence<br />

depends <strong>on</strong> successful dispersal between subpopulati<strong>on</strong>s.<br />

Given this background, it seems reas<strong>on</strong>able to assume that <str<strong>on</strong>g>roads</str<strong>on</strong>g> can affect <str<strong>on</strong>g>the</str<strong>on</strong>g> persistence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> frog populati<strong>on</strong>s in several ways (Fig 1):<br />

destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic habitat<br />

destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> terrestrial habitat<br />

fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> terrestrial habitat<br />

impaired migrati<strong>on</strong> between aquatic and terrestrial habitat<br />

impaired dispersal between subpopulati<strong>on</strong>s<br />

19


Synopsis<br />

The first effect prevents <str<strong>on</strong>g>the</str<strong>on</strong>g> subpopulati<strong>on</strong> from reproducing and is c<strong>on</strong>sidered equal to destructi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subpopulati<strong>on</strong>. The next three effects reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> amount and quality <str<strong>on</strong>g>of</str<strong>on</strong>g> accessible<br />

terrestrial habitat, and hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> that can be sustained by <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat.<br />

The last effect reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> (re)col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat patches, resulting in<br />

isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> subpopulati<strong>on</strong>s.<br />

Figure 1<br />

C<strong>on</strong>ceptual model <str<strong>on</strong>g>of</str<strong>on</strong>g> road effects <strong>on</strong> a regi<strong>on</strong>al<br />

<strong>Moor</strong> frog populati<strong>on</strong>. Dotted lines<br />

delimit subpopulati<strong>on</strong>s, blue dots represent<br />

breeding p<strong>on</strong>ds and green areas are summer<br />

habitat fragments.<br />

Processes affected by <str<strong>on</strong>g>roads</str<strong>on</strong>g> are outlined in<br />

red<br />

To incorporate local as well regi<strong>on</strong>al populati<strong>on</strong> dynamics into <str<strong>on</strong>g>the</str<strong>on</strong>g> model, I combine individual<br />

based modelling with a populati<strong>on</strong> dynamics model. The local populati<strong>on</strong> dynamics<br />

in each p<strong>on</strong>d are simulated by use <str<strong>on</strong>g>of</str<strong>on</strong>g> an age-based Leslie matrix and are affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> size<br />

and quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d and summer habitat. Regi<strong>on</strong>al effects are assessed by simulating<br />

dispersing <strong>frogs</strong>’ behavioural resp<strong>on</strong>ses to land cover and structure while moving<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape. This provides estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> immigrati<strong>on</strong> probabilities between subpopulati<strong>on</strong>s.<br />

These estimates reflect <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape to be entered into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

local dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> each p<strong>on</strong>d as immigrati<strong>on</strong> rates (Fig. 2).<br />

Figure 2<br />

Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> SAIA<br />

20


Synopsis<br />

The c<strong>on</strong>nectivity measure <str<strong>on</strong>g>of</str<strong>on</strong>g> SAIA does not adhere strictly to ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s<br />

used in metapopulati<strong>on</strong> or landscape ecology. Ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r it is an attempt to find a “third” way<br />

[31]. SAIA’s c<strong>on</strong>nectivity measure c<strong>on</strong>siders dispersal between subpopulati<strong>on</strong>s and, thus,<br />

adopts metapopulati<strong>on</strong> ecology’s patch based focus. However, as in landscape ecology, populati<strong>on</strong><br />

size (or any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r demographic indicator) does not enter into <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity measure.<br />

In SAIA, c<strong>on</strong>nectivity is solely a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape c<strong>on</strong>figurati<strong>on</strong> and animal behaviour<br />

and is measured as <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> an individual finding its way from habitat patch A to<br />

habitat patch B. Moreover, SAIA’s c<strong>on</strong>nectivity measure is an index <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> potential c<strong>on</strong>nectivity<br />

between all habitat patches, whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>y are populated or not. The populati<strong>on</strong> based<br />

model links <str<strong>on</strong>g>the</str<strong>on</strong>g> potential c<strong>on</strong>nectivity with local populati<strong>on</strong> dynamics, and estimated abundances<br />

and persistence probabilities can be regarded as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> realised c<strong>on</strong>nectivity.<br />

The habitat patch<br />

An important characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> SAIA is how <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch <str<strong>on</strong>g>of</str<strong>on</strong>g> a subpopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong><br />

<strong>frogs</strong> is represented. In most studies measuring or modelling c<strong>on</strong>nectivity in regi<strong>on</strong>al populati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> amphibians, <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d is used as <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial unit <str<strong>on</strong>g>of</str<strong>on</strong>g> a subpopulati<strong>on</strong> [85]. As<br />

<strong>Moor</strong> <strong>frogs</strong> mostly breed in <str<strong>on</strong>g>the</str<strong>on</strong>g> same p<strong>on</strong>d every year, SAIA also c<strong>on</strong>siders <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

potential site <str<strong>on</strong>g>of</str<strong>on</strong>g> a subpopulati<strong>on</strong> [86]. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> attributes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d al<strong>on</strong>e will<br />

not be an adequate descriptor <str<strong>on</strong>g>of</str<strong>on</strong>g> a subpopulati<strong>on</strong>’s habitat patch. Outside <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding seas<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>frogs</strong> reside in adequate terrestrial habitat (summer habitat) usually within a distance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

400 m from <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d (defined as migrati<strong>on</strong> distance) [77, 78]. Whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> size and quality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d may affect <str<strong>on</strong>g>the</str<strong>on</strong>g> reproductive output [87], it is reas<strong>on</strong>able to assume that<br />

adult abundance will depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount and quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial habitat in which <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>frogs</strong> live during summer. C<strong>on</strong>sequently, in SAIA <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch <str<strong>on</strong>g>of</str<strong>on</strong>g> a subpopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>Moor</strong> <strong>frogs</strong> is defined as complementary habitat patch c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a breeding p<strong>on</strong>d and all<br />

accessible summer habitat fragments within migrati<strong>on</strong> distance. Accessibility is important in<br />

this c<strong>on</strong>text. Roads (or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r impregnable structures) can functi<strong>on</strong> as barriers preventing access<br />

to resources <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite side [88]. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat available for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>frogs</strong> is<br />

restricted by linear infrastructure. C<strong>on</strong>versely, c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> underpasses can re-establish <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>necti<strong>on</strong> with isolated habitat fragments (Fig. 3).<br />

21


Synopsis<br />

A Figure 3<br />

Illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> how accessible summer habitat is identified.<br />

Blue circle is a p<strong>on</strong>d; dotted circle represents maximum migrati<strong>on</strong><br />

distance. Green areas are accessible summer habitat<br />

while shaded areas are inaccessible summer habitat.<br />

B<br />

A) All summer habitat within migrati<strong>on</strong> distance is regarded<br />

as accessible<br />

B) Road traversing <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat prevents access to summer<br />

habitat <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> road<br />

C) Structures breaking <str<strong>on</strong>g>the</str<strong>on</strong>g> road such as underpasses again<br />

C<br />

permits access to summer habitat <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

road.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> model, <str<strong>on</strong>g>the</str<strong>on</strong>g> carrying capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> a habitat patch is determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> accessible<br />

summer habitat, and adult survival is modelled as depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> frog density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

summer habitat. The effective area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong><br />

and, thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat is weighted by <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> edges [89]. In real<br />

landscapes summer habitat is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten shared by several breeding p<strong>on</strong>ds, and in <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

frog density <str<strong>on</strong>g>of</str<strong>on</strong>g> a single summer habitat cell, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>ds sharing <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat.<br />

Dispersal behaviour<br />

Individual based modelling is a little like story telling. Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> available research <strong>on</strong><br />

behaviour, patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance, distributi<strong>on</strong> etc, you try to think like your species. And <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

model becomes your story <str<strong>on</strong>g>of</str<strong>on</strong>g> how you believe individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> modelled species experience<br />

and react to <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s and circumstances c<strong>on</strong>stituting <str<strong>on</strong>g>the</str<strong>on</strong>g>ir envir<strong>on</strong>ment. In more<br />

scientific terms, models can be regarded as hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ses [55] and, thus, SAIA is my hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis<br />

<strong>on</strong> how newly metamorphosed <strong>frogs</strong> leave <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal p<strong>on</strong>d and move through <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape<br />

until <str<strong>on</strong>g>the</str<strong>on</strong>g>y settle in a new habitat patch.<br />

Young <strong>frogs</strong> have no prior knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape <str<strong>on</strong>g>the</str<strong>on</strong>g>y disperse into. While dispersing<br />

<strong>frogs</strong> may have an innate urge to move away from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal p<strong>on</strong>d, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir movements<br />

22


Synopsis<br />

are also assumed to be affected by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir immediate c<strong>on</strong>cern <str<strong>on</strong>g>of</str<strong>on</strong>g> staying alive [77, 80, 90]. Thus,<br />

movement decisi<strong>on</strong>s are usually centred <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental cues, which guide <str<strong>on</strong>g>the</str<strong>on</strong>g> animals<br />

into habitat where survival probabilities are high. Very little is known about <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

juveniles. Dispersal distances are recorded to be between a few hundred meters up to 1-2<br />

kilometres [77, 91, 92], but what triggers <str<strong>on</strong>g>the</str<strong>on</strong>g> decisi<strong>on</strong> to stop and settle down<br />

Adult <strong>frogs</strong> show a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> site fidelity in regard to breeding p<strong>on</strong>d and summer<br />

habitat, and juvenile <strong>frogs</strong> appear to inhabit <str<strong>on</strong>g>the</str<strong>on</strong>g> same summer habitat as <str<strong>on</strong>g>the</str<strong>on</strong>g> adults [77, 86, 93,<br />

94]. During breeding migrati<strong>on</strong>s adults <str<strong>on</strong>g>of</str<strong>on</strong>g>ten exhibit quite goal-oriented movements, and<br />

some juveniles seem to follow adult <strong>frogs</strong> towards <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>ds although <str<strong>on</strong>g>the</str<strong>on</strong>g>y do not<br />

enter <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>ds <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves [77, 90]. Juvenile <strong>frogs</strong> have to stay alive for at least two years<br />

before <str<strong>on</strong>g>the</str<strong>on</strong>g>y start breeding. The above observati<strong>on</strong>s suggest that juvenile <strong>frogs</strong> spend <str<strong>on</strong>g>the</str<strong>on</strong>g> first<br />

couple <str<strong>on</strong>g>of</str<strong>on</strong>g> years in <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat learning to know and navigate in <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch. Thus<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> primary goal <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersing juveniles must be to find summer habitat where <str<strong>on</strong>g>the</str<strong>on</strong>g>y can survive<br />

until maturity. The next step will <str<strong>on</strong>g>the</str<strong>on</strong>g>n be to find a suitable breeding p<strong>on</strong>d. <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dispersal behaviour, I <str<strong>on</strong>g>the</str<strong>on</strong>g>refore assume that it is <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than<br />

breeding p<strong>on</strong>ds that triggers <str<strong>on</strong>g>the</str<strong>on</strong>g> settling behaviour. When a dispersing frog encounters summer<br />

habitat it may decide to stop moving and settle in <str<strong>on</strong>g>the</str<strong>on</strong>g> new habitat, without knowing<br />

whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a breeding p<strong>on</strong>d nearby or not.<br />

SAIA v1.0<br />

The resulting model, SAIA v1.0, is meant to be a strategic management tool supporting decisi<strong>on</strong>-making.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, it is meant to be used by n<strong>on</strong>-specialists. Therefore, it should be<br />

intuitively understandable, flexible, easy to use and with an output that can be interpreted<br />

without much effort.<br />

The workflow is simple: a GIS map <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relevant area must be c<strong>on</strong>structed and c<strong>on</strong>verted<br />

into a text file; <str<strong>on</strong>g>the</str<strong>on</strong>g>n imported into SAIA and <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis can be started. After <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simulati<strong>on</strong>s, SAIA generates several types <str<strong>on</strong>g>of</str<strong>on</strong>g> output in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> text files and shape files to<br />

be used in GIS (Fig. 4).<br />

23


Synopsis<br />

Figure 4<br />

SAIA’s workflow<br />

At least two scenarios have to be c<strong>on</strong>structed to carry out a meaningful analysis. The<br />

first scenario should be a map <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area as it is before <str<strong>on</strong>g>the</str<strong>on</strong>g> planned road c<strong>on</strong>structi<strong>on</strong> (scenario<br />

0). This analysis measures <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> original landscape and is a<br />

reference against which o<str<strong>on</strong>g>the</str<strong>on</strong>g>r scenarios are to be compared. The sec<strong>on</strong>d map (scenario 1)<br />

should show <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape as it is expected to be after <str<strong>on</strong>g>the</str<strong>on</strong>g> road c<strong>on</strong>structi<strong>on</strong>s. This will typically<br />

involve drawing <str<strong>on</strong>g>the</str<strong>on</strong>g> new road or, in case <str<strong>on</strong>g>of</str<strong>on</strong>g> a road expansi<strong>on</strong>, changing <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> original road. Breeding p<strong>on</strong>ds destroyed by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> work are removed from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

map. More indirect effects such as reduced habitat quality close to <str<strong>on</strong>g>the</str<strong>on</strong>g> road or expected<br />

changes in traffic intensity (and thus road mortality) <str<strong>on</strong>g>of</str<strong>on</strong>g> adjacent <str<strong>on</strong>g>roads</str<strong>on</strong>g> can also be incorporated<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> map. In combinati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> scenario 0 and scenario 1 make it possible to<br />

assess <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> road c<strong>on</strong>structi<strong>on</strong> <strong>on</strong> c<strong>on</strong>nectivity and populati<strong>on</strong> persistence which c<strong>on</strong>stitute<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> basis for planning <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigati<strong>on</strong> measures. Hereafter, additi<strong>on</strong>al scenarios with alternative<br />

suggesti<strong>on</strong>s for mitigati<strong>on</strong> measures can be c<strong>on</strong>structed, analysed and compared.<br />

As input data SAIA needs two text file; <strong>on</strong>e file to c<strong>on</strong>struct <str<strong>on</strong>g>the</str<strong>on</strong>g> land cover map and a<br />

<strong>on</strong>e file c<strong>on</strong>taining data about <str<strong>on</strong>g>the</str<strong>on</strong>g> potential breeding p<strong>on</strong>ds in <str<strong>on</strong>g>the</str<strong>on</strong>g> area. The data in <str<strong>on</strong>g>the</str<strong>on</strong>g> input<br />

files have to be structured in a specific way, but <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no special requirements <strong>on</strong> which<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware to be used when c<strong>on</strong>structing <str<strong>on</strong>g>the</str<strong>on</strong>g> files. In this project, <str<strong>on</strong>g>the</str<strong>on</strong>g> land cover maps are based<br />

<strong>on</strong> several GIS layers describing <str<strong>on</strong>g>roads</str<strong>on</strong>g>, buildings, nature reserves, fallows, fields and so <strong>on</strong>,<br />

while data <strong>on</strong> breeding p<strong>on</strong>ds originate from field surveys. The c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> land cover<br />

maps has not been entirely trivial as data had to be obtained from many different digital<br />

24


Synopsis<br />

sources. The c<strong>on</strong>sultancy firm AmphiC<strong>on</strong>sult has been resp<strong>on</strong>sible for <str<strong>on</strong>g>the</str<strong>on</strong>g> job and has developed<br />

a standard protocol for c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> land cover maps to be used with SAIA [95]. Even<br />

though, map c<strong>on</strong>structi<strong>on</strong> has not been part <str<strong>on</strong>g>of</str<strong>on</strong>g> my PhD project I have been involved to ensure<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> compatibility with SAIA.<br />

SAIA produces output regarding c<strong>on</strong>nectivity, populati<strong>on</strong> dynamics as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster analysis based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity matrix (examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> output files can<br />

be found in <str<strong>on</strong>g>the</str<strong>on</strong>g> appendix):<br />

A text file with descriptive statistics <strong>on</strong> regi<strong>on</strong>al c<strong>on</strong>nectivity, abundance and populati<strong>on</strong><br />

persistence probability as well as descriptive statistics <strong>on</strong> abundance and persistence probability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> individual p<strong>on</strong>d populati<strong>on</strong>s.<br />

A text file c<strong>on</strong>taining informati<strong>on</strong> <strong>on</strong> clusters and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir p<strong>on</strong>d members as well as c<strong>on</strong>nectivity<br />

within and between clusters<br />

In additi<strong>on</strong>, SAIA produces several GIS data files for graphic display and fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r analysis in<br />

GIS s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware:<br />

A point-data set with informati<strong>on</strong> <strong>on</strong> mean estimated abundance and populati<strong>on</strong> persistence<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>ds.<br />

Vector-data set with informati<strong>on</strong> about immigrati<strong>on</strong> probability between p<strong>on</strong>ds (c<strong>on</strong>nectivity<br />

network)<br />

Vector-data set with informati<strong>on</strong> about cluster c<strong>on</strong>figurati<strong>on</strong><br />

C<strong>on</strong>clusi<strong>on</strong><br />

The following three chapters c<strong>on</strong>tain manuscripts representing different stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> modelling<br />

process. In <str<strong>on</strong>g>the</str<strong>on</strong>g> first manuscript, I use a simple model to explore <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> complementary<br />

habitat patch and how intra-patch heterogeneity affects immigrati<strong>on</strong> and emigrati<strong>on</strong><br />

probabilities. This manuscript has been submitted to <str<strong>on</strong>g>the</str<strong>on</strong>g> Open Access journal “Web<br />

Ecology” and been peer-reviewed. It is now under revisi<strong>on</strong> to be resubmitted so<strong>on</strong>. The sec<strong>on</strong>d<br />

manuscript uses a light-versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SAIA and explores how changes in levels <str<strong>on</strong>g>of</str<strong>on</strong>g> road<br />

avoidance and road mortality affect c<strong>on</strong>nectivity locally as well as regi<strong>on</strong>ally. The third<br />

manuscript describes <str<strong>on</strong>g>the</str<strong>on</strong>g> full SAIA model. By means <str<strong>on</strong>g>of</str<strong>on</strong>g> a case study, I dem<strong>on</strong>strate how<br />

SAIA can be used for assessing which management measures would be best to mitigate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

25


Synopsis<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape fragmentati<strong>on</strong> caused by road c<strong>on</strong>structi<strong>on</strong>s. These last two manuscripts<br />

are submitted to <str<strong>on</strong>g>the</str<strong>on</strong>g> Open Access journal “Nature C<strong>on</strong>servati<strong>on</strong>”.<br />

<str<strong>on</strong>g>Modelling</str<strong>on</strong>g> is a never-ending story and <str<strong>on</strong>g>the</str<strong>on</strong>g> name “SAIA v1.0” implies <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a versi<strong>on</strong> 2.0. In <str<strong>on</strong>g>the</str<strong>on</strong>g> coming m<strong>on</strong>ths, SAIA will be implemented as a planning tool in <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish<br />

Road Directorate and this will be <str<strong>on</strong>g>the</str<strong>on</strong>g> real test <str<strong>on</strong>g>of</str<strong>on</strong>g> SAIA. As a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> landscapes are being<br />

analysed, <str<strong>on</strong>g>the</str<strong>on</strong>g> validity and usefulness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> output will be tested and through dialogs with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> users, <str<strong>on</strong>g>the</str<strong>on</strong>g> model design may be adjusted. The functi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> SAIA may also be improved<br />

by incorporating o<str<strong>on</strong>g>the</str<strong>on</strong>g>r protected amphibian species with ecology similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Moor</strong><br />

frog, like for instance Crested newt (Triturus cristatus).<br />

SAIA is not <strong>on</strong>ly a planning tool. The model can also be used to explore o<str<strong>on</strong>g>the</str<strong>on</strong>g>r aspects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>impact</str<strong>on</strong>g> assessments or hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ses c<strong>on</strong>cerning road ecology. By applying a “virtual ecologist”<br />

approach [96] different types <str<strong>on</strong>g>of</str<strong>on</strong>g> input data can be tested and compared. Of interest could<br />

be how substituting counts <str<strong>on</strong>g>of</str<strong>on</strong>g> egg masses with presence/absence data or using aerial photos to<br />

assess p<strong>on</strong>d quality will affect model output. Additi<strong>on</strong>ally, virtual experiments with varying<br />

sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> survey area could give insights about effective sampling schemes.<br />

26


Synopsis<br />

References<br />

1. C<str<strong>on</strong>g>of</str<strong>on</strong>g>fin, A.W. (2007). From roadkill to road ecology: A review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Transport Geography 15, 396-406.<br />

2. Fahrig, L., and Rytwinski, T. (2009). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Roads <strong>on</strong> Animal Abundance: an Empirical<br />

Review and Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. Ecology and Society 14.<br />

3. Bruinderink, G., and Hazebroek, E. (1996). Ungulate traffic collisi<strong>on</strong>s in Europe. C<strong>on</strong>servati<strong>on</strong><br />

Biology 10, 1059-1067.<br />

4. Garriga, N., Santos, X., M<strong>on</strong>tori, A., Richter-Boix, A., Franch, M., and Llorente, G.A.<br />

(2012). Are protected areas truly protected The <str<strong>on</strong>g>impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> road traffic <strong>on</strong> vertebrate<br />

fauna. Biodiversity and C<strong>on</strong>servati<strong>on</strong> 21, 2761-2774.<br />

5. Elzanowski, A., Ciesiolkiewicz, J., Kaczor, M., Radwanska, J., and Urban, R. (2009).<br />

Amphibian road mortality in Europe: a meta-analysis with new data from Poland. European<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Research 55, 33-43.<br />

6. Hels, T., and Buchwald, E. (2001). The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> road kills <strong>on</strong> amphibian populati<strong>on</strong>s.<br />

Biological C<strong>on</strong>servati<strong>on</strong> 99, 331-340.<br />

7. Pukey, M. (2006). Amphibian road kills: a global perspective.<br />

8. Rytwinski, T., and Fahrig, L. (2012). Do species life history traits explain populati<strong>on</strong><br />

resp<strong>on</strong>ses to <str<strong>on</strong>g>roads</str<strong>on</strong>g> A meta-analysis. Biological C<strong>on</strong>servati<strong>on</strong> 147, 87-98.<br />

9. Carr, L.W., and Fahrig, L. (2001). Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> road traffic <strong>on</strong> two amphibian species <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

differing vagility. C<strong>on</strong>servati<strong>on</strong> Biology 15, 1071-1078.<br />

10. Karraker, N.E., and Gibbs, J.P. (2011). C<strong>on</strong>trasting road effect signals in reproducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-versus short-lived amphibians. Hydrobiologia 664, 213-218.<br />

11. Benítez-López, A., Alkemade, R., and Verweij, P.A. (2010). The <str<strong>on</strong>g>impact</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> and<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r infrastructure <strong>on</strong> mammal and bird populati<strong>on</strong>s: A meta-analysis. Biological C<strong>on</strong>servati<strong>on</strong><br />

143, 1307-1316.<br />

12. Forman, R.T.T., and Alexander, L.E. (1998). Roads and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir major ecological effects.<br />

Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and Systematics 29.<br />

13. Jaeger, J.a.G., Bowman, J., Brennan, J., Fahrig, L., Bert, D., Bouchard, J., Charb<strong>on</strong>neau,<br />

N., Frank, K., Gruber, B., and v<strong>on</strong> Toschanowitz, K.T. (2005). Predicting when animal<br />

populati<strong>on</strong>s are at risk from <str<strong>on</strong>g>roads</str<strong>on</strong>g>: an interactive model <str<strong>on</strong>g>of</str<strong>on</strong>g> road avoidance behavior.<br />

Ecological <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> 185, 329-348.<br />

14. Jaeger, J.a.G., and Fahrig, L. (2004). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Road Fencing <strong>on</strong> Populati<strong>on</strong> Persistence.<br />

C<strong>on</strong>servati<strong>on</strong> Biology 18, 1651-1657.<br />

15. Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-<br />

Sanwald, E., Huenneke, L.F., Jacks<strong>on</strong>, R.B., Kinzig, A., et al. (2000). Biodiversity -<br />

Global biodiversity scenarios for <str<strong>on</strong>g>the</str<strong>on</strong>g> year 2100. Science 287, 1770-1774.<br />

16. Fahrig, L. (2001). How much habitat is enough Biological C<strong>on</strong>servati<strong>on</strong> 100, 65-74.<br />

17. Didham, R.K. (2010). Ecological C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> Habitat Fragmentati<strong>on</strong>. In eLS.<br />

(John Wiley & S<strong>on</strong>s, Ltd).<br />

27


Synopsis<br />

18. Fahrig, L. (2003). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat fragmentati<strong>on</strong> <strong>on</strong> biodiversity. Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ecology Evoluti<strong>on</strong> and Systematics 34, 487-515.<br />

19. Wiegand, T., Revilla, E., and Mol<strong>on</strong>ey, K.A. (2005). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat loss and fragmentati<strong>on</strong><br />

<strong>on</strong> populati<strong>on</strong> dynamics. C<strong>on</strong>servati<strong>on</strong> Biology 19, 108-121.<br />

20. Fraterrigo, J.M., Pears<strong>on</strong>, S.M., and Turner, M.G. (2009). Joint effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat c<strong>on</strong>figurati<strong>on</strong><br />

and temporal stochasticity <strong>on</strong> populati<strong>on</strong> dynamics. Landscape Ecology 24,<br />

863-877.<br />

21. Ries, L., Fletcher, R.J., Battin, J., and Sisk, T.D. (2004). Ecological resp<strong>on</strong>ses to habitat<br />

edges: Mechanisms, models, and variability explained. Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology Evoluti<strong>on</strong><br />

and Systematics 35, 491-522.<br />

22. Fahrig, L. (2007). N<strong>on</strong>-optimal animal movement in human-altered landscapes. Functi<strong>on</strong>al<br />

Ecology 21, 1003-1015.<br />

23. Fahrig, L., and Nuttle, W.K. (2005). Populati<strong>on</strong> ecology in spatially heterogeneous envir<strong>on</strong>ments.<br />

Ecosystem Functi<strong>on</strong> in Heterogeneous Landscapes, 95-118.<br />

24. King, A.W., and With, K.A. (2002). Dispersal success <strong>on</strong> spatially structured landscapes:<br />

when do spatial pattern and dispersal behavior really matter Ecological <str<strong>on</strong>g>Modelling</str<strong>on</strong>g><br />

147, 23-39.<br />

25. Revilla, E., and Wiegand, T. (2008). Individual movement behavior, matrix heterogeneity,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> spatially structured populati<strong>on</strong>s. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al<br />

Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States <str<strong>on</strong>g>of</str<strong>on</strong>g> America 105, 19120-19125.<br />

26. Ricketts, T.H. (2001). The matrix matters: Effective isolati<strong>on</strong> in fragmented landscapes.<br />

American Naturalist 158, 87-99.<br />

27. Wiens, J.A., Stenseth, N.C., Vanhorne, B., and Ims, R.A. (1993). Ecological mechanisms<br />

and landscape ecology. Oikos 66, 369-380.<br />

28. Dunning, J.B., Daniels<strong>on</strong>, B.J., and Pulliam, H.R. (1992). Ecological processes that affect<br />

populati<strong>on</strong>s in complex landscapes. Oikos 65, 169-175.<br />

29. Hanski, I. (1999). Habitat c<strong>on</strong>nectivity, habitat c<strong>on</strong>tinuity, and metapopulati<strong>on</strong>s in dynamic<br />

landscapes. Oikos 87, 209-219.<br />

30. Taylor, P.D., Fahrig, L., Henein, K., and Merriam, G. (1993). C<strong>on</strong>nectivity is a vital<br />

element <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape structure. Oikos 68, 571-573.<br />

31. Wiens, J.A. (1997). Metapopulati<strong>on</strong> Dynamics and Landscape Ecology. In Metapopulati<strong>on</strong><br />

Biology: ecology, genetics, and evoluti<strong>on</strong>, I. Hanski and M.E. Gilpin, eds. (Academic<br />

press, Inc.).<br />

32. Hanski, I. (1999). Metapopulati<strong>on</strong> Ecology, (Oxford University Press).<br />

33. Hanski, I., and Simberl<str<strong>on</strong>g>of</str<strong>on</strong>g>f, D. (1997). The Metapopulati<strong>on</strong> Approach, Its history, C<strong>on</strong>ceptual<br />

domain, and Applicati<strong>on</strong> to C<strong>on</strong>servati<strong>on</strong>. In Metapopulati<strong>on</strong> Biology: ecology,<br />

genetics, and evoluti<strong>on</strong>, I. Hanski and M.E. Gilpin, eds. (Academic press, Inc.).<br />

34. Hanski, I. (1994). A practical model <str<strong>on</strong>g>of</str<strong>on</strong>g> metapopulati<strong>on</strong> dynamics. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal<br />

Ecology 63, 151-162.<br />

35. Hanski, I., and Ovaskainen, O. (2000). The metapopulati<strong>on</strong> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> a fragmented<br />

landscape. Nature 404, 755-758.<br />

28


Synopsis<br />

36. Fahrig, L., Baudry, J., Brot<strong>on</strong>s, L., Burel, F.G., Crist, T.O., Fuller, R.J., Sirami, C.,<br />

Siriwardena, G.M., and Martin, J.L. (2011). Functi<strong>on</strong>al landscape heterogeneity and<br />

animal biodiversity in agricultural landscapes. Ecology letters 14, 101-112.<br />

37. Tischendorf, L., and Fahrig, L. (2000). On <str<strong>on</strong>g>the</str<strong>on</strong>g> usage and measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape<br />

c<strong>on</strong>nectivity. Oikos 90, 7-19.<br />

38. Crooks, K.R., and Sanjayan, M. eds. (2006). C<strong>on</strong>nectivity C<strong>on</strong>servati<strong>on</strong> (Cambridge<br />

University Press).<br />

39. Calabrese, J.M., and Fagan, W.F. (2004). A comparis<strong>on</strong>-shopper's guide to c<strong>on</strong>nectivity<br />

metrics. Fr<strong>on</strong>tiers in Ecology and <str<strong>on</strong>g>the</str<strong>on</strong>g> Envir<strong>on</strong>ment 2, 529-536.<br />

40. Kindlmann, P., and Burel, F. (2008). C<strong>on</strong>nectivity measures: a review. Landscape Ecology<br />

23, 879-890.<br />

41. Kadoya, T. (2008). Assessing functi<strong>on</strong>al c<strong>on</strong>nectivity using empirical data. Populati<strong>on</strong><br />

Ecology 51, 5-15.<br />

42. Galpern, P., Manseau, M., and Fall, A. (2011). Patch-based graphs <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape c<strong>on</strong>nectivity:<br />

A guide to c<strong>on</strong>structi<strong>on</strong>, analysis and applicati<strong>on</strong> for c<strong>on</strong>servati<strong>on</strong>. Biological<br />

C<strong>on</strong>servati<strong>on</strong> 144, 44-55.<br />

43. Laita, A., Kotiaho, J.S., and M<strong>on</strong>kk<strong>on</strong>en, M. (2011). Graph-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic c<strong>on</strong>nectivity<br />

measures: what do <str<strong>on</strong>g>the</str<strong>on</strong>g>y tell us about c<strong>on</strong>nectivity Landscape Ecology 26, 951-967.<br />

44. McRae, B.H., Dicks<strong>on</strong>, B.G., Keitt, T.H., and Shah, V.B. (2008). Using circuit <str<strong>on</strong>g>the</str<strong>on</strong>g>ory to<br />

model c<strong>on</strong>nectivity in ecology, evoluti<strong>on</strong>, and c<strong>on</strong>servati<strong>on</strong>. Ecology 89, 2712-2724.<br />

45. Moilanen, A. (2004). SPOMSIM: s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware for stochastic patch occupancy models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

metapopulati<strong>on</strong> dynamics. Ecological <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> 179, 533-550.<br />

46. Quintana, S.M., Ramos, B.M., Martinez, M.A.C., and Pastor, I.O. (2010). A model for<br />

assessing habitat fragmentati<strong>on</strong> caused by new infrastructures in extensive territories -<br />

Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spanish strategic infrastructure and transport plan. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental management 91, 1087-1096.<br />

47. Minor, E.S., and Urban, D.L. (2008). A graph-<str<strong>on</strong>g>the</str<strong>on</strong>g>ory frarmework for evaluating landscape<br />

c<strong>on</strong>nectivity and c<strong>on</strong>servati<strong>on</strong> planning. C<strong>on</strong>servati<strong>on</strong> Biology 22, 297-307.<br />

48. Vasas, V., Magura, T., Jordan, F., and Tothmeresz, B. (2009). Graph <str<strong>on</strong>g>the</str<strong>on</strong>g>ory in acti<strong>on</strong>:<br />

evaluating planned highway tracks based <strong>on</strong> c<strong>on</strong>nectivity measures. Landscape Ecology<br />

24, 581-586.<br />

49. Adriaensen, F., Chard<strong>on</strong>, J.P., De Blust, G., Swinnen, E., Villalba, S., Gulinck, H., and<br />

Matthysen, E. (2003). The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 'least-cost' modelling as a functi<strong>on</strong>al landscape<br />

model. Landscape and urban planning 64, 233-247.<br />

50. Pinto, N., Keitt, T.H., and Wainright, M. (2012). LORACS: JAVA s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware for modeling<br />

landscape c<strong>on</strong>nectivity and matrix permeability. Ecography 35, 388-392.<br />

51. Janin, A., Léna, J.-P., Ray, N., Delacourt, C., Allemand, P., and Joly, P. (2009). Assessing<br />

landscape c<strong>on</strong>nectivity with calibrated cost-distance modelling: predicting comm<strong>on</strong><br />

toad distributi<strong>on</strong> in a c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> spreading agriculture. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology 46,<br />

833-841.<br />

29


Synopsis<br />

52. DeAngelis, D.L., and Mooij, W.M. (2005). Individual-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological and<br />

evoluti<strong>on</strong>ary processes. In Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology Evoluti<strong>on</strong> and Systematics, Volume<br />

36. pp. 147-168.<br />

53. Guzy, M.R., Smith, C.L., Bolte, J.P., Hulse, D.W., and Gregory, S.V. (2008). Policy<br />

Research Using Agent-Based Modeling to Assess Future Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> Urban Expansi<strong>on</strong><br />

into Farmlands and Forests. Ecology and Society 13.<br />

54. McLane, A.J., Semeniuk, C., McDermid, G.J., and Marceau, D.J. (2011). The role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

agent-based models in wildlife ecology and management. Ecological <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> 222,<br />

1544-1556.<br />

55. Grimm, V., and Railsback, S.F. (2005). Individual-based Modeling and Ecology,<br />

(Princet<strong>on</strong> University Press ).<br />

56. Kramer-Schadt, S., Revilla, E., Wiegand, T., and Breitenmoser, U. (2004). Fragmented<br />

landscapes, road mortality and patch c<strong>on</strong>nectivity: modelling influences <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Eurasian lynx. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology 41, 711-723.<br />

57. Frair, J.L., Merrill, E.H., Beyer, H.L., and Morales, J.M. (2008). Thresholds in landscape<br />

c<strong>on</strong>nectivity and mortality risks in resp<strong>on</strong>se to growing road networks. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ecology 45, 1504-1513.<br />

58. Graf, R.F., Kramer-Schadt, S., Fernandez, N., and Grimm, V. (2007). What you see is<br />

where you go Modeling dispersal in mountainous landscapes. Landscape Ecology 22,<br />

853-866.<br />

59. Gardner, R.H., and Gustafs<strong>on</strong>, E.J. (2004). Simulating dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> reintroduced species<br />

within heterogeneous landscapes. Ecological <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> 171, 339-358.<br />

60. Lookingbill, T.R., Gardner, R.H., Ferrari, J.R., and Keller, C.E. (2010). Combining a<br />

dispersal model with network <str<strong>on</strong>g>the</str<strong>on</strong>g>ory to assess habitat c<strong>on</strong>nectivity. Ecological Applicati<strong>on</strong>s<br />

20, 427-441.<br />

61. Morzillo, A.T., Ferrari, J.R., and Liu, J. (2011). An integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat evaluati<strong>on</strong>,<br />

individual based modeling, and graph <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for a potential black bear populati<strong>on</strong> recovery<br />

in sou<str<strong>on</strong>g>the</str<strong>on</strong>g>astern Texas, USA. Landscape Ecology 26, 69-81.<br />

62. Wasserman, T.N., Cushman, S.A., Shirk, A.S., Landguth, E.L., and Littell, J.S. (2012).<br />

Simulating <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> populati<strong>on</strong> c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> American marten<br />

(Martes americana) in <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Rocky Mountains, USA. Landscape Ecology 27,<br />

211-225.<br />

63. Pe'er, G., Henle, K., Dislich, C., and Frank, K. (2011). Breaking Functi<strong>on</strong>al C<strong>on</strong>nectivity<br />

into Comp<strong>on</strong>ents: A Novel Approach Using an Individual-Based Model, and First<br />

Outcomes. PLoS ONE 6.<br />

64. Spellerberg, I.F. (1998). Ecological effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> and traffic: a literature review.<br />

Global Ecology and Biogeography 7, 317-333.<br />

65. Trombulak, S.C., and Frissell, C.A. (2000). Review <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> <strong>on</strong><br />

terrestrial and aquatic communities. C<strong>on</strong>servati<strong>on</strong> Biology 14, 18-30.<br />

66. Holderegger, R., and Di Giulio, M. (2010). The genetic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g>: A review <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

empirical evidence. Basic and Applied Ecology 11, 522-531.<br />

30


Synopsis<br />

67. European-Council (1992). Council Directive 92/43/EEC <str<strong>on</strong>g>of</str<strong>on</strong>g> 21 May 1992 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> natural habitats and <str<strong>on</strong>g>of</str<strong>on</strong>g> wild fauna and flora. (European Communities).<br />

68. European-Council (1997). Council Directive 97/11/EC <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 March 1997 amending Directive<br />

85/337/EEC <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> certain public and private projects<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment. (European Communities).<br />

69. Trocmé, M., Cahill, S., de Vries, J.G., Farrall, H., Folkes<strong>on</strong>, L.G., Hichks, C., and Peymen,<br />

J. eds. (2003). COST 341 – Habitat Fragmentati<strong>on</strong> due to Transportati<strong>on</strong> Infrastructure<br />

(Office for Official Publicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> European Communities, Luxembourg).<br />

70. Iuell, B., Bekker, G.J., Cuperus, R., Dufek, J., Fry, G., Hicks, C., Hlaváˇc, V., Keller,<br />

V., B., R., C., Sangwine, T., et al. eds. (2003). Wildlife and Traffic: A European Handbook<br />

for Identifying C<strong>on</strong>flicts and Designing Soluti<strong>on</strong>s (Office for <str<strong>on</strong>g>of</str<strong>on</strong>g>ficial publicati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> European Communities, Luxembourg).<br />

71. Beckmann, J.P. (2010). Safe passages, highways, wildlife, and habitat c<strong>on</strong>nectivity,<br />

(Washingt<strong>on</strong>).<br />

72. G<strong>on</strong>tier, M., Mörtberg, U., and Balfors, B. (2010). Comparing GIS-based habitat models<br />

for applicati<strong>on</strong>s in EIA and SEA. Envir<strong>on</strong>mental Impact Assessment Review 30, 8-<br />

18.<br />

73. Forman, R.T.T., Sperling, D., Biss<strong>on</strong>ette, J.A., Clevenger, A.P., Cutshall, C.D., Dale,<br />

V.H., Fahrig, L., France, R., Goldman, C.R., Heanue, K., et al. (2003). Road ecology:<br />

science and soluti<strong>on</strong>s. Road ecology: science and soluti<strong>on</strong>s., Chp. 6.<br />

74. Boyce, M.S. (1992). Populati<strong>on</strong> Viability Analysis. Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and<br />

Systematics 23, 481-506.<br />

75. Andrews, K.M., Gibb<strong>on</strong>s, J.W., and Jochimsen, D.M. (2008). Ecological effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>roads</str<strong>on</strong>g> <strong>on</strong> amphibians and reptiles: a literature review.<br />

76. Glandt, D. (2008). Der <strong>Moor</strong>frosch (Rana arvalis): Erscheinungsvielfalt, Verbreitung,<br />

Lebensräume, Verhalten sowie Perspectiven für den Artenschutz. In The <strong>Moor</strong> Frog,<br />

Volume Zeitschrift für Feldherpetologie, Supplement 13, D. Glandt and R. Jehle, eds.<br />

(Bielefeld: Laurenti-Verlag).<br />

77. Hartung, H. (1991). Untersuchung zur terrestrischen Biologie v<strong>on</strong> Populati<strong>on</strong>en des<br />

<strong>Moor</strong>frosches (Rana arvalis NILSSON 1842) unter bes<strong>on</strong>derer Berücksichtigung der<br />

Jahresmobilität. In Fachbereiches Biologie, Volume PhD. (Hamburg: Universität Hamburg).<br />

78. Kovar, R., Brabec, M., Vita, R., and Bocek, R. (2009). Spring migrati<strong>on</strong> distances <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

some Central European amphibian species. Amphibia-reptilia 30, 367-378.<br />

79. Semlitsch, R.D. (2008). Differentiating migrati<strong>on</strong> and dispersal processes for p<strong>on</strong>dbreeding<br />

amphibians. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Management 72, 260-267.<br />

80. Sinsch, U. (1990). Migrati<strong>on</strong> and orientati<strong>on</strong> in anuran amphibians. Ethology Ecology<br />

& Evoluti<strong>on</strong> 2, 65-79.<br />

81. Hartel, T., Sas, I., Pernetta, A.P., and Geltsch, I.C. (2007). The reproductive dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> temperate amphibians: a review. North-Western Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology 3, 127-145.<br />

82. Hels, T. (2002). Populati<strong>on</strong> dynamics in a Danish metapopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spadefoot toads<br />

Pelobates fuscus. Ecography 25, 303-313.<br />

31


Synopsis<br />

83. Marsh, D. (2008). Metapopulati<strong>on</strong> viability analysis for amphibians. Animal C<strong>on</strong>servati<strong>on</strong><br />

11, 463-465.<br />

84. Marsh, D.M., and Trenham, P.C. (2001). Metapopulati<strong>on</strong> dynamics and amphibian c<strong>on</strong>servati<strong>on</strong>.<br />

C<strong>on</strong>servati<strong>on</strong> Biology 15, 40-49.<br />

85. Smith, M.A., and Green, D.M. (2005). Dispersal and <str<strong>on</strong>g>the</str<strong>on</strong>g> metapopulati<strong>on</strong> paradigm in<br />

amphibian ecology and c<strong>on</strong>servati<strong>on</strong>: are all amphibian populati<strong>on</strong>s metapopulati<strong>on</strong>s<br />

Ecography 28, 110-128.<br />

86. Loman, J. (1994). Site tenacity, within and between summers, <str<strong>on</strong>g>of</str<strong>on</strong>g> Rana arvalis and Rana<br />

temporaria. Alytes 12, 15-29.<br />

87. Loman, J., and Lardner, B. (2006). Does p<strong>on</strong>d quality limit <strong>frogs</strong> Rana arvalis and Rana<br />

temporaria in agricultural landscapes A field experiment. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology<br />

43, 690-700.<br />

88. Eigenbrod, F., Hecnar, S.J., and Fahrig, L. (2008). Accessible habitat: an improved<br />

measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat loss and <str<strong>on</strong>g>roads</str<strong>on</strong>g> <strong>on</strong> wildlife populati<strong>on</strong>s. Landscape<br />

Ecology 23, 159-168.<br />

89. Watts, K., and Handley, P. (2010). Developing a functi<strong>on</strong>al c<strong>on</strong>nectivity indicator to<br />

detect change in fragmented landscapes. Ecological Indicators 10, 552-557.<br />

90. Sjögren-Gulve, P. (1998). Spatial movement patterns in <strong>frogs</strong>: Differences between<br />

three Rana species. Ecoscience 5, 148-155.<br />

91. Baker, J.M.R., and Halliday, T.R. (1999). Amphibian col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new p<strong>on</strong>ds in an<br />

agricultural landscape. Herpetological Journal 9, 55-63.<br />

92. Vos, C.C., and Chard<strong>on</strong>, J.P. (1998). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat fragmentati<strong>on</strong> and road density<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> moor frog Rana arvalis. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology<br />

35, 44-56.<br />

93. Loman, J. (1978). Macrohabitat and microhabitat distributi<strong>on</strong> in Rana-arvalis and Ranatemporaria<br />

(amphibia, anura, ranidae) during summer. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Herpetology 12, 29-<br />

33.<br />

94. Loman, J. (1984). Density and survival <str<strong>on</strong>g>of</str<strong>on</strong>g> Rana arvalis and Rana temporaria. Alytes 3,<br />

125-134.<br />

95. Hassingboe, J., Neergaard, R.S., and Hesselsøe, M. (2012). Manual til produkti<strong>on</strong> af<br />

GIS raster kort til:”EDB-værktøj til at vurdere skader på bestande af padder /økologisk<br />

funkti<strong>on</strong>alitet”. (Amphi C<strong>on</strong>sult).<br />

96. Zurell, D., Berger, U., Cabral, J.S., Jeltsch, F., Meynard, C.N., Munkemuller, T., Nehrbass,<br />

N., Pagel, J., Reineking, B., Schroder, B., et al. (2010). The virtual ecologist approach:<br />

simulating data and observers. Oikos 119, 622-635.<br />

32


CHAPTER ONE<br />

EFFECTS OF WITHIN-PATCH<br />

HETEROGENEITY ON CONNECTIVITY<br />

IN POND-BREEDING AMPHIBIANS<br />

STUDIED BY MEANS OF AN<br />

INDIVIDUAL-BASED MODEL<br />

Submitted to Web Ecology<br />

October 2012<br />

Under revisi<strong>on</strong>


Chapter One<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> within-patch heterogeneity <strong>on</strong> c<strong>on</strong>nectivity<br />

in p<strong>on</strong>d-breeding amphibians studied by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an individual-based model<br />

M.-B. P<strong>on</strong>toppidan and G. Nachman<br />

Secti<strong>on</strong> for Ecology and Evoluti<strong>on</strong>, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen<br />

Universitetsparken 15, DK-2100 Copenhagen<br />

Corresp<strong>on</strong>dence: M.-B. P<strong>on</strong>toppidan (mbp@bio.ku.dk)<br />

Abstract<br />

The metapopulati<strong>on</strong> framework presumes <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> a local populati<strong>on</strong> to be c<strong>on</strong>tinuous<br />

and homogenous, and patch area is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used as a proxy for populati<strong>on</strong> size. Many populati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d-breeding amphibians are assumed to follow metapopulati<strong>on</strong>s dynamics, and<br />

c<strong>on</strong>nectivity is mostly measured between breeding p<strong>on</strong>ds. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>dbreeding<br />

amphibians is not <strong>on</strong>ly defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d but, typically, c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a breeding<br />

p<strong>on</strong>d surrounded by clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> disjoint summer habitat patches interspersed with an agricultural/semi-urban<br />

matrix. We hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>size that <str<strong>on</strong>g>the</str<strong>on</strong>g> internal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a habitat patch may<br />

change c<strong>on</strong>nectivity in two ways: i) by affecting animal movements and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby emigrati<strong>on</strong><br />

and immigrati<strong>on</strong> probabilities; ii) by affecting habitat quality and populati<strong>on</strong> size. To test our<br />

hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ses, we apply a spatially explicit individual-based model <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> frog dispersal. We<br />

find that <str<strong>on</strong>g>the</str<strong>on</strong>g> realised c<strong>on</strong>nectivity depends <strong>on</strong> internal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>the</str<strong>on</strong>g> target and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

source patch as well as <strong>on</strong> how habitat quality is affected by patch structure. Although fragmentati<strong>on</strong><br />

is generally thought to have negative effects <strong>on</strong> c<strong>on</strong>nectivity, our results suggest<br />

that, depending <strong>on</strong> patch structure and habitat quality, positive effects <strong>on</strong> c<strong>on</strong>nectivity may<br />

occur.<br />

35


Chapter One<br />

Introducti<strong>on</strong><br />

Within <str<strong>on</strong>g>the</str<strong>on</strong>g> framework <str<strong>on</strong>g>of</str<strong>on</strong>g> metapopulati<strong>on</strong>s, inter-patch c<strong>on</strong>nectivity is modelled as an incidence<br />

functi<strong>on</strong> measuring <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal success between two habitat patches (Moilanen and<br />

Nieminen 2002). The essential comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incidence functi<strong>on</strong> models are emigrati<strong>on</strong><br />

and immigrati<strong>on</strong> rates. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> emigrating individuals is assumed to depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

populati<strong>on</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> d<strong>on</strong>or patch and <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> an individual actually leaving <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

patch. Likewise, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> immigrants depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> probability that dispersing individuals<br />

will find <str<strong>on</strong>g>the</str<strong>on</strong>g> target patch (Hanski and Simberl<str<strong>on</strong>g>of</str<strong>on</strong>g>f 1997; Moilanen and Hanski 2006;<br />

Wiens 1997). A patch is assumed to c<strong>on</strong>stitute a c<strong>on</strong>tinuous and homogenous habitat area<br />

with all <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary resources needed for <str<strong>on</strong>g>the</str<strong>on</strong>g> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> a local populati<strong>on</strong>. The incidence<br />

functi<strong>on</strong> usually models <str<strong>on</strong>g>the</str<strong>on</strong>g> emigrati<strong>on</strong> and immigrati<strong>on</strong> rates as linear functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

d<strong>on</strong>or and target patch area, respectively. The survival probability during <str<strong>on</strong>g>the</str<strong>on</strong>g> transit between<br />

two patches is modelled as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> distance (Hanski and Simberl<str<strong>on</strong>g>of</str<strong>on</strong>g>f 1997; Kindlmann<br />

and Burel 2008; Moilanen and Hanski 2001; Moilanen and Hanski 2006; Moilanen and<br />

Nieminen 2002). However, it is questi<strong>on</strong>able to what extent <str<strong>on</strong>g>the</str<strong>on</strong>g> above assumpti<strong>on</strong>s apply to<br />

real populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> many species.<br />

Regi<strong>on</strong>al populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d-breeding amphibians are frequently c<strong>on</strong>sidered to be<br />

structured as metapopulati<strong>on</strong>s (Hels 2002; Marsh 2008; Marsh and Trenham 2001; Smith and<br />

Green 2005). P<strong>on</strong>d-breeding amphibians need p<strong>on</strong>ds for breeding and development <str<strong>on</strong>g>of</str<strong>on</strong>g> tadpoles,<br />

but o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise live most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir life in terrestrial habitat (also called summer habitat).<br />

Proximity between <str<strong>on</strong>g>the</str<strong>on</strong>g> required habitat types (landscape complementati<strong>on</strong>) is important for<br />

populati<strong>on</strong> size and persistence (Dunning et al. 1992; Haynes et al. 2007; Johns<strong>on</strong> et al. 2007;<br />

Pope et al. 2000). However, as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> increased landscape fragmentati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

summer habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> many subpopulati<strong>on</strong>s does not form <strong>on</strong>e c<strong>on</strong>tinuous patch. Typically, a<br />

subpopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d-breeding amphibians occupies a landscape c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> breeding<br />

p<strong>on</strong>ds surrounded by fragments <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat interspersed with an agricultural/semiurban<br />

matrix (Hamer and McD<strong>on</strong>nell 2008; Hartung 1991; Pillsbury and Miller 2008; Pope et<br />

al. 2000; Sjögren-Gulve 1998; Tram<strong>on</strong>tano 1998). Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> metapopulati<strong>on</strong> premise <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

c<strong>on</strong>tinuous and homogenous habitat patch is compromised, which might have c<strong>on</strong>sequences<br />

for patch c<strong>on</strong>nectivity and <str<strong>on</strong>g>the</str<strong>on</strong>g> way it is measured (Ro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmel 2004).<br />

36


Chapter One<br />

Numerous studies, empirical as well as modelling, have shown that structure and compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat matrix can have str<strong>on</strong>g effects <strong>on</strong> animal movement and dispersal success<br />

(Bender and Fahrig 2005; Chin and Taylor 2009; Gustafs<strong>on</strong> and Gardner 1996; Haynes<br />

and Cr<strong>on</strong>in 2006; Prevedello and Vieira 2010; Ricketts 2001; Vandermeer and Carvajal 2001;<br />

Watling et al. 2011). Similar effects may be found within heterogeneous habitat patches, such<br />

as those <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d-breeding amphibians. At <str<strong>on</strong>g>the</str<strong>on</strong>g> core <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch is <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d<br />

surrounded by satellites <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat fragments separated by matrix habitat. The summer<br />

habitat fragments within <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch work as a collective, functi<strong>on</strong>ing as a filter<br />

catching dispersers which will <str<strong>on</strong>g>the</str<strong>on</strong>g>n eventually find <str<strong>on</strong>g>the</str<strong>on</strong>g>ir way to <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d. Emigrati<strong>on</strong><br />

and immigrati<strong>on</strong> probabilities may thus be influenced by <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

summer habitat fragments within <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch.<br />

Metapopulati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory usually assumes that <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> a subpopulati<strong>on</strong> is proporti<strong>on</strong>al<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> patch it inhabits. However, in some cases, <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> occupied habitat<br />

may be a better predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> patch carrying capacity (Jaquiéry et al. 2008; Moilanen and Hanski<br />

1998). One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> factors that may affect habitat quality is <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat fragmentati<strong>on</strong>.<br />

Thus, a fragmented habitat may not be able to sustain as large a populati<strong>on</strong> as a n<strong>on</strong>fragmented<br />

habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> equal area due to a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> negative edge effects and reduced<br />

landscape complementati<strong>on</strong> (Dunning et al. 1992; Haynes et al. 2007; Johns<strong>on</strong> et al. 2007;<br />

Lehtinen et al. 2003; Pope et al. 2000; Ries et al. 2004).<br />

The internal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a habitat patch may <str<strong>on</strong>g>the</str<strong>on</strong>g>refore change inter-patch c<strong>on</strong>nectivity<br />

in two ways: i) by affecting animal movements and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby emigrati<strong>on</strong> and immigrati<strong>on</strong> probabilities;<br />

ii) by affecting habitat quality and populati<strong>on</strong> size. To test how intra-patch structuring<br />

may influence dispersal success and c<strong>on</strong>nectivity we apply a spatially explicit individualbased<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> how <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Moor</strong> frog (Rana arvalis Nilss<strong>on</strong>) moves in a heterogeneous landscape.<br />

The model is part <str<strong>on</strong>g>of</str<strong>on</strong>g> a larger study aiming at modelling <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> <strong>on</strong> regi<strong>on</strong>al<br />

persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> frog metapopulati<strong>on</strong>s (P<strong>on</strong>toppidan and Nachman in prep.). With this<br />

model, we test <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

Does <str<strong>on</strong>g>the</str<strong>on</strong>g> distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d and <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat within a habitat<br />

patch affect inter-patch c<strong>on</strong>nectivity<br />

Does <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat fragmentati<strong>on</strong> within a habitat patch affect inter-patch<br />

c<strong>on</strong>nectivity<br />

37


Chapter One<br />

Do effects <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d distance and summer habitat fragmentati<strong>on</strong> <strong>on</strong> inter-patch c<strong>on</strong>nectivity<br />

interact<br />

Does <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch affect inter-patch c<strong>on</strong>nectivity<br />

Methods<br />

Model species<br />

L<strong>on</strong>g distance dispersal in <strong>Moor</strong> <strong>frogs</strong> takes place predominantly during <str<strong>on</strong>g>the</str<strong>on</strong>g> juvenile lifestage.<br />

Shortly after metamorphosis, <str<strong>on</strong>g>the</str<strong>on</strong>g> young <strong>frogs</strong> leave <str<strong>on</strong>g>the</str<strong>on</strong>g> natal p<strong>on</strong>d and disperse into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surrounding landscape seeking out suitable summer habitat. Dispersal distances are between a<br />

few hundred meters up to 1-2 kilometres (Baker and Halliday 1999; Hartung 1991; Sinsch<br />

2006; Vos and Chard<strong>on</strong> 1998). The juveniles stay in terrestrial habitat 2-3 years until <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

reach maturity. During early spring, <str<strong>on</strong>g>the</str<strong>on</strong>g> adults move to <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>ds. So<strong>on</strong> after breeding,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>frogs</strong> return to <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat, which lies mostly within a 400 m radius from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

breeding p<strong>on</strong>d Adult <strong>frogs</strong> show a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> site fidelity and <str<strong>on</strong>g>of</str<strong>on</strong>g>ten use <str<strong>on</strong>g>the</str<strong>on</strong>g> same breeding<br />

p<strong>on</strong>d and summer habitat patch from year to year (Hartung 1991; Loman 1984, 1994; Semlitsch<br />

2008; Tram<strong>on</strong>tano 1998).<br />

Model overview<br />

The model c<strong>on</strong>siders nine subpopulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong> within a spatially explicit landscape<br />

matrix. Each landscape cell represents an area <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 x 10 meters, which can be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r summer<br />

habitat or matrix habitat. Each habitat type is associated with a daily survival probability (s)<br />

and an index <str<strong>on</strong>g>of</str<strong>on</strong>g> attractiveness (a) (table 1). The area inhabited by a subpopulati<strong>on</strong> is defined<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch, which comprises a breeding p<strong>on</strong>d, all <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat fragments located<br />

within migrati<strong>on</strong> distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> intermediate matrix habitat (Fig.<br />

1).<br />

The model simulati<strong>on</strong>s mimic <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> juvenile <strong>Moor</strong> <strong>frogs</strong>. Successful dispersal<br />

requires two events: 1) movement <str<strong>on</strong>g>of</str<strong>on</strong>g> a juvenile frog to summer habitat outside its natal habitat<br />

patch and 2) subsequent movement from <str<strong>on</strong>g>the</str<strong>on</strong>g> new summer habitat to a nearby breeding p<strong>on</strong>d.<br />

In real life dispersal starts just after metamorphosis in early summer and lasts until hibernati<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> autumn. The sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal event takes place in <str<strong>on</strong>g>the</str<strong>on</strong>g> spring 2.5 years<br />

later. For simplicity, we simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> two events, as if <str<strong>on</strong>g>the</str<strong>on</strong>g>y take place in <str<strong>on</strong>g>the</str<strong>on</strong>g> same year.<br />

38


Chapter One<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> a simulati<strong>on</strong>, 500 <strong>frogs</strong> are created at each breeding p<strong>on</strong>d. Each individual<br />

has an inherent random directi<strong>on</strong>, which characterizes its preferred directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> movement.<br />

This directi<strong>on</strong> does not change unless summer habitat is found. At each time step, <strong>frogs</strong> move<br />

to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its n neighbouring cells according to <str<strong>on</strong>g>the</str<strong>on</strong>g> following movement rules: A frog has a<br />

sensing area <str<strong>on</strong>g>of</str<strong>on</strong>g> 225 degrees placed symmetrically around its preferred directi<strong>on</strong> and within<br />

this area it moves to cell i with a probability that depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cell’s attractiveness (a i ). The<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> moving into cell i is calculated as <br />

<br />

∑<br />

<br />

<br />

where ∑ is <str<strong>on</strong>g>the</str<strong>on</strong>g> total attractiveness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n cells located within <str<strong>on</strong>g>the</str<strong>on</strong>g> sensing area. A uniform pseudorandom number is<br />

selected to choose <str<strong>on</strong>g>the</str<strong>on</strong>g> cell to move to. Once a cell is chosen, <str<strong>on</strong>g>the</str<strong>on</strong>g> frog moves to a random positi<strong>on</strong><br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> cell. The movement rules generate a biased random walk away from <str<strong>on</strong>g>the</str<strong>on</strong>g> natal<br />

p<strong>on</strong>d and in <str<strong>on</strong>g>the</str<strong>on</strong>g> preferred directi<strong>on</strong>.<br />

The time step <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model is <strong>on</strong>e day and <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated period is 120 days. Dispersal<br />

c<strong>on</strong>tinues until <str<strong>on</strong>g>the</str<strong>on</strong>g> frog ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r settles, dies or <str<strong>on</strong>g>the</str<strong>on</strong>g> time runs out. Frogs encountering a cell with<br />

summer habitat randomly choose whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r to settle in <str<strong>on</strong>g>the</str<strong>on</strong>g> cell or not. Settled <strong>frogs</strong> stay in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

summer habitat until day 75. Hereafter, <str<strong>on</strong>g>the</str<strong>on</strong>g>y start moving towards <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d associated<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch in which <str<strong>on</strong>g>the</str<strong>on</strong>g>y have spent <str<strong>on</strong>g>the</str<strong>on</strong>g> summer. For each day, <str<strong>on</strong>g>the</str<strong>on</strong>g> survival<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> every frog is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> daily survival rate associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat type it<br />

occupies. Netlogo (Wilensky 1999) is used as modelling envir<strong>on</strong>ment (freely downloadable at<br />

http://ccl.northwestern.edu/netlogo). Full model documentati<strong>on</strong> following <str<strong>on</strong>g>the</str<strong>on</strong>g> ODD-template<br />

suggested by Grimm et al. (2006; 2010) is found in supplementary material, Appendix A.<br />

Scenarios<br />

A landscape c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> 300x300 cells is c<strong>on</strong>structed as a torus with nine evenly spaced<br />

habitat patches. We define <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch <str<strong>on</strong>g>of</str<strong>on</strong>g> a subpopulati<strong>on</strong> as a complementary habitat<br />

patch c<strong>on</strong>taining not <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d but also all summer habitat fragments within 400<br />

m from <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d. Five habitat patches are c<strong>on</strong>figured with <strong>on</strong>e coherent summer habitat fragment<br />

randomly placed in a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 meters from <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d. These habitat patches serve<br />

as c<strong>on</strong>trol patches as <str<strong>on</strong>g>the</str<strong>on</strong>g>y have n<strong>on</strong>-fragmented summer habitat and high landscape complementati<strong>on</strong>.<br />

The remaining four habitat patches are test patches, in which <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> summer<br />

habitat fragments and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir distance to <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d are determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen<br />

parameter values for <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> fragments (P) and distance to <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d (d) (fig. 1, table 1).<br />

In each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nine habitat patches <str<strong>on</strong>g>the</str<strong>on</strong>g> total area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat sums to 0.81 ha (81<br />

39


Chapter One<br />

cells) irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong>. The same set <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter values is applied to all test<br />

patches in a given landscape scenario. We run 100 simulati<strong>on</strong>s for every combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

parameter values for P and d given in table 1. For each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 100 simulati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> test and c<strong>on</strong>trol patches is randomly shuffled. At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> each simulati<strong>on</strong> we record <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersers that has settled at each breeding p<strong>on</strong>d, and <str<strong>on</strong>g>the</str<strong>on</strong>g> origin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersers<br />

(i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal p<strong>on</strong>d).<br />

C<strong>on</strong>nectivity<br />

In metapopulati<strong>on</strong> ecology, most measures <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>nectivity between patch i and j are based <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> formula:<br />

,<br />

where j is <str<strong>on</strong>g>the</str<strong>on</strong>g> source patch and i <str<strong>on</strong>g>the</str<strong>on</strong>g> target patch. A i and A j denote <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> patch i and j,<br />

respectively, and b and c are parameters scaling patch area to emigrati<strong>on</strong> and immigrati<strong>on</strong><br />

rates, respectively. D(d ij , α) is a species-specific functi<strong>on</strong> describing <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal ability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> species (Kindlmann and Burel 2008; Moilanen and Hanski 2001; Moilanen and Nieminen<br />

2002). In this study we substitute <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal parameter D(d ij , α) with <str<strong>on</strong>g>the</str<strong>on</strong>g> actual dispersal<br />

success between patches obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> individual-based simulati<strong>on</strong>s and compute c<strong>on</strong>nectivity<br />

as:<br />

(1)<br />

where p ij is <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a disperser getting from habitat patch j to habitat patch i. A j and<br />

A i are <str<strong>on</strong>g>the</str<strong>on</strong>g> total area <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat fragments within <str<strong>on</strong>g>the</str<strong>on</strong>g> two habitat patches.<br />

Fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat within <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch is expected to have a negative<br />

effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat patch so that a habitat patch with highly fragmented summer<br />

habitat supports fewer individuals even though <str<strong>on</strong>g>the</str<strong>on</strong>g> total area is <str<strong>on</strong>g>the</str<strong>on</strong>g> same (Fahrig 2003). To<br />

compensate for <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat fragmentati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch<br />

we introduce a quality-weighted c<strong>on</strong>nectivity measure (Moilanen and Hanski 1998):<br />

′ 2<br />

where Q denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch. In principle, Q corresp<strong>on</strong>ds to A in eq. 1, but<br />

<strong>on</strong>ly if patch quality is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat within <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat<br />

40


Chapter One<br />

patch. If this is not <str<strong>on</strong>g>the</str<strong>on</strong>g> case, Q is computed as <str<strong>on</strong>g>the</str<strong>on</strong>g> total area <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat fragments<br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch weighted by <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> (Jaeger 2000):<br />

∑<br />

<br />

/ , z 0 3<br />

where P is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat fragments in habitat patch i; A k is <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> k th<br />

fragment <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat, and z is a scaling factor indicating <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> <strong>on</strong><br />

quality. If z = 1 <str<strong>on</strong>g>the</str<strong>on</strong>g>n Q i = A i ; if k > 1 and z > 1 <str<strong>on</strong>g>the</str<strong>on</strong>g>n Q i < A i and if k > 1 and 0 < z < 1 <str<strong>on</strong>g>the</str<strong>on</strong>g>n Q i ><br />

A i .<br />

In order to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> and p<strong>on</strong>d distance <strong>on</strong> c<strong>on</strong>nectedness at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> landscape level we compute mean c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> test patches as (Goodwin and Fahrig<br />

2002; Kindlmann and Burel 2008):<br />

̅<br />

∑ ∑ <br />

<br />

<br />

<br />

i j<br />

4<br />

where n t is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> test patches (4). In all simulati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> structure within <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol<br />

patches is <str<strong>on</strong>g>the</str<strong>on</strong>g> same and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol patches to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity measure<br />

remains c<strong>on</strong>stant. This allows us to distinguish between <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> structure within source<br />

and target patches <strong>on</strong> c<strong>on</strong>nectivity:<br />

Mean c<strong>on</strong>nectivity from c<strong>on</strong>trol to test patches. Evaluates <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d distance and<br />

fragmentati<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> target habitat patch <strong>on</strong> c<strong>on</strong>nectivity<br />

̅<br />

∑ ∑ <br />

<br />

<br />

where n c is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol patches.<br />

Mean c<strong>on</strong>nectivity from test to c<strong>on</strong>trol patches. Evaluates <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d distance and<br />

fragmentati<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> source patch <strong>on</strong> c<strong>on</strong>nectivity. It is computed as<br />

<br />

<br />

̅<br />

∑ <br />

∑ <br />

<br />

<br />

We compute ̅,̅ and ̅ for each scenario and average <str<strong>on</strong>g>the</str<strong>on</strong>g>m across replicates.<br />

stcendfrmentiwiintd<strong>on</strong>ocstcnvity. tisoutMean c<strong>on</strong>nectivity<br />

values adjusted for quality are denoted ′ , ′ and ′ , respectively, and are computed<br />

by replacing A with Q in <str<strong>on</strong>g>the</str<strong>on</strong>g> above equati<strong>on</strong>s. We combine habitat patch fragmentati<strong>on</strong><br />

(P) with p<strong>on</strong>d distance (d) in a fully factorial design, using <str<strong>on</strong>g>the</str<strong>on</strong>g> following values <str<strong>on</strong>g>of</str<strong>on</strong>g> P = 4 and<br />

9 and <str<strong>on</strong>g>of</str<strong>on</strong>g> d = 100, 200 and 300. For each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> six combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> P and d, we c<strong>on</strong>struct a<br />

41


Chapter One<br />

series <str<strong>on</strong>g>of</str<strong>on</strong>g> ′ and ′ with z-values ranging from 0.7 to 2.0. We transform <str<strong>on</strong>g>the</str<strong>on</strong>g> ′ values into a<br />

relative c<strong>on</strong>nectivity value (R) by dividing with <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding mean c<strong>on</strong>nectivity found<br />

when P = 1 and d = 100, i.e. R = ′ (P,d) / ′ (P=1, d=100). For any given combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

p<strong>on</strong>d distance and habitat fragmentati<strong>on</strong>, this value expresses <str<strong>on</strong>g>the</str<strong>on</strong>g> relative effect habitat quality<br />

has <strong>on</strong> mean c<strong>on</strong>nectivity.<br />

We use a two-way ANOVA to test for <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat fragments<br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir distance to <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d <strong>on</strong> mean c<strong>on</strong>nectivity<br />

values. We also use an ANOVA to test for effects <str<strong>on</strong>g>of</str<strong>on</strong>g> patch structure <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> juveniles<br />

settling in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal patch.<br />

Results<br />

Mean c<strong>on</strong>nectivity between test patches is clearly affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat<br />

patches, showing str<strong>on</strong>g interacti<strong>on</strong>s between p<strong>on</strong>d distance and fragmentati<strong>on</strong> (F 8,891 = 37.5,<br />

p < 0.0001) (fig. 2a, table 2a). P<strong>on</strong>d distance has a positive effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity between<br />

highly fragmented habitat patches, while <str<strong>on</strong>g>the</str<strong>on</strong>g> effect is <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite between n<strong>on</strong>-fragmented<br />

patches. Moreover, fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat patches has a positive effect <strong>on</strong> c<strong>on</strong>nectivity, especially<br />

between habitat patches with l<strong>on</strong>g p<strong>on</strong>d distance. Intra-patch structure also affects <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> juveniles being intercepted by summer habitat within <str<strong>on</strong>g>the</str<strong>on</strong>g> natal habitat patch and,<br />

thus, prevented from dispersing. The probability <str<strong>on</strong>g>of</str<strong>on</strong>g> staying in <str<strong>on</strong>g>the</str<strong>on</strong>g> home patch increases with<br />

fragmentati<strong>on</strong> and decreases with distance (F 8,891 = 19196, p < 0.0001) (fig. 2b, table 2d).<br />

Distinguishing between outward and inward movements between test and c<strong>on</strong>trol<br />

patches enables us to tease apart <str<strong>on</strong>g>the</str<strong>on</strong>g> effects target and source patch structure, respectively,<br />

have <strong>on</strong> c<strong>on</strong>nectivity. Mean c<strong>on</strong>nectivity from test to c<strong>on</strong>trol patches shows that decreasing<br />

fragmentati<strong>on</strong> and increasing p<strong>on</strong>d distance within source patches promotes c<strong>on</strong>nectivity<br />

(F 8,891 = 58.1, p < 0.0001). The highest c<strong>on</strong>nectivity is found in n<strong>on</strong>-fragmented source<br />

patches with l<strong>on</strong>g p<strong>on</strong>d distance. Lowest c<strong>on</strong>nectivity is found in fragmented source patches<br />

with short p<strong>on</strong>d distance (fig. 3a, table 2b). Mean c<strong>on</strong>nectivity from c<strong>on</strong>trol to test patches<br />

reveals target patch structure to have an opposite effect <strong>on</strong> c<strong>on</strong>nectivity. Fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

summer habitat in <str<strong>on</strong>g>the</str<strong>on</strong>g> target patches promotes c<strong>on</strong>nectivity while distance between breeding<br />

p<strong>on</strong>d and summer habitat has a negative effect (F 8,891 = 154.5, p < 0.0001) (fig. 3b, table 2c).<br />

42


Chapter One<br />

The relative effect <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat quality <strong>on</strong> mean c<strong>on</strong>nectivity (R) will decrease with increasing<br />

z-values. When R > 1, <str<strong>on</strong>g>the</str<strong>on</strong>g> quality-weighted c<strong>on</strong>nectivity for a given scenario is<br />

greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> mean c<strong>on</strong>nectivity in a n<strong>on</strong>-fragmented habitat patch with high landscape<br />

complementati<strong>on</strong> (i.e. P = 1, d = 100 m). At R-values below 1 <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat patch structure<br />

reduces c<strong>on</strong>nectivity compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol habitat patches. The threshold z-values at<br />

which R shifts below 1 depends <strong>on</strong> patch structure. In less fragmented target patches threshold-values<br />

range from 1 – 1.6 as p<strong>on</strong>d distance decreases. Target patches with nine fragments<br />

exhibit a much narrower range <str<strong>on</strong>g>of</str<strong>on</strong>g> thresholds with z-values between 1.2 and 1.4 (fig. 4a). C<strong>on</strong>nectivity<br />

is negatively affected by fragmentati<strong>on</strong> in source patches, which again is reflected in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> z-thresholds (fig. 4b). Here most thresholds are less than 1, indicating that <str<strong>on</strong>g>the</str<strong>on</strong>g> negative<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> patch structure <strong>on</strong> c<strong>on</strong>nectivity <strong>on</strong>ly can be counterbalanced if fragmentati<strong>on</strong> has a<br />

positive effect <strong>on</strong> habitat quality.<br />

Discussi<strong>on</strong><br />

Inter-patch distance is widely recognised as a key factor for dispersal success (Goodwin and<br />

Fahrig 2002; Gustafs<strong>on</strong> and Gardner 1996; Hanski 1998; Prevedello and Vieira 2010). All<br />

else being equal, increasing inter-patch distances means more time spent in inhospitable matrix<br />

habitat, with c<strong>on</strong>sequently higher mortality rates. In our model, <str<strong>on</strong>g>the</str<strong>on</strong>g> setup ensures equal<br />

inter-p<strong>on</strong>d distances, thus, if no o<str<strong>on</strong>g>the</str<strong>on</strong>g>r factors interfered we would expect dispersal success to<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> same between all p<strong>on</strong>d pairs. Our results show that this is not <str<strong>on</strong>g>the</str<strong>on</strong>g> case; dispersal success<br />

varies depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patches. The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat<br />

fragments within source as well as target patches is important for emigrati<strong>on</strong> and immigrati<strong>on</strong><br />

probabilities.<br />

Emigrati<strong>on</strong> probability depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> chances <str<strong>on</strong>g>of</str<strong>on</strong>g> not being retained by summer habitat<br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> home (habitat) patch. This probability increases <str<strong>on</strong>g>the</str<strong>on</strong>g> fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r away from <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding<br />

p<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat is found and decreases <str<strong>on</strong>g>the</str<strong>on</strong>g> more fragmented <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat is.<br />

C<strong>on</strong>versely, <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> juveniles that are retained and thus return to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal p<strong>on</strong>d<br />

increases with fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat and decreases with p<strong>on</strong>d distance. The opposite<br />

pattern is found when looking at immigrati<strong>on</strong>, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a dispersing juvenile<br />

finding summer habitat in a new patch. Immigrati<strong>on</strong> probability increases with fragmentati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat but decreases with p<strong>on</strong>d distance. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> effects creates<br />

43


Chapter One<br />

a complex pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal success, depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> source and target<br />

patches.<br />

Bowman et al. (2002) suggest that for n<strong>on</strong>-searching dispersers, immigrati<strong>on</strong> probability<br />

will be proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> linear dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target patch. In a simulati<strong>on</strong> study, Pfenning<br />

et al. (2004) found immigrati<strong>on</strong> rate to increase with perimeter-to-area ratio; dispersers<br />

using correlated (straight) walk having <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>gest effect. The dispersal patterns found in<br />

this study can be explained by similar statistical reas<strong>on</strong>ing. As fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat<br />

increases, <str<strong>on</strong>g>the</str<strong>on</strong>g> perimeter:area ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat fragments also increases. In this<br />

study, <str<strong>on</strong>g>the</str<strong>on</strong>g> linear dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat fragments increases from ca 100 meters to ca<br />

270 meters as <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat gets more fragmented. Increasing p<strong>on</strong>d distance causes <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

gabs between <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat fragments to become wider. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> probability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dispersers encountering summer habitat becomes relatively smaller as p<strong>on</strong>d distance increases.<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p:a ratio and gab size will interact. At any given p<strong>on</strong>d distance, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> finding summer habitat patches will be proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

linear dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat patches and gabs. This is <str<strong>on</strong>g>the</str<strong>on</strong>g> same whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> movement<br />

is outbound or inbound. Successful dispersal will depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a disperser to<br />

avoid summer habitat within <str<strong>on</strong>g>the</str<strong>on</strong>g> home patch and <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> finding summer habitat in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> target patch.<br />

Exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals between habitat patches is important for <str<strong>on</strong>g>the</str<strong>on</strong>g> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

regi<strong>on</strong>al populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d-breeding amphibians (Marsh and Trenham 2001). Our results<br />

suggest that fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat within target habitat patches can have positive<br />

effects <strong>on</strong> dispersal success. However, intra-patch structure may also affect <str<strong>on</strong>g>the</str<strong>on</strong>g> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> local populati<strong>on</strong>; habitat fragmentati<strong>on</strong> is in general thought to have a negative effect <strong>on</strong><br />

habitat quality (Jaeger 2000; Pillsbury and Miller 2008; Vos and Chard<strong>on</strong> 1998). The same<br />

spatial distributi<strong>on</strong> that promotes regi<strong>on</strong>al persistence, thus, seems to impair local persistence.<br />

The results suggest that adjusting c<strong>on</strong>nectivity for <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> <strong>on</strong> target quality<br />

may <str<strong>on</strong>g>of</str<strong>on</strong>g>fset <str<strong>on</strong>g>the</str<strong>on</strong>g> positive effects <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> <strong>on</strong> dispersal success. This, however, will depend<br />

<strong>on</strong> how str<strong>on</strong>gly fragmentati<strong>on</strong> is assumed to affect habitat quality (i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> z-value) and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> target patch. We find that <str<strong>on</strong>g>the</str<strong>on</strong>g> threshold values in target patches very much<br />

depend <strong>on</strong> patch structure. For some landscapes a downscaling <str<strong>on</strong>g>of</str<strong>on</strong>g> effective area to 0.48 ha is<br />

needed before positive effects are turned into negative. In source patches fragmentati<strong>on</strong> reduces<br />

c<strong>on</strong>nectivity and this pattern is not changed when adjusting for habitat quality, unless<br />

44


Chapter One<br />

we assume positive quality effects <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> and up-scale effective area to 2 ha. Our<br />

simulati<strong>on</strong>s also reveal an increase in dispersers settling in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal patch as <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat gets<br />

more fragmented. This will benefit <str<strong>on</strong>g>the</str<strong>on</strong>g> local populati<strong>on</strong> by increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> size.<br />

Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> negative effects fragmentati<strong>on</strong> can have <strong>on</strong> habitat quality may be reduced by an<br />

increased recruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> juvenile <strong>frogs</strong>.<br />

Like fragmentati<strong>on</strong>, p<strong>on</strong>d distance may affect habitat quality. In <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding seas<strong>on</strong>,<br />

mature <strong>frogs</strong> move between <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat and <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d. Thus, l<strong>on</strong>ger distances<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix may induce higher mortality. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, breeding p<strong>on</strong>ds with high quality<br />

summer habitat in <str<strong>on</strong>g>the</str<strong>on</strong>g> immediate surroundings tend to have higher juvenile survival and<br />

thus more dispersers (Hamer and McD<strong>on</strong>nell 2008; Puglis and Bo<strong>on</strong>e 2012; Todd and<br />

Ro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmel 2006). For <str<strong>on</strong>g>the</str<strong>on</strong>g> sake <str<strong>on</strong>g>of</str<strong>on</strong>g> simplicity, we have chosen not to incorporate <str<strong>on</strong>g>the</str<strong>on</strong>g>se effects<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> quality-weighted c<strong>on</strong>nectivity measure. We expect, though, that <str<strong>on</strong>g>the</str<strong>on</strong>g> negative effect a<br />

l<strong>on</strong>g p<strong>on</strong>d distance will have <strong>on</strong> local populati<strong>on</strong> size, at least partly, will negate <str<strong>on</strong>g>the</str<strong>on</strong>g> positive<br />

effect <strong>on</strong> dispersal success.<br />

C<strong>on</strong>clusi<strong>on</strong><br />

To our knowledge, this is <str<strong>on</strong>g>the</str<strong>on</strong>g> first study looking at <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> intra-patch structure <strong>on</strong> c<strong>on</strong>nectivity.<br />

We find that <str<strong>on</strong>g>the</str<strong>on</strong>g> realised c<strong>on</strong>nectivity depends <strong>on</strong> internal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>the</str<strong>on</strong>g> target<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> source patch as well as <strong>on</strong> how habitat quality is affected by patch structure. Although<br />

fragmentati<strong>on</strong> is generally thought to have negative effects <strong>on</strong> c<strong>on</strong>nectivity, our results<br />

suggest that, depending <strong>on</strong> patch structure and habitat quality, positive effects <strong>on</strong> c<strong>on</strong>nectivity<br />

may occur. C<strong>on</strong>nectivity is frequently used in c<strong>on</strong>servati<strong>on</strong> planning and studies <strong>on</strong> p<strong>on</strong>d<br />

breeding amphibian <str<strong>on</strong>g>of</str<strong>on</strong>g>ten use distance between breeding p<strong>on</strong>ds as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal ability.<br />

This study emphasises that complex interacti<strong>on</strong>s between individuals and landscape elements<br />

in both source and target patches determine <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity between habitat patches.<br />

Acknowledgments<br />

This study is part <str<strong>on</strong>g>of</str<strong>on</strong>g> a PhD-project funded by <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish Road Directorate. We thank Uta<br />

Berger and Volker Grimm for valuable comments <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> model ODD.<br />

45


Chapter One<br />

References<br />

Baker JMR, Halliday TR (1999) Amphibian col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new p<strong>on</strong>ds in an agricultural<br />

landscape. Herpetological Journal 9(2):55-63<br />

Bender DJ, Fahrig L (2005) Matrix structure obscures <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between interpatch<br />

movement and patch size and isolati<strong>on</strong>. Ecology 86(4):1023-1033<br />

Bowman J, Cappuccino N, Fahrig L (2002) Patch size and populati<strong>on</strong> density: <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

immigrati<strong>on</strong> behavior. C<strong>on</strong>servati<strong>on</strong> Ecology 6(1)<br />

Chin KS, Taylor PD (2009) Interactive effects <str<strong>on</strong>g>of</str<strong>on</strong>g> distance and matrix <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> movements <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

peatland drag<strong>on</strong>fly. Ecography 32(5):715-722<br />

Dunning JB, Daniels<strong>on</strong> BJ, Pulliam HR (1992) Ecological processes that affect populati<strong>on</strong>s in<br />

complex landscapes. Oikos 65(1):169-175<br />

Fahrig L (2003) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat fragmentati<strong>on</strong> <strong>on</strong> biodiversity. Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology<br />

Evoluti<strong>on</strong> and Systematics 34:487-515<br />

Goodwin BJ, Fahrig L (2002) How does landscape structure influence landscape c<strong>on</strong>nectivity<br />

Oikos 99(3):552-570<br />

Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T,<br />

Heinz SK, Huse G, Huth A, Jepsen JU, Jorgensen C, Mooij WM, Muller B, Pe'er G, Piou C,<br />

Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Ruger N, Strand E, Souissi S,<br />

Stillman RA, Vabo R, Visser U, DeAngelis DL (2006) A standard protocol for describing<br />

individual-based and agent-based models. Ecological <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> 198: 115-126<br />

Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF (2010) The ODD protocol:<br />

A review and first update. Ecological <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> 221:2760-2768<br />

Gustafs<strong>on</strong> EJ, Gardner RH (1996) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape heterogeneity <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

patch col<strong>on</strong>izati<strong>on</strong>. Ecology 77(1):94-107<br />

Hamer AJ, McD<strong>on</strong>nell MJ (2008) Amphibian ecology and c<strong>on</strong>servati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> urbanising<br />

world: A review. Biological C<strong>on</strong>servati<strong>on</strong> 141(10):2432-2449<br />

Hanski I (1998) Metapopulati<strong>on</strong> dynamics. Nature 396(6706):41-49<br />

Hanski I, Simberl<str<strong>on</strong>g>of</str<strong>on</strong>g>f D (1997) The Metapopulati<strong>on</strong> Approach, Its history, C<strong>on</strong>ceptual domain,<br />

and Applicati<strong>on</strong> to C<strong>on</strong>servati<strong>on</strong>. In: Hanski I. and Gilpin M. E. (eds), Metapopulati<strong>on</strong><br />

Biology: ecology, genetics, and evoluti<strong>on</strong>. Academic press, Inc.,<br />

Hartung H (1991) Untersuchung zur terrestrischen Biologie v<strong>on</strong> Populati<strong>on</strong>en des <strong>Moor</strong>frosches<br />

(Rana arvalis NILSSON 1842) unter bes<strong>on</strong>derer Berücksichtigung der Jahresmobilität.<br />

Universität Hamburg<br />

Haynes KJ, Cr<strong>on</strong>in JT (2006) Interpatch movement and edge effects: <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> behavioral<br />

resp<strong>on</strong>ses to <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape matrix. Oikos 113(1):43-54<br />

Haynes KJ, Diekotter T, Crist TO (2007) Resource complementati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

insect herbivore to habitat area and fragmentati<strong>on</strong>. Oecologia 153(3):511-20<br />

Hels T (2002) Populati<strong>on</strong> dynamics in a Danish metapopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spadefoot toads Pelobates<br />

fuscus. Ecography 25(3):303-313<br />

46


Chapter One<br />

Jaeger JAG (2000) Landscape divisi<strong>on</strong>, splitting index, and effective mesh size: new measures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> landscape fragmentati<strong>on</strong>. Landscape ecology 15(2):115-130<br />

Jaquiéry J, Guélat J, Broquet T et al (2008) Habitat-quality effects <strong>on</strong> metapopulati<strong>on</strong> dynamics<br />

in greater white-too<str<strong>on</strong>g>the</str<strong>on</strong>g>d shrews, Crocidura russula. Ecology 89:2777-85<br />

Johns<strong>on</strong> JR, Knouft JH, Semlitsch RD (2007) Sex and seas<strong>on</strong>al differences in <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial terrestrial<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gray treefrog (Hyla versicolor) populati<strong>on</strong>s. Biological C<strong>on</strong>servati<strong>on</strong><br />

140(3-4):250-258<br />

Kindlmann P, Burel F (2008) C<strong>on</strong>nectivity measures: a review. Landscape Ecology<br />

23(8):879-890<br />

Lehtinen RM, Ramanamanjato JB, Raveloaris<strong>on</strong> JG (2003) Edge effects and extincti<strong>on</strong><br />

pr<strong>on</strong>eness in a herpet<str<strong>on</strong>g>of</str<strong>on</strong>g>auna from Madagascar. Biodiversity and C<strong>on</strong>servati<strong>on</strong> 12(7):1357-<br />

1370<br />

Loman J (1984) Density and survival <str<strong>on</strong>g>of</str<strong>on</strong>g> Rana arvalis and Rana temporaria. Alytes 3:125-134<br />

Loman J (1994) Site tenacity, within and between summers, <str<strong>on</strong>g>of</str<strong>on</strong>g> Rana arvalis and Rana temporaria.<br />

Alytes 12(1):15-29<br />

Marsh D (2008) Metapopulati<strong>on</strong> viability analysis for amphibians. Animal C<strong>on</strong>servati<strong>on</strong><br />

11(6):463-465<br />

Marsh DM, Trenham PC (2001) Metapopulati<strong>on</strong> dynamics and amphibian c<strong>on</strong>servati<strong>on</strong>. C<strong>on</strong>servati<strong>on</strong><br />

Biology 15(1):40-49<br />

Moilanen A, Hanski I (1998) Metapopulati<strong>on</strong> dynamics: Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat quality and landscape<br />

structure. Ecology 79(7):2503-2515<br />

Moilanen A, Hanski I (2001) On <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>nectivity measures in spatial ecology. Oikos<br />

95(1):147-151<br />

Moilanen A, Hanski I (2006) C<strong>on</strong>nectivity and metapopulati<strong>on</strong> dynamics in highly fragmented<br />

landscapes. In: Crooks K. R. and Sanjayan M. (eds), C<strong>on</strong>nectivity C<strong>on</strong>servati<strong>on</strong>.<br />

Cambridge University Press,<br />

Moilanen A, Nieminen M (2002) Simple c<strong>on</strong>nectivity measures in spatial ecology. Ecology<br />

83(4):1131-1145<br />

Pfenning B, Hovestadt T, Poethke HJ (2004) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> patch c<strong>on</strong>stellati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> exchange<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> individuals between habitat-islands. Ecological <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> 180(4):515-522<br />

Pillsbury FC, Miller JR (2008) Habitat and landscape characteristics underlying anuran community<br />

structure al<strong>on</strong>g an urban-rural gradient. Ecological Applicati<strong>on</strong>s 18(5):1107-1118<br />

P<strong>on</strong>toppidan M-B, Nachman G (in prep.) SAIA – a management tool for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> road<br />

effects <strong>on</strong> regi<strong>on</strong>al populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong> (Rana arvalis)<br />

Pope SE, Fahrig L, Merriam NG (2000) Landscape complementati<strong>on</strong> and metapopulati<strong>on</strong><br />

effects <strong>on</strong> leopard frog populati<strong>on</strong>s. Ecology 81(9):2498-2508<br />

Prevedello JA, Vieira MV (2010) Does <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix matter A quantitative review <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> evidence. Biodiversity and C<strong>on</strong>servati<strong>on</strong> 19(5):1205-1223<br />

Puglis HJ, Bo<strong>on</strong>e MD (2012) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> terrestrial buffer z<strong>on</strong>es <strong>on</strong> amphibians <strong>on</strong> golf<br />

courses. PLoS ONE 7(6):e39590<br />

47


Chapter One<br />

Ricketts TH (2001) The matrix matters: Effective isolati<strong>on</strong> in fragmented landscapes. American<br />

Naturalist 158(1):87-99<br />

Ries L, Fletcher RJ, Battin J, Sisk TD (2004) Ecological resp<strong>on</strong>ses to habitat edges: Mechanisms,<br />

models, and variability explained. Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology Evoluti<strong>on</strong> and Systematics<br />

35:491-522<br />

Ro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmel BB (2004) Migratory success <str<strong>on</strong>g>of</str<strong>on</strong>g> juveniles: A potential c<strong>on</strong>straint <strong>on</strong> c<strong>on</strong>nectivity<br />

for p<strong>on</strong>d-breeding amphibians. Ecological Applicati<strong>on</strong>s 14(5):1535-1546<br />

Semlitsch RD (2008) Differentiating migrati<strong>on</strong> and dispersal processes for p<strong>on</strong>d-breeding<br />

amphibians. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Management 72(1):260-267<br />

Sinsch U (2006) Orientati<strong>on</strong> and navigati<strong>on</strong> in Amphibia. Marine and Freshwater Behaviour<br />

and Physiology 39(1):65-71<br />

Sjögren-Gulve P (1998) Spatial movement patterns in <strong>frogs</strong>: Target-oriented dispersal in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pool frog, Rana less<strong>on</strong>ae. Ecoscience 5(1):31-38<br />

Smith MA, Green DM (2005) Dispersal and <str<strong>on</strong>g>the</str<strong>on</strong>g> metapopulati<strong>on</strong> paradigm in amphibian ecology<br />

and c<strong>on</strong>servati<strong>on</strong>: are all amphibian populati<strong>on</strong>s metapopulati<strong>on</strong>s Ecography 28(1):110-<br />

128<br />

Todd BD, Ro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmel BB (2006) Assessing quality <str<strong>on</strong>g>of</str<strong>on</strong>g> clearcut habitats for amphibians: Effects<br />

<strong>on</strong> abundances versus vital rates in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn toad (Bufo terrestris). Biological C<strong>on</strong>servati<strong>on</strong><br />

133(2):178-185<br />

Tram<strong>on</strong>tano R (1998) The post-breeding migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> European comm<strong>on</strong> frog, Rana temporaria:<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape structure and seas<strong>on</strong>al wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Lund University<br />

Vandermeer J, Carvajal R (2001) Metapopulati<strong>on</strong> dynamics and <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix.<br />

American Naturalist 158(3):211-220<br />

Vos CC, Chard<strong>on</strong> JP (1998) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat fragmentati<strong>on</strong> and road density <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong><br />

pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> moor frog Rana arvalis. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology 35(1):44-56<br />

Watling JI, Nowakowski AJ, D<strong>on</strong>nelly MA, Orrock JL (2011) Meta-analysis reveals <str<strong>on</strong>g>the</str<strong>on</strong>g> importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> matrix compositi<strong>on</strong> for animals in fragmented habitat. Global Ecology and Biogeography<br />

20(2):209-217<br />

Wiens JA (1997) Metapopulati<strong>on</strong> Dynamics and Landscape Ecology. In: Hanski I. and Gilpin<br />

M. E. (eds), Metapopulati<strong>on</strong> Biology: ecology, genetics, and evoluti<strong>on</strong>. Academic press, Inc.,<br />

Wilensky U (1999) NetLogo. Center for C<strong>on</strong>nected Learning and Computer-Based Modeling,<br />

Northwestern University, Evanst<strong>on</strong>, IL. , http://ccl.northwestern.edu/netlogo,<br />

48


Chapter One<br />

Tables<br />

Table 1 Default settings <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters and <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter values used in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s<br />

Parameter Descripti<strong>on</strong> Default Test values<br />

z<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat fragmentati<strong>on</strong><br />

<strong>on</strong> habitat quality<br />

1 0.7 – 2.0<br />

A Area <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat 0.81 ha (81 cells )<br />

d<br />

Distance between p<strong>on</strong>d and<br />

summer habitat<br />

100m (10 cells)<br />

100, 200, 300 m<br />

P<br />

a<br />

s<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat<br />

fragments<br />

Weight <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat type <strong>on</strong> directi<strong>on</strong><br />

Daily survival<br />

1 1, 4, 9<br />

Matrix = 1<br />

Summer habitat = 2<br />

Matrix = 0.985<br />

Summer habitat = 0.995<br />

49


Chapter One<br />

Table 2 Anova test results. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d distance (d) and number <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat fragments<br />

(P) <strong>on</strong> mean c<strong>on</strong>nectivity ̅ , ̅,̅ and <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-dispersing juveniles (1)<br />

Source df Model a Model b Model c Model d<br />

F p F p F p F p<br />

d 2 36.9 < 0.0001 5.1 0.0004 3.6 0.006 49871.7 < 0.0001<br />

P 2 6.7 0.0013 107.2 < 0.0001 160.9 < 0.0001 20113.4 < 0.0001<br />

P*d 4 69.4 < 0.0001 115.1 < 0.0001 449.7 < 0.0001 3399.4 < 0.0001<br />

(1) Model a evaluates <str<strong>on</strong>g>the</str<strong>on</strong>g> overall effect <str<strong>on</strong>g>of</str<strong>on</strong>g> patch structure while model b and c analyses <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> source patch structure and target patch structure, respectively. Model d tests <str<strong>on</strong>g>the</str<strong>on</strong>g> effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> source patch structure <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersing juveniles settling in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal<br />

habitat patch.<br />

50


Chapter One<br />

Figure legends<br />

Figure 1:<br />

Model landscape with nine habitat patches. Each habitat patch is defined by a central breeding<br />

p<strong>on</strong>d (black dot), fragments <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat (dark grey shapes) and matrix (light gray)<br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch boundary. The model landscape c<strong>on</strong>tains five c<strong>on</strong>trol (habitat) patches<br />

and four test (habitat) patches (see text). Distance between breeding p<strong>on</strong>d and summer habitat<br />

is denoted d.<br />

Figure 2:<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat patch structure <strong>on</strong> a) mean c<strong>on</strong>nectivity between test patches, b) proporti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dispersing juveniles settling in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal habitat patch.<br />

Figure 3:<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) target patch structure and (b) source patch structure <strong>on</strong> mean c<strong>on</strong>nectivity between<br />

habitat patches serving as test and c<strong>on</strong>trol patches, respectively.<br />

Figure 4:<br />

Relative effect <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat quality <strong>on</strong> mean c<strong>on</strong>nectivity (R) in a) target patches and b) source<br />

patches for different landscape scenarios. At a z-value equal to 1 (dotted, vertical line), <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

effective area equals <str<strong>on</strong>g>the</str<strong>on</strong>g> real area. R-values al<strong>on</strong>g this line represent <str<strong>on</strong>g>the</str<strong>on</strong>g> relative effect a particular<br />

patch structure has <strong>on</strong> mean c<strong>on</strong>nectivity. When R = 1 (dashed, horiz<strong>on</strong>tal line), <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quality weighted c<strong>on</strong>nectivity for a given landscape corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> mean c<strong>on</strong>nectivity<br />

between habitat patches serving as c<strong>on</strong>trol patches (i.e. scenario with P = 1, d = 100). The z-<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intercept between <str<strong>on</strong>g>the</str<strong>on</strong>g> dashed line and a given curve can be interpreted as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

threshold at which <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat quality is low enough to shift a positive effect <strong>on</strong> c<strong>on</strong>nectivity<br />

into a negative effect.<br />

51


Chapter One<br />

Figures<br />

Figure 1<br />

52


Chapter One<br />

Figure 2<br />

(a)<br />

(b)<br />

Figure 3<br />

(a) Target patch<br />

(b) Source patch<br />

53


Chapter One<br />

Figure 4<br />

(a) Target patch<br />

(b) Source patch<br />

54


Chapter One<br />

Supplementary material - Appendix A<br />

Model ODD<br />

1. Purpose<br />

The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model is to analyse <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> intra-patch structure <strong>on</strong> inter-patch dispersal<br />

success and c<strong>on</strong>nectivity.<br />

2. Entities, state variables, and scales<br />

Breeding p<strong>on</strong>ds are treated as stati<strong>on</strong>ary agents. Each p<strong>on</strong>d is characterized by a unique idnumber,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch type (test or c<strong>on</strong>trol patch) and <str<strong>on</strong>g>the</str<strong>on</strong>g> quality-weighted area <str<strong>on</strong>g>of</str<strong>on</strong>g> associated<br />

summer habitat. Frog-agents are characterized by <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d in which <str<strong>on</strong>g>the</str<strong>on</strong>g>y are hatched and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g>y immigrate to. The extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model landscape is 300 x 300 grid<br />

cells, and each grid cell represents 10 x 10 m. Grid cells bel<strong>on</strong>g ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r to Matrix habitat or<br />

Summer habitat. Each habitat type is associated with a habitat-attracti<strong>on</strong> (indicating how willing<br />

<strong>frogs</strong> will be to enter <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat) and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>frogs</strong>’ daily survival probability in <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat.<br />

The simulati<strong>on</strong> runs for 120 time steps, each representing <strong>on</strong>e day.<br />

3. Process overview and scheduling<br />

500 Frog-agents are located at each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> P<strong>on</strong>d-agents. During each time-step <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

procedures are executed: Settle (evaluates if a Frog-agent stops dispersing), Move (movement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dispersing Frog-agents), Homing (movement <str<strong>on</strong>g>of</str<strong>on</strong>g> settled Frog-agents towards breeding<br />

p<strong>on</strong>d) and Survival (evaluates if a Frog-agent survives). The simulati<strong>on</strong> stops at time step 120<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> procedure C<strong>on</strong>nectivity is run, computing dispersal rates and c<strong>on</strong>nectivity.<br />

4. Design c<strong>on</strong>cepts<br />

Emergence<br />

Immigrati<strong>on</strong> rates will emerge as a resp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape c<strong>on</strong>figurati<strong>on</strong>.<br />

Adaptati<strong>on</strong> & Objectives<br />

To avoid desiccati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby increase survival Frog-agents are assumed to move in resp<strong>on</strong>se<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> moistness <str<strong>on</strong>g>of</str<strong>on</strong>g> its surroundings. The moister, in general, a habitat is <str<strong>on</strong>g>the</str<strong>on</strong>g> more attractive<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> habitat is for <str<strong>on</strong>g>the</str<strong>on</strong>g> frog as indicated by <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat-attracti<strong>on</strong> parameter a. Dispersing<br />

juvenile <strong>Moor</strong> <strong>frogs</strong> have an innate tendency to move away from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal p<strong>on</strong>d. In <str<strong>on</strong>g>the</str<strong>on</strong>g> simu-<br />

55


Chapter One<br />

lati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Frog-agents is thus oriented in a random directi<strong>on</strong> away from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

p<strong>on</strong>d, and <str<strong>on</strong>g>the</str<strong>on</strong>g>y are not allowed to backtrack.<br />

Sensing<br />

Frog-agents are assumed to be aware <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own state-variables. Frog-agents are also aware<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat-attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> grid cells, as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> identity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>ds.<br />

Interacti<strong>on</strong><br />

There is no interacti<strong>on</strong> between frog-agents. Movement decisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Frog-agents depend<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> neighbouring cells. Survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Frog-agents depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> daily<br />

survival rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> traversed habitat.<br />

Stochasticity<br />

Which cell to move to is chosen randomly from neighbouring cells with <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

being chosen weighted by <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat-attracti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> neighbouring cells with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same value. If Frog-agents occupy a cell with summer habitat <str<strong>on</strong>g>the</str<strong>on</strong>g>y will stop dispersing with a<br />

certain probability. The probability increases with time.<br />

Observati<strong>on</strong><br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> each run <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersers settled at each breeding p<strong>on</strong>d and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natalp<strong>on</strong>d<br />

is registered and <str<strong>on</strong>g>the</str<strong>on</strong>g> following are calculated (see also Method-secti<strong>on</strong> in main text):<br />

Mean c<strong>on</strong>nectivity between test patches<br />

Mean c<strong>on</strong>nectivity from c<strong>on</strong>trol to test patches<br />

Mean c<strong>on</strong>nectivity from test to c<strong>on</strong>trol patches<br />

Proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersers settled in home habitat patch<br />

5. Initializati<strong>on</strong><br />

Nine habitat patches are c<strong>on</strong>structed according to <str<strong>on</strong>g>the</str<strong>on</strong>g> test scheme (see Method secti<strong>on</strong> in main<br />

text). Map-scan procedure is run calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> weighted area <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat in each<br />

habitat patch. 500 Frog-agents are located <strong>on</strong> each p<strong>on</strong>d-agent, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir directi<strong>on</strong> set randomly.<br />

6. Input data<br />

No input data are used<br />

56


Chapter One<br />

7. Submodels<br />

Map-scan<br />

The procedure delimits individual summer habitat fragments within <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch and<br />

computes <str<strong>on</strong>g>the</str<strong>on</strong>g> effective (quality-weighted) area <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat. Interc<strong>on</strong>nected summer<br />

habitat cells define an individual summer habitat fragment. The area (A) <str<strong>on</strong>g>of</str<strong>on</strong>g> each summer habitat<br />

fragment is calculated as <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> cells within <str<strong>on</strong>g>the</str<strong>on</strong>g> patch. The effective area <str<strong>on</strong>g>of</str<strong>on</strong>g> summer<br />

habitat is, subsequently, calculated as ∑<br />

<br />

<br />

/ where A k is <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> k th summer<br />

habitat fragment, P <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat fragments within <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch, and<br />

z a c<strong>on</strong>stant weighting <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> <strong>on</strong> habitat quality (z > 0).<br />

Settle<br />

Dispersing <strong>frogs</strong> occupying a summer habitat cell has a certain probability <str<strong>on</strong>g>of</str<strong>on</strong>g> settling and<br />

cease moving. The initial settling probability is 0, increasing every time step with 0.04 and<br />

ending at 0.96.<br />

Move<br />

Assuming <str<strong>on</strong>g>the</str<strong>on</strong>g> frog to head in <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> it was assigned when it left <str<strong>on</strong>g>the</str<strong>on</strong>g> natal p<strong>on</strong>d, a frog<br />

can move to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its neighbouring cells located within ±110 0 from <str<strong>on</strong>g>the</str<strong>on</strong>g> preferred directi<strong>on</strong>.<br />

Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat-attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> neighbouring cells <strong>frogs</strong> decide which cell-type <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

want to move to. The probability <str<strong>on</strong>g>of</str<strong>on</strong>g> moving into cell i is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat attracti<strong>on</strong> (a) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> accessible neighbouring cells (n): <br />

<br />

∑<br />

<br />

. A uniform pseudorandom number is selected<br />

to choose <str<strong>on</strong>g>the</str<strong>on</strong>g> cell to move to. Once a cell is chosen <str<strong>on</strong>g>the</str<strong>on</strong>g> frog moves to a random positi<strong>on</strong><br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> cell. The directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>frogs</strong> does not change.<br />

Homing<br />

After time step 75 settled <strong>frogs</strong> have <str<strong>on</strong>g>the</str<strong>on</strong>g>ir directi<strong>on</strong> set towards <str<strong>on</strong>g>the</str<strong>on</strong>g>ir breeding p<strong>on</strong>d and <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

start moving again following <str<strong>on</strong>g>the</str<strong>on</strong>g> Move-procedure. If <str<strong>on</strong>g>the</str<strong>on</strong>g>y get within a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 cells from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>frogs</strong> move directly to <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d and stay <str<strong>on</strong>g>the</str<strong>on</strong>g>re.<br />

Survival<br />

For each frog a pseudo-random number is drawn between 0 and 1. If <str<strong>on</strong>g>the</str<strong>on</strong>g> number exceeds <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

daily survival probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frog’s current cell, <str<strong>on</strong>g>the</str<strong>on</strong>g> frog dies.<br />

57


Chapter One<br />

C<strong>on</strong>nectivity<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> each simulati<strong>on</strong>, dispersal probabilities are computed for all pair wise combinati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> habitat patches and c<strong>on</strong>nectivity measures are computed as described in <str<strong>on</strong>g>the</str<strong>on</strong>g> method<br />

secti<strong>on</strong>.<br />

58


CHAPTER TWO<br />

CHANGES IN BEHAVIOURAL RESPONSES<br />

TO INFRASTRUCTURE AFFECTS LOCAL<br />

AND REGIONAL CONNECTIVITY —<br />

A SIMULATION STUDY ON POND BREEDING<br />

AMPHIBIANS<br />

Submitted to Nature C<strong>on</strong>servati<strong>on</strong><br />

December 2012


Chapter Two<br />

Changes in behavioural resp<strong>on</strong>ses to infrastructure<br />

affects local and regi<strong>on</strong>al c<strong>on</strong>nectivity — a simulati<strong>on</strong><br />

study <strong>on</strong> p<strong>on</strong>d breeding amphibians<br />

Maj-Britt P<strong>on</strong>toppidan, Gösta Nachman<br />

Secti<strong>on</strong> for Ecology and Evoluti<strong>on</strong><br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen<br />

Universitetsparken 15<br />

DK-2100 Copenhagen<br />

Corresp<strong>on</strong>ding author:<br />

M-B. P<strong>on</strong>toppidan<br />

email: mbp@bio.ku.dk<br />

ph<strong>on</strong>e: +45 51518791<br />

61


Chapter Two<br />

Abstract<br />

An extensive and expanding infrastructural network destroys and fragments natural habitat<br />

and has detrimental effect <strong>on</strong> abundance and populati<strong>on</strong> viability <str<strong>on</strong>g>of</str<strong>on</strong>g> many amphibian species.<br />

Roads functi<strong>on</strong>s as barriers in <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape. They separate local populati<strong>on</strong>s from each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

or prevent access to necessary resources. Therefore, road density and traffic intensity in a regi<strong>on</strong><br />

may have severe <str<strong>on</strong>g>impact</str<strong>on</strong>g> <strong>on</strong> regi<strong>on</strong>al as well as local c<strong>on</strong>nectivity. Amphibians may be<br />

able to detect and avoid unsuitable habitat. Individuals’ ability to avoid <str<strong>on</strong>g>roads</str<strong>on</strong>g> can reduce road<br />

mortality but at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time road avoidance behaviour, can increase <str<strong>on</strong>g>the</str<strong>on</strong>g> barrier effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

road and reduce c<strong>on</strong>nectivity. We use an individual based model to explore how changes in<br />

road mortality and road avoidance behaviour affect local and regi<strong>on</strong>al c<strong>on</strong>nectivity in a populati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong> (Rana arvalis). The results indicate that road mortality has a str<strong>on</strong>g negative<br />

effect <strong>on</strong> regi<strong>on</strong>al c<strong>on</strong>nectivity, but <strong>on</strong>ly a small effect <strong>on</strong> local c<strong>on</strong>nectivity. Regi<strong>on</strong>al<br />

c<strong>on</strong>nectivity is positively affected by road avoidance and <str<strong>on</strong>g>the</str<strong>on</strong>g> effect becomes more pr<strong>on</strong>ounced<br />

as road mortality decreases. Road avoidance also has a positive effect <strong>on</strong> local c<strong>on</strong>nectivity.<br />

When road avoidance is total and <str<strong>on</strong>g>the</str<strong>on</strong>g> road functi<strong>on</strong>s as a 100% barrier regi<strong>on</strong>al<br />

c<strong>on</strong>nectivity is close to zero, while local c<strong>on</strong>nectivity exhibit very elevated values. The results<br />

suggest that <str<strong>on</strong>g>roads</str<strong>on</strong>g> may affect not <strong>on</strong>ly regi<strong>on</strong>al or metapopulati<strong>on</strong> dynamics but also have a<br />

direct effect <strong>on</strong> local populati<strong>on</strong> dynamics.<br />

62


Chapter Two<br />

Introducti<strong>on</strong><br />

All over <str<strong>on</strong>g>the</str<strong>on</strong>g> world, amphibian populati<strong>on</strong>s are declining and many amphibian species are<br />

listed in <str<strong>on</strong>g>the</str<strong>on</strong>g> IUCN as threatened or vulnerable (IUCN 2012). The causes for <str<strong>on</strong>g>the</str<strong>on</strong>g> decline are<br />

hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sized to be (combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>) factors such as climate change, diseases, predati<strong>on</strong> and<br />

UV-radiati<strong>on</strong>. But <str<strong>on</strong>g>the</str<strong>on</strong>g> main factor, especially in <str<strong>on</strong>g>the</str<strong>on</strong>g> western world, is thought to be <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing<br />

urbanisati<strong>on</strong> (Alford and Richards 1999; Beebee and Griffiths 2005; Collins and<br />

Storfer 2003; Gardner et al. 2007). The negative effect <str<strong>on</strong>g>of</str<strong>on</strong>g> urbanisati<strong>on</strong> is not <strong>on</strong>ly due to<br />

changes in land use and destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat. A huge infrastructural network functi<strong>on</strong>s as<br />

barriers to movement and causes <str<strong>on</strong>g>the</str<strong>on</strong>g> death <str<strong>on</strong>g>of</str<strong>on</strong>g> a huge number <str<strong>on</strong>g>of</str<strong>on</strong>g> amphibians every year (Andrews<br />

et al. 2008; Hamer and McD<strong>on</strong>nell 2008). Road density in an area as well as traffic<br />

density <strong>on</strong> individual <str<strong>on</strong>g>roads</str<strong>on</strong>g> have been shown to have a negative effect <strong>on</strong> amphibian populati<strong>on</strong>s<br />

(Eigenbrod et al. 2009; Fahrig and Rytwinski 2009; Hels and Buchwald 2001; Vos and<br />

Chard<strong>on</strong> 1998). Veysey et al. (2011) even found road density to have a str<strong>on</strong>ger effect <strong>on</strong><br />

populati<strong>on</strong> size than habitat availability, while Carr and Fahrig (2001) found more vagile species<br />

to be more vulnerable to road mortality.<br />

Very little literature exists <strong>on</strong> amphibians’ reacti<strong>on</strong>s to road. Amphibians are able to<br />

recognise and avoid unsuitable habitat. Although <str<strong>on</strong>g>the</str<strong>on</strong>g>re are species specific variati<strong>on</strong>s, individuals<br />

tend to prefer more shady and moist habitat types (Mazerolle 2005; Mazerolle and<br />

Desrochers 2005; Popescu and Hunter 2011; Vos et al. 2007). In more open and dry habitats<br />

like fields and clear-cuts, water loss is bigger and survival lower resulting in avoidance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

such habitats (Ro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmel and Semlitsch 2002; Todd and Ro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmel 2006). Individuals also<br />

tend to move more quickly in inhospitable habitats (Hartung 1991; Tram<strong>on</strong>tano 1997). These<br />

observati<strong>on</strong>s suggest that amphibians should be able to avoid <str<strong>on</strong>g>roads</str<strong>on</strong>g>, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

road kills suggests <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite (Elzanowski et al. 2009) and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly study <strong>on</strong> this topic did<br />

not find any indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> road avoidance in Rana pipiens (Bouchard et al. 2009).<br />

P<strong>on</strong>d breeding amphibians require both terrestrial and aquatic habitat to complete <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

life cycle. Proximity between <str<strong>on</strong>g>the</str<strong>on</strong>g> required habitat types is important for <str<strong>on</strong>g>the</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

populati<strong>on</strong>. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g>, or diminished access to, <strong>on</strong>e or both habitats will affect populati<strong>on</strong> size<br />

and persistence probability (Dunning et al. 1992; Haynes et al. 2007; Johns<strong>on</strong> et al. 2007;<br />

Pope et al. 2000). Moreover, populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d-breeding amphibians are frequently c<strong>on</strong>sidered<br />

to be structured as a regi<strong>on</strong>al network or a metapopulati<strong>on</strong>, making dispersal between<br />

63


Chapter Two<br />

subpopulati<strong>on</strong>s essential to regi<strong>on</strong>al populati<strong>on</strong> persistence (Hels 2002; Marsh 2008; Marsh<br />

and Trenham 2001; Smith and Green 2005). Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> barrier effect caused by <str<strong>on</strong>g>roads</str<strong>on</strong>g> may have<br />

severe c<strong>on</strong>sequences for populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d breeding amphibians.<br />

We have developed an individual based model to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure <strong>on</strong><br />

landscape c<strong>on</strong>nectivity. The model is part <str<strong>on</strong>g>of</str<strong>on</strong>g> a larger study c<strong>on</strong>cerning road effects <strong>on</strong> regi<strong>on</strong>al<br />

populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong> (Rana arvalis). In this paper we present our model and explore<br />

how behavioural resp<strong>on</strong>ses to infrastructure may affect local and regi<strong>on</strong>al c<strong>on</strong>nectivity.<br />

The ability to avoid <str<strong>on</strong>g>roads</str<strong>on</strong>g> may diminish <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> road kills. This behaviour will prevent<br />

dispersal across <str<strong>on</strong>g>the</str<strong>on</strong>g> road but at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time it may affect c<strong>on</strong>nectivity locally. Lower levels<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> road avoidance can reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> road’s barrier effect but this will probably depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> road mortality. We hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>size that<br />

Regi<strong>on</strong>al c<strong>on</strong>nectivity will be inhibited by high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> road avoidance and high road<br />

mortality and will depend <strong>on</strong> interacti<strong>on</strong>s between <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> road avoidance and road<br />

mortality<br />

Local c<strong>on</strong>nectivity will be promoted by high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> road avoidance but not be affected<br />

by road mortality<br />

We use a real Danish landscape with a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong> traversed by a large road to<br />

test how regi<strong>on</strong>al and local c<strong>on</strong>nectivity are affected by changes in road mortality and road<br />

avoidance.<br />

Methods<br />

We use an individual based model to simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> movements <str<strong>on</strong>g>of</str<strong>on</strong>g> juvenile <strong>Moor</strong> <strong>frogs</strong> and estimate<br />

immigrati<strong>on</strong> probabilities between habitat patches. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model is to<br />

measure <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape. In <str<strong>on</strong>g>the</str<strong>on</strong>g> following we use <str<strong>on</strong>g>the</str<strong>on</strong>g> terms dispersal and<br />

migrati<strong>on</strong> as defined by Semlitsch (2008), i.e. dispersal is “interpopulati<strong>on</strong>al, unidirecti<strong>on</strong>al<br />

movements from natal sites to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r breeding sites” and migrati<strong>on</strong> is “intrapopulati<strong>on</strong>al,<br />

round-trip movements toward and away from aquatic breeding sites”. The habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d<br />

breeding amphibians as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Moor</strong> frog includes terrestrial as well as aquatic habitat. Therefore<br />

we define <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch <str<strong>on</strong>g>of</str<strong>on</strong>g> a subpopulati<strong>on</strong> as a complementary habitat patch c<strong>on</strong>taining<br />

not <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d but also all accessible summer habitat within migrati<strong>on</strong> distance<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d (Dunning et al. 1992; P<strong>on</strong>toppidan and Nachman In review; Pope et al. 2000).<br />

64


Chapter Two<br />

Model species<br />

<strong>Moor</strong> <strong>frogs</strong> spend most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir life in terrestrial habitat; aquatic habitat is <strong>on</strong>ly used during<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> breeding seas<strong>on</strong>, which takes place in <str<strong>on</strong>g>the</str<strong>on</strong>g> early spring (Elmberg 2008; Glandt 2008; Hartung<br />

1991). So<strong>on</strong> after breeding, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>frogs</strong> return to <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat, which lies mostly<br />

within a 400 m radius from <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d (Elmberg 2008; Hartung 1991; Kovar et al.<br />

2009). Adult <strong>frogs</strong> show a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> site fidelity and <str<strong>on</strong>g>of</str<strong>on</strong>g>ten use <str<strong>on</strong>g>the</str<strong>on</strong>g> same breeding p<strong>on</strong>d<br />

and summer habitat from year to year (Loman 1994). L<strong>on</strong>g distance dispersal in <strong>Moor</strong> <strong>frogs</strong><br />

takes place predominantly during <str<strong>on</strong>g>the</str<strong>on</strong>g> juvenile life-stage (Semlitsch 2008; Sinsch 1990; 2006).<br />

Shortly after metamorphosis, <str<strong>on</strong>g>the</str<strong>on</strong>g> young <strong>frogs</strong> leave <str<strong>on</strong>g>the</str<strong>on</strong>g> natal p<strong>on</strong>d and disperse into <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding<br />

landscape seeking out suitable summer habitat. Dispersal distances are between a<br />

few hundred meters up to 1-2 kilometres (Baker and Halliday 1999; Hartung 1991; Sinsch<br />

2006; Vos and Chard<strong>on</strong> 1998). The juveniles stay in terrestrial habitat 2-3 years until <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

reach maturity, although some observati<strong>on</strong>s indicate that juvenile <strong>frogs</strong> follow <str<strong>on</strong>g>the</str<strong>on</strong>g> adults during<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> spring migrati<strong>on</strong>, without entering <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>ds (Hartung 1991; Sjögren-Gulve<br />

1998).<br />

Model overview<br />

The model c<strong>on</strong>siders a regi<strong>on</strong>al populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong> within a spatially explicit landscape<br />

matrix. The landscape is c<strong>on</strong>structed from a 600 x 800 cell GIS raster map, each cell representing<br />

an area <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 x 10 meters. A raster cell is characterised by a set <str<strong>on</strong>g>of</str<strong>on</strong>g> variables defining<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> habitat type and its value in regard to <str<strong>on</strong>g>the</str<strong>on</strong>g> different aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> life cycle and behaviour<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Moor</strong> frog (Table 1). Potential sites for subpopulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong> are represented<br />

by a GIS point-data set <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>ds surveyed during field work. Each p<strong>on</strong>d is defined by an IDnumber,<br />

a quality index and <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat fragments located within migrati<strong>on</strong> distance<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d (Table 1).<br />

Immigrati<strong>on</strong> requires two events: 1) <str<strong>on</strong>g>the</str<strong>on</strong>g> successful dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> a juvenile frog to summer<br />

habitat outside its natal habitat patch and 2) subsequent successful migrati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

new summer habitat to a nearby breeding p<strong>on</strong>d. In real life dispersal starts just after metamorphosis<br />

in early summer and lasts until hibernati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> autumn. The sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> immigrati<strong>on</strong><br />

event, migrati<strong>on</strong>, takes place in <str<strong>on</strong>g>the</str<strong>on</strong>g> spring 2.5 years later. For simplicity, we simulate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal and breeding migrati<strong>on</strong>, as if <str<strong>on</strong>g>the</str<strong>on</strong>g>y take place in <str<strong>on</strong>g>the</str<strong>on</strong>g> same year.<br />

65


Chapter Two<br />

The time step <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model is <strong>on</strong>e day and <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated period for dispersal as well as<br />

migrati<strong>on</strong> is 120 days each. At <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> a simulati<strong>on</strong>, 500 frog agents are created at each<br />

p<strong>on</strong>d. Each agent is assigned a random directi<strong>on</strong>, which determines its preferred directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

movement. This directi<strong>on</strong> does not change unless summer habitat is found. At each time step,<br />

a random daily travelling distance is chosen for each agent; <str<strong>on</strong>g>the</str<strong>on</strong>g> distance depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

attractiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> current habitat. The distance is travelled <strong>on</strong>e cell at a time, moving to <strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> neighbouring cells, depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> relative attractiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cells, although backwards<br />

movement is not allowed. The movement rules generate a biased random walk away<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> natal p<strong>on</strong>d and in <str<strong>on</strong>g>the</str<strong>on</strong>g> preferred directi<strong>on</strong>. During dispersal, frog agents encountering<br />

a cell with summer habitat will have a certain probability <str<strong>on</strong>g>of</str<strong>on</strong>g> settling in <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat and stop<br />

dispersing. This probability will increase with time. At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal period all frog<br />

agents that have not settled in summer habitat are removed. Starting <str<strong>on</strong>g>the</str<strong>on</strong>g> migrati<strong>on</strong> phase, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

remaining frog agents move toward <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d associated with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir summer habitat;<br />

in case several breeding p<strong>on</strong>ds are available <strong>on</strong>e is chosen randomly weighted by p<strong>on</strong>d quality.<br />

After each time step, <str<strong>on</strong>g>the</str<strong>on</strong>g> survival probability <str<strong>on</strong>g>of</str<strong>on</strong>g> every frog agent is assessed, based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

daily survival rates associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat type traversed during <str<strong>on</strong>g>the</str<strong>on</strong>g> day. Full model<br />

documentati<strong>on</strong> is found in Appendix 1 in <str<strong>on</strong>g>the</str<strong>on</strong>g> supplementary material, following <str<strong>on</strong>g>the</str<strong>on</strong>g> ODDtemplate<br />

suggested by Grimm et al. (2006; 2010). Netlogo v.4.1.3 (Wilensky 1999) is used as<br />

modelling envir<strong>on</strong>ment (freely downloadable at http://ccl.northwestern.edu/netlogo).<br />

Input data<br />

We use GIS data sets from a road project in Denmark, supplied by <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish Road Directorate<br />

and Amphi C<strong>on</strong>sult. The project c<strong>on</strong>cerns an area in north-western part <str<strong>on</strong>g>of</str<strong>on</strong>g> Zealand, 10 km<br />

east <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> city <str<strong>on</strong>g>of</str<strong>on</strong>g> Kalundborg (55° 40.14’ N 11° 17.85’ E) (Fig. 1). The area is characterised<br />

as semi-urban and agricultural landscapes, traversed by creeks and wetlands. A project data<br />

set c<strong>on</strong>tains a land cover map <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area and a point-data set <str<strong>on</strong>g>of</str<strong>on</strong>g> potential breeding p<strong>on</strong>ds<br />

found during field surveys. The land cover maps are c<strong>on</strong>structed following a protocol designed<br />

by amphibian experts (Hassingboe et al. 2012), in which a range <str<strong>on</strong>g>of</str<strong>on</strong>g> different habitat<br />

types are identified. Each habitat type has been assessed and ranked <strong>on</strong> a scale from 1- 5, for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following three variables: <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat’s relative suitability as summer habitat (H q ), its relative<br />

attracti<strong>on</strong> to <strong>frogs</strong> during movement (H a ) and <str<strong>on</strong>g>the</str<strong>on</strong>g> relative survival probability (H s ) in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

habitat. In <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>the</str<strong>on</strong>g> survival index (H s ) is c<strong>on</strong>verted into a daily survival probability (D s )<br />

(see appendix 1 for details). Infrastructural elements like <str<strong>on</strong>g>roads</str<strong>on</strong>g> and railways are processed as<br />

66


Chapter Two<br />

any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r habitat type and assigned values <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat attracti<strong>on</strong> and daily survival. However,<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature <str<strong>on</strong>g>the</str<strong>on</strong>g> terms “road avoidance” and “road mortality” are more comm<strong>on</strong>ly used. To<br />

avoid c<strong>on</strong>fusi<strong>on</strong> when discussing <str<strong>on</strong>g>the</str<strong>on</strong>g>se effects, we <str<strong>on</strong>g>the</str<strong>on</strong>g>refore c<strong>on</strong>vert (H a ) and (D s ) to road<br />

avoidance (R a ) and road mortality (R d ), respectively, and invert <str<strong>on</strong>g>the</str<strong>on</strong>g> ranking, i.e. R a = 6 - H a<br />

and R d = 1 - D s .<br />

The point-data set c<strong>on</strong>tains informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> potential breeding p<strong>on</strong>d,<br />

its ID-number as well as a quality index (Q). P<strong>on</strong>d qualities ranges from 0.1 – 1 and relates to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d and <str<strong>on</strong>g>the</str<strong>on</strong>g> immediate surroundings in regard to egg and larval survival<br />

and are estimated by experts during field work. In this paper we have excluded low-quality<br />

p<strong>on</strong>ds (Q < 0.6), since <str<strong>on</strong>g>the</str<strong>on</strong>g>y per definiti<strong>on</strong> have a low probability <str<strong>on</strong>g>of</str<strong>on</strong>g> maintaining a populati<strong>on</strong><br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own. The extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> map is 6x8 km and it c<strong>on</strong>tains 40 p<strong>on</strong>ds.<br />

Scenarios<br />

We create scenarios with increasing values <str<strong>on</strong>g>of</str<strong>on</strong>g> road avoidance, R a = [1; 2; 3; 4; 5], and road<br />

mortality, R d = [0.1; 0.3; 0.5; 0.7; 0.9], <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two major <str<strong>on</strong>g>roads</str<strong>on</strong>g> cutting through <str<strong>on</strong>g>the</str<strong>on</strong>g> map (Fig.1,<br />

<str<strong>on</strong>g>roads</str<strong>on</strong>g> shown in red). We run 25 simulati<strong>on</strong>s for every combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R a and R d . As R a increases <str<strong>on</strong>g>the</str<strong>on</strong>g> willingness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frog agents to enter <str<strong>on</strong>g>the</str<strong>on</strong>g> road will decrease,<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> surviving will increases with decreasing values <str<strong>on</strong>g>of</str<strong>on</strong>g> R d .<br />

Output<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> each simulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> natal p<strong>on</strong>d and <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> all frog agents are registered<br />

and immigrati<strong>on</strong> probability (p ij ) between all pair-wise p<strong>on</strong>ds is calculated. Landscape<br />

c<strong>on</strong>nectivity (S) is <str<strong>on</strong>g>the</str<strong>on</strong>g>n found as<br />

<br />

<br />

∑ ∑<br />

, <br />

(eq.1)<br />

Local populati<strong>on</strong>s are identified by grouping p<strong>on</strong>ds into clusters depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir mutual<br />

c<strong>on</strong>nectivity, using <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> unweighted, arithmetic, average clustering as described by<br />

Legendre and Legendre (1998). Since, immigrati<strong>on</strong> probabilities between any two p<strong>on</strong>ds are<br />

not necessarily symmetric, i.e. p ij ≠ p ji , we use summed immigrati<strong>on</strong>s probabilities as similarity<br />

measure (m): m ij = p ij + p ji . The threshold at which a given p<strong>on</strong>d or cluster no l<strong>on</strong>ger can<br />

be added to ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r cluster is set to m ij ≤ 0.01. We define local c<strong>on</strong>nectivity as <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity<br />

within a cluster and regi<strong>on</strong>al c<strong>on</strong>nectivity is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity between all<br />

67


Chapter Two<br />

pair-wise combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> clusters. Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> clustering result we compute within-cluster<br />

c<strong>on</strong>nectivity (S c ) for each cluster as<br />

<br />

<br />

∑ ∑<br />

, <br />

(eq. 2)<br />

where n c is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>ds bel<strong>on</strong>ging to cluster c. C<strong>on</strong>nectivity between clusters (S b ) is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n found as S b = S – S c . However, to be able to detect changes in local c<strong>on</strong>nectivity, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

p<strong>on</strong>ds c<strong>on</strong>stituting a cluster must be <str<strong>on</strong>g>the</str<strong>on</strong>g> same in all scenarios. Therefore, we use <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster<br />

c<strong>on</strong>figurati<strong>on</strong> found when R a is set to 5 to define clusters, and use this in all calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

within-cluster c<strong>on</strong>nectivity.<br />

We use a multiple regressi<strong>on</strong> model, with <str<strong>on</strong>g>the</str<strong>on</strong>g> general form y = β 0 + β 1 R d + β 2 R a +<br />

β 3 R d R a + ε., to test for <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> road avoidance (R a ), road mortality (R d ) and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir interacti<strong>on</strong><br />

<strong>on</strong> landscape c<strong>on</strong>nectivity (S), within-cluster c<strong>on</strong>nectivity (S c ) and between-cluster c<strong>on</strong>nectivity<br />

(S b ). Sequential Holm-B<strong>on</strong>ferr<strong>on</strong>i correcti<strong>on</strong> is used to adjust p-values. When R a is<br />

set to 5, frog agents to do not enter <str<strong>on</strong>g>the</str<strong>on</strong>g> road, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> road mortality is inc<strong>on</strong>sequential.<br />

Moreover, preliminary tests showed extreme c<strong>on</strong>nectivity values when <str<strong>on</strong>g>the</str<strong>on</strong>g> road is<br />

100% blocked. Both <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se factors risk masking <str<strong>on</strong>g>the</str<strong>on</strong>g> statistical effect <str<strong>on</strong>g>of</str<strong>on</strong>g> road mortality and<br />

road avoidance <strong>on</strong> c<strong>on</strong>nectivity at o<str<strong>on</strong>g>the</str<strong>on</strong>g>r levels <str<strong>on</strong>g>of</str<strong>on</strong>g> R a . C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> results from <str<strong>on</strong>g>the</str<strong>on</strong>g> scenarios<br />

with R a = 5 are excluded from <str<strong>on</strong>g>the</str<strong>on</strong>g> statistical testing.<br />

Results<br />

Analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scenarios with R a = 5 identifies seven clusters (Fig. 2A Table 2). Cluster c1<br />

c<strong>on</strong>tains four p<strong>on</strong>ds and is located ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r remotely in <str<strong>on</strong>g>the</str<strong>on</strong>g> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> map. Clusters c2 and c3<br />

are found in areas close to where <str<strong>on</strong>g>the</str<strong>on</strong>g> two test <str<strong>on</strong>g>roads</str<strong>on</strong>g> cross and c<strong>on</strong>tains four, respectively, five<br />

p<strong>on</strong>ds. Cluster c4 and cluster c5 c<strong>on</strong>tains seven and nine p<strong>on</strong>ds, respectively. These are more<br />

widespread clusters situated <strong>on</strong> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> road in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> map. The last two<br />

clusters c6 and c7 are placed near <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> map and c<strong>on</strong>tain two and six p<strong>on</strong>ds. As<br />

described in <str<strong>on</strong>g>the</str<strong>on</strong>g> method secti<strong>on</strong> we use this cluster c<strong>on</strong>figurati<strong>on</strong> as a reference for all scenarios<br />

when calculating within-cluster c<strong>on</strong>nectivity. N<strong>on</strong>e<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> analyses show that cluster<br />

c<strong>on</strong>figurati<strong>on</strong>s do not change with <str<strong>on</strong>g>the</str<strong>on</strong>g> different scenarios except when road mortality is set to<br />

0.1. In this case dispersal success is sufficiently high between cluster c4 and c5 and <str<strong>on</strong>g>the</str<strong>on</strong>g>y fuse<br />

into <strong>on</strong>e cluster (Fig. 2B).<br />

68


Chapter Two<br />

When R a ≤ 4, road mortality has str<strong>on</strong>g negative effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity between<br />

clusters (S b ) while road avoidance has a positive effect. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an interacti<strong>on</strong><br />

effect; <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> road avoidance becomes more pr<strong>on</strong>ounced as road mortality decreases<br />

(Table 3). These effects are all statistically significant (F 3,496 = 1814, p


Chapter Two<br />

quickly leave it again and <strong>on</strong>ly suffer <str<strong>on</strong>g>the</str<strong>on</strong>g> high mortality for at short time. When road avoidance<br />

is low, frog agents enter <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> more willingly and will tend to stay <str<strong>on</strong>g>the</str<strong>on</strong>g>re, suffering<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> higher mortality for a l<strong>on</strong>ger time. The severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> “trap” effect will depend <strong>on</strong><br />

road mortality as, all else being equal, successful dispersal across <str<strong>on</strong>g>the</str<strong>on</strong>g> road depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

survival probability. The results do in fact show a str<strong>on</strong>g interacti<strong>on</strong>; <str<strong>on</strong>g>the</str<strong>on</strong>g> positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

road avoidance <strong>on</strong> between-cluster c<strong>on</strong>nectivity getting more pr<strong>on</strong>ounced as road mortality<br />

increases.<br />

In accordance with our sec<strong>on</strong>d hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis, we find that road avoidance has a positive effect<br />

<strong>on</strong> local c<strong>on</strong>nectivity. In particular, when road avoidance is set to five, c<strong>on</strong>nectivity<br />

shows c<strong>on</strong>siderable elevated values. The str<strong>on</strong>g effect <strong>on</strong> within-cluster c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> a 100<br />

% barrier may seem surprising, but can be explained as a “deflecti<strong>on</strong>” effect. When <str<strong>on</strong>g>the</str<strong>on</strong>g> road is<br />

inaccessible road mortality is no l<strong>on</strong>ger an issue and a larger proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> frog agents will<br />

survive. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> blockage forces <str<strong>on</strong>g>the</str<strong>on</strong>g> agents to move al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> road instead <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing.<br />

Taken toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, this has <str<strong>on</strong>g>the</str<strong>on</strong>g> effect that a larger proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> frog agents stay within <str<strong>on</strong>g>the</str<strong>on</strong>g> local<br />

area for a l<strong>on</strong>ger time, which increases <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> an agent settling within <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster,<br />

enhancing within-cluster c<strong>on</strong>nectivity. We did not expect road mortality to have an effect <strong>on</strong><br />

within-cluster c<strong>on</strong>nectivity, but we do find a negative, although week, resp<strong>on</strong>se. This is<br />

probably because <str<strong>on</strong>g>the</str<strong>on</strong>g>re will be a small proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> frog agents entering <str<strong>on</strong>g>the</str<strong>on</strong>g> road and returning<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> same side. The survival probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se returnees will depend <strong>on</strong> road mortality.<br />

The seven clusters identified in this study do not all resp<strong>on</strong>d in <str<strong>on</strong>g>the</str<strong>on</strong>g> same way <strong>on</strong><br />

changes in road avoidance and road mortality. Two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters, c1 and c7, are not affected<br />

at all; <str<strong>on</strong>g>the</str<strong>on</strong>g>se are also <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters fur<str<strong>on</strong>g>the</str<strong>on</strong>g>st away from <str<strong>on</strong>g>the</str<strong>on</strong>g> road. Road mortality <strong>on</strong>ly significantly<br />

affects larger clusters with several p<strong>on</strong>d members very close to <str<strong>on</strong>g>the</str<strong>on</strong>g> road; maybe because<br />

<strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g>se clusters have sufficient number <str<strong>on</strong>g>of</str<strong>on</strong>g> returnees for <str<strong>on</strong>g>the</str<strong>on</strong>g> effect to be detectable.<br />

Road avoidance, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, affects also clusters fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r away; <strong>on</strong>ly clusters with a<br />

minimum distance to road above 300 m are unaffected by road avoidance. The result suggests<br />

that if <str<strong>on</strong>g>the</str<strong>on</strong>g> road is within <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> member p<strong>on</strong>ds, <str<strong>on</strong>g>the</str<strong>on</strong>g>n road avoidance<br />

will affect within-cluster c<strong>on</strong>nectivity.<br />

In this study, scenarios with road avoidance set to five, corresp<strong>on</strong>ds to real life situati<strong>on</strong>s<br />

where fencing al<strong>on</strong>g <str<strong>on</strong>g>roads</str<strong>on</strong>g> prevents access to <str<strong>on</strong>g>the</str<strong>on</strong>g> road. Our results suggest that fencing<br />

70


Chapter Two<br />

can result in highly increased local c<strong>on</strong>nectivity, even between p<strong>on</strong>ds not in immediate proximity<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> road. Thus, fencing may not just mitigate road induced mortality but may actually<br />

enhance local populati<strong>on</strong> persistence. Depending <strong>on</strong> number, quality and c<strong>on</strong>nectivity between<br />

subpopulati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> road a streng<str<strong>on</strong>g>the</str<strong>on</strong>g>ning <str<strong>on</strong>g>of</str<strong>on</strong>g> subpopulati<strong>on</strong>s adjacent<br />

to road fences can potentially improve regi<strong>on</strong>al populati<strong>on</strong> persistence (Hels and Nachman<br />

2002). However, fencing also separates a populati<strong>on</strong> into several smaller and more isolated<br />

groups <str<strong>on</strong>g>of</str<strong>on</strong>g> subpopulati<strong>on</strong>s, each <str<strong>on</strong>g>of</str<strong>on</strong>g> which may have a higher risk <str<strong>on</strong>g>of</str<strong>on</strong>g> extincti<strong>on</strong> and a lower<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> recol<strong>on</strong>isati<strong>on</strong>. In a simulati<strong>on</strong> experiment with a local populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> virtual<br />

animals Jaeger and Fahrig (2004) found that fencing could prol<strong>on</strong>g persistence time but had<br />

little effect <strong>on</strong> persistence probability, and in most cases <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> <strong>on</strong>ly survived <strong>on</strong> <strong>on</strong>e<br />

side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> road.<br />

The series <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios are hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical and all may not corresp<strong>on</strong>d to real life situati<strong>on</strong>s<br />

but road mortality can indeed range between very low and very high values, depending <strong>on</strong><br />

traffic intensity. Extreme low values <str<strong>on</strong>g>of</str<strong>on</strong>g> road avoidance, to <str<strong>on</strong>g>the</str<strong>on</strong>g> point where <str<strong>on</strong>g>the</str<strong>on</strong>g> road becomes<br />

more attractive than <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding landscape, may seem very unrealistic. However, behavioural<br />

resp<strong>on</strong>ses to traffic like immobilisati<strong>on</strong> (Mazerolle et al. 2005) can have similar effects;<br />

and after rain fall wet, dark <str<strong>on</strong>g>roads</str<strong>on</strong>g> may appear deceptively attractive to <strong>frogs</strong> (Andrews et al.<br />

2008).<br />

Our study c<strong>on</strong>cerns a specific landscape and a specific species, but still it is possible to<br />

draw some general c<strong>on</strong>clusi<strong>on</strong>. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all our results emphasize that c<strong>on</strong>nectivity is c<strong>on</strong>text<br />

dependent. The behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> focal species, <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir interacti<strong>on</strong><br />

are essential to how c<strong>on</strong>nectivity is realized. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, our simulati<strong>on</strong>s indicate that<br />

<str<strong>on</strong>g>roads</str<strong>on</strong>g> not <strong>on</strong>ly affect dispersal across <str<strong>on</strong>g>roads</str<strong>on</strong>g>. Even between p<strong>on</strong>ds located <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same side <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> road, dispersal success can be highly susceptible to road avoidance and road mortality,<br />

depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> distance to <str<strong>on</strong>g>the</str<strong>on</strong>g> road. This suggests that <str<strong>on</strong>g>roads</str<strong>on</strong>g> may affect not <strong>on</strong>ly regi<strong>on</strong>al or<br />

metapopulati<strong>on</strong> dynamics but also have a direct effect <strong>on</strong> local populati<strong>on</strong> dynamics.<br />

Acknowledgements<br />

The work was funded by <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish Road Directorate. The Amphi C<strong>on</strong>sult group has provided<br />

amphibian expertise as well as map data. Marianne Ujvári, Martin Hesselsøe, Agnete<br />

Jørgensen and Martin Schneekloth have given valuable feed-back during <str<strong>on</strong>g>the</str<strong>on</strong>g> model develop-<br />

71


Chapter Two<br />

ment. Uta Berger has given precious help during <str<strong>on</strong>g>the</str<strong>on</strong>g> work and kept <str<strong>on</strong>g>the</str<strong>on</strong>g> main author <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

IBM-track. We are very thankful to Carolyn Bauer for linguistic help.<br />

References<br />

Alford RA, Richards SJ (1999) Global amphibian declines: A problem in applied ecology.<br />

Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and Systematics 30: 133-165.<br />

doi:10.1146/annurev.ecolsys.30.1.133<br />

Andrews KM, Gibb<strong>on</strong>s JW, Jochimsen DM (2008) Ecological effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> <strong>on</strong> amphibians<br />

and reptiles: a literature review. 121-143 pp.<br />

Baker JMR, Halliday TR (1999) Amphibian col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new p<strong>on</strong>ds in an agricultural<br />

landscape. Herpetological Journal 9: 55-63<br />

Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: A watershed for c<strong>on</strong>servati<strong>on</strong><br />

biology Biological C<strong>on</strong>servati<strong>on</strong> 125: 271-285. doi:10.1016/j.bioc<strong>on</strong>.2005.04.009<br />

Bouchard J, Ford AT, Eigenbrod FE, Fahrig L (2009) Behavioral Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn<br />

Leopard Frogs (Rana pipiens) to Roads and Traffic: Implicati<strong>on</strong>s for Populati<strong>on</strong> Persistence.<br />

Ecology and Society 14:<br />

Carr LW, Fahrig L (2001) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> road traffic <strong>on</strong> two amphibian species <str<strong>on</strong>g>of</str<strong>on</strong>g> differing vagility.<br />

C<strong>on</strong>servati<strong>on</strong> Biology 15: 1071-1078<br />

Collins JP, Storfer A (2003) Global amphibian declines: sorting <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ses. Diversity and<br />

Distributi<strong>on</strong>s 9: 89-98. doi:10.1046/j.1472-4642.2003.00012.x<br />

Dunning JB, Daniels<strong>on</strong> BJ, Pulliam HR (1992) Ecological processes that affect populati<strong>on</strong>s in<br />

complex landscapes. Oikos 65: 169-175. doi:10.2307/3544901<br />

Eigenbrod F, Hecnar SJ, Fahrig L (2009) Quantifying <str<strong>on</strong>g>the</str<strong>on</strong>g> Road-Effect Z<strong>on</strong>e: Threshold Effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a Motorway <strong>on</strong> Anuran Populati<strong>on</strong>s in Ontario, Canada. Ecology and Society 14:<br />

Elmberg J (2008) Ecology and natural history <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> moor frog (Rana arvalis) in boreal Sweden.<br />

In: Glandt D, Jehle R (Eds) The <strong>Moor</strong> Frog Laurenti-Verlag, Bielefeld, 179-194<br />

Elzanowski A, Ciesiolkiewicz J, Kaczor M, Radwanska J, Urban R (2009) Amphibian road<br />

mortality in Europe: a meta-analysis with new data from Poland. European Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife<br />

Research 55: 33-43. doi:10.1007/s10344-008-0211-x<br />

Fahrig L, Rytwinski T (2009) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Roads <strong>on</strong> Animal Abundance: an Empirical Review<br />

and Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. Ecology and Society 14: 21<br />

Gardner TA, Barlow J, Peres CA (2007) Paradox, presumpti<strong>on</strong> and pitfalls in c<strong>on</strong>servati<strong>on</strong><br />

biology: The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat change for amphibians and reptiles. Biological C<strong>on</strong>servati<strong>on</strong><br />

138: 166-179. doi:10.1016/j.bioc<strong>on</strong>.2007.04.017<br />

Glandt D (2008) Der <strong>Moor</strong>frosch (Rana arvalis): Erscheinungsvielfalt, Verbreitung, Lebensräume,<br />

Verhalten sowie Perspectiven für den Artenschutz. In: Glandt D, Jehle R (Eds) The<br />

<strong>Moor</strong> Frog. Laurenti-Verlag, Bielefeld,<br />

Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T,<br />

Heinz SK, Huse G, Huth A, Jepsen JU, Jorgensen C, Mooij WM, Muller B, Pe'er G, Piou C,<br />

72


Chapter Two<br />

Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Ruger N, Strand E, Souissi S,<br />

Stillman RA, Vabo R, Visser U, DeAngelis DL (2006) A standard protocol for describing<br />

individual-based and agent-based models. Ecological <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> 198: 115-126.<br />

doi:10.1016/j.ecolmodel.2006.04.023<br />

Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF (2010) The ODD protocol:<br />

A review and first update. Ecological <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> 221: 2760-2768.<br />

doi:10.1016/j.ecolmodel.2010.08.019<br />

Hamer AJ, McD<strong>on</strong>nell MJ (2008) Amphibian ecology and c<strong>on</strong>servati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> urbanising<br />

world: A review. Biological C<strong>on</strong>servati<strong>on</strong> 141: 2432-2449. doi:10.1016/j.bioc<strong>on</strong>.2008.07.020<br />

Hartung H (1991) Untersuchung zur terrestrischen Biologie v<strong>on</strong> Populati<strong>on</strong>en des <strong>Moor</strong>frosches<br />

(Rana arvalis NILSSON 1842) unter bes<strong>on</strong>derer Berücksichtigung der Jahresmobilität.<br />

Hamburg: Universität Hamburg.<br />

Hassingboe J, Neergaard RS, Hesselsøe M (2012) Manual til produkti<strong>on</strong> af GIS raster kort<br />

til:”EDB-værktøj til at vurdere skader på bestande af padder /økologisk funkti<strong>on</strong>alitet”. Amphi<br />

C<strong>on</strong>sult.<br />

Haynes KJ, Diekotter T, Crist TO (2007) Resource complementati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

insect herbivore to habitat area and fragmentati<strong>on</strong>. Oecologia 153: 511-520.<br />

doi:10.1007/s00442-007-0749-4<br />

Hels T (2002) Populati<strong>on</strong> dynamics in a Danish metapopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spadefoot toads Pelobates<br />

fuscus. Ecography 25: 303-313. doi:10.1034/j.1600-0587.2002.250307.x<br />

Hels T, Buchwald E (2001) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> road kills <strong>on</strong> amphibian populati<strong>on</strong>s. Biological<br />

C<strong>on</strong>servati<strong>on</strong> 99: 331-340. doi:10.1016/S0006-3207(00)00215-9<br />

Hels T, Nachman G (2002) Simulating viability <str<strong>on</strong>g>of</str<strong>on</strong>g> a spadefoot toad Pelobates fuscus metapopulati<strong>on</strong><br />

in a landscape fragmented by a road. Ecography 25: 730-744. doi:10.1034/j.1600-<br />

0587.2002.250609.x<br />

IUCN (2012) IUCN Red List <str<strong>on</strong>g>of</str<strong>on</strong>g> Threatened Species. Versi<strong>on</strong> 2012.2.<br />

Jaeger JaG, Fahrig L (2004) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Road Fencing <strong>on</strong> Populati<strong>on</strong> Persistence. C<strong>on</strong>servati<strong>on</strong><br />

Biology 18: 1651-1657. doi:10.1111/j.1523-1739.2004.00304.x<br />

Johns<strong>on</strong> JR, Knouft JH, Semlitsch RD (2007) Sex and seas<strong>on</strong>al differences in <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial terrestrial<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gray treefrog (Hyla versicolor) populati<strong>on</strong>s. Biological C<strong>on</strong>servati<strong>on</strong><br />

140: 250-258. doi:10.1016/j.bioc<strong>on</strong>.2007.08.010<br />

Kovar R, Brabec M, Vita R, Bocek R (2009) Spring migrati<strong>on</strong> distances <str<strong>on</strong>g>of</str<strong>on</strong>g> some Central<br />

European amphibian species. Amphibia-reptilia 30: 367-378<br />

Legendre P, Legendre L (1998) Numerical ecology. Elsevier<br />

Loman J (1994) Site tenacity, within and between summers, <str<strong>on</strong>g>of</str<strong>on</strong>g> Rana arvalis and Rana temporaria.<br />

Alytes 12: 15-29<br />

Marsh D (2008) Metapopulati<strong>on</strong> viability analysis for amphibians. Animal C<strong>on</strong>servati<strong>on</strong> 11:<br />

463-465. doi:10.1111/j.1469-1795.2008.00223.x<br />

Marsh DM, Trenham PC (2001) Metapopulati<strong>on</strong> dynamics and amphibian c<strong>on</strong>servati<strong>on</strong>. C<strong>on</strong>servati<strong>on</strong><br />

Biology 15: 40-49<br />

73


Chapter Two<br />

Mazerolle MJ (2005) Drainage Ditches Facilitate Frog Movements in a Hostile Landscape.<br />

Landscape Ecology 20: 579-590. doi:10.1007/s10980-004-3977-6<br />

Mazerolle MJ, Desrochers A (2005) Landscape resistance to frog movements. Canadian Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology-Revue Canadienne De Zoologie 83: 455-464. doi:10.1139/z05-032<br />

Mazerolle MJ, Huot M, Gravel M (2005) Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> amphibians <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> road in resp<strong>on</strong>se to<br />

car traffic. Herpetologica 61: 380-388. doi:10.1655/04-79.1<br />

P<strong>on</strong>toppidan M-B, Nachman G (In review) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> within-patch heterogeneity <strong>on</strong> c<strong>on</strong>nectivity<br />

in p<strong>on</strong>d-breeding amphibians studied by means <str<strong>on</strong>g>of</str<strong>on</strong>g> an individual-based model. Webecology<br />

Pope SE, Fahrig L, Merriam NG (2000) Landscape complementati<strong>on</strong> and metapopulati<strong>on</strong><br />

effects <strong>on</strong> leopard frog populati<strong>on</strong>s. Ecology 81: 2498-2508<br />

Popescu VD, Hunter ML, Jr. (2011) Clear-cutting affects habitat c<strong>on</strong>nectivity for a forest amphibian<br />

by decreasing permeability to juvenile movements. Ecological Applicati<strong>on</strong>s 21: 1283-<br />

1295. doi:10.1890/10-0658.1<br />

Ro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmel BB, Semlitsch RD (2002) An experimental investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape resistance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

forest versus old-field habitats to emigrating juvenile amphibians. C<strong>on</strong>servati<strong>on</strong> Biology 16:<br />

1324-1332<br />

Semlitsch RD (2008) Differentiating migrati<strong>on</strong> and dispersal processes for p<strong>on</strong>d-breeding<br />

amphibians. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Management 72: 260-267. doi:10.2193/2007-082<br />

Sinsch U (1990) Migrati<strong>on</strong> and orientati<strong>on</strong> in anuran amphibians. Ethology Ecology & Evoluti<strong>on</strong><br />

2: 65-79<br />

Sinsch U (2006) Orientati<strong>on</strong> and navigati<strong>on</strong> in Amphibia. Marine and Freshwater Behaviour<br />

and Physiology 39: 65-71. doi:10.1080/10236240600562794<br />

Sjögren-Gulve P (1998) Spatial movement patterns in <strong>frogs</strong>: Differences between three Rana<br />

species. Ecoscience 5: 148-155<br />

Smith MA, Green DM (2005) Dispersal and <str<strong>on</strong>g>the</str<strong>on</strong>g> metapopulati<strong>on</strong> paradigm in amphibian ecology<br />

and c<strong>on</strong>servati<strong>on</strong>: are all amphibian populati<strong>on</strong>s metapopulati<strong>on</strong>s Ecography 28: 110-<br />

128<br />

Todd BD, Ro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmel BB (2006) Assessing quality <str<strong>on</strong>g>of</str<strong>on</strong>g> clearcut habitats for amphibians: Effects<br />

<strong>on</strong> abundances versus vital rates in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn toad (Bufo terrestris). Biological C<strong>on</strong>servati<strong>on</strong><br />

133: 178-185. doi:10.1016/j.bioc<strong>on</strong>.2006.06.003<br />

Tram<strong>on</strong>tano R (1997) C<strong>on</strong>tinuous radio tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> frog, Rana temporaria. Herpetologia<br />

B<strong>on</strong>nensis: 359-365<br />

Veysey JS, Mattfeldt SD, Babbitt KJ (2011) Comparative influence <str<strong>on</strong>g>of</str<strong>on</strong>g> isolati<strong>on</strong>, landscape,<br />

and wetland characteristics <strong>on</strong> egg-mass abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> two pool-breeding amphibian species.<br />

Landscape Ecology 26: 661-672. doi:10.1007/s10980-011-9590-6<br />

Vos CC, Chard<strong>on</strong> JP (1998) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat fragmentati<strong>on</strong> and road density <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong><br />

pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> moor frog Rana arvalis. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology 35: 44-56<br />

Vos CC, Goedhart PW, Lammertsma DR, Spitzen-Van der Sluijs AM (2007) Matrix permeability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural landscapes: an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> movements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> frog (Rana temporaria).<br />

Herpetological Journal 17: 174-182<br />

74


Chapter Two<br />

Wilensky U (1999) NetLogo. Center for C<strong>on</strong>nected Learning and Computer-Based Modeling,<br />

Northwestern University, Evanst<strong>on</strong>, IL. , http://ccl.northwestern.edu/netlogo<br />

Figure legends<br />

Figure 1<br />

Study area. A) Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two study areas in Denmark. KaB is an area near Kalundborg <strong>on</strong><br />

Zealand and HoB is near Holstebro in Jutland. Only KaB is used in <str<strong>on</strong>g>the</str<strong>on</strong>g> present analysis, but<br />

both areas are used for <str<strong>on</strong>g>the</str<strong>on</strong>g> parameterisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model. B) KaB map used in <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis.<br />

Black dots are breeding p<strong>on</strong>ds, test <str<strong>on</strong>g>roads</str<strong>on</strong>g> are marked with red.<br />

Figure 2<br />

Results from cluster analyses with two different parameter settings. A) R a = 5, R d = 0.1 and B)<br />

R a = 4, R d = 0.9<br />

Figure 3<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> road avoidance (R a ) and road mortality (R d ) <strong>on</strong> a) between-cluster c<strong>on</strong>nectivity (S b )<br />

and b) landscape c<strong>on</strong>nectivity (S)<br />

Figure 4<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> road avoidance (R a ) and road mortality (R d ) <strong>on</strong> within-cluster c<strong>on</strong>nectivity (S c ) in<br />

cluster c2 – c6<br />

75


Chapter Two<br />

Figures<br />

Figure 1<br />

76


Chapter Two<br />

Figure 2<br />

Figure 3<br />

77


Chapter Two<br />

Figure 4<br />

78


Chapter Two<br />

Tables<br />

Table 1 List <str<strong>on</strong>g>of</str<strong>on</strong>g> variables characterizing <str<strong>on</strong>g>the</str<strong>on</strong>g> agents in <str<strong>on</strong>g>the</str<strong>on</strong>g> model<br />

Variable<br />

Notati<strong>on</strong><br />

Value<br />

range<br />

Agent<br />

type<br />

Descripti<strong>on</strong><br />

DailySurvival D s Cell Daily survival probability<br />

HabitatAttracti<strong>on</strong> H a 1-5 Cell<br />

The cell’s relative attracti<strong>on</strong> to <strong>frogs</strong> during<br />

movement<br />

HabitatCode H c Cell Cell code for habitat type<br />

HabitatSurvival H s 1-5 Cell The cell’s relative survival index<br />

SummerQuality H q 1-5 Cell<br />

The cell’s relative suitability as summer<br />

habitat<br />

BreedingP<strong>on</strong>d Frog Breeding p<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> frog agent<br />

NatalP<strong>on</strong>d Frog Natal p<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> frog agent<br />

P<strong>on</strong>dID P<strong>on</strong>d ID number<br />

P<strong>on</strong>dQuality Q 0.1-1 P<strong>on</strong>d Quality index <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d<br />

SummerHabitat A P<strong>on</strong>d<br />

Summer habitat cells associated with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

p<strong>on</strong>d<br />

79


Chapter Two<br />

Table 2 Descriptive statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> identified clusters.<br />

The cluster’s ID, number <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>ds in <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster, mean distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>ds to a road, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

distance to <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d closest to <str<strong>on</strong>g>the</str<strong>on</strong>g>n road and <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d members no more than 200<br />

m from <str<strong>on</strong>g>the</str<strong>on</strong>g> road. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore it is shown whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster exhibits extreme c<strong>on</strong>nectivity<br />

values when R a =5, its resp<strong>on</strong>se to road avoidance and its resp<strong>on</strong>se to road mortality<br />

Cluster characteristics<br />

Resp<strong>on</strong>ds patterns<br />

Cluster<br />

Cluster<br />

Mean dis-<br />

Min distance<br />

P<strong>on</strong>ds<br />

R a =<br />

Avoid-<br />

Mortal-<br />

Id<br />

size<br />

tance (m)<br />

( m)<br />

200m<br />

5<br />

ance<br />

ity<br />

c1 4 1322 1082 0 N N N<br />

c2 4 184 110 3 Y Y N<br />

c3 5 345 76 1 Y Y N<br />

c4 7 431 61 2 Y Y Y<br />

c5 9 223 71 6 Y Y Y<br />

c6 6 323 98 1 Y N N<br />

c7 2 385 318 0 N N N<br />

80


Chapter Two<br />

Table 3 Statistical results <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple regressi<strong>on</strong> models<br />

Statistical significance <str<strong>on</strong>g>of</str<strong>on</strong>g> variables and interacti<strong>on</strong>s in multiple regressi<strong>on</strong>s <strong>on</strong> landscape c<strong>on</strong>nectivity<br />

(S), within-cluster c<strong>on</strong>nectivity (S c ) <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster c1 – c7 and between-cluster c<strong>on</strong>nectivity<br />

(S b ). Sequential Holm-B<strong>on</strong>ferr<strong>on</strong>i correcti<strong>on</strong> is used to adjust p-values. Statistically significant<br />

values are shown in bold.<br />

Full model Road mortality R d Road avoidance, R a Interacti<strong>on</strong> R a * R d<br />

p<br />

p<br />

Dependent<br />

Parameter<br />

df F p R 2<br />

factor<br />

Parameter<br />

Parameter<br />

p<br />

Sc1 496 0.30 0.82 0.002 -0.003 0.873 0.001 0.738 0.001 0.884<br />

Sc2 496 7.20


Chapter Two<br />

Supplementary material - Appendix 1<br />

Model ODD<br />

Purpose<br />

The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model is to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape. In this study c<strong>on</strong>nectivity<br />

between any two subpopulati<strong>on</strong>s is measured as <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> successful immigrati<strong>on</strong>.<br />

The habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d breeding amphibians as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Moor</strong> frog includes terrestrial as well<br />

as aquatic habitat. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch <str<strong>on</strong>g>of</str<strong>on</strong>g> a subpopulati<strong>on</strong> is modelled as a complementary<br />

habitat patch c<strong>on</strong>taining not <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d but also all accessible summer<br />

habitat within migrati<strong>on</strong> distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d (Dunning et al. 1992; P<strong>on</strong>toppidan and<br />

Nachman In review; Pope et al. 2000). Immigrati<strong>on</strong>, thus, requires two events: 1) <str<strong>on</strong>g>the</str<strong>on</strong>g> successful<br />

dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> a juvenile frog to summer habitat outside its natal habitat patch and 2) subsequent<br />

successful migrati<strong>on</strong> to a breeding p<strong>on</strong>d associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> new summer habitat. In real<br />

life <str<strong>on</strong>g>the</str<strong>on</strong>g>se two events is 2 year apart, but, for simplicity, we <strong>on</strong>ly simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal and<br />

migrati<strong>on</strong> events not <str<strong>on</strong>g>the</str<strong>on</strong>g> intervening years.<br />

Entities, state variables, and scales<br />

Breeding p<strong>on</strong>ds are treated as stati<strong>on</strong>ary agents. Each p<strong>on</strong>d agent is characterized by a unique<br />

id-number, p<strong>on</strong>d-quality and <str<strong>on</strong>g>the</str<strong>on</strong>g> associated summer habitat. Frog agents are characterized by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d in which <str<strong>on</strong>g>the</str<strong>on</strong>g>y are hatched and <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g>y immigrate to. The extent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> model landscape is 600 x 800 grid cells, and each grid cell represents 10 x 10 m. Grid<br />

cells are defined by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir relative attracti<strong>on</strong> to dispersing <strong>frogs</strong>, a habitat survival index and a<br />

daily survival probability, <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat type and <str<strong>on</strong>g>the</str<strong>on</strong>g> relative value as summer habitat (see Table<br />

1 in main text). The first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> mimics <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> newly metamorphosed<br />

<strong>frogs</strong>, starting in mid-summer until hibernati<strong>on</strong> in autumn. The sec<strong>on</strong>d part c<strong>on</strong>siders <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

spring movement <str<strong>on</strong>g>of</str<strong>on</strong>g> juveniles from <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat towards <str<strong>on</strong>g>the</str<strong>on</strong>g>ir future breeding p<strong>on</strong>d<br />

and back to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir summer habitat. Each part runs for 120 time steps, <strong>on</strong>e step representing <strong>on</strong>e<br />

day.<br />

Process overview and scheduling<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> a simulati<strong>on</strong>, 500 frog agents are located at each p<strong>on</strong>d agent and <str<strong>on</strong>g>the</str<strong>on</strong>g> frog variable<br />

NatalP<strong>on</strong>d is updated with <str<strong>on</strong>g>the</str<strong>on</strong>g> ID-number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d. In <str<strong>on</strong>g>the</str<strong>on</strong>g> first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong><br />

82


Chapter Two<br />

(dispersal) <str<strong>on</strong>g>the</str<strong>on</strong>g> following procedures are executed each time-step: Move (movement <str<strong>on</strong>g>of</str<strong>on</strong>g> frog<br />

agents), Settle (evaluates if a frog agent stops dispersing and assigns <strong>frogs</strong> to breeding p<strong>on</strong>ds)<br />

and Survival (evaluates if a frog agent survives). At day 120 <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal stops; frog agents<br />

that have not settled are removed and <str<strong>on</strong>g>the</str<strong>on</strong>g> migrati<strong>on</strong> simulati<strong>on</strong> starts. The two procedures<br />

Move and Survival are run every time step and settled <strong>frogs</strong> start moving again, this time<br />

towards <str<strong>on</strong>g>the</str<strong>on</strong>g>ir breeding p<strong>on</strong>d. When a frog reaches its assigned breeding p<strong>on</strong>d, its directi<strong>on</strong> is<br />

set towards <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat fragments associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d. The<br />

simulati<strong>on</strong> stops at day 240 and at each p<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> model counts <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> immigrants<br />

from each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r p<strong>on</strong>d agents, computing immigrati<strong>on</strong> probabilities between all pairs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

p<strong>on</strong>ds. The simulati<strong>on</strong> is repeated 25 times.<br />

Design c<strong>on</strong>cepts<br />

Emergence<br />

Immigrati<strong>on</strong> rates will emerge as a resp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape c<strong>on</strong>figurati<strong>on</strong>.<br />

Adaptati<strong>on</strong> & Objectives<br />

To avoid desiccati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby increase survival, frog agents are assumed to move in resp<strong>on</strong>se<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> moistness <str<strong>on</strong>g>of</str<strong>on</strong>g> its surroundings. In general, <str<strong>on</strong>g>the</str<strong>on</strong>g> moister a habitat is <str<strong>on</strong>g>the</str<strong>on</strong>g> more attractive<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> habitat is for <str<strong>on</strong>g>the</str<strong>on</strong>g> frog as indicated by <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat-attracti<strong>on</strong> parameter H a . Dispersing<br />

juvenile <strong>Moor</strong> <strong>frogs</strong> have an innate tendency to move away from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal p<strong>on</strong>d. Each<br />

frog agent is assigned a random directi<strong>on</strong> to move, but during dispersal <str<strong>on</strong>g>the</str<strong>on</strong>g> frog adjusts its<br />

path to <str<strong>on</strong>g>the</str<strong>on</strong>g> encountered habitat. Adjustments are centred about <str<strong>on</strong>g>the</str<strong>on</strong>g> preferred directi<strong>on</strong> in a<br />

way that prevents backtracking.<br />

Sensing<br />

Frog agents are assumed to be aware <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own state-variables. Frog agents are also aware<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> grid cells, as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> identity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d agents.<br />

Interacti<strong>on</strong><br />

There is no interacti<strong>on</strong> between frog agents. Movement decisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frog agents depend <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> habitat attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> neighbouring cells. Survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frog agents depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

daily survival rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> traversed habitat.<br />

83


Chapter Two<br />

Stochasticity<br />

Which cell to move to, is chosen randomly am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> neighbouring cells with <str<strong>on</strong>g>the</str<strong>on</strong>g> probability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> being chosen weighted by <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat-attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> neighbouring cells. If frog agents<br />

occupy a cell suitable as summer habitat <str<strong>on</strong>g>the</str<strong>on</strong>g>y will stop dispersing with a certain probability;<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> probability increases with time. The breeding p<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> a settled frog agent is chosen randomly<br />

am<strong>on</strong>g accessible p<strong>on</strong>d agents weighted by p<strong>on</strong>d-quality.<br />

Observati<strong>on</strong><br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> each simulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> natal p<strong>on</strong>d and breeding p<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> all frog agents are registered<br />

and immigrati<strong>on</strong> probability (p ij ) between all pair-wise p<strong>on</strong>d agents is calculated.<br />

Initializati<strong>on</strong><br />

A landscape is c<strong>on</strong>structed based <strong>on</strong> a GIS-raster data set. Each cell c<strong>on</strong>tains informati<strong>on</strong><br />

about habitat type, habitat attracti<strong>on</strong>, habitat survival and summer quality. A data set with<br />

informati<strong>on</strong> <strong>on</strong> locati<strong>on</strong>, ID-number and p<strong>on</strong>d quality <str<strong>on</strong>g>of</str<strong>on</strong>g> surveyed p<strong>on</strong>ds is used to create<br />

p<strong>on</strong>d agents. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape is created, <str<strong>on</strong>g>the</str<strong>on</strong>g> Map-scan procedure is run to identify all accessible<br />

summer habitat cells associated with each p<strong>on</strong>d agents and <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d variable A is<br />

updated. Habitat survival is c<strong>on</strong>verted into daily survival probabilities and <str<strong>on</strong>g>the</str<strong>on</strong>g> cell variable D s<br />

is updated. 500 frog agents are located <strong>on</strong> each p<strong>on</strong>d agent, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir directi<strong>on</strong> set randomly.<br />

Submodels<br />

Map-scan<br />

The cell variable DailySurvival (D s ) is set as <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a frog agent surviving <strong>on</strong>e time<br />

step in <str<strong>on</strong>g>the</str<strong>on</strong>g> cell. This depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat code (H c ) and <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat survival index (H s ) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cell. Cells bel<strong>on</strong>ging to <str<strong>on</strong>g>roads</str<strong>on</strong>g>, H c = [2, 3, 4 5], are assign D s values specific for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir habitat<br />

code (see Appendix 1, Parameterisati<strong>on</strong>). All o<str<strong>on</strong>g>the</str<strong>on</strong>g>r cells are modelled as<br />

<br />

<br />

1∨ 6 , where σ0 and σ 1 are species specific c<strong>on</strong>stants.<br />

Local populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d-breeding amphibians inhabit a kind <str<strong>on</strong>g>of</str<strong>on</strong>g> composite habitat patch. At<br />

its core <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d is located, surrounded by satellites <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat fragments<br />

separated by matrix habitat (P<strong>on</strong>toppidan and Nachman In review). The Map-scan procedure<br />

delimits <str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch as all accessible cells within a 40 cells (400 m) radius<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d. Accessible cells are defined as cells with habitat attracti<strong>on</strong> (H a ) greater than 1<br />

84


Chapter Two<br />

and daily survival (D s ) greater than 0.3. This excludes structures such as buildings and large<br />

<str<strong>on</strong>g>roads</str<strong>on</strong>g>. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, inaccessible cells functi<strong>on</strong>s as a barrier blocking access to <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat behind<br />

(Eigenbrod et al. 2008) (Fig.A1).<br />

Move<br />

Each day frog agents move a randomly chosen distance depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat attracti<strong>on</strong><br />

(H a ) <str<strong>on</strong>g>of</str<strong>on</strong>g> its current cell. The distance is drawn from a normal distributi<strong>on</strong> with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> c and<br />

standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> s. Assuming <str<strong>on</strong>g>the</str<strong>on</strong>g> frog to head in <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> it was assigned when it left<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> natal p<strong>on</strong>d, it moves to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its neighbouring cells located within ±90 0 from <str<strong>on</strong>g>the</str<strong>on</strong>g> preferred<br />

directi<strong>on</strong>. Cells with H a = 1 is c<strong>on</strong>sidered inaccessible. Based <strong>on</strong> habitat attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> neighbouring, accessible cells (n), frog agents first decide which kind <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat <str<strong>on</strong>g>the</str<strong>on</strong>g>y want<br />

to move to. The probability <str<strong>on</strong>g>of</str<strong>on</strong>g> moving into <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cells with habitat attracti<strong>on</strong> H a is found<br />

as <br />

<br />

∑<br />

<br />

<br />

1 , where n a is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> neighbouring cells with habitat attracti<strong>on</strong><br />

H a and H ai is <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell i. A uniform pseudorandom number is selected<br />

to choose <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat. If <str<strong>on</strong>g>the</str<strong>on</strong>g>re is more than <strong>on</strong>e neighbouring cell with <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen habitat<br />

attracti<strong>on</strong>, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m is chosen randomly. The frog agent <str<strong>on</strong>g>the</str<strong>on</strong>g>n moves to a random positi<strong>on</strong><br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> cell, without changing its directi<strong>on</strong>. This routine is repeated until <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen<br />

distance for <str<strong>on</strong>g>the</str<strong>on</strong>g> day is traversed.<br />

During <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>, as frog agents get within a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

cells from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir destinati<strong>on</strong> (breeding p<strong>on</strong>d agent or summer habitat cell), <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>frogs</strong> move directly<br />

to it. At <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d frog agents are randomly assigned a summer habitat cell<br />

associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch. When <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>frogs</strong> reach <str<strong>on</strong>g>the</str<strong>on</strong>g>ir summer habitat cell <str<strong>on</strong>g>the</str<strong>on</strong>g>y stop<br />

moving. Frog agents reaching <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape are removed. If <strong>frogs</strong> agents are<br />

cornered with no accessible habitat to move to, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir directi<strong>on</strong> is permanently changed ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

35 degrees to <str<strong>on</strong>g>the</str<strong>on</strong>g> left or to <str<strong>on</strong>g>the</str<strong>on</strong>g> right.<br />

Settle<br />

Dispersing frog agents encountering a summer habitat cell has a certain probability <str<strong>on</strong>g>of</str<strong>on</strong>g> settling.<br />

The probability depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> day number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> year (t) and is found as:<br />

<br />

, where ν 0 and ν 1 are species specific c<strong>on</strong>stants<br />

<br />

85


Chapter Two<br />

When <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat cell in which <str<strong>on</strong>g>the</str<strong>on</strong>g> frog agent has settled is part <str<strong>on</strong>g>of</str<strong>on</strong>g> a habitat patch, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

frog is assigned <str<strong>on</strong>g>the</str<strong>on</strong>g> associated p<strong>on</strong>d agent. If <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat cell is shared by several<br />

p<strong>on</strong>d agents, <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> being assigned a p<strong>on</strong>d agent i is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d quality<br />

(Q) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> available p<strong>on</strong>d agents (n): <br />

until <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>.<br />

Survival<br />

<br />

∑<br />

<br />

. Once a frog agent is settled it stops moving<br />

For each frog agent a pseudo-random number is drawn between 0 and 1. If <str<strong>on</strong>g>the</str<strong>on</strong>g> number exceeds<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> geometric average <str<strong>on</strong>g>of</str<strong>on</strong>g> daily survival (D s ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cells traversed during <str<strong>on</strong>g>the</str<strong>on</strong>g> day, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

agent dies.<br />

Parameterisati<strong>on</strong><br />

All parameter values are listed in Table A1.<br />

Habitat attracti<strong>on</strong> (H a )<br />

Terrestrial amphibians are assumed to prefer habitat in which <str<strong>on</strong>g>the</str<strong>on</strong>g> water c<strong>on</strong>tent is high<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>reby minimizing <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> desiccati<strong>on</strong>. In an experiment with nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn green and nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn<br />

leopard <strong>frogs</strong> in peatlands Mazerolle and Desrochers (2005) found that 18 out <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 <strong>frogs</strong><br />

(72%) avoided barren surface. Hartung (1991) found that <strong>Moor</strong> <strong>frogs</strong> avoided areas with<br />

sparse or low vegetati<strong>on</strong>, and recorded <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio between densities in grass areas and densities<br />

in moor lands, hedges, ditches and forests to be 1:3.5.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> model, <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a frog agent choosing <strong>on</strong>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> cell above ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

during movement <str<strong>on</strong>g>the</str<strong>on</strong>g>refore depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> attractiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cells habitat type. The habitat<br />

attracti<strong>on</strong> (H a ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different habitat types in <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS maps was guesstimated by amphibian<br />

specialists (Table A2). We tested three different expressi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> H a to enter into <str<strong>on</strong>g>the</str<strong>on</strong>g> Moveprocedure:<br />

a) H a , b) (H a ) 2 and c) exp(H a ) and compared <str<strong>on</strong>g>the</str<strong>on</strong>g> results with <str<strong>on</strong>g>the</str<strong>on</strong>g> above menti<strong>on</strong>ed<br />

empirical findings. In additi<strong>on</strong>, we also ran a simulati<strong>on</strong> where movement was independent <strong>on</strong><br />

habitat attracti<strong>on</strong>.<br />

As test landscapes we used GIS data sets from two different road projects in Denmark,<br />

supplied by <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish Road Directorate and Amphi C<strong>on</strong>sult. The first project (KaB) c<strong>on</strong>cerns<br />

an area in north-western part <str<strong>on</strong>g>of</str<strong>on</strong>g> Zealand, 10 km east <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> city <str<strong>on</strong>g>of</str<strong>on</strong>g> Kalundborg (55°<br />

40.14’ N 11° 17.85’ E); <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d project (HoB) is from central Jutland, ca. 5 km east <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

86


Chapter Two<br />

Holstebro (56° 19.66’ N 8° 44.65’ E) (Fig. 1). Both areas are characterised as semi-urban and<br />

agricultural landscapes, traversed by creeks and wetlands. In <str<strong>on</strong>g>the</str<strong>on</strong>g> HoB map 36% <str<strong>on</strong>g>of</str<strong>on</strong>g> all cells<br />

were classified as attractive habitat (H a > 3) and <str<strong>on</strong>g>the</str<strong>on</strong>g> KaB map c<strong>on</strong>tained 51% attractive habitat.<br />

The model was run for 40 time steps without <str<strong>on</strong>g>the</str<strong>on</strong>g> Settle-procedure, and <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio between<br />

frog agents in attractive (H a = 4 or 5) and unattractive (H a = 2 or 3) habitat was computed as<br />

well as <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> frog agents in attractive habitat. Although <str<strong>on</strong>g>the</str<strong>on</strong>g>re were differences<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> maps, we chose <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> exp(H a ) as being <str<strong>on</strong>g>the</str<strong>on</strong>g> best to reproduce <str<strong>on</strong>g>the</str<strong>on</strong>g> empirical<br />

patterns (Table A3).<br />

Distance travelled pr. day<br />

In a radio tracking experiment with comm<strong>on</strong> frog (Rana temporaria) Tram<strong>on</strong>tano (1997)<br />

found adult <strong>frogs</strong> moving through a rye field to cover 148 m in <strong>on</strong>e week, corresp<strong>on</strong>ding to ca<br />

20 m pr day. In a study <strong>on</strong> dispersing juvenile moor <strong>frogs</strong> Hartung (1991) reported daily travelling<br />

distances <str<strong>on</strong>g>of</str<strong>on</strong>g> 12.5–18.8 m (mean 15.5 m) in attractive habitat as moors and 39.9–40.9 m<br />

in unattractive areas as pine forests. The daily travelling distance is, thus, assumed to depend<br />

<strong>on</strong> habitat attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> current cell and is modelled as following a normal distributi<strong>on</strong><br />

with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> c/H a and standard deviati<strong>on</strong> s.<br />

Two homogenous landscapes were c<strong>on</strong>structed with a habitat attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 or 4, respectively.<br />

In each landscape frog agents were allowed to move according to <str<strong>on</strong>g>the</str<strong>on</strong>g> Moveprocedure<br />

for 40 time steps. When a simulati<strong>on</strong> ended <str<strong>on</strong>g>the</str<strong>on</strong>g> straight distance between start and<br />

end point for all frog agents was measured and <str<strong>on</strong>g>the</str<strong>on</strong>g> mean daily travelling distance computed.<br />

The simulati<strong>on</strong>s were c<strong>on</strong>ducted for varying values <str<strong>on</strong>g>of</str<strong>on</strong>g> c and s, each combinati<strong>on</strong> repeated 50<br />

times. A parameter set was sought where daily travelling distance<br />

in attractive habitat exhibited values in <str<strong>on</strong>g>the</str<strong>on</strong>g> range between 12 m and 19 m and with a mean<br />

around 15 m<br />

in unattractive habitat exhibited values in a range between 20 m and 40 m<br />

The parameter set (c=7, s=0.5) was chosen as <str<strong>on</strong>g>the</str<strong>on</strong>g> best to fulfil <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s.<br />

Settle<br />

Little data has been found <strong>on</strong> dispersal distances. Hartung (1991) found dispersal distances <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

newly metamorphosed moor <strong>frogs</strong> up to 1200 m, but mean dispersal distance is guesstimated<br />

by experts to be 200-300 m. As <str<strong>on</strong>g>the</str<strong>on</strong>g> new <strong>frogs</strong> are assumed to have an innate urge to move<br />

87


Chapter Two<br />

away from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal p<strong>on</strong>d, settling probability is expected to be low in <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning. The<br />

dispersal drive is expected to subside with time, with settling probability increasing accordingly,<br />

creating an s-shaped probability functi<strong>on</strong> (Fig.A2). The realized dispersal distances will<br />

depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape c<strong>on</strong>figurati<strong>on</strong>. With <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen parameter set (ν 0 , ν 1 ) mean dispersal<br />

distance <str<strong>on</strong>g>of</str<strong>on</strong>g> frog agents in <str<strong>on</strong>g>the</str<strong>on</strong>g> HoB map is 363 m and max. dispersal distance is 2068 m. 68%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frog agents settle within <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own habitat patch. Less than 2% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frog agents disperse<br />

more than 1000 m. In <str<strong>on</strong>g>the</str<strong>on</strong>g> KaB map mean and maximum dispersal distances are 291 m<br />

and 2151 m, respectively. 83% settle within <str<strong>on</strong>g>the</str<strong>on</strong>g> home patch and less than 0.5% disperse more<br />

than 1000 m (Fig.A3).<br />

Daily survival<br />

The survival probability <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersing <strong>frogs</strong> is assumed to depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat. No empirical<br />

data <strong>on</strong> daily survival probabilities were found but annual survival rates for young adult <strong>frogs</strong><br />

has been estimated to be between 55% (Fog and Hesselsøe 2009) and 63% (Loman 1984).<br />

These rates are not habitat specific but are realized during annual movements in a heterogeneous<br />

landscape.<br />

All land cover categories in GIS maps were ranked according to amphibian survivability<br />

by specialist and assigned a value <str<strong>on</strong>g>of</str<strong>on</strong>g> relative survival index (H s ) (Table A2) which is subsequently<br />

c<strong>on</strong>verted into daily survival probabilities (D s ). The parameter set (σ 0 , σ 1 ) gives <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

functi<strong>on</strong>al relati<strong>on</strong>ship between H s and D s . The parameters were found by iterati<strong>on</strong>. The<br />

model was run with varying combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter values <strong>on</strong> both test maps until a set<br />

was found with which <str<strong>on</strong>g>the</str<strong>on</strong>g> annual survival rates were within 55% and 63%. With <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen<br />

parameter set <str<strong>on</strong>g>the</str<strong>on</strong>g> realized annual survival rates was between 56 % and 57 % in both maps.<br />

Table A4 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting habitat specific daily survival probability.<br />

Road survival<br />

Hels and Buchwald (2001, fig. 5) found <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>Moor</strong> frog getting killed when<br />

crossing a road ranged from ca 35% to ca 90% depending <strong>on</strong> traffic intensity. We assume<br />

traffic intensity to be correlated with road width and let daily survival probability (D s ) depend<br />

<strong>on</strong> road category as shown in Table A5.<br />

88


Chapter Two<br />

References<br />

Dunning JB, Daniels<strong>on</strong> BJ, Pulliam HR (1992) Ecological processes that affect populati<strong>on</strong>s in<br />

complex landscapes. Oikos 65: 169-175. doi:10.2307/3544901<br />

Eigenbrod F, Hecnar SJ, Fahrig L (2008) Accessible habitat: an improved measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> habitat loss and <str<strong>on</strong>g>roads</str<strong>on</strong>g> <strong>on</strong> wildlife populati<strong>on</strong>s. Landscape Ecology 23: 159-168.<br />

doi:10.1007/s10980-007-9174-7<br />

Fog K, Hesselsøe M (2009) Udvikling af prototypemodel til brug for forvaltning af<br />

spidssnudet frø i forbindelse med vejanlæg. Amphi C<strong>on</strong>sult, pp.<br />

Hartung H (1991) Untersuchung zur terrestrischen Biologie v<strong>on</strong> Populati<strong>on</strong>en des <strong>Moor</strong>frosches<br />

(Rana arvalis NILSSON 1842) unter bes<strong>on</strong>derer Berücksichtigung der Jahresmobilität.<br />

Hamburg: Universität Hamburg.<br />

Hels T, Buchwald E (2001) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> road kills <strong>on</strong> amphibian populati<strong>on</strong>s. Biological<br />

C<strong>on</strong>servati<strong>on</strong> 99: 331-340. doi:10.1016/S0006-3207(00)00215-9<br />

Loman J (1984) Density and survival <str<strong>on</strong>g>of</str<strong>on</strong>g> Rana arvalis and Rana temporaria. Alytes 3: 125-<br />

134<br />

Mazerolle MJ, Desrochers A (2005) Landscape resistance to frog movements. Canadian Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology-Revue Canadienne De Zoologie 83: 455-464. doi:10.1139/z05-032<br />

P<strong>on</strong>toppidan M-B, Nachman G (In review) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> within-patch heterogeneity <strong>on</strong> c<strong>on</strong>nectivity<br />

in p<strong>on</strong>d-breeding amphibians studied by means <str<strong>on</strong>g>of</str<strong>on</strong>g> an individual-based model. Webecology:<br />

Pope SE, Fahrig L, Merriam NG (2000) Landscape complementati<strong>on</strong> and metapopulati<strong>on</strong><br />

effects <strong>on</strong> leopard frog populati<strong>on</strong>s. Ecology 81: 2498-2508<br />

Tram<strong>on</strong>tano R (1997) C<strong>on</strong>tinuous radio tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> frog, Rana temporaria. Herpetologia<br />

B<strong>on</strong>nensis: 359-365<br />

89


Chapter Two<br />

Tables & Figures<br />

Table A1. List <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir default values and <str<strong>on</strong>g>the</str<strong>on</strong>g> procedure in which <str<strong>on</strong>g>the</str<strong>on</strong>g>y appear.<br />

Parameter Value<br />

Procedure<br />

ν 0 1.50E-06 Settle<br />

ν 1 0.06 Settle<br />

σ 0 2.2 Map-scan<br />

σ 1 4 Map-scan<br />

c 7 Move<br />

s 0.5 Move<br />

90


Chapter Two<br />

Table A2. 3 Land cover categories and <str<strong>on</strong>g>the</str<strong>on</strong>g> associated values <str<strong>on</strong>g>of</str<strong>on</strong>g> Habitat survival, Habitat attracti<strong>on</strong><br />

and Summer quality<br />

Habitat Code<br />

(H c )<br />

Descripti<strong>on</strong><br />

Habitat<br />

Attracti<strong>on</strong><br />

(H a )<br />

Habitat<br />

Survival<br />

(H s )<br />

2 4-lane motorway 2 N/A 1<br />

Summer<br />

Quality<br />

(H q )<br />

3 2-lane motorway 2 N/A 1<br />

4 Road, width > 6m 3 N/A 1<br />

5 Road, width 3-6 m 3 N/A 1<br />

6 O<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>roads</str<strong>on</strong>g> 3 2 2<br />

8 Pathway 4 4 3<br />

11 Multiple surface 3 3 3<br />

11 Railway 4 2 3<br />

12 Building 1 N/A N/A<br />

15 O<str<strong>on</strong>g>the</str<strong>on</strong>g>r made surface 2 3 2<br />

18 Wetlands 5 5 5<br />

20 Running water 4 4 3<br />

22 Meadows 5 5 5<br />

24 Grassland 4 4 4<br />

25 Lakes 1 N/A N/A<br />

28 Hedgerow 4 4 4<br />

29 Heath land 5 5 4<br />

32 Woodland 4 4 4<br />

34 Stand <str<strong>on</strong>g>of</str<strong>on</strong>g> trees 4 4 3<br />

36 Bare surface 2 2 1<br />

40 Fallow land 4 4 4<br />

42 Field crops 2 2 2<br />

91


Chapter Two<br />

Table A3 Observed patterns and <str<strong>on</strong>g>the</str<strong>on</strong>g> patterns emerging using three different expressi<strong>on</strong>s with<br />

H a entering into <str<strong>on</strong>g>the</str<strong>on</strong>g> Move procedure as well as random movement. Results are shown for two<br />

different maps, Kalundborg (KaB) and Holstebro (HoB)<br />

Pattern<br />

Ratio between frog<br />

densities in good<br />

and bad habitat<br />

(Hartung 1991)<br />

Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> individual<br />

choosing<br />

good habitat (Mazerolle<br />

and Desrochers<br />

2005)<br />

Random H a<br />

2<br />

H a exp(H a )<br />

Observed<br />

KaB HoB KaB HoB KaB HoB KaB HoB<br />

0.29 0.39 0.48 0.46 0.64 0.43 0.53 0.38 0.46<br />

72% 72% 67% 68% 61% 70% 66% 73% 68%<br />

Table A4 Habitat survival index (H s ), <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding daily survival probability (D s ) and D s<br />

c<strong>on</strong>verted into annual survival probability.<br />

H s<br />

D s<br />

Annual survival<br />

probability<br />

1 0.9820 0.01<br />

2 0.9960 0.38<br />

3 0.9984 0.68<br />

4 0.9991 0.81<br />

5 0.9995 0.88<br />

92


Chapter Two<br />

Table A5 Road categories with <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding habitat code (H c ) and daily survival probability<br />

(D s )<br />

Habitat code (H c ) Road category<br />

D s<br />

2 4-lane motorway 0.1<br />

3 2-lane motorway 0.2<br />

4<br />

5<br />

Road width > 6<br />

m<br />

Road width 3-6<br />

m<br />

0.5<br />

0.8<br />

Figure A1 Illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> how accessible summer habitat is identified.<br />

Blue circle is a p<strong>on</strong>d; dotted circle represents maximum migrati<strong>on</strong> distance. Green areas are<br />

accessible summer habitat while shaded areas are inaccessible summer habitat.<br />

a) All summer habitat within migrati<strong>on</strong> distance is regarded as accessible<br />

b) Road traversing <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat prevents access to summer habitat <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

road<br />

c) Structures breaking <str<strong>on</strong>g>the</str<strong>on</strong>g> road such as underpasses again permit access to summer habitat <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> opposite side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> road.<br />

a b c<br />

93


Chapter Two<br />

Figure A2 Settling probability.<br />

If a frog agent encounters a summer habitat cell, <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> settling in <str<strong>on</strong>g>the</str<strong>on</strong>g> cell will depend<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> time, measured as day number<br />

1.0<br />

0.8<br />

Settle probability<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

170 190 210 230 250 270 290 310<br />

Daynumber<br />

Figure A3 Dispersal distances<br />

The frequency distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal distances with chosen settle-parameters for a) HoB<br />

map b) KaB map. Black line shows accumulated frequencies.<br />

a<br />

b<br />

25<br />

25<br />

20<br />

20<br />

%<br />

15<br />

%<br />

15<br />

10<br />

10<br />

5<br />

5<br />

0<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 Mor<br />

Dispersal distance (km)<br />

0<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 Mor<br />

Dispersal distance (km)<br />

94


CHAPTER THREE<br />

SAIA – A MANAGEMENT TOOL FOR<br />

ASSESSMENT OF ROAD EFFECTS ON<br />

REGIONAL POPULATIONS OF<br />

MOOR FROGS (RANA ARVALIS)<br />

Submitted to Nature C<strong>on</strong>servati<strong>on</strong><br />

December 2012


Chapter Three<br />

SAIA – a management tool for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> road<br />

effects <strong>on</strong> regi<strong>on</strong>al populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong> (Rana<br />

arvalis)<br />

Maj-Britt P<strong>on</strong>toppidan, Gösta Nachman<br />

Both:<br />

Secti<strong>on</strong> for Ecology and Evoluti<strong>on</strong><br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen<br />

Universitetsparken 15<br />

DK-2100 Copenhagen<br />

Corresp<strong>on</strong>ding author:<br />

M-B. P<strong>on</strong>toppidan<br />

email: mbp@bio.ku.dk<br />

ph<strong>on</strong>e: +45 51518791<br />

97


Chapter Three<br />

Abstract<br />

An expanding network <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> and railways fragments natural habitat affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> amount<br />

and quality <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat and reducing c<strong>on</strong>nectivity between habitat patches with severe c<strong>on</strong>sequences<br />

for biodiversity and populati<strong>on</strong> persistence. To ensure an ecologically sustainable<br />

transportati<strong>on</strong> system it is essential to find agreement between nature c<strong>on</strong>servati<strong>on</strong> and land<br />

use. GIS are frequently used to support management decisi<strong>on</strong>s in landscape planning. They<br />

are used to produce land-use maps and provide various tools for measuring c<strong>on</strong>nectivity etc.,<br />

mostly based <strong>on</strong> graph <str<strong>on</strong>g>the</str<strong>on</strong>g>ory or least cost analysis c<strong>on</strong>sidering distances and landscape permeability.<br />

However, GIS map do not provide informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> particular dispersal, survival<br />

and establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> animals, which depend not <strong>on</strong>ly <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat<br />

but also <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> animals, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir resp<strong>on</strong>se to habitat c<strong>on</strong>diti<strong>on</strong>s and landscape<br />

elements. Individual based modelling has been proven to be suitable for describing such processes.<br />

The study presented, combines GIS with IBM in order to merge <str<strong>on</strong>g>the</str<strong>on</strong>g> strengths <str<strong>on</strong>g>of</str<strong>on</strong>g> both<br />

approaches, since a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> land use analysis with animal behaviour is essential for an<br />

effective planning <str<strong>on</strong>g>of</str<strong>on</strong>g> landscapes, providing for <str<strong>on</strong>g>the</str<strong>on</strong>g> urban use by humans as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> survival<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> endangered species. The model, called SAIA (Spatial Amphibian Impact Assessment),<br />

provides informati<strong>on</strong> <strong>on</strong> c<strong>on</strong>nectivity as well as estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> persistence. By<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> a case study dedicated to p<strong>on</strong>d breeding amphibians (Rana arvalis) we dem<strong>on</strong>strate<br />

how SAIA can be used for assessing which management measures would be best to mitigate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape fragmentati<strong>on</strong> caused by road c<strong>on</strong>structi<strong>on</strong>s.<br />

98


Chapter Three<br />

Introducti<strong>on</strong><br />

Over <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade a growing amount <str<strong>on</strong>g>of</str<strong>on</strong>g> literature has documented <str<strong>on</strong>g>the</str<strong>on</strong>g> severe <str<strong>on</strong>g>impact</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transport infrastructure <strong>on</strong> biodiversity, populati<strong>on</strong> persistence and gene flow. An expanding<br />

network <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> and railways divides natural habitat into smaller and smaller fragments, affecting<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> amount and quality <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat and reducing c<strong>on</strong>nectivity between habitat patches<br />

(C<str<strong>on</strong>g>of</str<strong>on</strong>g>fin 2007; Fahrig and Rytwinski 2009; Forman and Alexander 1998; Holderegger and Di<br />

Giulio 2010; Spellerberg 1998; Trombulak and Frissell 2000). To ensure an ecologically sustainable<br />

transportati<strong>on</strong> system it is essential to find agreement between nature c<strong>on</strong>servati<strong>on</strong><br />

and land use. In Europe and <str<strong>on</strong>g>the</str<strong>on</strong>g> US, programs and policies are being developed addressing<br />

this need in strategic and envir<strong>on</strong>mental <str<strong>on</strong>g>impact</str<strong>on</strong>g> assessments (Brown 2006; Iuell et al. 2003;<br />

Trocmé et al. 2003), However, sustainable road planning requires adequate tools for assessment,<br />

preventi<strong>on</strong> and mitigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>impact</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure (Beckmann 2010; Forman et<br />

al. 2003; G<strong>on</strong>tier et al. 2010).<br />

The persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong> depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount and accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> its required<br />

resources and, within a metapopulati<strong>on</strong> framework, also <strong>on</strong> sufficient dispersal between subpopulati<strong>on</strong>s<br />

(Dunning et al. 1992; Wiens 1997). Therefore, measures <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>nectivity have<br />

been used as indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> a landscape’s capability to sustain a populati<strong>on</strong>. Likewise, GIS has<br />

proved to be an important tool when assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> <strong>on</strong> landscape fragmentati<strong>on</strong><br />

and/or c<strong>on</strong>nectivity (Beckmann 2010; Brown 2006; Calabrese and Fagan 2004). Different<br />

species have both different habitat requirements and behaviours. Therefore, c<strong>on</strong>nectivity must<br />

in essence be species specific. Methods using least cost modelling (Adriaensen et al. 2003;<br />

Epps et al. 2007) or graph <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical approaches (Bunn et al. 2000; Minor and Urban 2008;<br />

Zetterberg et al. 2010) usually combine GIS data with some species specific data such as dispersal<br />

distances or habitat suitability. However, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se methods c<strong>on</strong>siders <str<strong>on</strong>g>the</str<strong>on</strong>g> particular<br />

dispersal, survival and establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> animals, which depend not <strong>on</strong>ly <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat but also <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> animals, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir resp<strong>on</strong>ses to habitat c<strong>on</strong>diti<strong>on</strong>s,<br />

landscape elements, interacti<strong>on</strong>s with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r animals and many o<str<strong>on</strong>g>the</str<strong>on</strong>g>r factors. Individual<br />

based models (IBMs) have proved to be suitable for describing such processes (Grimm<br />

1999; McLane et al. 2011) and recently <str<strong>on</strong>g>the</str<strong>on</strong>g>re has been an increase in IBM case studies dem<strong>on</strong>strating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> potential for analysing populati<strong>on</strong> dynamics emerging from <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong>s<br />

99


Chapter Three<br />

between landscape settings and animal behaviour (e.g. Graf et al. 2007; Kramer-Schadt et al.<br />

2004; Pe'er et al. 2011).<br />

We have developed a strategic management tool to be used in assessment and mitigati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> road effects <strong>on</strong> a regi<strong>on</strong>al populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d-breeding amphibians. The model, called<br />

SAIA (Spatial Amphibian Impact Assessment), combines <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> GIS land cover maps<br />

with IBM and provides informati<strong>on</strong> <strong>on</strong> c<strong>on</strong>nectivity as well as estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> persistence.<br />

SAIA is to be used by <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish road authorities when assessing how new road c<strong>on</strong>structi<strong>on</strong><br />

may affect <strong>Moor</strong> <strong>frogs</strong> (Rana arvalis). In this paper we dem<strong>on</strong>strate how SAIA can<br />

be used for assessing which management measures would be best to mitigate <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

landscape fragmentati<strong>on</strong> caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a road ca 90 km west <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen,<br />

Denmark. To achieve this goal <str<strong>on</strong>g>the</str<strong>on</strong>g> following specific research questi<strong>on</strong>s were addressed:<br />

What is <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>al habitat network before road c<strong>on</strong>structi<strong>on</strong><br />

How is <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat network affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> new road<br />

Which mitigati<strong>on</strong> strategies are best suited to preserve <str<strong>on</strong>g>the</str<strong>on</strong>g> overall persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>al<br />

populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Moor</strong> <strong>frogs</strong><br />

Methods<br />

SAIA combines an individual based model with a populati<strong>on</strong> based model. The IBM is basically<br />

identical to <str<strong>on</strong>g>the</str<strong>on</strong>g> model described in P<strong>on</strong>toppidan and Nachman (In prep.) It simulates <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

movement <str<strong>on</strong>g>of</str<strong>on</strong>g> newly metamorphosed <strong>frogs</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal p<strong>on</strong>ds to new habitat patches.<br />

Here, we use <str<strong>on</strong>g>the</str<strong>on</strong>g> terms dispersal and migrati<strong>on</strong> as defined by Semlitsch (2008), i.e. dispersal<br />

is interpopulati<strong>on</strong>al, unidirecti<strong>on</strong>al movements from natal sites to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r breeding sites and<br />

migrati<strong>on</strong> is intrapopulati<strong>on</strong>al, round-trip movements toward and away from aquatic breeding<br />

sites. The habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d breeding amphibians, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Moor</strong> frog, includes terrestrial as<br />

well as aquatic habitat. Therefore, we define an adequate habitat patch <str<strong>on</strong>g>of</str<strong>on</strong>g> a subpopulati<strong>on</strong> as<br />

c<strong>on</strong>taining not <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d but also all accessible summer habitat within migrati<strong>on</strong><br />

distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d (Dunning et al. 1992; P<strong>on</strong>toppidan and Nachman In review; Pope et<br />

al. 2000).<br />

100


Chapter Three<br />

Model species<br />

<strong>Moor</strong> <strong>frogs</strong> spend most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir life in terrestrial habitat; aquatic habitat is <strong>on</strong>ly used during<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> breeding seas<strong>on</strong> in early spring (Elmberg 2008; Glandt 2008; Hartung 1991). So<strong>on</strong> after<br />

breeding, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>frogs</strong> return to <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat, which lies mostly within a 400 m radius<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d (Elmberg 2008; Hartung 1991; Kovar et al. 2009). Adult <strong>frogs</strong> show<br />

str<strong>on</strong>g site fidelity and <str<strong>on</strong>g>of</str<strong>on</strong>g>ten use <str<strong>on</strong>g>the</str<strong>on</strong>g> same breeding p<strong>on</strong>d and summer habitat from year to<br />

year (Loman 1994). L<strong>on</strong>g distance dispersal takes place predominantly during <str<strong>on</strong>g>the</str<strong>on</strong>g> juvenile<br />

life-stage (Semlitsch 2008; Sinsch 1990; 2006). Shortly after metamorphosis, <str<strong>on</strong>g>the</str<strong>on</strong>g> young <strong>frogs</strong><br />

leave <str<strong>on</strong>g>the</str<strong>on</strong>g> natal p<strong>on</strong>d and disperse into <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding landscape seeking suitable summer<br />

habitat. Dispersal distances are between a few hundred meters up to 1-2 kilometres (Baker<br />

and Halliday 1999; Hartung 1991; Sinsch 2006; Vos and Chard<strong>on</strong> 1998). The juveniles stay<br />

in terrestrial habitat 2-3 years until <str<strong>on</strong>g>the</str<strong>on</strong>g>y reach maturity, although some observati<strong>on</strong>s indicate<br />

that juvenile <strong>frogs</strong> follow <str<strong>on</strong>g>the</str<strong>on</strong>g> adults during <str<strong>on</strong>g>the</str<strong>on</strong>g> spring migrati<strong>on</strong>, without entering <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding<br />

p<strong>on</strong>ds (Hartung 1991; Sjögren-Gulve 1998) .<br />

Model overview<br />

As in its predecessor (P<strong>on</strong>toppidan and Nachman In prep.), SAIA is based <strong>on</strong> a GIS raster<br />

map. Each raster cell c<strong>on</strong>tains informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> cell’s land cover or habitat type (H c ) and<br />

relative suitability as summer habitat (H q ), its relative attracti<strong>on</strong> to <strong>frogs</strong> during movement<br />

(H a ) and <str<strong>on</strong>g>the</str<strong>on</strong>g> relative survival index (Hs) associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> cell. A point-data set c<strong>on</strong>taining<br />

informati<strong>on</strong> <strong>on</strong> potential breeding p<strong>on</strong>ds was obtained from extensive field surveys in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

area. Each p<strong>on</strong>d is characterized by an ID-number, <str<strong>on</strong>g>the</str<strong>on</strong>g> perimeter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d (O), <str<strong>on</strong>g>the</str<strong>on</strong>g> number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> egg masses found during <str<strong>on</strong>g>the</str<strong>on</strong>g> field surveys (N 0 ) and a quality index (Q).<br />

The GIS map is imported into <str<strong>on</strong>g>the</str<strong>on</strong>g> model and <str<strong>on</strong>g>the</str<strong>on</strong>g> model landscape is c<strong>on</strong>structed. The<br />

point-data set is used to create stati<strong>on</strong>ary p<strong>on</strong>d agents. After import, <str<strong>on</strong>g>the</str<strong>on</strong>g> map is processed and<br />

additi<strong>on</strong>al variables are added to <str<strong>on</strong>g>the</str<strong>on</strong>g> raster cells and p<strong>on</strong>d agents. Daily survival probabilities<br />

(D s ) associated with each cell are computed based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cell values for HabitatCode and<br />

HabitatSurvival. Cells with high values <str<strong>on</strong>g>of</str<strong>on</strong>g> SummerQuality are classified as summer habitat.<br />

Summer habitat cells can be completely surrounded by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r summer habitat cells (core cells)<br />

or have <strong>on</strong>e or more neighbouring cells which are not summer habitat (edge cells). To account<br />

for edge effects, core cells are given <str<strong>on</strong>g>the</str<strong>on</strong>g> area value (W) <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 while W is 0.5 for edge cells<br />

(Watts and Handley 2010). P<strong>on</strong>d agents are updated with <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat cells within mi-<br />

101


Chapter Three<br />

grati<strong>on</strong> distance (A) as well as with <str<strong>on</strong>g>the</str<strong>on</strong>g> effective area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat (A´). The carrying<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat (K) is estimated, based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> available summer<br />

habitat and number <str<strong>on</strong>g>of</str<strong>on</strong>g> egg masses found during field work. Table 1 shows a full list <str<strong>on</strong>g>of</str<strong>on</strong>g> model<br />

variables.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> a simulati<strong>on</strong> 250 frog agents are created in each p<strong>on</strong>d agent. The <strong>frogs</strong><br />

disperse through <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape in random directi<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>ds; <str<strong>on</strong>g>the</str<strong>on</strong>g> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>frogs</strong> depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> attractiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> neighbouring cells and <str<strong>on</strong>g>the</str<strong>on</strong>g> cells’ suitabilities as summer<br />

habitat. Survival probabilities depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> traversed habitat types. Unlike <str<strong>on</strong>g>the</str<strong>on</strong>g> former model,<br />

movement behaviour in SAIA also depends <strong>on</strong> wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>diti<strong>on</strong>s. When daily precipitati<strong>on</strong><br />

exceeds a given threshold (α), <str<strong>on</strong>g>the</str<strong>on</strong>g> variables HabitatAttracti<strong>on</strong> and DailySurvival <str<strong>on</strong>g>of</str<strong>on</strong>g> all accessible<br />

cells are given <str<strong>on</strong>g>the</str<strong>on</strong>g> highest value. An excepti<strong>on</strong> is paved <str<strong>on</strong>g>roads</str<strong>on</strong>g> where <strong>on</strong>ly HabitatAttracti<strong>on</strong>,<br />

but not DailySurvival, is changed. After <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>, immigrati<strong>on</strong> probabilities between<br />

all pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> subpopulati<strong>on</strong>s are calculated and an immigrati<strong>on</strong> matrix is c<strong>on</strong>structed. The<br />

immigrati<strong>on</strong> matrix is used to compute c<strong>on</strong>nectivity. Apart from being a landscape attribute in<br />

itself, <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix also enters into to <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>-based procedure Populati<strong>on</strong>Dynamics<br />

(PD).<br />

The PD-procedure estimates populati<strong>on</strong> sizes in each p<strong>on</strong>d through 40 iterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a life<br />

cycle model. The elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> life cycle model are 1) Reproducti<strong>on</strong>, 2) Survival and 3)<br />

Immigrati<strong>on</strong>. For simplicity, we <strong>on</strong>ly look at <str<strong>on</strong>g>the</str<strong>on</strong>g> female part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>. We assume a<br />

sex ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 and that females always become mated. P<strong>on</strong>d subpopulati<strong>on</strong>s are grouped by<br />

age from 0 through 6 years, and survival and reproductive rates come from life-table data<br />

c<strong>on</strong>structed by amphibian experts (Table 2). The number <str<strong>on</strong>g>of</str<strong>on</strong>g> egg masses found in <str<strong>on</strong>g>the</str<strong>on</strong>g> surveyed<br />

p<strong>on</strong>ds (N 0 ) is expected to equal <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> breeding females in <str<strong>on</strong>g>the</str<strong>on</strong>g> subpopulati<strong>on</strong>. This<br />

number is set as <str<strong>on</strong>g>the</str<strong>on</strong>g> initial populati<strong>on</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d. After each iterati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d variables<br />

Froglets and AgeClassList are updated with <str<strong>on</strong>g>the</str<strong>on</strong>g> reproductive output and <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> surviving<br />

individuals in each age class, respectively. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> immigrants is added to age<br />

class 0 in <str<strong>on</strong>g>the</str<strong>on</strong>g> AgeClassList.<br />

Individuals can reproduce starting in age 3. As in Hels and Nachman (2002), <str<strong>on</strong>g>the</str<strong>on</strong>g> expected<br />

egg producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a female is assumed to follow a negative binomial distributi<strong>on</strong> with<br />

mean and clumping parameter k. is <str<strong>on</strong>g>the</str<strong>on</strong>g> mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs produced by a female <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

given age. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> newly metamorphosed <strong>frogs</strong>, ready to disperse is c<strong>on</strong>sidered as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

102


Chapter Three<br />

reproductive output. This involves <str<strong>on</strong>g>the</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> egg and larvae, as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

young <strong>frogs</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> first two weeks after metamorphosis. The overall probability that an egg develops<br />

into a frog that survives until dispersal time is assumed to be affected by two factors:<br />

Density <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs in <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d and <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d. The c<strong>on</strong>diti<strong>on</strong>al probability that a<br />

frog survives from age a to age a+1 is assumed to depend <strong>on</strong> age. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, survival is<br />

assumed to depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> frog density in <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat. For simplicity, this is modelled<br />

as a “culling” process when frog density exceeds <str<strong>on</strong>g>the</str<strong>on</strong>g> carrying capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat.<br />

Immigrati<strong>on</strong> probabilities between all pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> subpopulati<strong>on</strong>s are obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> immigrati<strong>on</strong><br />

matrix. The actual number <str<strong>on</strong>g>of</str<strong>on</strong>g> immigrants a subpopulati<strong>on</strong> receives depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> variable<br />

Froglets <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r p<strong>on</strong>ds and <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding immigrati<strong>on</strong> probability. Emigrati<strong>on</strong><br />

rates are not modelled explicitly. For a full model descripti<strong>on</strong> according to <str<strong>on</strong>g>the</str<strong>on</strong>g> protocol<br />

suggested by Grimm et al. (2006); (2010) see Appendix 1 in supplementary material and<br />

P<strong>on</strong>toppidan and Nachman (In prep.). Netlogo v.4.1.3 (Wilensky 1999) was used as modelling<br />

envir<strong>on</strong>ment (freely downloadable at http://ccl.northwestern.edu/netlogo).<br />

Output<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> a simulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> following output was recorded: <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> surviving <strong>frogs</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> natal and breeding p<strong>on</strong>ds <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>frogs</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> immigrati<strong>on</strong> probabilities (p ij ) between all<br />

pair-wise p<strong>on</strong>ds. Landscape c<strong>on</strong>nectivity (S) is found as<br />

<br />

<br />

∑ ∑<br />

, . (Eq. 1)<br />

By <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PD-procedure, <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> each p<strong>on</strong>d is estimated as <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting<br />

numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>frogs</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ages 2 through 6. The model was run 50 times and mean c<strong>on</strong>nectivity<br />

with 95% c<strong>on</strong>fidence interval (CI) were computed. For each p<strong>on</strong>d, as well as for <str<strong>on</strong>g>the</str<strong>on</strong>g> whole<br />

landscape, we computed mean populati<strong>on</strong> size with 95% c<strong>on</strong>fidence intervals (CI) and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> replicates where <str<strong>on</strong>g>the</str<strong>on</strong>g> predicted populati<strong>on</strong> size was positive. Mean number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

populated p<strong>on</strong>ds with 95% CI was also calculated.<br />

P<strong>on</strong>ds were grouped into clusters depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir mutual c<strong>on</strong>nectivity, using unweighted,<br />

arithmetic, average clustering as described by Legendre and Legendre (1998).<br />

Since immigrati<strong>on</strong> probabilities between p<strong>on</strong>ds are not necessarily symmetric, i.e. p ij ≠ p ji , we<br />

used summed immigrati<strong>on</strong>s probabilities as similarity measures (m), i.e. m ij = p ij + p ji . The<br />

threshold at which a given p<strong>on</strong>d or cluster no l<strong>on</strong>ger can be added to ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r cluster was set to<br />

m ij ≤ 0.01. C<strong>on</strong>nectivity between any pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> clusters (S k,l ) is found as<br />

103


Chapter Three<br />

<br />

<br />

, ∑ ∑<br />

<br />

, <br />

(Eq. 2)<br />

where n k and n l are <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>ds in clusters k and l, respectively.<br />

Scenarios<br />

We c<strong>on</strong>structed five different scenarios. The analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> scenario 0 and scenario 1 were used<br />

to plan a series <str<strong>on</strong>g>of</str<strong>on</strong>g> suggesti<strong>on</strong>s for mitigati<strong>on</strong> measures which are put into effect in scenarios 2,<br />

3a and 3b.<br />

Scenario 0: Before <str<strong>on</strong>g>the</str<strong>on</strong>g> road project<br />

This is an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape before <str<strong>on</strong>g>the</str<strong>on</strong>g> planned road c<strong>on</strong>structi<strong>on</strong> and it works as a<br />

reference against which <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r analyses are compared. As input data we use a GIS data set<br />

from a road project in Denmark, supplied by <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish Road Directorate and Amphi C<strong>on</strong>sult.<br />

The project c<strong>on</strong>cerns an area in <str<strong>on</strong>g>the</str<strong>on</strong>g> north-western part <str<strong>on</strong>g>of</str<strong>on</strong>g> Zealand, 10 km east <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> city<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Kalundborg (55° 40.14’ N 11° 17.85’ E) (fig. 1). All cell values <str<strong>on</strong>g>of</str<strong>on</strong>g> H a , H s and H q are<br />

ranked <strong>on</strong> a scale from 1-5, following <str<strong>on</strong>g>the</str<strong>on</strong>g> protocol <str<strong>on</strong>g>of</str<strong>on</strong>g> Hassingboe et al. (2012) (Table 3). The<br />

extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> map is 600 x 800 cells, and each cell is 10 x 10 m. The point data set c<strong>on</strong>tains<br />

informati<strong>on</strong> about potential breeding p<strong>on</strong>ds found during <str<strong>on</strong>g>the</str<strong>on</strong>g> field survey. P<strong>on</strong>d qualities (Q)<br />

range from 0.1 – 1 and relate to <str<strong>on</strong>g>the</str<strong>on</strong>g> suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d and <str<strong>on</strong>g>the</str<strong>on</strong>g> immediate surroundings in<br />

regard to egg and larval survival. These values were based <strong>on</strong> field work c<strong>on</strong>ducted by amphibian<br />

experts. The data set c<strong>on</strong>tains 121 p<strong>on</strong>ds, <str<strong>on</strong>g>of</str<strong>on</strong>g> which 23 p<strong>on</strong>ds are <str<strong>on</strong>g>of</str<strong>on</strong>g> high quality (Q ><br />

0.6). In total, 106 egg masses were found distributed am<strong>on</strong>g 6 p<strong>on</strong>ds (Fig. 2A).<br />

Scenario 1: After <str<strong>on</strong>g>the</str<strong>on</strong>g> road project<br />

The landscape in scenario 0 is modified according to <str<strong>on</strong>g>the</str<strong>on</strong>g> planned road project. The changes<br />

include a broadening <str<strong>on</strong>g>of</str<strong>on</strong>g> an existing 2-lane motorway into a 4-lane motorway as well as an<br />

extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> motorway. This changes <str<strong>on</strong>g>the</str<strong>on</strong>g> survival parameter Ds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> road from 0.20 to<br />

0.10. The c<strong>on</strong>structi<strong>on</strong> involves removal <str<strong>on</strong>g>of</str<strong>on</strong>g> five p<strong>on</strong>ds al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> road (Fig 3A).<br />

Scenario 2: C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> underpasses and drift fences<br />

Three underpasses are added to scenario 1. Drift fences are established al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> road for 100<br />

m <strong>on</strong> each side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> underpass, except for underpass 2 which has a 300 m drift fence to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

south (Fig 4A).<br />

104


Chapter Three<br />

Scenario 3: C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial breeding p<strong>on</strong>ds<br />

Eight new breeding p<strong>on</strong>ds are added to scenario 1. Each breeding p<strong>on</strong>d is assigned a p<strong>on</strong>d<br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.7. Scenarios 3a and 3b represent two alternative locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> eight p<strong>on</strong>ds (Fig<br />

4B and C).<br />

Results<br />

Initial analyses<br />

Scenario 0<br />

The average proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>ds populated during a simulati<strong>on</strong> was 32%, although <strong>on</strong>ly 22%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>ds have a more permanent status (p<strong>on</strong>d persistence probability > 0.75). The abundance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> adult female <strong>frogs</strong> was estimated to be 157; annual survival probability is 57%, and<br />

landscape c<strong>on</strong>nectivity was 55 (Fig 5).<br />

The cluster analysis identified 13 clusters, cluster sizes ranging from 2-20 p<strong>on</strong>ds (Fig<br />

2B, Table 4). The six populated p<strong>on</strong>ds found during field surveys were distributed <strong>on</strong> four<br />

different clusters. One p<strong>on</strong>d with <strong>on</strong>ly <strong>on</strong>e adult female was found in cluster 5 (c5). Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

p<strong>on</strong>d bel<strong>on</strong>gs to c4 and two o<str<strong>on</strong>g>the</str<strong>on</strong>g>r p<strong>on</strong>ds are found in c8. In each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se p<strong>on</strong>ds, <str<strong>on</strong>g>the</str<strong>on</strong>g> initial<br />

populati<strong>on</strong> size was set to 5 adult females. Cluster c11 c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining two populated<br />

p<strong>on</strong>ds with an initial total populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 90 adult females. Apart from c5, all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se initially<br />

populated clusters exhibited high viability. Clusters c4, c8 and c11 have mean p<strong>on</strong>d persistence<br />

probabilities between 77% - 93% and estimated cluster abundances from 23-51 adult<br />

females. Cluster c9 also shows high values <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance and persistence. Although initially<br />

unpopulated, c9 c<strong>on</strong>tains several high quality p<strong>on</strong>ds and is c<strong>on</strong>nected with c8 and c11 which<br />

may promote col<strong>on</strong>isati<strong>on</strong> and establishment. In c6 and c7, <str<strong>on</strong>g>the</str<strong>on</strong>g> mean p<strong>on</strong>d persistence probability<br />

is c<strong>on</strong>siderably lower (29-35%) as is <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated cluster abundance. While <str<strong>on</strong>g>the</str<strong>on</strong>g> two<br />

clusters, especially c6, are c<strong>on</strong>nected with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r populated clusters, <str<strong>on</strong>g>the</str<strong>on</strong>g>y lack high -quality<br />

p<strong>on</strong>ds and <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters may functi<strong>on</strong> as sinks. In <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining clusters <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated abundance<br />

is less than <strong>on</strong>e individual.<br />

105


Chapter Three<br />

Scenario 1<br />

After c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> road, <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populated p<strong>on</strong>ds was reduced to 26% and<br />

permanent p<strong>on</strong>ds are now down to 16%. Annual survival rate is 56% and estimated abundance<br />

is 136 adult females. Landscape c<strong>on</strong>nectivity decreased to 51 (Fig 5).<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> clusters was unchanged but c<strong>on</strong>nectivity between clusters was reduced<br />

(Table 5). C<strong>on</strong>nectivity from c7 and c9 to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir primary source (c8) decreased more than 80%.<br />

Moreover, three p<strong>on</strong>ds were lost in c7 and c9 due to <str<strong>on</strong>g>the</str<strong>on</strong>g> road c<strong>on</strong>structi<strong>on</strong>. Estimated abundance<br />

and mean p<strong>on</strong>d persistence probability decreased in c7 and c9 and <str<strong>on</strong>g>the</str<strong>on</strong>g>se clusters were<br />

no l<strong>on</strong>ger able to uphold viable populati<strong>on</strong>s (fig 3B). However <str<strong>on</strong>g>the</str<strong>on</strong>g> initially populated clusters<br />

c4, c8 and c11 were not affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> road c<strong>on</strong>structi<strong>on</strong>.<br />

Mitigati<strong>on</strong> planning<br />

The first analyses revealed that <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape c<strong>on</strong>tains three viable populati<strong>on</strong>s (c4, c8 & c11)<br />

centred <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> initially populated p<strong>on</strong>ds. These populati<strong>on</strong>s appear not to be affected by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

road c<strong>on</strong>structi<strong>on</strong> and in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters seemed to functi<strong>on</strong> as sources enabling<br />

col<strong>on</strong>isati<strong>on</strong> and establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s in c9 and c7. Cluster c4 has a large and viable<br />

populati<strong>on</strong>, but even though it is well c<strong>on</strong>nected with <str<strong>on</strong>g>the</str<strong>on</strong>g> neighbouring clusters <str<strong>on</strong>g>the</str<strong>on</strong>g>ir qualities<br />

were not high enough to enable establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> new populati<strong>on</strong>s. Since c4 is not c<strong>on</strong>nected<br />

with c7 and c9, its potential as source cluster is low. Cluster c8 seems to be <str<strong>on</strong>g>the</str<strong>on</strong>g> primary<br />

source cluster to c9 and c7; however, expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> road heavily reduces its value as a<br />

source. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> three p<strong>on</strong>ds between c9 and c7 may diminish <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g>se clusters. Cluster c11 has a viable populati<strong>on</strong> and although situated somewhat<br />

remotely <str<strong>on</strong>g>the</str<strong>on</strong>g>re is still some c<strong>on</strong>nectivity to c7 and c9.<br />

The results indicate that, in order to compensate or mitigate <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> road project,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> best strategies will be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r to re-establish c<strong>on</strong>nectivity across <str<strong>on</strong>g>the</str<strong>on</strong>g> road between c8<br />

and c7/c9 and between c7 and c9 or to take advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> viability <str<strong>on</strong>g>of</str<strong>on</strong>g> c11 and its source<br />

potential. Based <strong>on</strong> this, we created and analysed <str<strong>on</strong>g>the</str<strong>on</strong>g> following scenarios:<br />

Scenario 2: C<strong>on</strong>nectivity across <str<strong>on</strong>g>the</str<strong>on</strong>g> road is re-established by c<strong>on</strong>structing three underpasses<br />

and drift fences al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> middle secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> motorway (Fig. 4A). The expectati<strong>on</strong> is<br />

that c<strong>on</strong>nectivity between c8 and c9/c7 will improve and enable establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s<br />

in c9.<br />

106


Chapter Three<br />

Scenario 3a: The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> c9 and c11 is improved by establishing three, and <str<strong>on</strong>g>the</str<strong>on</strong>g>n five,<br />

new high -quality p<strong>on</strong>ds within <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters (Fig. 4B). The three new p<strong>on</strong>ds in c9<br />

are expected to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> successful establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> immigrants as well as<br />

rec<strong>on</strong>nect c9 with c7.We expected an increase in abundance in c11, and hence increased immigrati<strong>on</strong><br />

to and col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c9.<br />

Scenario 3b: This is a modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scenario 3a. The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> c9 and c11 is still improved<br />

but with <strong>on</strong>ly <strong>on</strong>e and two p<strong>on</strong>ds, respectively. The remaining five p<strong>on</strong>ds are used to<br />

create a dispersal corridor between c11 and c9 (Fig. 4C). This strategy is expected to enhance<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> abundance in c11 and to improve c<strong>on</strong>nectivity to c9, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

col<strong>on</strong>isati<strong>on</strong>.<br />

Mitigati<strong>on</strong> analyses<br />

Scenario 2<br />

Quite unexpectedly, <str<strong>on</strong>g>the</str<strong>on</strong>g> creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drift fences and underpasses did not improve <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape. The mean proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populated p<strong>on</strong>ds is 26% and permanent p<strong>on</strong>ds is<br />

16% as in scenario 1. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> female adults decreased to 115,<br />

landscape c<strong>on</strong>nectivity is 48 and annual survival rate 53% (Fig. 5).<br />

Two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> underpasses (including drift fences) were placed between c6 and c7; <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

third between c8 and c9. As expected, c<strong>on</strong>nectivity between c8 and 9 was greatly improved.<br />

Cluster c9 now spans <str<strong>on</strong>g>the</str<strong>on</strong>g> road and it annexed <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>ds in <str<strong>on</strong>g>the</str<strong>on</strong>g> periphery <str<strong>on</strong>g>of</str<strong>on</strong>g> c8 (Fig.<br />

4A). Abundance and mean p<strong>on</strong>d persistence probability <str<strong>on</strong>g>of</str<strong>on</strong>g> c9 increased; this, however, was<br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a p<strong>on</strong>d from c8. Persistence and abundance did not improve <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

original c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c9 (Table 6). Apart from c9, c<strong>on</strong>nectivity between initially populated<br />

clusters and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r clusters did not improve. C<strong>on</strong>nectivity to c4 and c11 were unchanged, while<br />

c<strong>on</strong>nectivity to c8 actually decreased. Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>frogs</strong> in c4 and c11 decreased<br />

to 20% even though c<strong>on</strong>nectivity both within <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster and to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r clusters was unchanged.<br />

Scenario 3a<br />

Establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> eight new p<strong>on</strong>ds had a positive effect <strong>on</strong> landscape c<strong>on</strong>diti<strong>on</strong>. The estimated<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> adult females increased to 143, proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populated p<strong>on</strong>ds is 31%, <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

19% are permanently populated. Landscape c<strong>on</strong>nectivity is 56 and annual survival rate 56%<br />

(Fig. 5).<br />

107


Chapter Three<br />

The five new p<strong>on</strong>ds in c11 performed well and c<strong>on</strong>tained permanent populati<strong>on</strong>s. However,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster did not improve, apart from a slightly higher persistence<br />

probability (Table 6). Cluster c9 seemed to benefit from <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong>al p<strong>on</strong>ds, although n<strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> new p<strong>on</strong>ds c<strong>on</strong>tained permanent populati<strong>on</strong>s. Cluster abundance and c<strong>on</strong>nectivity were<br />

nearly restored to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir original c<strong>on</strong>diti<strong>on</strong>s although mean p<strong>on</strong>d persistence probability was<br />

still below 50%. C<strong>on</strong>nectivity from c7 to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r p<strong>on</strong>ds improved somewhat, but not enough to<br />

restore <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster to its former performance (Fig. 4B).<br />

Scenarios 3b<br />

With this strategy we succeeded in restoring <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape to its original ecological performance.<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> adult female <strong>frogs</strong> is 159. Mean proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populated p<strong>on</strong>ds is 32%<br />

and 22% are populated permanently. Annual survival rate is 56% and landscape c<strong>on</strong>nectivity<br />

is 55 (Fig. 5).<br />

Three <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> new p<strong>on</strong>ds are now part <str<strong>on</strong>g>of</str<strong>on</strong>g> c9 while <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining five new p<strong>on</strong>ds bel<strong>on</strong>g<br />

to c11. C<strong>on</strong>nectivity between c9 and c11 is str<strong>on</strong>g and six <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> new p<strong>on</strong>ds c<strong>on</strong>tain permanent<br />

populati<strong>on</strong>s (Fig. 4C). The abundance and mean persistence probability <str<strong>on</strong>g>of</str<strong>on</strong>g> c11 increased<br />

and are now better than before <str<strong>on</strong>g>the</str<strong>on</strong>g> road c<strong>on</strong>structi<strong>on</strong>. C<strong>on</strong>diti<strong>on</strong>s in c9 also improved, compared<br />

to scenario 1, but its original performance in not quite restored. The performance <str<strong>on</strong>g>of</str<strong>on</strong>g> c7<br />

did not change and is still at <str<strong>on</strong>g>the</str<strong>on</strong>g> same level as found in scenario 1 (Table 6).<br />

Discussi<strong>on</strong><br />

This study dem<strong>on</strong>strates how initial analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape before and after <str<strong>on</strong>g>the</str<strong>on</strong>g> planned<br />

road c<strong>on</strong>structi<strong>on</strong>s can help identify which areas will be most affected by c<strong>on</strong>structi<strong>on</strong>. The<br />

analysis enables <str<strong>on</strong>g>the</str<strong>on</strong>g> user to recognise <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>isati<strong>on</strong> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters and to identify<br />

source or sink clusters and to use this knowledge for planning mitigati<strong>on</strong> measures. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

present case study, <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> recorded during <str<strong>on</strong>g>the</str<strong>on</strong>g> field survey<br />

will be largely unaffected. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> road c<strong>on</strong>structi<strong>on</strong> will severely impair <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

col<strong>on</strong>isati<strong>on</strong> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster c8, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape.<br />

Of <str<strong>on</strong>g>the</str<strong>on</strong>g> three mitigati<strong>on</strong> strategies tested, <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis shows that scenario 3b is <str<strong>on</strong>g>the</str<strong>on</strong>g> best<br />

soluti<strong>on</strong>. This strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>necting clusters c9 and c11 restores <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape to its former<br />

ecological performance. Even though not all individual p<strong>on</strong>ds or clusters would be in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same c<strong>on</strong>diti<strong>on</strong> as before, <str<strong>on</strong>g>the</str<strong>on</strong>g> strategy promotes viable populati<strong>on</strong>s <strong>on</strong> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> road.<br />

108


Chapter Three<br />

The strategy is not strictly aimed at mitigating <str<strong>on</strong>g>the</str<strong>on</strong>g> impaired c<strong>on</strong>nectivity across <str<strong>on</strong>g>the</str<strong>on</strong>g> road, but<br />

ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r tries to compensate for <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> by improving o<str<strong>on</strong>g>the</str<strong>on</strong>g>r areas. Still, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

populati<strong>on</strong>s <strong>on</strong> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> road are not totally isolated from each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r; some dispersal<br />

does take place making genetic exchange possible.<br />

Comparing <str<strong>on</strong>g>the</str<strong>on</strong>g> results from <str<strong>on</strong>g>the</str<strong>on</strong>g> analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios 3a and 3b suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> compensating new p<strong>on</strong>ds is not trivial. In both scenarios c11 gets five new p<strong>on</strong>ds, all<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> high quality. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> results differ quite a lot. Scenario 3a places <str<strong>on</strong>g>the</str<strong>on</strong>g> new p<strong>on</strong>ds<br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster sharing <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r p<strong>on</strong>ds. Even though <str<strong>on</strong>g>the</str<strong>on</strong>g> new p<strong>on</strong>ds are<br />

col<strong>on</strong>ized and support viable populati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>frogs</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster does not<br />

improve. In scenario 3b, where <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>frogs</strong> within cluster c11 increases, <str<strong>on</strong>g>the</str<strong>on</strong>g> new<br />

p<strong>on</strong>ds were placed between c9 and c11 and <strong>on</strong>ly partly share summer habitat with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

p<strong>on</strong>ds. This result emphasizes that for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Moor</strong> frog <str<strong>on</strong>g>the</str<strong>on</strong>g> carrying capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> an area is not<br />

improved by adding new p<strong>on</strong>ds, <strong>on</strong>ly new or better summer habitat can achieve this. Hence,<br />

we may improve cluster performance by creating new p<strong>on</strong>ds in unutilized summer habitat<br />

within dispersal distance.<br />

In scenarios 3a and 3b, c9 is also enlarged with three new p<strong>on</strong>ds. In <str<strong>on</strong>g>the</str<strong>on</strong>g>se cases <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

was no difference in frog abundance in <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> new p<strong>on</strong>ds were placed in unused<br />

summer habitat or not. In both scenarios, though, mean p<strong>on</strong>d persistence probability<br />

greatly improved compared to scenario 1. So, while adding p<strong>on</strong>ds to a cluster did not improve<br />

carrying capacity, it ensured a more viable cluster populati<strong>on</strong>.<br />

The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> scenario 2 shows that drift fences and underpasses had negative effects<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological performance <str<strong>on</strong>g>of</str<strong>on</strong>g> this landscape. This result is highly surprising as well as<br />

c<strong>on</strong>troversial since fences and underpasses are standard mitigati<strong>on</strong> measures used in many<br />

road projects (Iuell et al. 2003). Even though fences and underpasses should prevent road<br />

mortality and promote c<strong>on</strong>nectivity, <str<strong>on</strong>g>the</str<strong>on</strong>g> overall annual survival rate, as well as c<strong>on</strong>nectivity,<br />

decreased. These effects are probably mostly due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fences. Underpasses per se do not<br />

change movement patterns, but fences do. Moreover, we did see increased c<strong>on</strong>nectivity locally<br />

across <str<strong>on</strong>g>the</str<strong>on</strong>g> road between c8 and c9.<br />

Fences may force individuals to move al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> road exposing <str<strong>on</strong>g>the</str<strong>on</strong>g>m to low quality<br />

habitat for a l<strong>on</strong>ger time. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> mitigati<strong>on</strong> measures may be counterproductive if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fences and underpasses lead individuals into low quality habitat or areas<br />

109


Chapter Three<br />

without p<strong>on</strong>ds to col<strong>on</strong>ize. The populati<strong>on</strong> dynamics in <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>ds is an emergent property,<br />

dependent <strong>on</strong> local c<strong>on</strong>diti<strong>on</strong>s as well as regi<strong>on</strong>al dynamics. The change in c<strong>on</strong>nectivity and<br />

movement patterns caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> migrati<strong>on</strong> measures, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, seems to be able to affect<br />

abundances even in clusters far<str<strong>on</strong>g>the</str<strong>on</strong>g>r away.<br />

Very little is known about <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigati<strong>on</strong> measures in general. Once mitigati<strong>on</strong><br />

measures are implemented, efforts are seldom put into discovering how well <str<strong>on</strong>g>the</str<strong>on</strong>g>y work.<br />

Recordings <str<strong>on</strong>g>of</str<strong>on</strong>g> animals using wild life passages reveal nothing about effects <strong>on</strong> local and regi<strong>on</strong>al<br />

persistence (Lesbarreres and Fahrig 2012). In a simulati<strong>on</strong> study, Jaeger and Fahrig<br />

(2004) found that fencing, while preventing road mortality, did not necessarily improve populati<strong>on</strong><br />

persistence and <str<strong>on</strong>g>the</str<strong>on</strong>g>y recommended fencing <strong>on</strong>ly when road mortality is 100 %. In a<br />

study <strong>on</strong> moose (Alces alces), Olss<strong>on</strong> and Widen (2008) found that fences resulted in decreased<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> wildlife passages. Our simulati<strong>on</strong> results underscore <str<strong>on</strong>g>the</str<strong>on</strong>g> need for a better understanding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> how mitigati<strong>on</strong> measures affect animal behaviour and populati<strong>on</strong> dynamics.<br />

C<strong>on</strong>clusi<strong>on</strong><br />

When planning road c<strong>on</strong>structi<strong>on</strong>s, it is important to integrate mitigati<strong>on</strong> measures right from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> start. Often <str<strong>on</strong>g>the</str<strong>on</strong>g>re are ec<strong>on</strong>omic c<strong>on</strong>straints <strong>on</strong> which measures are possible, certain structures<br />

as viaducts or bridges may already be in place or land available for compensati<strong>on</strong> measures<br />

is restricted. SAIA <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a tool to evaluate different scenarios to find <str<strong>on</strong>g>the</str<strong>on</strong>g> best combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mitigati<strong>on</strong> measures for a given set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s. The model is meant to be used by<br />

n<strong>on</strong>-specialists – all that is needed are GIS maps <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different scenarios. We attempted to<br />

find a balance between detailed and yet intuitive and easy interpretable output. Even though<br />

SAIA was developed for <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish Road Directorate, its use is not restricted to road c<strong>on</strong>structi<strong>on</strong>s<br />

but can be applied to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r structures affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir potential<br />

<str<strong>on</strong>g>impact</str<strong>on</strong>g>s <strong>on</strong> wildlife.<br />

Acknowledgments<br />

The work was funded by <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish Road Directorate. We thank Amphi C<strong>on</strong>sult for providing<br />

us with amphibian expertise and field data. We are grateful for c<strong>on</strong>tinuous and enthusiastic<br />

feed-back from M. Ujvári, M. Hesselsøe, A. Jørgensen and M. Schneekloth during model<br />

110


Chapter Three<br />

development. Special thanks are due to Uta Berger for encouraging and inspiring discussi<strong>on</strong>s.<br />

We thank Michal J. Reed for linguistic assistance.<br />

References<br />

Adriaensen F, Chard<strong>on</strong> JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E<br />

(2003) The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 'least-cost' modelling as a functi<strong>on</strong>al landscape model. Landscape<br />

and urban planning 64: 233-247. doi:10.1016/s0169-2046(02)00242-6<br />

Baker JMR, Halliday TR (1999) Amphibian col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new p<strong>on</strong>ds in an agricultural<br />

landscape. Herpetological Journal 9: 55-63<br />

Beckmann JP (2010) Safe passages, highways, wildlife, and habitat c<strong>on</strong>nectivity. Washingt<strong>on</strong>,<br />

pp.<br />

Brown JW (2006) Eco-logical: An Ecosystem Approach to Developing Infrastructure Projects.<br />

Federal Highway Administrati<strong>on</strong>, Washingt<strong>on</strong>, DC 20590, FHWA-HEP-06-011, pp.<br />

Bunn AG, Urban DL, Keitt TH (2000) Landscape c<strong>on</strong>nectivity: A c<strong>on</strong>servati<strong>on</strong> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

graph <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental management 59: 265-278.<br />

doi:10.1006/jema.2000.0373<br />

Calabrese JM, Fagan WF (2004) A comparis<strong>on</strong>-shopper's guide to c<strong>on</strong>nectivity metrics. Fr<strong>on</strong>tiers<br />

in Ecology and <str<strong>on</strong>g>the</str<strong>on</strong>g> Envir<strong>on</strong>ment 2: 529-536. doi:10.1890/1540-<br />

9295(2004)002[0529:acgtcm]2.0.co;2<br />

C<str<strong>on</strong>g>of</str<strong>on</strong>g>fin AW (2007) From roadkill to road ecology: A review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g>.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Transport Geography 15: 396-406. doi:10.1016/j.jtrangeo.2006.11.006<br />

Dunning JB, Daniels<strong>on</strong> BJ, Pulliam HR (1992) Ecological processes that affect populati<strong>on</strong>s in<br />

complex landscapes. Oikos 65: 169-175. doi:10.2307/3544901<br />

Elmberg J (2008) Ecology and natural history <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> moor frog (Rana arvalis) in boreal Sweden.<br />

In: Glandt D, Jehle R (Eds) The <strong>Moor</strong> Frog Laurenti-Verlag, Bielefeld, 179-194<br />

Epps CW, Wehausen JD, Bleich VC, Torres SG, Brashares JS (2007) Optimizing dispersal<br />

and corridor models using landscape genetics. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology 44: 714-724.<br />

doi:10.1111/j.1365-2664.2007.01325.x<br />

Fahrig L, Rytwinski T (2009) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Roads <strong>on</strong> Animal Abundance: an Empirical Review<br />

and Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. Ecology and Society 14: 21<br />

Forman RTT, Alexander LE (1998) Roads and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir major ecological effects. Annual Review<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and Systematics 29: 207-+. doi:10.1146/annurev.ecolsys.29.1.207<br />

Forman RTT, Sperling D, Biss<strong>on</strong>ette JA, Clevenger AP, Cutshall CD, Dale VH, Fahrig L,<br />

France R, Goldman CR, Heanue K, J<strong>on</strong>es JA, Swans<strong>on</strong> FJ, Turrentine T, Winter TC (2003)<br />

Road ecology: science and soluti<strong>on</strong>s. Road ecology: science and soluti<strong>on</strong>s: Chp. 6<br />

Glandt D (2008) Der <strong>Moor</strong>frosch (Rana arvalis): Erscheinungsvielfalt, Verbreitung, Lebensräume,<br />

Verhalten sowie Perspectiven für den Artenschutz. In: Glandt D, Jehle R (Eds) The<br />

<strong>Moor</strong> Frog. Laurenti-Verlag, Bielefeld,<br />

111


Chapter Three<br />

G<strong>on</strong>tier M, Mörtberg U, Balfors B (2010) Comparing GIS-based habitat models for applicati<strong>on</strong>s<br />

in EIA and SEA. Envir<strong>on</strong>mental Impact Assessment Review 30: 8-18.<br />

doi:10.1016/j.eiar.2009.05.003<br />

Graf RF, Kramer-Schadt S, Fernandez N, Grimm V (2007) What you see is where you go<br />

Modeling dispersal in mountainous landscapes. Landscape Ecology 22: 853-866.<br />

doi:10.1007/s10980-006-9073-3<br />

Grimm V (1999) Ten years <str<strong>on</strong>g>of</str<strong>on</strong>g> individual-based modelling in ecology: what have we learned<br />

and what could we learn in <str<strong>on</strong>g>the</str<strong>on</strong>g> future Ecological <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> 115: 129-148.<br />

doi:10.1016/S0304-3800(98)00188-4<br />

Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T,<br />

Heinz SK, Huse G, Huth A, Jepsen JU, Jorgensen C, Mooij WM, Muller B, Pe'er G, Piou C,<br />

Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Ruger N, Strand E, Souissi S,<br />

Stillman RA, Vabo R, Visser U, DeAngelis DL (2006) A standard protocol for describing<br />

individual-based and agent-based models. Ecological <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> 198: 115-126.<br />

doi:10.1016/j.ecolmodel.2006.04.023<br />

Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF (2010) The ODD protocol:<br />

A review and first update. Ecological <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> 221: 2760-2768.<br />

doi:10.1016/j.ecolmodel.2010.08.019<br />

Hartung H (1991) Untersuchung zur terrestrischen Biologie v<strong>on</strong> Populati<strong>on</strong>en des <strong>Moor</strong>frosches<br />

(Rana arvalis NILSSON 1842) unter bes<strong>on</strong>derer Berücksichtigung der Jahresmobilität.<br />

Hamburg: Universität Hamburg.<br />

Hassingboe J, Neergaard RS, Hesselsøe M (2012) Manual til produkti<strong>on</strong> af GIS raster kort<br />

til:”EDB-værktøj til at vurdere skader på bestande af padder /økologisk funkti<strong>on</strong>alitet”. Amphi<br />

C<strong>on</strong>sult, pp.<br />

Hels T, Nachman G (2002) Simulating viability <str<strong>on</strong>g>of</str<strong>on</strong>g> a spadefoot toad Pelobates fuscus metapopulati<strong>on</strong><br />

in a landscape fragmented by a road. Ecography 25: 730-744. doi:10.1034/j.1600-<br />

0587.2002.250609.x<br />

Holderegger R, Di Giulio M (2010) The genetic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g>: A review <str<strong>on</strong>g>of</str<strong>on</strong>g> empirical evidence.<br />

Basic and Applied Ecology 11: 522-531. doi:10.1016/j.baae.2010.06.006<br />

Iuell B, Bekker GJ, Cuperus R, Dufek J, Fry G, Hicks C, Hlaváˇc V, Keller V, B. R, C.,<br />

Sangwine T, Tørsløv N, Wandall BlM (Eds) (2003) Wildlife and Traffic: A European Handbook<br />

for Identifying C<strong>on</strong>flicts and Designing Soluti<strong>on</strong>s. Office for <str<strong>on</strong>g>of</str<strong>on</strong>g>ficial publicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

European Communities, Luxembourg, pp.<br />

Jaeger JaG, Fahrig L (2004) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Road Fencing <strong>on</strong> Populati<strong>on</strong> Persistence. C<strong>on</strong>servati<strong>on</strong><br />

Biology 18: 1651-1657. doi:10.1111/j.1523-1739.2004.00304.x<br />

Kovar R, Brabec M, Vita R, Bocek R (2009) Spring migrati<strong>on</strong> distances <str<strong>on</strong>g>of</str<strong>on</strong>g> some Central<br />

European amphibian species. Amphibia-reptilia 30: 367-378<br />

Kramer-Schadt S, Revilla E, Wiegand T, Breitenmoser U (2004) Fragmented landscapes, road<br />

mortality and patch c<strong>on</strong>nectivity: modelling influences <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> Eurasian lynx.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology 41: 711-723. doi:10.1111/j.0021-8901.2004.00933.x<br />

Legendre P, Legendre L (1998) Numerical ecology. Elsevier, pp.<br />

112


Chapter Three<br />

Lesbarreres D, Fahrig L (2012) Measures to reduce populati<strong>on</strong> fragmentati<strong>on</strong> by <str<strong>on</strong>g>roads</str<strong>on</strong>g>: what<br />

has worked and how do we know Trends in Ecology & Evoluti<strong>on</strong> 27: 374-380.<br />

doi:10.1016/j.tree.2012.01.015<br />

Loman J (1994) Site tenacity, within and between summers, <str<strong>on</strong>g>of</str<strong>on</strong>g> Rana arvalis and Rana temporaria.<br />

Alytes 12: 15-29<br />

McLane AJ, Semeniuk C, McDermid GJ, Marceau DJ (2011) The role <str<strong>on</strong>g>of</str<strong>on</strong>g> agent-based models<br />

in wildlife ecology and management. Ecological <str<strong>on</strong>g>Modelling</str<strong>on</strong>g> 222: 1544-1556.<br />

doi:10.1016/j.ecolmodel.2011.01.020<br />

Minor ES, Urban DL (2008) A graph-<str<strong>on</strong>g>the</str<strong>on</strong>g>ory frarmework for evaluating landscape c<strong>on</strong>nectivity<br />

and c<strong>on</strong>servati<strong>on</strong> planning. C<strong>on</strong>servati<strong>on</strong> Biology 22: 297-307. doi:10.1111/j.1523-<br />

1739.2007.00871.x<br />

Olss<strong>on</strong> MPO, Widen P (2008) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> highway fencing and wildlife crossings <strong>on</strong> moose<br />

Alces alces movements and space use in southwestern Sweden. Wildlife Biology 14: 111-117.<br />

doi:10.2981/0909-6396(2008)14[111:eohfaw]2.0.co;2<br />

Pe'er G, Henle K, Dislich C, Frank K (2011) Breaking Functi<strong>on</strong>al C<strong>on</strong>nectivity into Comp<strong>on</strong>ents:<br />

A Novel Approach Using an Individual-Based Model, and First Outcomes. PLoS ONE<br />

6. doi:10.1371/journal.p<strong>on</strong>e.0022355<br />

P<strong>on</strong>toppidan M-B, Nachman G (In prep.) Changes in behavioural resp<strong>on</strong>ses to infrastructure<br />

affects local and regi<strong>on</strong>al c<strong>on</strong>nectivity – a simulati<strong>on</strong> study <strong>on</strong> p<strong>on</strong>d-breeding amphibians.<br />

P<strong>on</strong>toppidan M-B, Nachman G (In review) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> within-patch heterogeneity <strong>on</strong> c<strong>on</strong>nectivity<br />

in p<strong>on</strong>d-breeding amphibians studied by means <str<strong>on</strong>g>of</str<strong>on</strong>g> an individual-based model. Webecology:<br />

Pope SE, Fahrig L, Merriam NG (2000) Landscape complementati<strong>on</strong> and metapopulati<strong>on</strong><br />

effects <strong>on</strong> leopard frog populati<strong>on</strong>s. Ecology 81: 2498-2508<br />

Semlitsch RD (2008) Differentiating migrati<strong>on</strong> and dispersal processes for p<strong>on</strong>d-breeding<br />

amphibians. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Management 72: 260-267. doi:10.2193/2007-082<br />

Sinsch U (1990) Migrati<strong>on</strong> and orientati<strong>on</strong> in anuran amphibians. Ethology Ecology & Evoluti<strong>on</strong><br />

2: 65-79<br />

Sinsch U (2006) Orientati<strong>on</strong> and navigati<strong>on</strong> in Amphibia. Marine and Freshwater Behaviour<br />

and Physiology 39: 65-71. doi:10.1080/10236240600562794<br />

Sjögren-Gulve P (1998) Spatial movement patterns in <strong>frogs</strong>: Differences between three Rana<br />

species. Ecoscience 5: 148-155<br />

Spellerberg IF (1998) Ecological effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> and traffic: a literature review. Global Ecology<br />

and Biogeography 7: 317-333. doi:10.1046/j.1466-822x.1998.00308.x<br />

Trocmé M, Cahill S, de Vries JG, Farrall H, Folkes<strong>on</strong> LG, Hichks C, Peymen J (Eds) (2003)<br />

COST 341 – Habitat Fragmentati<strong>on</strong> due to Transportati<strong>on</strong> Infrastructure. Office for Official<br />

Publicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> European Communities, Luxembourg, pp.<br />

Trombulak SC, Frissell CA (2000) Review <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>roads</str<strong>on</strong>g> <strong>on</strong> terrestrial and<br />

aquatic communities. C<strong>on</strong>servati<strong>on</strong> Biology 14: 18-30. doi:10.1046/j.1523-<br />

1739.2000.99084.x<br />

113


Chapter Three<br />

Vos CC, Chard<strong>on</strong> JP (1998) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat fragmentati<strong>on</strong> and road density <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong><br />

pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> moor frog Rana arvalis. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology 35: 44-56<br />

Watts K, Handley P (2010) Developing a functi<strong>on</strong>al c<strong>on</strong>nectivity indicator to detect change in<br />

fragmented landscapes. Ecological Indicators 10: 552-557. doi:10.1016/j.ecolind.2009.07.009<br />

Wiens JA (1997) Metapopulati<strong>on</strong> Dynamics and Landscape Ecology. In: Hanski I, Gilpin ME<br />

(Eds) Metapopulati<strong>on</strong> Biology: ecology, genetics, and evoluti<strong>on</strong>. Academic press, Inc.,<br />

Wilensky U (1999) NetLogo. Center for C<strong>on</strong>nected Learning and Computer-Based Modeling,<br />

Northwestern University, Evanst<strong>on</strong>, IL. , http://ccl.northwestern.edu/netlogo, pp.<br />

Zetterberg A, Mortberg UM, Balfors B (2010) Making graph <str<strong>on</strong>g>the</str<strong>on</strong>g>ory operati<strong>on</strong>al for landscape<br />

ecological assessments, planning, and design. Landscape and urban planning 95: 181-191.<br />

doi:10.1016/j.landurbplan.2010.01.002<br />

114


Chapter Three<br />

Tables<br />

Table 1 List <str<strong>on</strong>g>of</str<strong>on</strong>g> variables characterizing <str<strong>on</strong>g>the</str<strong>on</strong>g> agents in SAIA<br />

Variable<br />

Notati<strong>on</strong><br />

Value<br />

range<br />

Agent<br />

type<br />

Descripti<strong>on</strong><br />

AreaValue W 0.5; 1 Cell Effective area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cell<br />

DailySurvival D s Cell Daily survival probability<br />

FrogDensity D Cell Mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>frogs</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> cell<br />

HabitatAttracti<strong>on</strong> H a 1-5 Cell<br />

The cell’s relative attracti<strong>on</strong> to <strong>frogs</strong><br />

during movement<br />

HabitatCode H c Cell The land cover category <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cell<br />

HabitatSurvival H s 1-5 Cell The cell’s relative survival index<br />

SummerQuality H q 1-5 Cell<br />

The cell’s relative suitability as summer<br />

habitat<br />

BreedingP<strong>on</strong>d Frog Breeding p<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> frog agents<br />

NatalP<strong>on</strong>d Frog Natal p<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> frog agents<br />

P<strong>on</strong>dID P<strong>on</strong>d ID number<br />

P<strong>on</strong>dPerimeter O P<strong>on</strong>d Perimeter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d<br />

P<strong>on</strong>dQuality Q 0.1-1 P<strong>on</strong>d Quality index <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d<br />

Populati<strong>on</strong>Size N 0 P<strong>on</strong>d<br />

SummerHabitat A P<strong>on</strong>d<br />

SummerHabitatArea A' P<strong>on</strong>d<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> egg masses found in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

p<strong>on</strong>d during survey<br />

Summer habitat cells associated with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d<br />

Effective area <str<strong>on</strong>g>of</str<strong>on</strong>g> associated summer<br />

habitat<br />

Froglets P<strong>on</strong>d Number <str<strong>on</strong>g>of</str<strong>on</strong>g> newly metamorphosed <strong>frogs</strong><br />

AgeClassList<br />

P<strong>on</strong>d<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> surviving individuals in age<br />

class 0-6<br />

115


Chapter Three<br />

Table 2 Life table for Rana arvalis and estimated age distributi<strong>on</strong><br />

Stage/Age Survival probability Fecundity ( eggs pr. female)<br />

Egg/larvae 0.005 - -<br />

0 0.55 0 46.7 %<br />

1 0.55 70 25.7 %<br />

2 0.55 945 14.1%<br />

3 0.55 1190 7.8%<br />

4 0.50 1250 3.9%<br />

5 0.40 1300 1.6 %<br />

6 0.20 1300 0.3%<br />

Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong><br />

116


Chapter Three<br />

Table 3 Land cover categories and <str<strong>on</strong>g>the</str<strong>on</strong>g> associated values <str<strong>on</strong>g>of</str<strong>on</strong>g> HabitatSurvival, HabitatAttracti<strong>on</strong><br />

and SummerQuality<br />

HabitatCode<br />

(H c )<br />

Descripti<strong>on</strong><br />

HabitatAttracti<strong>on</strong><br />

(H a )<br />

HabitatSurvival<br />

(H s )<br />

2 4-lane motorway 2 N/A 1<br />

3 2-lane motorway 2 N/A 1<br />

4 Road, width > 6m 3 N/A 1<br />

5 Road, width 3-6 m 3 N/A 1<br />

6 O<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>roads</str<strong>on</strong>g> 3 2 2<br />

8 Pathway 4 4 3<br />

11 Multiple surface 3 3 3<br />

11 Railway 4 2 3<br />

12 Building 1 N/A N/A<br />

15 O<str<strong>on</strong>g>the</str<strong>on</strong>g>r made surface 2 3 2<br />

18 Wetlands 5 5 5<br />

20 Running water 4 4 3<br />

22 Meadows 5 5 5<br />

24 Grassland 4 4 4<br />

25 Lakes 1 N/A N/A<br />

28 Hedgerow 4 4 4<br />

29 Heath land 5 5 4<br />

32 Woodland 4 4 4<br />

34 Stand <str<strong>on</strong>g>of</str<strong>on</strong>g> trees 4 4 3<br />

36 Bare surface 2 2 1<br />

40 Fallow land 4 4 4<br />

42 Field crops 2 2 2<br />

50 Drift fence 1 N/A N/A<br />

60 Underpass 4 4 1<br />

SummerQuality<br />

(H q )<br />

117


Chapter Three<br />

Table 4 Results from analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> scenario 0 (before road c<strong>on</strong>structi<strong>on</strong>)<br />

Cluster ID c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

p<strong>on</strong>ds in cluster<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

quality p<strong>on</strong>ds<br />

(Q> 0.6)<br />

C<strong>on</strong>nectivity to<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r clusters<br />

Estimated cluster<br />

abundance<br />

Mean p<strong>on</strong>d<br />

persistence<br />

probability<br />

C<strong>on</strong>nectivity to<br />

c4<br />

C<strong>on</strong>nectivity to<br />

c8<br />

C<strong>on</strong>nectivity to<br />

c11<br />

9 5 2 8 20 13 19 7 7 11 12 5 3<br />

2 0 0 4 2 0 1 7 3 0 3 1 0<br />

0.45 0.54 0.30 0.57 2.19 1.13 2.94 0.36 1.20 0.07 0.10 0.05 0.06<br />

0 0 0 49 0 3 11 23 14 0 51 0 0<br />

0 0 0 0.82 0.03 0.29 0.35 0.93 0.73 0.01 0.77 0 0.13<br />

0 0.09 0.04 - 0.01 0.44 0 0 0 0 0 0 0<br />

0 0 0 0 0 0.23 0.04 - 0.10 0 0 0 0<br />

0 0 0 0 0 0.00 0 0 0.02 0.02 - 0 0.06<br />

Table 5 Results from analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> scenario 1 (after road c<strong>on</strong>structi<strong>on</strong>)<br />

Cluster ID c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>ds<br />

in cluster<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

quality p<strong>on</strong>ds<br />

(Q> 0.6)<br />

C<strong>on</strong>nectivity to<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r clusters<br />

Estimated cluster<br />

abundance<br />

Mean p<strong>on</strong>d persistence<br />

probability<br />

C<strong>on</strong>nectivity to<br />

c4<br />

C<strong>on</strong>nectivity to<br />

c8<br />

C<strong>on</strong>nectivity to<br />

c11<br />

9 5 2 8 19 13 17 7 6 9 12 5 3<br />

2 0 0 4 2 0 1 7 2 0 3 1 0<br />

0.02 0.10 0.27 0.52 1.69 0.67 1.92 0.23 0.55 0.06 0.09 0.05 0.06<br />

0 0 0 50 2 2 1 24 5 0 49 0 0<br />

0 0 0.03 0.84 0.05 0.24 0.08 0.93 0.26 0 0.78 0 0.15<br />

0 0.08 0 - 0 0.44 0 0 0 0 0 0 0<br />

0 0 0 0 0 0.20 0.01 - 0.02 0 0 0 0<br />

0 0 0 0 0 0 0 0 0.03 0 - 0 0.06<br />

118


Chapter Three<br />

Table 6 Results from analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigati<strong>on</strong> measures.<br />

Scenario 2: Drift fences and underpasses; Scenario 3a: Implementing new p<strong>on</strong>ds in clusters c9<br />

and c11; Scenario 3b: Implementing new p<strong>on</strong>ds as corridor between c9 and c11.<br />

Cluster<br />

ID<br />

Estimated cluster<br />

abundance<br />

Mean p<strong>on</strong>d persistence<br />

probability<br />

C<strong>on</strong>nectivity to c8<br />

C<strong>on</strong>nectivity to c11<br />

S2* S3a S3b S2* S3a S3b S2* S3a S3b S2 S3a S3b<br />

c4 40 48 49 0.82 0.82 0.82 0 0 0 0 0 0<br />

c7 1 3 4 0.08 0.11 0.11<br />

c8<br />

c9<br />

17<br />

(21)<br />

6<br />

(2)<br />

23 23<br />

11 10<br />

0.90<br />

(0.95)<br />

0.38<br />

(0.27)<br />

0.002<br />

(0.004)<br />

0 0 0 0 0<br />

0.90 0.92 - - - 0 0 0<br />

0.44 0.58<br />

0.19<br />

(0.29)<br />

0.02 0.02 0.025 0.03 0.22<br />

c11 40 50 61 0.74 0.80 0.85 0 0 0 - - -<br />

*) In scenario 2 <strong>on</strong>e p<strong>on</strong>d originally bel<strong>on</strong>ging to c8 is annexed by c9. Entries in paren<str<strong>on</strong>g>the</str<strong>on</strong>g>ses<br />

are values based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> original cluster c<strong>on</strong>figurati<strong>on</strong>s.<br />

119


Chapter Three<br />

Figure legends<br />

Figure 1:<br />

Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two study areas in Denmark. KaB is an area near Kalundborg <strong>on</strong> Zealand and<br />

HoB is near Holstebro in Jutland. Only KaB is used in <str<strong>on</strong>g>the</str<strong>on</strong>g> present analysis, but both areas are<br />

used for <str<strong>on</strong>g>the</str<strong>on</strong>g> parameterisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model<br />

Figure 2:<br />

Scenario 0. A) Map <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape before road c<strong>on</strong>structi<strong>on</strong>s. Black dots represent potential<br />

breeding p<strong>on</strong>ds. Small dots are p<strong>on</strong>ds with p<strong>on</strong>d quality (Q) ≤ 6; large dots are p<strong>on</strong>ds with Q<br />

≥ 7. Populated p<strong>on</strong>ds are indicated with a star shape.<br />

B) Result <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster analyses showing clusters c1–c13. P<strong>on</strong>ds linked with black lines bel<strong>on</strong>g<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> same cluster. P<strong>on</strong>d size and colour indicate <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Populati<strong>on</strong>Dynamics procedure.<br />

Yellow circles represent p<strong>on</strong>ds with an estimated populati<strong>on</strong> size ≥ 1. P<strong>on</strong>ds with larger<br />

yellow circles have a persistence probability > 0.75.<br />

Figure 3:<br />

Scenario 1. A) Map <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape after road c<strong>on</strong>structi<strong>on</strong>s (red road). Black dots represent<br />

potential breeding p<strong>on</strong>ds. Small dots are p<strong>on</strong>ds with p<strong>on</strong>d quality (Q) ≤ 6; large dots are p<strong>on</strong>ds<br />

with Q ≥ 7. Populated p<strong>on</strong>ds are indicated with a star shape. Pink p<strong>on</strong>ds are p<strong>on</strong>ds removed in<br />

c<strong>on</strong>necti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong>s.<br />

B) Result <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster analyses showing clusters c1–c13. P<strong>on</strong>ds linked with black lines bel<strong>on</strong>g<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> same cluster. P<strong>on</strong>d size and colour indicate <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Populati<strong>on</strong>Dynamics procedure.<br />

Yellow circles represent p<strong>on</strong>ds with an estimated populati<strong>on</strong> size ≥ 1. P<strong>on</strong>ds with larger<br />

yellow circles have a persistence probability > 0.75.<br />

Figure 4:<br />

Analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigati<strong>on</strong> measures. Result <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster analyses showing clusters c3–c11. P<strong>on</strong>ds<br />

linked with black lines bel<strong>on</strong>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> same cluster. P<strong>on</strong>d size and colour indicate <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Populati<strong>on</strong>Dynamics procedure. Yellow circles represent populated p<strong>on</strong>ds. P<strong>on</strong>ds with<br />

larger yellow circles have a persistence probability > 0.75.<br />

A) Scenario 2 - Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> underpasses is shown with red arrows.<br />

B) Scenario 3a – Three new p<strong>on</strong>ds in cluster c9 and five new p<strong>on</strong>ds in c11 are shown with red<br />

dots<br />

C) Scenario 3b – Eight new p<strong>on</strong>ds c<strong>on</strong>necting c9 and c11 are shown with red dots<br />

Figure 5:<br />

Key results from analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> five scenarios. Upper and lower 95% c<strong>on</strong>fidence limits are<br />

indicated with black triangles.<br />

120


Chapter Three<br />

Figures<br />

Figure 1<br />

121


Chapter Three<br />

Figure 2<br />

Figure 3<br />

122


Chapter Three<br />

Figure 4<br />

Figure 5<br />

123


Chapter Three<br />

Supplementary material - Appendix 1<br />

Model ODD<br />

Purpose<br />

Road c<strong>on</strong>structi<strong>on</strong> and implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigati<strong>on</strong> measures may change landscape features<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby affect amphibians like <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Moor</strong> frog. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> SAIA is to assess how such<br />

changes will influence landscape c<strong>on</strong>nectivity and <str<strong>on</strong>g>the</str<strong>on</strong>g> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> a regi<strong>on</strong>al populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>Moor</strong> <strong>frogs</strong>. The habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d breeding amphibians as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Moor</strong> frog includes terrestrial as<br />

well as aquatic habitat. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch <str<strong>on</strong>g>of</str<strong>on</strong>g> a subpopulati<strong>on</strong> is modelled as a complementary<br />

habitat patch c<strong>on</strong>taining not <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d but also all accessible summer<br />

habitat within migrati<strong>on</strong> distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d (Dunning et al. 1992; P<strong>on</strong>toppidan and<br />

Nachman In review; Pope et al. 2000). Immigrati<strong>on</strong>, thus, requires two events: 1) <str<strong>on</strong>g>the</str<strong>on</strong>g> successful<br />

dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> a juvenile frog to summer habitat outside its natal habitat patch and 2) subsequent<br />

successful migrati<strong>on</strong> to a breeding p<strong>on</strong>d associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> new summer habitat. In real<br />

life <str<strong>on</strong>g>the</str<strong>on</strong>g>se two events is 2 year apart, but, for simplicity, we <strong>on</strong>ly simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal and<br />

migrati<strong>on</strong> events not <str<strong>on</strong>g>the</str<strong>on</strong>g> intervening years.<br />

Entities, state variables, and scales<br />

Breeding p<strong>on</strong>ds are treated as stati<strong>on</strong>ary agents. Each p<strong>on</strong>d is characterized by a unique IDnumber,<br />

populati<strong>on</strong> size, p<strong>on</strong>d quality, p<strong>on</strong>d perimeter, <str<strong>on</strong>g>the</str<strong>on</strong>g> associated summer habitat and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quality-weighted area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat. Frog agents are characterized by <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d in<br />

which <str<strong>on</strong>g>the</str<strong>on</strong>g>y are hatched and <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g>y immigrate to. The extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model<br />

landscape is 600 x 800 grid cells, and each grid cell is 10 x 10 m. Grid cells are defined by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir relative attracti<strong>on</strong> to dispersing <strong>frogs</strong>, habitat survival index and a daily survival probability,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> habitat type and <str<strong>on</strong>g>the</str<strong>on</strong>g> cell’s relative value as summer habitat (see Table 1 in main<br />

text). The first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> mimics <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> newly metamorphosed <strong>frogs</strong>,<br />

starting in mid-summer until hibernati<strong>on</strong> in autumn. The sec<strong>on</strong>d part c<strong>on</strong>siders <str<strong>on</strong>g>the</str<strong>on</strong>g> spring<br />

movement <str<strong>on</strong>g>of</str<strong>on</strong>g> juveniles from <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat towards <str<strong>on</strong>g>the</str<strong>on</strong>g>ir future breeding p<strong>on</strong>d and back<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir summer habitat. Each part runs for 120 time steps, <strong>on</strong>e step representing <strong>on</strong>e day.<br />

124


Chapter Three<br />

Process overview and scheduling<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> a simulati<strong>on</strong>, 250 frog agents are located at each p<strong>on</strong>d agent and <str<strong>on</strong>g>the</str<strong>on</strong>g> frog variable<br />

NatalP<strong>on</strong>d is updated with <str<strong>on</strong>g>the</str<strong>on</strong>g> ID-number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d. In <str<strong>on</strong>g>the</str<strong>on</strong>g> first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong><br />

(dispersal) <str<strong>on</strong>g>the</str<strong>on</strong>g> following procedures are executed each time-step: Move (movement <str<strong>on</strong>g>of</str<strong>on</strong>g> frog<br />

agents), Settle (evaluates if a frog agent stops dispersing and assigns <strong>frogs</strong> to breeding p<strong>on</strong>ds)<br />

and Survival (evaluates if a frog agent survives). At day 120 <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal stops; frog agents<br />

that have not settled are removed and <str<strong>on</strong>g>the</str<strong>on</strong>g> migrati<strong>on</strong> simulati<strong>on</strong> starts. The two procedures<br />

Move and Survival are run every time step and settled <strong>frogs</strong> start moving again, this time<br />

towards <str<strong>on</strong>g>the</str<strong>on</strong>g>ir breeding p<strong>on</strong>d. When a frog reaches its assigned breeding p<strong>on</strong>d, its directi<strong>on</strong> is<br />

set towards <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat fragments associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding p<strong>on</strong>d. The<br />

simulati<strong>on</strong> stops at day 240 and at each p<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> model counts <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> immigrants<br />

from each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r p<strong>on</strong>d agents, computing immigrati<strong>on</strong> probabilities between all pairs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

p<strong>on</strong>ds. These immigrati<strong>on</strong> probabilities <str<strong>on</strong>g>the</str<strong>on</strong>g>n enter <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>-based Populati<strong>on</strong>Dynamics<br />

(PD) procedure, which is executed. The simulati<strong>on</strong> is repeated 50 times.<br />

Design c<strong>on</strong>cepts<br />

Emergence<br />

Immigrati<strong>on</strong> rates emerge as a resp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape c<strong>on</strong>figurati<strong>on</strong>.<br />

Adaptati<strong>on</strong> & Objectives<br />

To avoid desiccati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby increase survival, frog agents are assumed to move in resp<strong>on</strong>se<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> moistness <str<strong>on</strong>g>of</str<strong>on</strong>g> its surroundings. In general, <str<strong>on</strong>g>the</str<strong>on</strong>g> moister a habitat is <str<strong>on</strong>g>the</str<strong>on</strong>g> more attractive<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> habitat is for <str<strong>on</strong>g>the</str<strong>on</strong>g> frog as indicated by <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat-attracti<strong>on</strong> parameter H a . Dispersing<br />

juvenile <strong>Moor</strong> <strong>frogs</strong> have an innate tendency to move away from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal p<strong>on</strong>d. Each<br />

frog agent is assigned a random directi<strong>on</strong> to move, but during dispersal <str<strong>on</strong>g>the</str<strong>on</strong>g> frog adjusts its<br />

path to <str<strong>on</strong>g>the</str<strong>on</strong>g> encountered habitat. Adjustments are centred about <str<strong>on</strong>g>the</str<strong>on</strong>g> preferred directi<strong>on</strong> in a<br />

way that prevents backtracking.<br />

Sensing<br />

Frog agents are assumed to be aware <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own state variables. Frog agents are also aware<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> grid cells as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> identities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>ds.<br />

125


Chapter Three<br />

Interacti<strong>on</strong><br />

There are no interacti<strong>on</strong>s between frog agents. Movement decisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frog agents depend<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> neighbouring cells. Survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frog agents depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

daily survival rates associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> traversed habitat. The cell-variables HabitatAttracti<strong>on</strong><br />

and DailySurvival depend <strong>on</strong> daily precipitati<strong>on</strong>.<br />

Stochasticity<br />

Which cell to move to is chosen randomly am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> neighbouring cells with <str<strong>on</strong>g>the</str<strong>on</strong>g> probability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> being chosen weighted by <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> neighbouring cells. If frog agents<br />

occupy a cell suitable as summer habitat <str<strong>on</strong>g>the</str<strong>on</strong>g>y will stop dispersing with a certain probability;<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> probability increases with time. The breeding p<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> a settled frog is chosen randomly<br />

am<strong>on</strong>g accessible breeding p<strong>on</strong>ds weighted by p<strong>on</strong>d-quality. Demographic, but not envir<strong>on</strong>mental,<br />

stochasticity is included in <str<strong>on</strong>g>the</str<strong>on</strong>g> Populati<strong>on</strong>Dynamics procedure.<br />

Observati<strong>on</strong><br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> each simulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> natal p<strong>on</strong>d and breeding p<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> all frog agents are registered<br />

and immigrati<strong>on</strong> probabilities (p ij ) between all pair-wise p<strong>on</strong>d agents are calculated. The<br />

PD-procedure is run and <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated populati<strong>on</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> each p<strong>on</strong>d agent is recorded.<br />

Initializati<strong>on</strong><br />

A landscape is c<strong>on</strong>structed based <strong>on</strong> a GIS-raster data set. Each cell c<strong>on</strong>tains informati<strong>on</strong><br />

about habitat type, habitat attracti<strong>on</strong>, habitat survival and summer quality. A data set with<br />

informati<strong>on</strong> <strong>on</strong> locati<strong>on</strong>, ID-number, p<strong>on</strong>d quality, populati<strong>on</strong> size, and p<strong>on</strong>d perimeter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surveyed p<strong>on</strong>ds is used to create p<strong>on</strong>d agents. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape is created, <str<strong>on</strong>g>the</str<strong>on</strong>g> Map-scan<br />

procedure is run to identify all accessible summer habitat associated with each breeding p<strong>on</strong>d<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d variables A and A’ are updated. Habitat survival is c<strong>on</strong>verted to daily survival<br />

probabilities and <str<strong>on</strong>g>the</str<strong>on</strong>g> cell variable D s is updated. A random year is chosen from a climate database<br />

and a data set c<strong>on</strong>taining daily precipitati<strong>on</strong> is c<strong>on</strong>structed. 250 frog agents are located<br />

<strong>on</strong> each p<strong>on</strong>d agent and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir dispersal directi<strong>on</strong> is set randomly. The precipitati<strong>on</strong> threshold α<br />

is set.<br />

Input data<br />

A database c<strong>on</strong>taining data <strong>on</strong> daily precipitati<strong>on</strong> measured in Copenhagen for 21 c<strong>on</strong>secutive<br />

years (1985-2005) is used to reflect natural wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r patterns. At <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> a simulati<strong>on</strong>, a<br />

126


Chapter Three<br />

random year is chosen from this database and at each time step, informati<strong>on</strong> <strong>on</strong> precipitati<strong>on</strong><br />

is drawn for <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated day <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> year. Data were supplied by <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish Meteorological<br />

Institute (Cappelen 2009).<br />

Submodels<br />

Map-scan<br />

The cell variable DailySurvival (D s ) is set as <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a frog agent surviving <strong>on</strong>e time<br />

step in <str<strong>on</strong>g>the</str<strong>on</strong>g> cell. This depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat code (H c ) and <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat survival index (H s ) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cell. Cells bel<strong>on</strong>ging to <str<strong>on</strong>g>roads</str<strong>on</strong>g>, H c = [2, 3, 4 5] are assigned D s values specific to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir habitat<br />

code (see Appendix 1, Parameterisati<strong>on</strong>). All o<str<strong>on</strong>g>the</str<strong>on</strong>g>r cells are modelled as<br />

<br />

<br />

<br />

1∨ 6 , where σ 0 and σ 1 are species -specific c<strong>on</strong>stants.<br />

Local populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d breeding amphibians inhabit a composite habitat patch. The breeding<br />

p<strong>on</strong>d is located at its core, surrounded by satellites <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat fragments separated<br />

by matrix habitat (P<strong>on</strong>toppidan and Nachman In review). The Map-scan procedure delimits<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch as all accessible cells within a 40-cell (400 m) radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

p<strong>on</strong>d. Accessible cells are defined as cells with habitat attracti<strong>on</strong> (H a ) greater than 1 and daily<br />

survival (D s ) greater than 0.3. This excludes structures such as buildings and large <str<strong>on</strong>g>roads</str<strong>on</strong>g>. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

inaccessible cells functi<strong>on</strong> as barriers blocking access to <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat bey<strong>on</strong>d (Eigenbrod<br />

et al. 2008) (Fig. A1). Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat within <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch is found.<br />

Summer habitat cells are defined as cells with a summer quality (H q ) higher than 3. A summer<br />

habitat cell can be completely surrounded by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r summer habitat cells (core cells) or have<br />

<strong>on</strong>e or more neighbouring cells which are not summer habitat (edge cells). To account for<br />

edge effects, core cells are given <str<strong>on</strong>g>the</str<strong>on</strong>g> area value (W) <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 while W is 0.5 for edge cells (Watts<br />

and Handley 2010). The effective area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat (A´) within <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n computed as:<br />

<br />

∑ , where n is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat cells bel<strong>on</strong>ging to <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat<br />

patch and is <str<strong>on</strong>g>the</str<strong>on</strong>g> area value <str<strong>on</strong>g>of</str<strong>on</strong>g> cell i.<br />

Move<br />

Each day frog agents move a randomly chosen distance depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat attracti<strong>on</strong><br />

(H a ) <str<strong>on</strong>g>of</str<strong>on</strong>g> its current cell. The travelling distance is drawn from a normal distributi<strong>on</strong> with a<br />

mean <str<strong>on</strong>g>of</str<strong>on</strong>g> c and a standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> s. Assuming <str<strong>on</strong>g>the</str<strong>on</strong>g> frog to head in <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> it was as-<br />

127


Chapter Three<br />

signed when it left <str<strong>on</strong>g>the</str<strong>on</strong>g> natal p<strong>on</strong>d, it moves to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its neighbouring cells located within<br />

±90 0 from <str<strong>on</strong>g>the</str<strong>on</strong>g> preferred directi<strong>on</strong>. Cells with H a = 1 are c<strong>on</strong>sidered inaccessible. Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

habitat attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> neighbouring and accessible cells (n), <strong>frogs</strong> first decide which kind <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

habitat <str<strong>on</strong>g>the</str<strong>on</strong>g>y want to move to. The probability <str<strong>on</strong>g>of</str<strong>on</strong>g> moving into <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cells with habitat attracti<strong>on</strong><br />

H a is found as <br />

<br />

∑<br />

<br />

<br />

1 , where na is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> neighbouring cells<br />

with habitat attracti<strong>on</strong> H a and H ai is <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell i. A uniform pseudorandom<br />

number is selected to choose <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat. If <str<strong>on</strong>g>the</str<strong>on</strong>g>re is more than <strong>on</strong>e neighbouring cell<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen habitat attracti<strong>on</strong>, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m is chosen randomly with equal probability. The<br />

frog agent <str<strong>on</strong>g>the</str<strong>on</strong>g>n moves to a random positi<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> cell, without changing its directi<strong>on</strong>.<br />

This routine is repeated until <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen travelling distance for <str<strong>on</strong>g>the</str<strong>on</strong>g> day is traversed. If daily<br />

precipitati<strong>on</strong> exceeds <str<strong>on</strong>g>the</str<strong>on</strong>g> threshold value (α), habitat attracti<strong>on</strong> is inc<strong>on</strong>sequential and <str<strong>on</strong>g>the</str<strong>on</strong>g> frog<br />

moves randomly to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its accessible neighbours.<br />

During <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>, as frog agents get within two cells from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

destinati<strong>on</strong> (breeding p<strong>on</strong>d or summer habitat), <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>frogs</strong> move directly to it. At <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding<br />

p<strong>on</strong>d, frog agents are randomly assigned a summer habitat cell within <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat patch. When<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>frogs</strong> reach <str<strong>on</strong>g>the</str<strong>on</strong>g>ir summer habitat <str<strong>on</strong>g>the</str<strong>on</strong>g>y stop moving. Frog agents reaching <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> landscape are removed. If a frog agent does not have an accessible cell within moving<br />

range, its directi<strong>on</strong> is permanently changed ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r 35 degrees to <str<strong>on</strong>g>the</str<strong>on</strong>g> left or to <str<strong>on</strong>g>the</str<strong>on</strong>g> right.<br />

Settle<br />

Dispersing <strong>frogs</strong> encountering a summer habitat cell have a certain probability <str<strong>on</strong>g>of</str<strong>on</strong>g> settling. The<br />

probability depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Julian day (t) and is found as:<br />

<br />

, where ν 0 and ν 1 are species specific c<strong>on</strong>stants<br />

<br />

When <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat cell in which <str<strong>on</strong>g>the</str<strong>on</strong>g> frog agent has settled is part <str<strong>on</strong>g>of</str<strong>on</strong>g> a habitat patch, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

frog is assigned <str<strong>on</strong>g>the</str<strong>on</strong>g> associated breeding p<strong>on</strong>d. If <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat cell is shared by several<br />

p<strong>on</strong>ds, <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> being assigned a breeding p<strong>on</strong>d i is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d quality<br />

(Q) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> available breeding p<strong>on</strong>ds (n): <br />

until <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>.<br />

<br />

∑<br />

<br />

. Once a frog is settled, it stops moving<br />

128


Chapter Three<br />

Survival<br />

For each frog agent a pseudo-random number is drawn between 0 and 1. If <str<strong>on</strong>g>the</str<strong>on</strong>g> number exceeds<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> geometric average <str<strong>on</strong>g>of</str<strong>on</strong>g> DailySurvival (D s ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cells traversed during <str<strong>on</strong>g>the</str<strong>on</strong>g> day, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

agent dies. When daily precipitati<strong>on</strong> exceeds <str<strong>on</strong>g>the</str<strong>on</strong>g> threshold value (α), D s is temporarily set to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> highest value (Table A1), except for cells bel<strong>on</strong>ging to <str<strong>on</strong>g>the</str<strong>on</strong>g> road categories, H c = [2, 3, 4<br />

5].<br />

Populati<strong>on</strong>Dynamics (PD)<br />

The PD-procedure estimates frog populati<strong>on</strong> size in each p<strong>on</strong>d running through 40 iterati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a life cycle model. The elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> life cycle model are 1) Reproducti<strong>on</strong>, 2) Survival<br />

and 3) Immigrati<strong>on</strong>. For simplicity we <strong>on</strong>ly model <str<strong>on</strong>g>the</str<strong>on</strong>g> female part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>. We assume<br />

a sex ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 and that females always are mated. P<strong>on</strong>d populati<strong>on</strong>s are grouped by<br />

age 0 through 6 years, and preliminary iterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> life cycle produced an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

age distributi<strong>on</strong> (see Table 2 in main text). The initial populati<strong>on</strong> sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>ds are <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> egg masses found in <str<strong>on</strong>g>the</str<strong>on</strong>g> surveyed p<strong>on</strong>ds (N 0 ). This is expected to equal <str<strong>on</strong>g>the</str<strong>on</strong>g> number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> adult females <str<strong>on</strong>g>of</str<strong>on</strong>g> ages 2 - 6. Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> age distributi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> initial number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>frogs</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ages 0-6 was estimated and AgeClassList is updated. After each iterati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d variables<br />

Froglets and AgeClassList are updated with <str<strong>on</strong>g>the</str<strong>on</strong>g> reproductive output and <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> surviving<br />

individuals in each age class, respectively. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> immigrants is added to age<br />

class 0 in AgeClassList.<br />

Reproducti<strong>on</strong><br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> newly metamorphosed <strong>frogs</strong>, ready to disperse, is c<strong>on</strong>sidered to be <str<strong>on</strong>g>the</str<strong>on</strong>g> reproductive<br />

output. This is <str<strong>on</strong>g>the</str<strong>on</strong>g> product <str<strong>on</strong>g>of</str<strong>on</strong>g> egg producti<strong>on</strong>, egg and larval survival, as well as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>frogs</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> first 2 weeks after metamorphosis. The reproductive output is, thus,<br />

modelled as follows. Individuals can reproduce starting at age 3. A mated female produces R<br />

eggs (R = 0, 1, 2 ...) with probability P(R) which is assumed to follow a negative binomial<br />

distributi<strong>on</strong> with mean and clumping parameter k, i.e.<br />

k<br />

k __<br />

<br />

(<br />

k R)<br />

k <br />

R <br />

P( R)<br />

<br />

__<br />

R k<br />

<br />

R k<br />

R k<br />

<br />

(R1)<br />

!<br />

<br />

varies with age so <str<strong>on</strong>g>the</str<strong>on</strong>g> expected egg producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a female <str<strong>on</strong>g>of</str<strong>on</strong>g> age a i is modelled as<br />

129


Chapter Three<br />

(for a ≥3 , o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise R 0 ) (R2)<br />

where ρ 0 and ρ 1 are parameters expressing <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> age <strong>on</strong> reproducti<strong>on</strong>. R m is <str<strong>on</strong>g>the</str<strong>on</strong>g> reproducti<strong>on</strong><br />

if ρ 0 = ρ 1 = 0.<br />

The overall probability that an egg develops into a young frog that survives until dispersal<br />

is assumed to be affected by two factors: intraspecific competiti<strong>on</strong> and p<strong>on</strong>d quality. Intraspecific<br />

competiti<strong>on</strong> is modelled as<br />

ai<br />

F <br />

(R3)<br />

where ψ 0 is a species specific c<strong>on</strong>stant and d is egg density in <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d. Note that density is<br />

assumed to be proporti<strong>on</strong>al with <str<strong>on</strong>g>the</str<strong>on</strong>g> perimeter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d (O) ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than with <str<strong>on</strong>g>the</str<strong>on</strong>g> area. The<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d quality (Q) is modelled as<br />

F <br />

R4<br />

In combinati<strong>on</strong>, survival probability until <str<strong>on</strong>g>the</str<strong>on</strong>g> first two weeks after metamorphosis is found as<br />

<br />

.<br />

Survival<br />

The c<strong>on</strong>diti<strong>on</strong>al probability that a frog survives from age a to age a+1 is assumed to depend<br />

<strong>on</strong> age, which is modelled with a logistic model as<br />

P<br />

s<br />

0<br />

1a2a<br />

a<br />

1a<br />

2<br />

e<br />

1<br />

e<br />

<br />

0 1a<br />

<br />

2<br />

2a<br />

S1<br />

where β 0 , β 1 and β 2 are species-specific c<strong>on</strong>stants.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, survival is assumed to depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> frog density in <str<strong>on</strong>g>the</str<strong>on</strong>g> summer habitat.<br />

For simplicity, this is modelled as a “culling” process when frog density (D) exceeds <str<strong>on</strong>g>the</str<strong>on</strong>g> carrying<br />

capacity (K j ) <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat cell j. K j is determined as WK, where W is <str<strong>on</strong>g>the</str<strong>on</strong>g> cell’s<br />

area value and K is <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated maximum carrying capacity per cell.<br />

Frog density is calculated as ∑<br />

<br />

<br />

, where h is <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>ds sharing summer habitat<br />

cell j, and z i is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>frogs</strong> in age 0 to 6 in p<strong>on</strong>d i divided by <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> summer<br />

habitat cells bel<strong>on</strong>ging to p<strong>on</strong>d i. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>frogs</strong> in p<strong>on</strong>d i after “culling” is calculated<br />

as:<br />

130


Chapter Three<br />

∑<br />

<br />

, where n is summer habitat cells bel<strong>on</strong>ging to p<strong>on</strong>d i, m<br />

j<br />

zi<br />

1<br />

D<br />

j<br />

/ K<br />

j<br />

<br />

,<br />

when D j > K j and m j = z i , when D j ≤ K j . Culling is d<strong>on</strong>e proporti<strong>on</strong>ally <strong>on</strong> all ages.<br />

Migrati<strong>on</strong><br />

Immigrati<strong>on</strong> probabilities between all pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>ds are obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> individual based<br />

simulati<strong>on</strong>. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> immigrants (I) arriving at p<strong>on</strong>d i is modelled as:<br />

∑<br />

<br />

<br />

, where s ij is <str<strong>on</strong>g>the</str<strong>on</strong>g> immigrati<strong>on</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> an individual moving from<br />

p<strong>on</strong>d j to p<strong>on</strong>d i and n j is <str<strong>on</strong>g>the</str<strong>on</strong>g> reproductive output <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d j given by <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>d variable Froglets.<br />

Emigrati<strong>on</strong> rates are not modelled explicitly.<br />

Parameterisati<strong>on</strong><br />

All parameter values are listed in table A2.<br />

Habitat attracti<strong>on</strong> (H a )<br />

Terrestrial amphibians are assumed to prefer habitat in which <str<strong>on</strong>g>the</str<strong>on</strong>g> water c<strong>on</strong>tent is high,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>reby minimizing <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> desiccati<strong>on</strong>. In an experiment with Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn green <strong>frogs</strong> and<br />

Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn leopard <strong>frogs</strong> in peatlands, Mazerolle and Desrochers (2005) found that 18 out <str<strong>on</strong>g>of</str<strong>on</strong>g> 25<br />

<strong>frogs</strong> (72%) avoided barren surfaces. Hartung (1991) found that <strong>Moor</strong> <strong>frogs</strong> avoided areas<br />

with sparse or low vegetati<strong>on</strong>, and recorded <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio between densities in grass areas and densities<br />

in moor lands, hedges, ditches and forests to be 1:3.5.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> model, <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a frog agent choosing <strong>on</strong>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> cell above ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

during movement <str<strong>on</strong>g>the</str<strong>on</strong>g>refore depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> attractiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cell’s habitat type. The habitat<br />

attracti<strong>on</strong> (H a ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different habitat types in <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS maps was approximated by amphibian<br />

specialists (see Table 3 in main text). We tested three different expressi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ha to enter<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> Move-procedure: a) H a , b) (H a ) 2 and c) exp(H a ) and compared <str<strong>on</strong>g>the</str<strong>on</strong>g> results with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

above-menti<strong>on</strong>ed empirical findings. In additi<strong>on</strong>, we ran a simulati<strong>on</strong> where movement was<br />

independent <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat attracti<strong>on</strong>.<br />

As test landscapes we used GIS data sets from two different road projects in Denmark,<br />

supplied by <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish Road Directorate and Amphi C<strong>on</strong>sult. The first project (KaB) c<strong>on</strong>cerns<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> area described in <str<strong>on</strong>g>the</str<strong>on</strong>g> main text while <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d project (HoB) is from central Jutland,<br />

ca. 5 km east <str<strong>on</strong>g>of</str<strong>on</strong>g> Holstebro (56° 19.66’ N 8° 44.65’ E N) (Fig. 1). Both areas are charac-<br />

131


Chapter Three<br />

terised as semi-urban and agricultural landscapes, traversed by creeks and wetlands. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

HoB map 36% <str<strong>on</strong>g>of</str<strong>on</strong>g> all cells were classified as attractive habitat (Ha > 3) and <str<strong>on</strong>g>the</str<strong>on</strong>g> KaB map c<strong>on</strong>tained<br />

51% attractive habitat cells.<br />

The model was run for 40 time steps without <str<strong>on</strong>g>the</str<strong>on</strong>g> Settle-procedure, and <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio between<br />

frog agents in attractive (H a = 4 or 5) and unattractive (H a = 2 or 3) habitat was computed as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> frog agents in attractive habitat. Although <str<strong>on</strong>g>the</str<strong>on</strong>g>re were differences between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> maps, we chose <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> exp(H a ) as being <str<strong>on</strong>g>the</str<strong>on</strong>g> best to reproduce <str<strong>on</strong>g>the</str<strong>on</strong>g> empirical patterns<br />

(Table A3).<br />

Distance travelled per day<br />

In a radio tracking experiment with Comm<strong>on</strong> <strong>frogs</strong> (Rana temporaria), Tram<strong>on</strong>tano (1997)<br />

found that adult <strong>frogs</strong> moving through a rye field covered 148 m in <strong>on</strong>e week, corresp<strong>on</strong>ding<br />

to ca. 20 m per day. In a study <strong>on</strong> dispersing juvenile <strong>Moor</strong> <strong>frogs</strong>, Hartung (1991) reported<br />

daily travelling distances <str<strong>on</strong>g>of</str<strong>on</strong>g> 12.5 – 18.8 m (mean 15.5) m in attractive habitat (moors) and<br />

39.9 – 40.9 m in unattractive areas (pine forests). The daily travelling distance was thus assumed<br />

to depend <strong>on</strong> habitat attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> current cell and is modelled as normal distributi<strong>on</strong><br />

with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> <br />

and standard deviati<strong>on</strong> s.<br />

<br />

Two homogenous landscapes were c<strong>on</strong>structed with a habitat attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 or 4, respectively.<br />

In each landscape frog agents were allowed to move according to <str<strong>on</strong>g>the</str<strong>on</strong>g> Moveprocedure<br />

for 40 time steps. When a simulati<strong>on</strong> ended, <str<strong>on</strong>g>the</str<strong>on</strong>g> straight distances between start and<br />

end point for all frog agents were measured and <str<strong>on</strong>g>the</str<strong>on</strong>g> mean daily travelling distance computed.<br />

The simulati<strong>on</strong>s were c<strong>on</strong>ducted for varying values <str<strong>on</strong>g>of</str<strong>on</strong>g> c and s, each combinati<strong>on</strong> repeated 50<br />

times. A parameter set was sought where <str<strong>on</strong>g>the</str<strong>on</strong>g> daily travelling distance<br />

in attractive habitat takes values between 12 m and 19 m and with a mean around 15 m<br />

in unattractive habitat takes values in <str<strong>on</strong>g>the</str<strong>on</strong>g> range between 20 m and 40 m<br />

The parameter set (c=7, s=0.5) was chosen as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e that best fulfilled <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s.<br />

Settle<br />

Few data have been reported <strong>on</strong> dispersal distances. Hartung (1991) found dispersal distances<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> newly metamorphosed <strong>Moor</strong> <strong>frogs</strong> up to 1200 m, but mean dispersal distance is estimated<br />

by experts to be 200-300 m. As <str<strong>on</strong>g>the</str<strong>on</strong>g> young <strong>frogs</strong> are assumed to have an innate urge to move<br />

away from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natal p<strong>on</strong>d, settling probability is expected to be low in <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning. The<br />

132


Chapter Three<br />

dispersal drive is expected to subside with time, with settling probability increasing accordingly,<br />

creating an s-shaped probability functi<strong>on</strong> (Fig A2). The realized dispersal distances will<br />

depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape c<strong>on</strong>figurati<strong>on</strong>. With <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen parameter set (ν 0 , ν 1 ), <str<strong>on</strong>g>the</str<strong>on</strong>g> mean dispersal<br />

distance <str<strong>on</strong>g>of</str<strong>on</strong>g> frog agents in <str<strong>on</strong>g>the</str<strong>on</strong>g> HoB map is 363 m and <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum dispersal distance is<br />

2068 m. From this, 68% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frog agents settle within <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own habitat patch. Less than 2%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frog agents disperse more than 1000 m. In <str<strong>on</strong>g>the</str<strong>on</strong>g> KaB map, <str<strong>on</strong>g>the</str<strong>on</strong>g> mean and maximum dispersal<br />

distances are 291 m and 2151 m, respectively. From this, 83% settle within <str<strong>on</strong>g>the</str<strong>on</strong>g> home<br />

patch and less than 0.5% disperse more than 1000 m (Fig. A3).<br />

Daily survival<br />

The survival probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>frogs</strong> is assumed to depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat. We were unable to find<br />

any empirical data <strong>on</strong> daily survival probabilities, but annual survival rates <str<strong>on</strong>g>of</str<strong>on</strong>g> young adult<br />

<strong>frogs</strong> have been estimated to be between 55% (Fog and Hesselsøe 2009) and 63% (Loman<br />

1984). These rates are not habitat specific but are realised during annual movements in a heterogeneous<br />

landscape.<br />

All land cover categories in GIS maps were ranked according to survivability by amphibian<br />

specialists and assigned a value <str<strong>on</strong>g>of</str<strong>on</strong>g> relative survival index (H s ) (see Table 3 in main<br />

text), which was subsequently c<strong>on</strong>verted into daily survival probabilities (D s ). The parameter<br />

set (σ 0 , σ 1 ) gives <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>al relati<strong>on</strong>ship between H s and D s . The parameters were found<br />

by iterati<strong>on</strong>. The model was run with varying combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter values <strong>on</strong> both test<br />

maps until a set was found for which <str<strong>on</strong>g>the</str<strong>on</strong>g> annual survival rates were between 55% and 63%.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen parameter set, <str<strong>on</strong>g>the</str<strong>on</strong>g> realised annual survival rates were between 56 % and 57<br />

% in both maps. Table A1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting habitat specific daily survival probabilities.<br />

Road survival<br />

Hels and Buchwald (2001, fig. 5) found <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>Moor</strong> frog being killed when<br />

crossing a road ranged from ca. 35% to ca. 90%, depending <strong>on</strong> traffic intensity. We assumed<br />

traffic intensity to be correlated with road width and let daily survival probability (D s ) depend<br />

<strong>on</strong> road category as shown in table A4.<br />

Populati<strong>on</strong>Dynamics<br />

Parameterisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> and survival are primarily based <strong>on</strong> life-table data c<strong>on</strong>structed<br />

by amphibian experts (see Table 2 in main text) as well as experts’ best guesses <strong>on</strong><br />

quality-dependent survival (Table A5).<br />

133


Chapter Three<br />

Reproducti<strong>on</strong> and egg survival<br />

The reproducti<strong>on</strong> parameters (R m , ρ 0 , ρ 1 ) are estimated by fitting equati<strong>on</strong> R2 to life-table data<br />

<strong>on</strong> fecundity (Fig. A4). The estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> clumping factor k is based <strong>on</strong> data from Lyapkov<br />

(2008) (Table A6).<br />

The quality-dependent survival parameters ψ 1 and ψ 2 are estimated by fitting equati<strong>on</strong><br />

R4 to data in table A5. These survival rates are expected to be realized <strong>on</strong>ly when <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

egg density is negligible. Based <strong>on</strong> survey data from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r Danish road projects (unpublished),<br />

egg density can be expected to range from 1 to 900 eggs per meter <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d perimeter<br />

with a mean density <str<strong>on</strong>g>of</str<strong>on</strong>g> ca. 80 eggs/m. The density-dependent parameter ψ 0 is estimated by<br />

iterati<strong>on</strong>, finding <str<strong>on</strong>g>the</str<strong>on</strong>g> value at which survival probability in high-quality p<strong>on</strong>ds and with an<br />

egg density <str<strong>on</strong>g>of</str<strong>on</strong>g> 1000 eggs/m is ca. 3% (Fig A5).<br />

Frog survival<br />

The survival parameters (β 0 , β 1 , β 2 ) are estimated by fitting equati<strong>on</strong> S1 to life-table data <strong>on</strong><br />

survival (Fig. A6). Maximum carrying capacity (K) <str<strong>on</strong>g>of</str<strong>on</strong>g> a summer habitat cell depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

actual landscape map being analysed and is determined at <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PD-procedure as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mean initial frog density <str<strong>on</strong>g>of</str<strong>on</strong>g> summer habitat cells associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> populated p<strong>on</strong>ds.<br />

134


Chapter Three<br />

References<br />

Cappelen J (Ed) (2009) DMI Daily Climate Data Collecti<strong>on</strong> 1873-2008, Denmark, The Faroe<br />

Islands and Greenland - including Air Pressure Observati<strong>on</strong>s 1874-2008 (WASA Data Sets).<br />

Danish Meteorological Institute, Copenhagen, pp.<br />

Dunning JB, Daniels<strong>on</strong> BJ, Pulliam HR (1992) Ecological processes that affect populati<strong>on</strong>s in<br />

complex landscapes. Oikos 65: 169-175. doi:10.2307/3544901<br />

Eigenbrod F, Hecnar SJ, Fahrig L (2008) Accessible habitat: an improved measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> habitat loss and <str<strong>on</strong>g>roads</str<strong>on</strong>g> <strong>on</strong> wildlife populati<strong>on</strong>s. Landscape Ecology 23: 159-168.<br />

doi:10.1007/s10980-007-9174-7<br />

Fog K, Hesselsøe M (2009) Udvikling af prototypemodel til brug for forvaltning af<br />

spidssnudet frø i forbindelse med vejanlæg. Amphi C<strong>on</strong>sult, pp.<br />

Hartung H (1991) Untersuchung zur terrestrischen Biologie v<strong>on</strong> Populati<strong>on</strong>en des <strong>Moor</strong>frosches<br />

(Rana arvalis NILSSON 1842) unter bes<strong>on</strong>derer Berücksichtigung der Jahresmobilität.<br />

Hamburg: Universität Hamburg.<br />

Hels T, Buchwald E (2001) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> road kills <strong>on</strong> amphibian populati<strong>on</strong>s. Biological<br />

C<strong>on</strong>servati<strong>on</strong> 99: 331-340. doi:10.1016/S0006-3207(00)00215-9<br />

Loman J (1984) Density and survival <str<strong>on</strong>g>of</str<strong>on</strong>g> Rana arvalis and Rana temporaria. Alytes 3: 125-<br />

134<br />

Lyapkov SM (2008) A l<strong>on</strong>g-term study <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> moor frog (Rana<br />

arvalis) in Moscow province, Russia. In: Glandt D, Jehle R (Eds) The <strong>Moor</strong> Frog Laurenti-<br />

Verlag, Bielefeld, 211-230<br />

Mazerolle MJ, Desrochers A (2005) Landscape resistance to frog movements. Canadian Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology-Revue Canadienne De Zoologie 83: 455-464. doi:10.1139/z05-032<br />

P<strong>on</strong>toppidan M-B, Nachman G (In review) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> within-patch heterogeneity <strong>on</strong> c<strong>on</strong>nectivity<br />

in p<strong>on</strong>d-breeding amphibians studied by means <str<strong>on</strong>g>of</str<strong>on</strong>g> an individual-based model. Webecology:<br />

Pope SE, Fahrig L, Merriam NG (2000) Landscape complementati<strong>on</strong> and metapopulati<strong>on</strong><br />

effects <strong>on</strong> leopard frog populati<strong>on</strong>s. Ecology 81: 2498-2508<br />

Tram<strong>on</strong>tano R (1997) C<strong>on</strong>tinuous radio tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> frog, Rana temporaria. Herpetologia<br />

B<strong>on</strong>nensis: 359-365<br />

Watts K, Handley P (2010) Developing a functi<strong>on</strong>al c<strong>on</strong>nectivity indicator to detect change in<br />

fragmented landscapes. Ecological Indicators 10: 552-557. doi:10.1016/j.ecolind.2009.07.009<br />

135


Chapter Three<br />

Tables<br />

Table A1 Habitat survival index (H s ), <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding daily survival probability (D s ) and D s<br />

c<strong>on</strong>verted into annual survival probability.<br />

H s D s Annual survival probability<br />

1 0.9820 0.01<br />

2 0.9960 0.38<br />

3 0.9984 0.68<br />

4 0.9991 0.81<br />

5 0.9995 0.88<br />

Table A2 List <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir default values and <str<strong>on</strong>g>the</str<strong>on</strong>g> procedure in which <str<strong>on</strong>g>the</str<strong>on</strong>g>y appear<br />

Parameter Value Procedure<br />

ν 0 1.50E-06 Settle<br />

ν 1 0.06 Settle<br />

σ 0 2.2 Map-scan<br />

σ 1 4 Map-scan<br />

τ 0 0.76 Map-scan<br />

τ 1 -5.89 Map-scan<br />

c 7 Move<br />

s 0.5 Move<br />

α 5 mm Move<br />

k 20.5 PD (reproducti<strong>on</strong>)<br />

R m 2.61 PD (reproducti<strong>on</strong>)<br />

ρ 0 0.168 PD (reproducti<strong>on</strong>)<br />

ρ 1 -0.014 PD (reproducti<strong>on</strong>)<br />

ψ 0 0.03 PD (egg survival))<br />

ψ 1 2.20E-05 PD (egg survival)<br />

ψ 2 8.0E-4 PD (egg survival)<br />

β 0 0.1 PD (survival)<br />

β 1 0.28 PD (survival)<br />

β 2 -0.08 PD (survival)<br />

K 0.04 PD (survival)<br />

136


Chapter Three<br />

Table A3 Observed and emerging patterns using three different expressi<strong>on</strong>s for entering Ha<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> Move procedure as well as random movement independent <str<strong>on</strong>g>of</str<strong>on</strong>g> Ha. Results are shown<br />

for two different maps, Kalundborg (KaB) and Holstebro (HoB)<br />

Pattern<br />

Ratio between<br />

frog densities in<br />

good and bad<br />

habitat (Hartung<br />

1991)<br />

Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

individuals<br />

choosing good<br />

habitat (Mazerolle<br />

and Desrochers<br />

2005)<br />

Observed<br />

Random H a H a<br />

2<br />

exp(H a )<br />

KaB HoB KaB HoB KaB HoB KaB HoB<br />

0.29 0.39 0.48 0.46 0.64 0.43 0.53 0.38 0.46<br />

72% 72% 67% 68% 61% 70% 66% 73% 68%<br />

Table A4 Road categories with <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding habitat code (H c ) and daily survival probability<br />

(D s )<br />

HabitatCode (H c ) Road category D s<br />

2 4-lane motorway 0.1<br />

3 2-lane motorway 0.2<br />

4<br />

5<br />

Road width > 6<br />

m<br />

Road width 3-6<br />

m<br />

0.5<br />

0.8<br />

137


Chapter Three<br />

Table A5 Estimated survival probability from egg until 2 weeks after metamorphosis depending<br />

<strong>on</strong> p<strong>on</strong>d quality (Q)<br />

P<strong>on</strong>d quality (Q) Survival probability<br />

0.1 0.00001<br />

0.2 0.00015<br />

0.3 0.00032<br />

0.4 0.00067<br />

0.5 0.0014<br />

0.6 0.003<br />

0.7 0.0064<br />

0.8 0.0136<br />

0.9 0.029<br />

1.0 0.061<br />

Table A6 Age specific mean value <str<strong>on</strong>g>of</str<strong>on</strong>g> fecundity and coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> variance <str<strong>on</strong>g>of</str<strong>on</strong>g> Rana arvalis<br />

from a study in Moscow, Russia (Lyapkov 2008)<br />

Age<br />

Average number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

eggs<br />

3 1057 22,3<br />

4 1193 22,3<br />

5 1267 19,9<br />

6 1332 25,5<br />

Coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> Variati<strong>on</strong><br />

(%)<br />

138


Chapter Three<br />

Figures<br />

Figure A1 Illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> how accessible summer habitat is identified.<br />

Blue circle is a p<strong>on</strong>d; dotted circle represents maximum migrati<strong>on</strong> distance. Green areas are<br />

accessible summer habitat while shaded areas are inaccessible summer habitat.<br />

A) All summer habitat within migrati<strong>on</strong> distance is regarded as accessible<br />

B) Road traversing <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat prevents access to summer habitat <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

road<br />

C) Structures breaking <str<strong>on</strong>g>the</str<strong>on</strong>g> road such as underpasses again permits access to summer habitat<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> road.<br />

A B C<br />

139


Chapter Three<br />

Figure A2 Settling probability. If a frog agent encounters a summer habitat cell, <str<strong>on</strong>g>the</str<strong>on</strong>g> probability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> settling in <str<strong>on</strong>g>the</str<strong>on</strong>g> cell will depend <strong>on</strong> day number (Julian day).<br />

1.0<br />

0.8<br />

Settle probability<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

170 190 210 230 250 270 290 310<br />

Daynumber<br />

Figure A3 Dispersal distances<br />

The frequency distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal distances with <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen settling parameters for a)<br />

HoB map b) KaB map. Black line shows accumulated frequencies.<br />

A<br />

B<br />

25<br />

25<br />

20<br />

20<br />

%<br />

15<br />

%<br />

15<br />

10<br />

10<br />

5<br />

5<br />

0<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 Mor<br />

Dispersal distance<br />

0<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 Mor<br />

Dispersal distance (km)<br />

140


Chapter Three<br />

Figure A4 Age dependent fecundity<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> produced eggs per female in each age class. Black dots are life table data. Black<br />

line shows <str<strong>on</strong>g>the</str<strong>on</strong>g> modelled functi<strong>on</strong><br />

1300<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs<br />

1200<br />

1100<br />

1000<br />

900<br />

2 3 4 5 6<br />

Age<br />

Figure A5 Egg and larval survival<br />

Survival probabilities as functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>on</strong>d quality for four different egg densities.<br />

0.06<br />

D1<br />

D100<br />

D500<br />

D1000<br />

Survival probability<br />

0.04<br />

0.02<br />

0.00<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

P<strong>on</strong>d quality<br />

141


Chapter Three<br />

Figure A6 Adult survival<br />

Age dependent adult survival probability. Black dots are life table data, black line is <str<strong>on</strong>g>the</str<strong>on</strong>g> modelled<br />

functi<strong>on</strong>.<br />

0.6<br />

0.5<br />

Survival probability<br />

0.4<br />

0.3<br />

0.2<br />

0 1 2 3 4 5 6<br />

Age class<br />

142


SAIA OUTPUT FILES<br />

APPENDIX


144


Appendix<br />

SAIA output files<br />

Text file with descriptive statistics <strong>on</strong> regi<strong>on</strong>al c<strong>on</strong>nectivity, abundance and populati<strong>on</strong> persistence<br />

probability as well as descriptive statistics <strong>on</strong> abundance and persistence probability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

individual p<strong>on</strong>d populati<strong>on</strong>s.<br />

145


Appendix<br />

Text file c<strong>on</strong>taining informati<strong>on</strong> <strong>on</strong> clusters and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir p<strong>on</strong>d members as well as c<strong>on</strong>nectivity<br />

within and between clusters<br />

146


Appendix<br />

GIS point-data set with informati<strong>on</strong> <strong>on</strong> mean estimated abundance and populati<strong>on</strong> persistence<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> p<strong>on</strong>ds. How <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> is displayed is up to <str<strong>on</strong>g>the</str<strong>on</strong>g> user and <str<strong>on</strong>g>the</str<strong>on</strong>g> facilities<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen GIS s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. Here <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dots represents persistence probability and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> colour represents estimated populati<strong>on</strong> size.<br />

147


Appendix<br />

GIS vector-data set with informati<strong>on</strong> about immigrati<strong>on</strong> probability between p<strong>on</strong>ds (c<strong>on</strong>nectivity<br />

network). C<strong>on</strong>necti<strong>on</strong>s are represented as lines, and <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> colour indicates<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> link.<br />

148


Appendix<br />

GIS vector-data set with informati<strong>on</strong> about cluster c<strong>on</strong>figurati<strong>on</strong>. Black lines c<strong>on</strong>nect p<strong>on</strong>ds<br />

bel<strong>on</strong>ging to <str<strong>on</strong>g>the</str<strong>on</strong>g> same cluster and cluster-ID is shown beside <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters.<br />

149

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!