14.11.2012 Views

High-performance and Low-cost Capacitive Switches for RF ...

High-performance and Low-cost Capacitive Switches for RF ...

High-performance and Low-cost Capacitive Switches for RF ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>High</strong>-<strong>per<strong>for</strong>mance</strong> <strong>High</strong> <strong>per<strong>for</strong>mance</strong> <strong>and</strong> <strong>Low</strong>-<strong>cost</strong> <strong>Low</strong> <strong>cost</strong> <strong>Capacitive</strong><br />

<strong>Switches</strong> <strong>for</strong> <strong>RF</strong> Applications<br />

Bruce Liu<br />

University of Cali<strong>for</strong>nia at Santa Barbara<br />

Toyon Research Corporation<br />

DARPA Fame<br />

Toyon Research Corporation<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

DARPA


Toyon Research Corporation<br />

Outline<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

• Motivation <strong>for</strong> microelectromechanical (MEM) switches<br />

• MEMS Switch <strong>per<strong>for</strong>mance</strong>s <strong>and</strong> fabrication issues<br />

• MEMS <strong>RF</strong> applications<br />

• BST interdigital capacitors (IDCs)<br />

• <strong>Low</strong>-loss BST phase shifters<br />

• Future work <strong>and</strong> summary<br />

DARPA


Toyon Research Corporation<br />

V 0<br />

V 0<br />

Z 0<br />

Z 0<br />

Series<br />

Switch Z 0<br />

Z d<br />

V<br />

IL<br />

= −20log<br />

V<br />

Overview<br />

+<br />

VL -<br />

V 0<br />

Z 0<br />

Ideal switching circuits<br />

Z 0<br />

+<br />

VL -<br />

V 0<br />

Z 0<br />

Actual switching circuits<br />

L<br />

⎧20log1+<br />

Z<br />

= ⎨<br />

⎩20log1+<br />

Z<br />

/ 2Z<br />

/ 2Z<br />

0 0 d<br />

d<br />

0<br />

,<br />

,<br />

Shunt<br />

Switch<br />

Z d<br />

series switch<br />

shunt switch<br />

Z 0<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

Z 0<br />

+<br />

VL -<br />

+<br />

VL -<br />

DARPA


Toyon Research Corporation<br />

Switching Technologies<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

•At present, most commonly used switching devices are PIN diodes, GaAs FETs, <strong>and</strong><br />

conventional mechanical switches (relays).<br />

V b<br />

+<br />

V gs<br />

-<br />

I d<br />

I<br />

Vds -<br />

V min<br />

+ -<br />

V<br />

+<br />

O ff state<br />

I d<br />

I dss<br />

I<br />

V th<br />

On state (V gs =0)<br />

slope ≈ 1/R on<br />

On state<br />

V max<br />

Off state (Vgs


Toyon Research Corporation<br />

Key Switch Properties<br />

Important figures of merit <strong>for</strong> switches are:<br />

-isolation<br />

- insertion loss<br />

- power consumption<br />

- power h<strong>and</strong>ling capability<br />

- switching speed<br />

- cutoff frequency<br />

- <strong>cost</strong> of fabrication<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

DARPA


Toyon Research Corporation<br />

MEMS<br />

(Micro ElectroMechanical Systems)<br />

MEMS bridge dielectric<br />

t<br />

air<br />

g<br />

G W<br />

substrate<br />

G<br />

MEMS Switch<br />

L<br />

substrate<br />

Switch up Switch down<br />

MEMS<br />

Switch<br />

=<br />

Z d<br />

V<br />

p<br />

=<br />

Off<br />

On<br />

3<br />

8Kg<br />

s 0<br />

27ε<br />

WL<br />

0<br />

C off<br />

C on<br />

Switch up<br />

Switch down<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

• Outgrowth of “Micromachining”<br />

- Creation of unique physical structures through the use of sacrificial<br />

layers resulted in miniature mechanical structures one a substrate<br />

DARPA


Toyon Research Corporation<br />

V bias<br />

MEMS <strong>Switches</strong> in <strong>RF</strong> Applications<br />

MEMS Switch in a CPW configuration<br />

<strong>RF</strong> choke<br />

DC Block DC Block<br />

C on /C off<br />

coplanar<br />

waveguide<br />

MEMS bridge<br />

<strong>RF</strong> in<br />

V bias<br />

substrate<br />

+<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

ε 0Ww<br />

C<br />

ε 0ε<br />

rWw<br />

off ≈ Con<br />

≈<br />

g<br />

h<br />

- acts as <strong>RF</strong> switch or capacitor (100:1 ratios)<br />

- loss dominated by conductor loss<br />

- controlled by static DC voltage (10 nJ switching energy)<br />

- low <strong>cost</strong> processing (~4 mask layers)<br />

- high cutoff frequency<br />

- minimum intermodulation distortion<br />

<strong>RF</strong>out<br />

DARPA


Toyon Research Corporation<br />

Why <strong>RF</strong> MEMS?<br />

Comparative table<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

Switch Type Isolation Insertion loss Power Power Switching Cost<br />

h<strong>and</strong>ling consumption speed<br />

PIN diodes Good Good Good Poor Good Good<br />

GaAs FETs Good Good Poor Good Excell Poor<br />

MEMS<br />

switches<br />

Escell Excell Excell Exell Poor Good<br />

Advantages:<br />

•Very good isolation <strong>and</strong> insertion loss.<br />

•Virtually no control circuit power dissipation in either ON or OFF state<br />

•With proper design, can be capable of broad b<strong>and</strong> <strong>and</strong> high power switching.<br />

•Switching speed is more than sufficient <strong>for</strong> <strong>RF</strong> control circuit applications<br />

•Relatively low <strong>cost</strong> (designed <strong>and</strong> fabricated by st<strong>and</strong>ard processing<br />

techniques). Essentially on every substrate.<br />

⇓<br />

MEMS technology offers superior <strong>per<strong>for</strong>mance</strong> at lower <strong>cost</strong>s <strong>and</strong> is<br />

expected to have tremendous impact on microwave systems.<br />

DARPA


Toyon Research Corporation<br />

Key Factors of MEMS <strong>Capacitive</strong><br />

<strong>Switches</strong><br />

MEMS switch typical structure<br />

SiN<br />

substrate<br />

MEMS bridge<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

Critical parameters to be carefully considered :<br />

-the height of the membrane over the central conductor ( → C OFF , V PD)<br />

-the thickness <strong>and</strong> composition of the top membrane ( → V PD , mechanical properties)<br />

-the size <strong>and</strong> the geometry of the membrane ( → <strong>RF</strong> <strong>and</strong> DC <strong>per<strong>for</strong>mance</strong>s)<br />

-the thickness <strong>and</strong> type of dielectric coating the central conductor ( → C ON , breakdown)<br />

-type of substrate ( → leakage, parasitic effects)<br />

DARPA


Toyon Research Corporation<br />

photoresist<br />

(PMGI)<br />

Typical Fabrication Process<br />

Substrate<br />

Ti/Au<br />

CPW Pattern<br />

Substrate<br />

Sacrificial layer<br />

Substrate<br />

Sacrifical layer removal<br />

Substrate<br />

SiN layer<br />

Substrate<br />

Membrane deposition<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

Ti/Al<br />

DARPA


Toyon Research Corporation<br />

PMGI<br />

Water or solvent<br />

Stiction<br />

Stiction<br />

Substrate<br />

Substrate<br />

Substrate<br />

Membrane Release<br />

Ti/Au<br />

Stiction occurred in an air-dried sample<br />

solution<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

Critical Point Drying System<br />

<strong>High</strong> pressure chamber<br />

90 o angle view of the released suspended<br />

structure after critical point drier<br />

DARPA


Toyon Research Corporation<br />

Membrane:<br />

– gold<br />

– aluminum<br />

– titanium<br />

– platinum<br />

–nickel<br />

Silicon<br />

Si - Si 3 N 4<br />

Substrates & Metals<br />

GaAs<br />

Si - SiO 2<br />

<strong>High</strong> leakage current<br />

<strong>Low</strong> breakdown voltage<br />

Glass<br />

<strong>Low</strong>est leakage current<br />

<strong>High</strong> breakdown voltage<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

Strong metal stress (Pt,Ni,Ti) <strong>Low</strong> metal stress (Al,Au)<br />

DARPA


Toyon Research Corporation<br />

Important Factors:<br />

Yield <strong>and</strong> Reliability<br />

• compositions of MEMS top membrane � low stress deposition<br />

• reflow temperature <strong>and</strong> surface roughness of sacrificial layer<br />

Conclusions:<br />

• risky design if span length longer than 300µm<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

• reflow temperature need to be adjusted <strong>for</strong> different types of MEMS switch design<br />

• sputtered aluminum <strong>and</strong> electroplated low-stress nickel are good c<strong>and</strong>idates as<br />

MEMS top membrane<br />

DARPA


Toyon Research Corporation<br />

DOWN state<br />

capacitance<br />

2-7pF<br />

DC Measurements<br />

Typical DC measurements<br />

UP state<br />

capacitance<br />

<strong>Capacitive</strong><br />

ratio<br />

0.1-0.5pF 4-70<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

Pull-down<br />

voltage<br />

20-100 V<br />

DARPA


Toyon Research Corporation<br />

S21 MAG (dB)<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

-2.5<br />

-3<br />

-3.5<br />

<strong>RF</strong> Simulations <strong>and</strong> Measurements<br />

-4<br />

-40<br />

0 5 10 15 20<br />

Switch UP<br />

S21 measured<br />

S21 fitted<br />

S21 HFSS<br />

Frequency [GHz]<br />

≈<br />

S11 measured<br />

S11 fitted<br />

S11 HFSS<br />

CPW pad CPW pad<br />

R = 0.5Ω<br />

L = 2 pH<br />

C = 0.075 pF<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

S11 MAG (dB)<br />

S21 MAG (dB)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

S11 measured<br />

S11 fitted<br />

S11 HFSS<br />

S21 measured<br />

S21 fitted<br />

S21 HFSS<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

-25<br />

0 5 10 15 20<br />

Switch DOWN<br />

Frequency [GHz]<br />

• Good agreements between measurements <strong>and</strong> HFSS simulations<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

CPW pad CPW pad<br />

R = 0.5 Ω<br />

L = 2 pH<br />

C = 2.7 pF<br />

• Instead of 3-D EM simulation, lump-element model can also fit measurements<br />

well, which gives us a simplified way to describe MEMS switch <strong>per<strong>for</strong>mance</strong><br />

≈<br />

S11 MAG (dB)<br />

DARPA


Toyon Research Corporation<br />

More Topics on MEMS <strong>Switches</strong><br />

• How do we improve the switch <strong>per<strong>for</strong>mance</strong> ?<br />

h<br />

A<br />

Switch down<br />

Cdown = ε 0ε<br />

r<br />

A<br />

h<br />

• Increasing switching ratio<br />

(i.e. increasing C DOWN <strong>for</strong> given C UP )<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

DARPA


Toyon Research Corporation<br />

<strong>Switches</strong> with Metal Caps<br />

Switch up<br />

Pro: Much higher isolation in DOWN<br />

state than previous design<br />

Con:Direct metal-to-metal contact ����<br />

lower switching speed<br />

Metal cap<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

0 5 10 9<br />

Switch down<br />

1 10 10<br />

UP<br />

DOWN<br />

1.5 10 10<br />

Frequency [Hz]<br />

2 10 10<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

2.5 10 10<br />

DARPA<br />

3 10 10


Toyon Research Corporation<br />

•Advantages of <strong>RF</strong> MEMS<br />

-<strong>High</strong> <strong>per<strong>for</strong>mance</strong>, low bias<br />

power consumption<br />

-Potential low <strong>cost</strong><br />

manufacturing into a variety of<br />

substrates<br />

•Limitations of <strong>RF</strong> MEMS<br />

-Slower switching speed<br />

-Potential lifetime limitations<br />

MEMS <strong>RF</strong> Applications<br />

APPLICATIONS<br />

• Phase Shifters<br />

• Filters<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

DARPA<br />

• Reconfigurable Antenna


Toyon Research Corporation<br />

L l<br />

C l<br />

C s<br />

L l<br />

C l<br />

C s<br />

L l<br />

C l<br />

Programmable Delay Lines<br />

Variable Phase Velocity Design<br />

Analog or Digital MEMS <strong>Switches</strong><br />

Switched-Capacitor Variable-Capacitor<br />

C s<br />

L l<br />

C l<br />

C s<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

Ll Ll Ll Ll Ll Ll C l<br />

C s<br />

C l<br />

C s<br />

C l<br />

C s<br />

C l<br />

C s<br />

DARPA<br />

4-bit Digital Phase Shifter<br />

<strong>RF</strong> in <strong>RF</strong> out<br />

0-22.5º 0-45º 0-90º 0-180º<br />

V 1 V 2 V 3 V 4


Toyon Research Corporation<br />

Transmission-line<br />

Equivalent circuit<br />

Z =<br />

v = 1/<br />

L / C<br />

0 ω <<br />

LC<br />

⎫<br />

⎬<br />

⎭<br />

Loaded<br />

Transmission-line<br />

Distributed Circuit Concepts<br />

2 / LC<br />

Varactor provides variable phase delay:<br />

L<br />

L l<br />

C<br />

C l<br />

L<br />

C s<br />

C<br />

L l<br />

C l<br />

Z 0 , β<br />

L<br />

C<br />

C s<br />

L l<br />

C l<br />

L<br />

C<br />

C s<br />

L l<br />

C l<br />

L<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

C<br />

C s<br />

( )<br />

∆ φ = ω L C + C<br />

l l s<br />

L l<br />

L<br />

DARPA


Toyon Research Corporation<br />

MEMS <strong>Low</strong>-loss Distributed Phase<br />

Shifters<br />

Transmission line sections<br />

Zline , vline Zline , vline Zline , vline<br />

C MEMS<br />

Equivalent Circuit:<br />

L t<br />

C t C MEMS<br />

C MEMS<br />

L sect : Length of transmission line per section<br />

C t : Transmission line capacitance per section<br />

L t : Transmission line capacitance per section<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

C MEMS<br />

Periodic loading of transmission lines with MEMS capacitive switches<br />

creates a structure with a variable phase velocity<br />

DARPA


Toyon Research Corporation<br />

Loading Factor:<br />

Min/Max ratio:<br />

Optimization – MEMS Phase Shifters<br />

max<br />

Cvar / Lsect<br />

x =<br />

C<br />

Return Loss: S11 ≤ S11,max<br />

ymin<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

l<br />

⎛1<br />

− S ⎞ 11,<br />

max<br />

a = ⎜ ⎟<br />

⎜1<br />

⎟<br />

⎝ + S11,<br />

max ⎠<br />

min max 1−<br />

a<br />

ymin = Cvar / Cvar≥a− x<br />

2<br />

S 11,max =-20dB<br />

S 11,max =-17dB<br />

S 11,max =-14dB<br />

0<br />

0 2 4 6 8 10<br />

Loading Factor x<br />

Max phase shift/section:<br />

Insertion Loss [dB]<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

( 1+<br />

x − xy )<br />

Lsec<br />

δφ = 2π<br />

f<br />

1<br />

vi<br />

1<br />

fs<br />

=<br />

max<br />

2π<br />

r C<br />

s<br />

var<br />

t +<br />

f<br />

Loss = n<br />

α<br />

5<br />

4<br />

3<br />

2<br />

1<br />

sec t π<br />

2<br />

fs<br />

max<br />

Cvar<br />

Z L + nsect<br />

Lsect<br />

0<br />

0 2 4 6 8 10<br />

Loading Factor x<br />

DARPA<br />

( Z )<br />

i


Toyon Research Corporation<br />

Alternative MEMS Switch<br />

Configurations<br />

Challenge:<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

• Not overload the transmission line with an excessively large MEMS<br />

switch capacitance in the DOWN state<br />

C fixed<br />

C var<br />

Solution:<br />

the ‘series’ configuration design<br />

C fixed<br />

Cfixed<br />

C<br />

TOT<br />

Substrate<br />

Cvar<br />

C var C fixed<br />

= 2<br />

C + 2C<br />

if<br />

var<br />

fixed<br />

⎧<br />

⎨<br />

⎩<br />

C<br />

C<br />

var<br />

var<br />

>> C<br />


Toyon Research Corporation<br />

S11 MAG[dB]<br />

Ground<br />

Ground<br />

0<br />

-10<br />

-20<br />

-30<br />

One-bit MEMS Phase Shifters<br />

MEMS capacitors<br />

UP state<br />

S-parameters [dB]<br />

S11<br />

S21<br />

-40<br />

-6<br />

0 5 10 15 20 25 30 35<br />

Frequency [GHz]<br />

0<br />

-1.5<br />

-3<br />

-4.5<br />

S21 MAG[dB]<br />

Differential phase shift [degrees]<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Simulated<br />

Measured<br />

0<br />

0 5 10 15 20 25 30 35<br />

0<br />

-10<br />

-20<br />

-30<br />

Frequency [GHz]<br />

DOWN state<br />

S-parameters [dB]<br />

-40<br />

-6<br />

0 5 10 15 20 25 30 35<br />

Frequency [GHz]<br />

0<br />

-3<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

• The state of the art insertion loss <strong>per<strong>for</strong>mance</strong>, 154°/dB at 25 GHz <strong>and</strong> 160°/dB at<br />

35 GHz, demonstrates the potential <strong>for</strong> the implementation of a very low loss<br />

multi-bit digital MEMS phase shifter.<br />

S11 MAG [dB]<br />

S11<br />

S21<br />

-1.5<br />

-4.5<br />

S21 MAG [dB]<br />

DARPA


Toyon Research Corporation<br />

Differential Phase Shift (Degree)<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Three-bit MEMS Phase Shifters<br />

DC Block<br />

180° 90° 45°<br />

• Designed <strong>for</strong> 25GHz operation<br />

• 3dB max. insertion loss<br />

• Phase error less than 8.5° <strong>for</strong> all switching states<br />

-100<br />

0 5 10 15 20 25 30 35<br />

Frequency (GHz)<br />

Insertion Loss [dB]<br />

0<br />

-5<br />

-10<br />

-15<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

-20<br />

-30<br />

10 15 20 25 30 35<br />

Frequency [GHz]<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

Return Loss [dB]<br />

DARPA


Toyon Research Corporation<br />

Topology of 3-Pole Tunable Filters<br />

50 Ω Z1 , L1 Z1 , L1 50 Ω<br />

Input Line<br />

Output Line<br />

CPW Ground<br />

Signal<br />

CPW Ground<br />

C 12 C 23 C n n+1<br />

C01<br />

Coupling<br />

Capacitors<br />

Resonator 1 Resonator n<br />

(a)<br />

C 12<br />

Coupling<br />

Capacitors<br />

Loaded line<br />

Resonator<br />

(b)<br />

Loading MEMS<br />

Capacitors<br />

(a) Topology of capacitively coupled tunable filter based on DMTL resonators.<br />

(b) Layout of 3-section tunable filter in coplanar-waveguide <strong>for</strong>m.<br />

- <strong>Capacitive</strong>ly loaded line sets up a slow wave structure<br />

- Resonator electrical length determined by capacitive loading of the line<br />

C23<br />

C 34<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

- Tuning range of the filter determined by the effective capacitance range of varactor<br />

- MEMS varactors have been demonstrated with low loss making them an excellent<br />

c<strong>and</strong>idate <strong>for</strong> filter applications<br />

DARPA


Toyon Research Corporation<br />

S11 (dB)<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

Simulated Results of Tunable Filters<br />

Cvar=12 fF<br />

Cvar=15 fF<br />

Cvar=18 fF<br />

-30<br />

10 15 20 25 30<br />

Frequency (GHz)<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

Return Loss Insertion Loss<br />

S21 (dB)<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

Cvar=12 fF<br />

Cvar=15 fF<br />

Cvar=18 fF<br />

-60<br />

10 15 20 25 30<br />

Frequency (GHz)<br />

DARPA


Toyon Research Corporation<br />

S11 [dB]<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

Measured Tunable Filter<br />

Per<strong>for</strong>mance<br />

S11 @ V=0V<br />

S11 @ V=50V<br />

S11 @ V=60V<br />

-40<br />

10 15 20 25 30<br />

Frequency [GHz]<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

<strong>RF</strong> IN <strong>RF</strong> OUT<br />

Bias Pad<br />

S21 [dB]<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

S21 @ V=0V<br />

S21 @ V=50V<br />

S21 @ V=60V<br />

-50<br />

10 15 20 25 30<br />

Frequency [GHz]<br />

DARPA<br />

• 12% b<strong>and</strong>width at 20GHz with 3.6dB insertion loss in passb<strong>and</strong><br />

• Loss is contributed by conductive loss, substrate leakage <strong>and</strong> radiation.���� micromachining<br />

• 3.8% tuning range, which is limited by the tuning factor of MEMS varactors (~1.3:1)<br />

SEM microphotograph


Toyon Research Corporation<br />

• Reconfigurable antenna systems:<br />

Reconfigurable Microstrip Grid<br />

Antenna --- Toyon Project<br />

A matrix of <strong>RF</strong> switches in a metallic grid to<br />

control the <strong>RF</strong> current distribution <strong>and</strong> hence<br />

radiation <strong>and</strong> impedance characteristics of<br />

the antenna structure.<br />

• Multiple frequency b<strong>and</strong> operation<br />

• Possible beam <strong>and</strong> null steering<br />

• Lends itself to multiple feed locations<br />

• Polarization diversity<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

DARPA<br />

• The switch can be used to turn<br />

“on” or “off” various conductive<br />

paths.<br />

• In this way various virtual antenna<br />

states can be realized.<br />

Microstrip structure with switches<br />

represents over 10 17 possible states.


Toyon Research Corporation<br />

4-Element Microstrip Grid Antenna<br />

SQUARE RECONFIGURABLE GRID ANTENNA INCORPORATING MEMS CONTROL SWITCHES<br />

Aluminum<br />

housing<br />

0.10 cm<br />

Gold<br />

traces<br />

1<br />

MEMS<br />

switches<br />

4-places<br />

4<br />

2.5 cm<br />

2<br />

3<br />

1.50 cm<br />

Glass<br />

substrate<br />

(Er = 5.75)<br />

0.40 cm<br />

0.071 cm<br />

0.312 cm<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

SMA connector<br />

(CDI p/n 5308-2CC)<br />

3/24/00<br />

M. Gilbert<br />

Toyon Research<br />

DARPA


Toyon Research Corporation<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

Preliminary Work on MEMS-based<br />

Grid Antenna<br />

FULL HFSS MODEL -- ALL MEMS DOWN<br />

SQUARE RECONFIGURABLE ANTENNA INCORPORATING MEMS CONTROL SWITCHES<br />

(switches at 3/4 of each leg length, diagonal trace from feed point)<br />

S11 [dB]<br />

simulated<br />

measured<br />

8 8.5 9 9.5 10 10.5 11 11.5 12<br />

Frequency [GHz]<br />

180<br />

150<br />

210<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

Radiation Pattern [Electric Field]<br />

120<br />

240<br />

90<br />

270<br />

60<br />

300<br />

30<br />

330<br />

DARPA<br />

0


Toyon Research Corporation<br />

• Motivation<br />

BST Thin Film Technology<br />

Phased Array Antennas<br />

The Phase-Shifter: A critical component<br />

• Thin-Film BST Varactors<br />

Parallel Plate vs. Interdigital Capacitors<br />

Device Characterizations<br />

• Phase-Shifters using Thin-Film BST<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

DARPA


Toyon Research Corporation<br />

Feed<br />

12-bit<br />

Beam<br />

Control<br />

Coarse Delay Control<br />

True Time<br />

Delay unit<br />

True Time<br />

Delay unit<br />

Wideb<strong>and</strong> Phased Array<br />

True Time<br />

Delay unit<br />

True Time<br />

Delay unit<br />

True Time<br />

Delay unit<br />

True Time<br />

Delay unit<br />

Sub-Array<br />

True Time<br />

Delay unit<br />

True Time<br />

Delay unit<br />

True Time<br />

Delay unit<br />

Fine Delay Control<br />

TTD<br />

TTD<br />

TTD<br />

TTD<br />

TTD<br />

TTD<br />

TTD<br />

TTD<br />

TTD<br />

Antenna<br />

Array<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

desired<br />

phasefront<br />

DARPA


Toyon Research Corporation<br />

Barium Strontium Titanate (BST)<br />

Key BST Properties<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

� Large field dependent permittivity --- Compact tunable circuits<br />

� Intrinsically fast field response --- Fast switching speeds<br />

� <strong>High</strong> breakdown fields, >3x10 8 V/cm --- <strong>High</strong> power h<strong>and</strong>ling<br />

capability<br />

� <strong>Low</strong> drive currents (dielectric leakage) --- <strong>Low</strong> prime power<br />

requirement<br />

� Simple fabrication --- <strong>Low</strong> <strong>cost</strong><br />

- BST thin film properties differ markedly from those of bulk <strong>and</strong> much<br />

work is focused on low-<strong>cost</strong> deposition of BST thin film <strong>for</strong> microwave<br />

applications.<br />

DARPA


Toyon Research Corporation<br />

Loss (dB) <strong>for</strong> 360 degrees at 20 GHz<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.05<br />

Influence of Loss <strong>and</strong> Tunability on<br />

Phase Shifter Per<strong>for</strong>mance<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

Tunability: how much we can vary capacitance of film<br />

C max /C min<br />

0.04<br />

Distributed Circuit Phase Shifter<br />

BST on Silicon, Tunability: 2.5<br />

0.03<br />

Total Loss<br />

CPW conductor Loss<br />

0.02<br />

0.01<br />

Effective Device Loss Tangent at 20 GHz<br />

0<br />

Device loss <strong>and</strong> tunability are important<br />

Loss (dB) <strong>for</strong> 360 degrees at 20 GHz<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

BST Loss Tangent=0.05<br />

BST Loss Tangent=0.02<br />

BST Loss Tangent=0.01<br />

DARPA<br />

0<br />

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2<br />

BST film tunability<br />

Silicon Substrate


Toyon Research Corporation<br />

BST Device Considerations<br />

Desirable Features of a Viable Thin-Film Varactor<br />

Technology<br />

� Reproducibility<br />

� Inexpensive substrates<br />

� St<strong>and</strong>ard growth/processing steps<br />

� <strong>Low</strong> loss tangent (tan δ < 0.01)<br />

� <strong>High</strong> tunability (>2:1)<br />

� Compatible with low-<strong>cost</strong> packaging<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

- Integrated monolithic capacitors using sputtered/MOCVD material<br />

on low-<strong>cost</strong> substrates<br />

- Sapphire is a <strong>cost</strong> effective wide area substrate that has excellent<br />

microwave <strong>and</strong> rf properties<br />

DARPA


Toyon Research Corporation<br />

Substrate<br />

Monolithic BST Device Structures<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

Parallel Plate vs. Interdigitated Capacitor (IDC)<br />

w w w<br />

• Vertical polarization<br />

• <strong>High</strong> tunability, efficient use of BST<br />

• <strong>Low</strong> breakdown voltage<br />

• Complex fabrication<br />

l<br />

w<br />

3w<br />

SiN<br />

BST<br />

Pt<br />

• Horizontal polarization<br />

• <strong>Low</strong> tunability, inefficient use of BST<br />

• <strong>High</strong> breakdown voltage<br />

• Easier fabrication<br />

DARPA


Toyon Research Corporation<br />

Capacitance (pF)<br />

7<br />

6.5<br />

6<br />

5.5<br />

5<br />

4.5<br />

4<br />

Tunability<br />

Width=2um, Spacing=1um<br />

Width=2um, Spacing=2um<br />

3.5<br />

-20 0 20 40 60 80 100<br />

DC Bias (V)<br />

DC Measurements<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

Interdigitated Structure<br />

DARPA<br />

-1000Å film<br />

-70-80% of material tunability<br />

-0-100 V control<br />

-Device tunability limited by<br />

finger-to-finger spacings<br />

-Ti/Au metalization<br />

-3-mask process<br />

Good choice <strong>for</strong><br />

low-<strong>cost</strong> circuits


Toyon Research Corporation<br />

<strong>RF</strong> Parameters Extraction Method<br />

Layout <strong>for</strong> Parameters Extraction:<br />

Open Short Load<br />

Equivalent Circuit Expression:<br />

Y op<br />

Y P<br />

Y S<br />

Y sh<br />

Y P<br />

Y S<br />

(YL-Yop )(Ysh-Yop )<br />

≡<br />

Ysh-YL Q= ωC/G<br />

YD<br />

Y L<br />

Y P<br />

≡ G+iωC<br />

Y S<br />

Y D<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

DARPA


Toyon Research Corporation<br />

Capacitance [fF]<br />

Quality Factor<br />

200<br />

150<br />

100<br />

50<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

w=2µm, s=0.5µm<br />

w=2µm, s=1µm<br />

4 8 12 16 20<br />

Frequency [GHz]<br />

w=2µm, s=0.5µm<br />

w=2µm, s=1µm<br />

5 10 15 20 25 30 35 40<br />

Frequency [GHz]<br />

Quality Factor Limits<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

Total device loss consists of conductor<br />

loss <strong>and</strong> BST material loss:<br />

1 1 1<br />

= +<br />

Qdevice Qcond Qbst<br />

•Qbst , inherent to deposited BST film<br />

•Q cond , determined by R metal <strong>and</strong> C device<br />

DARPA<br />

• Devices with different finger to finger<br />

spacings but same other dimension<br />

parameters are fabricated on the same<br />

wafer<br />

•Q device stays the same while Q cond<br />

varies � Q bst dominates the total<br />

device Q device


Toyon Research Corporation<br />

Quality Factor<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Ba/Sr=50/50<br />

Quality Factor of BST Interdigital<br />

Capacitors<br />

Ba/Sr=30/70<br />

5 10 15 20 25 30 35 40<br />

Frequency [GHz]<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

•100nm (Ba,Sr)TiO 3 thin films<br />

deposited on sapphire substrate<br />

DARPA<br />

•Quality factor rolls off as frequency<br />

increases<br />

•Stoichiometry of deposited thin<br />

film determines its loss tangent<br />

•Q>35 in X-b<strong>and</strong> <strong>for</strong> (Ba 30 ,Sr 70 )TiO 3<br />

thin film<br />

T Surface = 700 °C: <strong>RF</strong> power = 2* 150 W ( 3.3 W/cm 2 ): 90/10 Ar/O 2 (sccm): 100 nm


Toyon Research Corporation<br />

Capacitance [fF]<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Tuning Factors of BST Interdigital<br />

Capacitors<br />

0V<br />

40V<br />

100V<br />

4 8 12<br />

Frequency [GHz]<br />

16 20<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

•Finger spacing = 1µm<br />

•100nm (Ba 30 ,Sr 70 )TiO 3<br />

thin film on sapphire<br />

substrate<br />

•~2:1 tuning range<br />

•0-100V DC control<br />

T Surface = 700 °C: <strong>RF</strong> power = 2* 150 W ( 3.3 W/cm 2 ): 90/10 Ar/O 2 (sccm): 100 nm<br />

DARPA


Toyon Research Corporation<br />

15mm<br />

X-b<strong>and</strong> BST Phase Shifters<br />

15mm<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

0V<br />

40V<br />

100V<br />

DARPA<br />

-30<br />

-60<br />

0 2 4 6 8 10<br />

Frequency [GHz]<br />

Photograph of fabricated X-b<strong>and</strong> BST phase shifter S-parameter measurements of distributed<br />

BST phase shifter<br />

Return Loss [dB]<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

Insertion Loss [dB]


Toyon Research Corporation<br />

Differential Phase Shift [Degree]<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0V<br />

40V<br />

100V<br />

Measured Differential Phase Shift<br />

-100<br />

0 2 4 6 8 10<br />

Frequency [GHz]<br />

Differential phase shift at 0V, 40V <strong>and</strong> 100V<br />

bias voltage<br />

Phase Shift per dB Loss [Degree/dB]<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

10<br />

0 2 4 6 8 10<br />

Frequency [GHz]<br />

Phase shift per dB insertion loss at 100V bias<br />

voltage<br />

• 0º-360º phase shift @ 8.2GHz with 5dB insertion loss<br />

• Return loss is better than –10dB from DC to 10GHz<br />

DARPA


Toyon Research Corporation<br />

State of Progress<br />

What have been done so far?<br />

� Developed a novel design of MEMS devices<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

� MEMS-based <strong>RF</strong> circuits (i.e. phase shifters, filters)<br />

� BST interdigital capacitors <strong>and</strong> phase shifters<br />

What the plan <strong>for</strong> future work?<br />

� BST-MEMS switches<br />

� MEMS-based reconfigurable microstrip grid antenna<br />

� MEMS single-controlled single-pole-double-throw<br />

(SPDT) switches<br />

DARPA


Toyon Research Corporation<br />

BST-MEMS <strong>Switches</strong><br />

Barium Strontium Titanate (BST)<br />

Switch up<br />

BST<br />

Switch down<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

• <strong>High</strong> dielectric constant of BST (>250)<br />

DARPA<br />

• >15dB more isolation than conventional<br />

MEMS switch in DOWN state<br />

What we will do?<br />

• BST/Pt/Au/Ti/Sapphire<br />

• Reduce pull-down voltage, avoid<br />

breakdown in BST thin film


Toyon Research Corporation<br />

Future Work on Reconfigurable<br />

Antenna --- Toyon Project<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

� Demonstrate the 4-element microstrip grid antenna<br />

using st<strong>and</strong>ard MEMS fabrication techniques<br />

� <strong>RF</strong> measurements <strong>and</strong> simulations accounting <strong>for</strong><br />

the parasitic effects in the model<br />

� Finally exp<strong>and</strong> this design to a 16-element switching<br />

reconfigurable antenna array<br />

DARPA


Toyon Research Corporation<br />

INPUT<br />

Control 1<br />

Control 2<br />

OUTPUT 1<br />

OUTPUT 2<br />

Port 1<br />

MEMS Single-Controlled SPDT<br />

<strong>Switches</strong><br />

Signal IN<br />

λ/4<br />

MEMS<br />

Switch 1<br />

λ/4<br />

λ/4<br />

CDOWN<br />

(a) Switch Down<br />

λ/4<br />

Coplanar Waveguide<br />

MEMS<br />

Switch 2<br />

Coplanar Waveguide<br />

Port 2<br />

Port 3<br />

Isolated<br />

λ/4<br />

λ/4<br />

Port 1<br />

λ/4<br />

(b) Switch Up<br />

Signal OUT 2<br />

Signal OUT 3<br />

Port 2<br />

Isolated<br />

Port 3<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

DARPA


Toyon Research Corporation<br />

Summary<br />

Frequency<br />

Agile<br />

Materials <strong>for</strong><br />

Electronics<br />

•MEMS based switches promise superior <strong>per<strong>for</strong>mance</strong> relative to<br />

conventional devices. Through its superior <strong>per<strong>for</strong>mance</strong> characteristics,<br />

the MEMS switches are developed in a number of existing circuits,<br />

including switches, phase shifters <strong>and</strong> filters.<br />

•BST thin films have been characterized <strong>and</strong> used to demonstrate a 0º-<br />

360º X-b<strong>and</strong> phase shifter with only 5dB insertion loss.<br />

•Replace Si 3 N 4 with high dielectric constant BST thin film in MEMS switch<br />

is expected to further improve the switch <strong>per<strong>for</strong>mance</strong>.<br />

•MEMS technology offers the potential <strong>for</strong> building a new generation of<br />

low loss high-linearity reconfigurable antenna arrays <strong>for</strong> radar <strong>and</strong><br />

communications applications.<br />

DARPA

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!