26.01.2015 Views

Monitoring Mechanical Ventilation

Monitoring Mechanical Ventilation

Monitoring Mechanical Ventilation

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Dr Jacqui Brown<br />

Intensive Care Unit<br />

Chris Hani Baragwanath Hospital


Contents<br />

Introduction<br />

Gas exchange<br />

ABG<br />

Oxymetry<br />

Capnography<br />

Respiratory mechanics<br />

Airway Graphics<br />

Other<br />

CXR


Introduction<br />

<strong>Monitoring</strong> : derived from Latin word monere<br />

meaning ‘to warn’<br />

In the past : manual measurements by nursing staff,<br />

and organs other that the lung e.g. ECG<br />

Goals of continuous monitoring :<br />

follow real time specific physiological values that change<br />

rapidly – alerts for adverse events<br />

Aid in diagnosis<br />

Enables assessment of therapeutic intervention


Introduction<br />

Ideal monitoring systems:<br />

Must have the potential to alter/influence the<br />

management of the patient<br />

Easy to use and interpret<br />

Technically accurate, both specific and sensitive<br />

Safe<br />

Not interfere with patient care<br />

Inexpensive


Introduction<br />

Respiratory function:<br />

<strong>Monitoring</strong> gas exchange<br />

Oxygenation<br />

<strong>Ventilation</strong><br />

<strong>Monitoring</strong> lung and chest wall mechanics<br />

Complience<br />

Resistance<br />

Pressure


Gas Exchange<br />

Aim of mechanical ventilation:<br />

Maintain gas exchange to keep body in relative<br />

homeostasis<br />

<br />

<br />

Deliver sufficient oxygen to body<br />

Eliminate CO2


Gas Exchange<br />

The clinical significance of hypoxia/hypercapnia depends on<br />

Chronicity<br />

Compensatory mechanisms<br />

Tolerance of vital organs e.g brain and heart<br />

Degree of oxygenation depends on patient and condition<br />

Not all patients require full O2 saturation or normal CO2<br />

May not achieve “Normal” values


Gas Exchange<br />

Methods to assess Oxygenation<br />

1. Naked eye – poor<br />

2. ABG – PaO2 and Sat<br />

3. Pulse oximetry<br />

Methods to assess ventilation (CO2)<br />

1. ABG – PaCO2<br />

2. Capnography


Arterial Blood Gas<br />

Widely used<br />

Advantages:<br />

1. Direct measurement of PaO2 and PaCO2<br />

2. Also gives values for acid-base status and electrolytes<br />

Disadvantage:<br />

1. Not specific or sensitive<br />

2. Calculates saturation<br />

3. Requires invasive procedure - safety, accuracy<br />

4. Intermittent sampling – miss events


Arterial Blood Gas<br />

Need to know normal values.<br />

Factors influencing values:<br />

1. Age<br />

1. PaCO2 remains relatively constant<br />

2. PaO2 decreases with age<br />

2. Altitude<br />

3. Natural variations<br />

4. Sampling techniques


Arterial Blood Gas<br />

Other information that can be obtained and calculated using<br />

ABG.<br />

Efficacy of oxygen exchange<br />

1. Alveolar gas equation<br />

<br />

<br />

<br />

PAO2 = PIO2 – (PaCO2/R)<br />

N≈ 100mmHg at sea level , and 75mmHg in JHB<br />

AaDO2 = PAO2 – PaO2<br />

1. N≈ 10mmHG in room air<br />

2. Oxygenation index PaO2/(FiO2 X Paw)<br />

3. PaO2/FiO2


Arterial Blood Gas<br />

<strong>Ventilation</strong><br />

PaCO2 is directly measured in blood.<br />

PaCO2 is a measure of ventilation – CO2 elimination<br />

Increaesed PaCO2<br />

Airway obstruction and bronchospasm.<br />

Hypoventilation<br />

Increased metabolism


Gas Exchange - Oxymetry<br />

Initially used in WW2 for pilots.<br />

Determines O2 saturation by absorption<br />

spectrophotometry.<br />

Uses the difference in the absorption spectra of oxyHb<br />

and reduced Hb.<br />

Absorption of light by capillary blood is constant.<br />

Pulsatile arterial blood – light absorption is variable, so<br />

saturation can be calculated


Gas Exchange - Oxymetry<br />

Monitor advantages:<br />

1. Inexpensive<br />

2. Accurate<br />

1. - not accurate at sats below 80%<br />

3. Direct measurement<br />

4. Continuous<br />

5. Non-invasive<br />

6. With arterial wave tracing - can see stroke volume<br />

variation


Pulsoximetry


Gas Exchange - Oxymetry<br />

Limitations<br />

1. Underestimates with decreased perfusion<br />

2. Other forms of Hb absorb at different wavelengths<br />

3. Jaundice can cause false low readings<br />

4. CarboxyHb cause false high readings<br />

5. Chaotic pulse waves (AF) can give unpredictable<br />

readings


O2 dissociation curve


Gas Exchange - Capnography<br />

Analysis of expired CO2 against time.<br />

Provides information about respiratory rate and rhythm.<br />

Gives information about ETT placement, including<br />

obstruction, disconnection and kinking<br />

In healthy subjects, when ventilation and perfusion are<br />

equally distributed end-tidal CO2 approximates PaCO2<br />

Can be used to determine dead space, cardiac output and<br />

pulmonary embolism<br />

Placed between ETT and expiratory limb of vent tubing


Gas Exchange - Capnography<br />

Can be used to determine ‘best PEEP’<br />

The arterial to end-tidal CO2 is minimized when<br />

perfused alveoli are recruited maximally.<br />

The PaCO2 – P ET CO2 difference could help identify<br />

‘best PEEP


Gas Exchange - Capnography<br />

4 phases<br />

Phase I-III : exhalation<br />

Phase IV : Inhalation<br />

Phase I : Anatomical dead space. CO2 = O<br />

Phase II : Mixture of dead space and alveolar ventilation<br />

= abrupt rise in CO2<br />

Phase III : Plateau = pure alveolar ventilation<br />

Phase IV : Inhalation = rapid fall in CO2


Respiratory Mechanics<br />

IPPV is non-physiological<br />

Need to monitor the mechanics of mechanical<br />

ventilation<br />

How it affects chest wall and lungs-<br />

Complience, resistence, airway pressures and volumes<br />

Physical examination<br />

Airway graphics


Airway Graphics<br />

Rapidly and continuously identifies the presence or<br />

absence of respiratory pathophysiology and ventilator<br />

performance.<br />

Adverse ventilator effects can be identified, diagnosed<br />

and corrected


Measured<br />

Parameters<br />

Flow<br />

Pressure<br />

Time<br />

Calculated<br />

Parameters<br />

Volume<br />

Compliance<br />

Resistance


Waves<br />

Most common wave forms:<br />

Flow : Time<br />

Airway Pressure : Time<br />

Volume : Time<br />

Time always on x-axis


Loops<br />

Most common loops<br />

Flow : Volume<br />

Pressure : Volume


Waves


Pressure-Time wave<br />

20<br />

Volume <strong>Ventilation</strong><br />

Pressure <strong>Ventilation</strong><br />

P<br />

Paw<br />

cmH 2 O<br />

Inspiration Expiration<br />

1 2 3 4 5 6<br />

S


Flow / Time Waveform<br />

120<br />

Inspiration<br />

Volume Control Breath<br />

Square Wave (Constant Flow)<br />

Flow Pattern<br />

V. .<br />

L/min<br />

1 2 3 4 5 6<br />

S<br />

Expiration<br />

120


Pressure Control – Flow/Time


20<br />

Volume Control<br />

Breath<br />

Pressure Control<br />

Breath<br />

P<br />

Paw<br />

cmH 2 O<br />

Inspiratory<br />

Time<br />

1 2 3 4 5<br />

S<br />

V .


Volume Time wave<br />

700<br />

I-Time<br />

E-Time<br />

A<br />

B<br />

V T<br />

mL<br />

1 2 3 4 5 6<br />

S<br />

A = inspiratory volume<br />

B = expiratory volume


Pressure Control<br />

Pressure<br />

PC above PEEP<br />

Time<br />

PEEP<br />

Flow<br />

Time<br />

Volume<br />

Time


Volume control<br />

50 cmH 2 O<br />

T<br />

Pressure<br />

70 l/min<br />

Flow<br />

-70<br />

700 ml<br />

Volume


Loops


Pressure /Volume Loop<br />

Patient-Triggered Spontaneous Breath<br />

V T<br />

LITERS<br />

Clockwise<br />

0.6<br />

0.4<br />

0.2<br />

Paw<br />

Inspiration<br />

Expiration<br />

cmH 2 O<br />

-60<br />

40<br />

20<br />

0 20 40 60


Pressure /Volume Loop<br />

Time-Triggered Mandatory Breath<br />

V T<br />

LITERS<br />

0.6<br />

Counterclockwise<br />

0.4<br />

Expiration<br />

0.2<br />

Paw<br />

Inspiration<br />

cmH 2 O<br />

-60<br />

40<br />

20<br />

0 20 40 60


Flow / Volume Loop<br />

Volume Control Mandatory Breath<br />

.<br />

V<br />

L/min<br />

Inspiration<br />

Expiration<br />

Volume Control<br />

Volume<br />

Breath<br />

Control Breath<br />

Square Wave (Constant<br />

Square<br />

Flow)<br />

Wave<br />

Flow Pattern<br />

(Constant Flow)<br />

Flow Pattern<br />

V T<br />

Liters<br />

Tidal Volume<br />

Peak Inspiratory Flow<br />

Peak Expiratory Flow


Flow / Volume Loop<br />

Pressure Control Mandatory Breath<br />

.<br />

V<br />

L/min<br />

Inspiration<br />

Expiration<br />

Volume Control<br />

Pressure<br />

Breath<br />

Control Breath<br />

Square Wave (Constant<br />

Decelerating<br />

Flow)<br />

Flow Pattern<br />

Flow Pattern<br />

V T<br />

Liters<br />

Tidal Volume<br />

Peak Inspiratory Flow<br />

Peak Expiratory Flow


Clinical Significance<br />

Is the trace normal<br />

What looks abnormal<br />

What would explain the abnormality<br />

Does it correlate with clinical findings


Air Stacking and autoPEEP<br />

Exhalation does not return to zero and overlaps with next inspiration.<br />

1.2<br />

A<br />

V T<br />

Liters<br />

-0.4<br />

1 2 3 4 5 6<br />

SEC


Optimal PEEP<br />

PEEP below critical<br />

opening pressure


Optimal PEEP


Overdistention<br />

A = inspiratory pressure<br />

B = upper inflection point<br />

C = no lower inflection point<br />

(adequate alveolar recruitment<br />

V T<br />

LITERS<br />

0.6<br />

0.4<br />

A<br />

0.2<br />

B<br />

C<br />

Paw<br />

cmH 2 O<br />

-60<br />

-40<br />

-20<br />

0 20 40 60


Overdistention


Decreased compliance<br />

A higher pressure for the same volume indicates a drop in compliance.<br />

Pressure Volume Loop<br />

V T<br />

LITERS<br />

0.6<br />

0.4<br />

0.2<br />

Paw<br />

cmH 2 O<br />

-60<br />

40<br />

20<br />

0 20 40 60


Secretions<br />

SAWTOOTH PATTERN<br />

NEEDS SUCTIONING


Conclusion<br />

Airway graphic analysis provides continuous,<br />

noninvasive information which alerts<br />

clinicians to unexpected changes in patients<br />

ventilatory status and aids in the optimal<br />

management of mechanical ventilation<br />

The basic principles of physical<br />

examination should still be the first line<br />

approach of monitoring the critically ill.


Conclusion<br />

Instant data allows for:<br />

•Quicker recognition / response to<br />

changes in patient status<br />

• number of invasive procedures<br />

• number of exposures to radiation<br />

• expense

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!