26.01.2015 Views

IR10.8 - RTC, Regional Training Centre - Turkey

IR10.8 - RTC, Regional Training Centre - Turkey

IR10.8 - RTC, Regional Training Centre - Turkey

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MSG Channels Overview<br />

(Introduction to Monitoring<br />

Convection with Satellite<br />

Images)<br />

Dr. Jochen Kerkmann<br />

Satellite Meteorologist, <strong>Training</strong> Officer<br />

EUMETSAT<br />

Collaborating: J. Prieto, M. Putsay,<br />

M. Setvak, HP. Roesli, R. Vazquez,<br />

S. Gallino


Course / Lesson objectives<br />

‣ Review the “ingredients approach” for nowcasting convection<br />

(conceptual models of convective storms lecture)<br />

‣ Overview of satellite image indicators for severe convection<br />

• Single channel view<br />

• Channel differences<br />

• Multi-spectral view<br />

• RGB View (Introduction to RGBs lecture)<br />

‣ Understand the importance of cloud particle size products<br />

(Cloud particle size products lecture)<br />

‣ Understand key water vapour features related to the environment of<br />

severe convection (Airmass RGB lecture)<br />

‣ Cloud analysis, precipitation, wind and stability products (NWC<br />

SAF, GII and cloud tracking products lectures)


METEOSAT SECOND GENERATION (MSG)<br />

‣ Spinning Enhanced Vis & IR Imager<br />

‣ 12 Spectral Channels<br />

‣ Images every 15 or 5 Minutes<br />

‣ 3 km horizontal ‘sampling distance’ at Sub-<br />

Satellite Point (SSP)<br />

‣ Hi-Res VIS-Channel 1 km sampling distance<br />

(SSP)<br />

MSG-1 Launch on 28 Aug 2002


MSG characterises the (pre-)convective environment<br />

Single channels:<br />

HRV, VIS0.6, NIR 1.6, IR3.9, WV 6.2, WV7.3, IR 10.8<br />

Channel differences:<br />

8.7 – 10.8 (cloud thickness)<br />

3.9 – 10.8 (cloud particle size)<br />

6.2 – 10.8 (cloud overshooting)<br />

RGB Composites:<br />

24-h Cloud Microphysics, Airmass<br />

Day Microphysics …<br />

Derived products:<br />

instability indices<br />

wind convergence<br />

humid areas<br />

HRV 15 June 2006 15:00 UTC


Monitoring convection with single MSG channels<br />

HRV<br />

VIS0.6<br />

NIR1.6<br />

IR3.9<br />

WV6.2<br />

WV7.3<br />

<strong>IR10.8</strong><br />

fine-scale structures (high-res winds)<br />

optical thickness of clouds<br />

particle size and phase<br />

particle size and phase<br />

upper-level moisture, jets, PV anomalies<br />

mid-level moisture, jets, early convection<br />

top temperature<br />

HRV NIR 1.6 IR 3.9 IR 3.9r <strong>IR10.8</strong>


HRV Channel<br />

Broadband visible<br />

channel with an<br />

improved sampling<br />

interval of 1 km


Comparison HRV Channel vs AVHRR Channel 2<br />

MSG-1 HRV<br />

NOAA AVHRR Ch.2<br />

Shallow fog in the Po Valley as seen in the high-res. visible channel<br />

MSG-1, 19 November 2003, 13:00 UTC


Channel 12 (HRV): Optical Thickness<br />

Pretoria<br />

Maputo<br />

Swaziland<br />

Republic of<br />

South Africa<br />

Lesotho<br />

Thin Ci<br />

MSG-1, 6 November 2004, 12:00 UTC, Channel 12 (HRV)


Monitoring of<br />

Fine-Scale Structures with the HRV Channel<br />

Po Valley Fog<br />

MSG-1<br />

20 Nov 2003<br />

11:30 UTC<br />

Channel 12<br />

(HRV)


The Channel<br />

HRV<br />

Fine Scale Structures<br />

MSG-1<br />

8 June 2003<br />

13:00 UTC<br />

Channel 12 (HRV)<br />

Cloud Streets


Orographic Convection<br />

HRV<br />

Fine Scale Structures<br />

Spain<br />

MSG-1<br />

8 June 2003<br />

15:00 UTC<br />

Channel 12 (HRV)<br />

Orographic Convection


Single Cb<br />

Shadow<br />

Mesoscale<br />

Convective<br />

System<br />

HRV<br />

Fine Scale Structures<br />

Lac Leman<br />

MSG-1<br />

7 August 2003<br />

16:30 UTC<br />

Channel 12 (HRV)


Cloud<br />

Streets<br />

Mesoscale<br />

Convective<br />

System<br />

HRV<br />

Fine Scale Structures<br />

Coastal<br />

Convergence<br />

MSG-1<br />

13 June 2003<br />

12:00 UTC<br />

Channel 12 (HRV)<br />

Po Valley<br />

Thin<br />

Cirrus


Gravity Waves, Thunderstorm, Mediterranean Sea<br />

Convergence<br />

Line<br />

MSG-1, 20 October 2005, 12:45 UTC, HRV


Gravity Waves & Overshooting Tops (morning)<br />

Gravity<br />

Waves<br />

Overshooting<br />

Top<br />

Po Valley<br />

MSG-1<br />

21 August 2006<br />

06:00 UTC<br />

Channel 12 (HRV)


Gravity Waves & Overshooting Tops (afternoon)<br />

- F2 Tornado Mallorca -<br />

Gravity<br />

Waves<br />

Overshooting<br />

Tops<br />

Spain<br />

MSG-2<br />

04 October 2007<br />

14:45 UTC<br />

Channel 12 (HRV)


Severe storm Mediterranean 15 October 2003<br />

Flanking /<br />

Convergence Line<br />

Enhanced <strong>IR10.8</strong><br />

MSG-1<br />

15 October 2003,<br />

8:00 UTC<br />

HRV


Severe storm Yemen 5 May 2005<br />

Yemen<br />

Djibouti<br />

Severe Convection<br />

V / U-shape Storm<br />

MSG-1, 5 May 2005, 13:00 UTC, Channel 12 (HRV)


Seabreeze Convergence, Southern Italy (Salento)<br />

09:05 UTC 09:40 UTC 10:55 UTC<br />

12 June 2007, HRV Channel (Met-8 Rapid Scans)


Intersection of Boundaries, Burkina Faso<br />

Mali<br />

Niger<br />

Burkina Faso<br />

Ivory Coast<br />

Ghana<br />

Met-8, 5 April 2007, 11:00 UTC, VIS0.8 Channel


Intersection of Boundaries, Burkina Faso<br />

Mali<br />

Niger<br />

Burkina Faso<br />

Ivory Coast<br />

Ghana<br />

Met-8, 5 April 2007, 12:00 UTC, VIS0.8 Channel


Intersection of Boundaries, Burkina Faso<br />

Mali<br />

Niger<br />

Burkina Faso<br />

Ivory Coast<br />

Ghana<br />

Met-8, 5 April 2007, 13:00 UTC, VIS0.8 Channel


Exercise: Convergence Lines<br />

MSG-1<br />

5 June 2003<br />

12:00 UTC<br />

RGB Composite<br />

R = HRV<br />

G = HRV<br />

B = IR3.9


Channel 12 (HRV)<br />

MSG-1, 5 June 2003, 14:45 UTC<br />

RGB HRV-HRV-<strong>IR10.8</strong>i


Outflow at high or low level<br />

Tropopause Outflow<br />

23-Apr-2003 17:00, HRV<br />

Surface Outflow<br />

Due to physical boundaries in the<br />

troposphere (ground and tropopause),<br />

the flow diverges out of the vertical column<br />

Day Microphysics<br />

14-Aug-2003 15:00


Convective Outflow Boundary, Corsica<br />

Met-8, 9 August 2006, 14:45 UTC, HRV Channel


Severe storm Cyprus 13 October 2006


Radial Cirrus, Hungary<br />

Met-8, 29 June 2006, 15:00 UTC, RGB HRV, HRV, <strong>IR10.8</strong><br />

Source: M. Putsay


Radial Cirrus, Northern Italy<br />

Source: M. Setvak<br />

NOAA 6, 17 July 1982, 08:00 UTC, RGB VIS0.8, VIS0.8, IR11.0


Cirrus plume formation above thunderstorm anvil<br />

Pao Wang: cloud top gravity wave breaking theory<br />

Pre conditions:<br />

- strong winds at high levels (strong shear)<br />

- Stationarity of convective system<br />

MSG-1, 30 June 2008, 17:40 UTC, HRV


Overshooting tops as seen on 5- minute HRV data<br />

In case of 15-minute data we would have only the first and the last image!<br />

Typical life-time of overshooting tops is less than 15 minutes, about 5-10 minutes.<br />

With 15-minute imagery it is quite random whether we see the overshooting top or not and if<br />

yes in which developing phase do we see it.<br />

Source: M. Putsay & M. Setvak


A tiny cell could<br />

be presumed near<br />

to the big cell.<br />

The first tiny cell<br />

increased. Another<br />

is initiating.<br />

Both cells increased, a<br />

third one is presumed.<br />

One can see<br />

three cells.<br />

All three cells<br />

are increasing.<br />

On 5-minute 5<br />

imagery one can<br />

better follow the the initiation<br />

and growing of individual cells.<br />

Source: M. Putsay


Earth Surface Channel 01 (VIS0.6) Clouds<br />

Sun Glint<br />

Snow<br />

High reflectance<br />

Very thick<br />

clouds<br />

Desert<br />

Bare Soil<br />

Very thin clouds<br />

over land<br />

Forest<br />

Ocean, Sea<br />

31 October 2003, 11:30 UTC<br />

Very thin clouds<br />

over ocean<br />

Low reflectance


Earth Surface Channel 02 (VIS0.8) Clouds<br />

Sun Glint<br />

Snow<br />

High reflectance<br />

Very thick<br />

clouds<br />

Desert<br />

Gras, Rice fields<br />

Forest<br />

Bare Soil<br />

Very thin clouds<br />

over land<br />

Ocean, Sea<br />

31 October 2003, 11:30 UTC<br />

Very thin clouds<br />

over ocean<br />

Low reflectance


Thick Cb Cloud<br />

Thin Cirrus Anvil<br />

VIS0.6<br />

Optical Thickness<br />

MSG-1<br />

5 June 2003<br />

14:45 UTC<br />

Channel 01<br />

(VIS0.6)


D. Jolivet & A. Feijt, KNMI, 2003<br />

Water<br />

Ice<br />

Reflectivity at<br />

1.6 micron in<br />

function of<br />

optical thickness<br />

for various<br />

classes of<br />

effective droplet<br />

radius and ice<br />

particle size<br />

C1 = 30 m<br />

C2 = 60 m<br />

C3 = 130 m<br />

(max. crystal dimension)


Earth Surface Channel 03 (NIR1.6) Clouds<br />

Sun Glint<br />

Sand Desert<br />

High reflectance<br />

Water clouds<br />

with small<br />

droplets<br />

Gras, Rice fields<br />

Forest<br />

Bare Soil<br />

Water clouds<br />

with large<br />

droplets<br />

Ice clouds with<br />

small particles<br />

Snow<br />

Ocean, Sea<br />

31 October 2003, 11:30 UTC<br />

Ice clouds with<br />

large particles<br />

Low reflectance


Channel 03 (NIR1.6): cloud phase<br />

VIS0.6<br />

VIS 0.6 and 0.8 m:<br />

thick ice and water<br />

clouds appear both<br />

white - difficult to<br />

discriminate<br />

NIR1.6<br />

NIR 1.6 m:<br />

ice clouds appear<br />

darker than water<br />

clouds<br />

MSG-1, 5 June 2003, 14:45 UTC


Channel 03<br />

(NIR1.6):<br />

Particle Size<br />

Small ice<br />

particles<br />

(40-50%)<br />

Large ice<br />

particles<br />

(30%)<br />

MSG-1<br />

5 June 2003<br />

14:45 UTC<br />

Channel 03<br />

(1.6 m)


Channel 03 (NIR1.6): cloud optical thickness<br />

Thick Cb<br />

Thin Ci<br />

NIR1.6<br />

MSG-1, 14 August 2003, 12:00 UTC<br />

RGB VIS0.6, NIR1.6, <strong>IR10.8</strong>


Reflection of Solar Radiation<br />

EUMETSAT Meteorological Satellite Conference, Helsinki<br />

2006<br />

41<br />

• Reflection at NIR1.6 and IR3.9<br />

is sensitive to cloud phase and<br />

very sensitive to particle size<br />

• Higher reflection from water<br />

droplets than from ice particles<br />

• During daytime, clouds with<br />

small water droplets (St, Sc) are<br />

much darker than ice clouds<br />

(inverted image)<br />

Figure by<br />

COMET


Channel 04 (IR3.9): Cloud Phase & Particle Size<br />

IR3.9 shows much more cloud top structures than <strong>IR10.8</strong><br />

1 3 1<br />

1<br />

1<br />

1 3<br />

1<br />

3<br />

1<br />

1<br />

3<br />

2 3<br />

2<br />

3<br />

Channel 04 (IR3.9)<br />

1= ice clouds with very small particles<br />

2= ice clouds with small particles<br />

3= ice clouds with large ice particles<br />

MSG-1, 20 May 2003, 13:30 UTC<br />

Channel 09 (<strong>IR10.8</strong>)


Channel 04r (IR3.9r): Cloud Phase & Particle Size<br />

Water Clouds (20/25%)<br />

Maputo<br />

Water Clouds<br />

(16/20%)<br />

Large Ice Particles<br />

(1/2%)<br />

Small Ice Particles<br />

(8/11%)<br />

MSG-1, 6 November 2004, 12:00 UTC, Channel 04r (IR3.9r)<br />

Range: 0 % (black) to +60 % (white), Gamma = 2.5


Channel 09 (<strong>IR10.8</strong>): Top Temperature<br />

Warm Tops<br />

Maputo<br />

Cold Tops<br />

MSG-1, 6 November 2004, 12:00 UTC, Channel 09i (<strong>IR10.8</strong>i)<br />

Range: +50°C (black) to -70°C (white), Gamma = 1.0


Channel 09 (<strong>IR10.8</strong>): Top Temperature<br />

Warm Tops<br />

Maputo<br />

Cold Tops<br />

Coldest<br />

Tops<br />

MSG-1, 6 November 2004, 12:00 UTC, Channel 09 (<strong>IR10.8</strong>)


“Block” Colour Enhancement<br />

Detection of Mesoscale Convective Systems in color-enhanced<br />

Meteosat-7 IR image (6 Jul 2001, 19.00 UTC)<br />

Lines: surface observations (isallobars)<br />

Source: DWD


Channel 09 (<strong>IR10.8</strong>): Cloud Top Temperature<br />

Probably the best known (and documented) cloud top<br />

feature is the “cold-U” or “cold-V”, with warmer embedded<br />

area inside.<br />

18 August 1986 13:30 UTC, NOAA 9, Czech Republic<br />

Source: M. Setvak


Cold-ring storm over Czech Republic & Austria<br />

‣ When overshoting tops descend back<br />

to EL they warm up adiabatically,<br />

and mix to some extent with the<br />

warmer environment of the lower<br />

stratosphere<br />

‣ The warm cores (or warm embedded<br />

areas) of ring shaped storms should<br />

not be interpreted as “depressions” or<br />

“holes” within the storm, but just the<br />

opposite, that is, as quasi-steady<br />

elevated regions<br />

MSG-1, <strong>IR10.8</strong><br />

25 June 2006, 14:00 UTC<br />

Source: M. Setvak


Cold-ring storm over Czech Republic & Austria<br />

Source: M. Setvak<br />

Enhanced <strong>IR10.8</strong> at 14:00


28 June 2005<br />

17:45 UTC<br />

IR 10.8<br />

M. Setvak: “The most violent updrafts create overshooting tops (often called<br />

penetrating towers) which keep on cooling, because of their rapid ascent, down<br />

to temperatures which can be by about 20 K (or even more) lower than the lowest<br />

temperature at the tropopause level !”<br />

Source: M. Setvak


28 June 2005<br />

17:45 UTC<br />

HRV<br />

Source: M. Setvak


Cold-U Storm over Bulgaria<br />

Source: M. Setvak<br />

Tornadic storm over Bulgaria (cold-U shape)<br />

22 April 2008, MSG, <strong>IR10.8</strong>


Cold-ring storms over Hungary & Serbia<br />

Tornadic storm over Hungary (cold-ring shape)<br />

20 May 2008, MSG, <strong>IR10.8</strong><br />

Source: M. Putsay


Cold-U storm over Hamburg/Germany<br />

MSG-1, 9 May 2004, 07:00 UTC, <strong>IR10.8</strong>


RGB Convective Storms


Different appearance of convective storms when observing<br />

these by weather radars and satellites:<br />

27 August 2001 1545 UTC, NOAA 14<br />

enhanced AVHRR ch 4 > radar reflectivity (max Z)<br />

Source: Martin Setvak


Merged <strong>IR10.8</strong> + HRV Product (Martin Setvak)


Stereo HRV Product (Jan Kanak)


Estofex Criteria for Organised Convection


Monitoring convection with MSG channel differences<br />

IR3.9 - <strong>IR10.8</strong><br />

IR8.7 - <strong>IR10.8</strong><br />

<strong>IR10.8</strong> - IR12.0<br />

WV6.2 - <strong>IR10.8</strong><br />

particle size, top temperature<br />

cloud phase, opt. thickness, (humidity)<br />

opt. thickness, (humidity)<br />

overshooting tops<br />

VIS0.8-VIS0.6 NIR1.6-VIS0.8 IR3.9-<strong>IR10.8</strong> IR8.7-<strong>IR10.8</strong> <strong>IR10.8</strong>-IR12.0


-<br />

VIS0.8<br />

VIS0.6<br />

large difference<br />

=<br />

Principle of<br />

Image<br />

Difference<br />

VIS0.8 - VIS0.6<br />

small difference


Difference IR3.9 - <strong>IR10.8</strong>: Cloud Particle Size<br />

Maputo<br />

Large Ice Particles<br />

(+26/+35 K)<br />

Small Ice Particles<br />

(+65/+73 K)<br />

MSG-1, 6 November 2004, 12:00 UTC, Difference IR3.9 - <strong>IR10.8</strong><br />

Range: -5 K (black) to +70 K (white), Gamma = 0.5


MSG-1<br />

5 June 2003<br />

14:45 UTC<br />

Difference Image<br />

IR3.9 - <strong>IR10.8</strong>


Differences IR8.7 - <strong>IR10.8</strong> and <strong>IR10.8</strong> – IR12.0<br />

<strong>IR10.8</strong> IR8.7 - <strong>IR10.8</strong> <strong>IR10.8</strong> - IR12.0<br />

[-80 / +25°C] [-3 / +10 K] [0 / +7 K]<br />

top temperature phase + optical thickness optical thickness<br />

MSG-1, 8 September 2003, 12:00 UTC<br />

Hurricane "Isabel"


How transparent are thin ice clouds<br />

= 3.9 = 8.7 = 10.8 = 12.0<br />

T(cloud) = 200 K<br />

T(surf) = 300 K<br />

Picture from Bernhard Muehr


Effect on Brightness Temperatures<br />

= 3.9 = 8.7 = 10.8 = 12.0<br />

BT(3.9) >> BT(8.7) > BT(10.8) > BT(12.0)<br />

(neglecting other effects)<br />

Picture from Bernhard Muehr


How transparent are thick ice clouds<br />

= 3.9 = 8.7 = 10.8<br />

= 12.0<br />

Note: not considering other effects,<br />

BT(8.7) BT(10.8) BT(12.0)<br />

Picture from Bernhard Muehr


Difference <strong>IR10.8</strong> - IR12.0: Optical Thickness<br />

Thin Ice Cloud<br />

Maputo<br />

Thick Ice Cloud<br />

MSG-1, 6 November 2004, 12:00 UTC, Difference <strong>IR10.8</strong> - IR12.0<br />

Range: -2 K (black) to +8 K (white), Gamma = 1.0


Channel 02 (VIS0.8): Optical Thickness<br />

Thin Ice Cloud<br />

Maputo<br />

Thick Ice Cloud<br />

MSG-1, 6 November 2004, 12:00 UTC, Channel 01 (VIS0.6)<br />

Range: 0 % (black) to 100 % (white), Gamma = 1.0


Difference IR8.7 - <strong>IR10.8</strong>: Optical Thickness<br />

MSG-1<br />

14 July 2003<br />

02:00 UTC<br />

Difference Image<br />

IR8.7 - <strong>IR10.8</strong><br />

[BTD in K]<br />

Desert<br />

(cloud-free)<br />

Thick Ice<br />

Clouds<br />

Thin Ice<br />

Clouds<br />

Thin Ice Clouds<br />

(very high)<br />

Ocean/Land<br />

(cloud-free)<br />

Desert Dust<br />

or Water Clouds


Difference <strong>IR10.8</strong> - IR12.0: Optical Thickness<br />

Desert<br />

Dry<br />

Ocean/Land<br />

Moist<br />

MSG-1<br />

26 January 2004<br />

10:00 UTC<br />

Difference Image<br />

<strong>IR10.8</strong> - IR12.0<br />

[BTD in K]<br />

Thick High<br />

Clouds<br />

Thick Low<br />

Clouds<br />

Thin Clouds<br />

(water or ice)<br />

Extremely High,<br />

Thin Clouds (ice)


Thin Ice Cloud<br />

Thick Ice Clouds<br />

MSG-1<br />

5 June 2003<br />

14:45 UTC<br />

Difference Image<br />

IR8.7 - <strong>IR10.8</strong>


Difference IR8.7 - <strong>IR10.8</strong>: Optical Thickness & Phase<br />

Thin Ice Cloud<br />

Maputo<br />

Thick Ice Cloud<br />

MSG-1, 6 November 2004, 12:00 UTC, Difference IR8.7 - <strong>IR10.8</strong><br />

Range: -5 K (black) to +5 K (white), Gamma = 1.0


Difference <strong>IR10.8</strong> - IR12.0: Contrails<br />

Contrails<br />

MFG IR Channel<br />

MSG-1, 26 Sep 2003, 08:00 UTC<br />

MSG Diff. <strong>IR10.8</strong> - IR12.0


Cloud Phase not visible in VIS0.6, VIS0.8 Channels<br />

8 November 2005, 12:00 UTC, Channel 02 (VIS0.8)


Cloud Phase in IR8.7 - <strong>IR10.8</strong><br />

8 November 2005, 12:00 UTC, BTD IR8.7 - <strong>IR10.8</strong><br />

Water clouds: BTD IR8.7 - <strong>IR10.8</strong> < -1 K<br />

Ice clouds: BTD IR8.7 - <strong>IR10.8</strong> >= -1 K


Cloud Phase in IR8.7 - <strong>IR10.8</strong><br />

Ice clouds<br />

Water clouds<br />

8 November 2005, 12:00 UTC, BTD IR8.7 - <strong>IR10.8</strong><br />

Water clouds: BTD IR8.7 - <strong>IR10.8</strong> < -1 K<br />

Ice clouds: BTD IR8.7 - <strong>IR10.8</strong> >= -1 K


VIS0.8 Channel<br />

ice clouds<br />

IR8.7 – <strong>IR10.8</strong><br />

water clouds<br />

<strong>IR10.8</strong> – IR12.0


Overshooting Tops in Difference WV6.2 - <strong>IR10.8</strong><br />

Negative BTD values for<br />

most of the image (IR<br />

warmer than WV band)<br />

MSG-1, 14 July 2003, 02:00 UTC


Overshooting Tops in Difference WV6.2 - <strong>IR10.8</strong><br />

Maputo<br />

Overshooting<br />

Tops<br />

MSG-1, 6 November 2004, 12:00 UTC, Difference WV6.2 - <strong>IR10.8</strong>


MSG-1<br />

5 June 2003<br />

14:45 UTC<br />

Difference Image<br />

WV6.2 - <strong>IR10.8</strong>


Possible Explanations for Positive BTD<br />

- presence of warmer moisture layer in the lower<br />

stratosphere, detectable by this method only above<br />

cold storm tops (Schmetz et al., 1997);<br />

- emissivity/transparency differences of frozen cloud<br />

tops in WV6.2 and IR 10.8 bands (cloud top<br />

microphysics).<br />

For both explanations, the BTD strongly depends on actual<br />

temperature profile near and above the tropopause !


Severe Convection France<br />

BTD = + 5.7 K<br />

Overshooting tops<br />

HRV<br />

BTD WV6.2-<strong>IR10.8</strong><br />

<strong>IR10.8</strong> channel<br />

28 June 2005, 18:45 UTC, France<br />

Source: M. Setvak


Severe Convection France<br />

Here the shape of BTD maximum<br />

begins to resemble a plume<br />

BTD WV6.2-<strong>IR10.8</strong><br />

<strong>IR10.8</strong> channel<br />

28 June 2005, 19:30 UTC, France<br />

Source: M. Setvak


Multispectral view of convective storms<br />

VIS 0.8 NIR 1.6 MIR 3.9 MIR 3.9r <strong>IR10.8</strong><br />

VIS0.8-VIS0.6 NIR1.6-VIS0.8 MIR3.9-<strong>IR10.8</strong> IR8.7-<strong>IR10.8</strong> <strong>IR10.8</strong>-IR12.0<br />

20 May 2008, Tornadic storms over Hungary


RGB Day Microphysics: Colour Inputs<br />

Red = VIS0.8<br />

Green = IR3.9r<br />

Blue = <strong>IR10.8</strong><br />

RGB


Cold-ring storm over Poland<br />

MSG-1, 2 July 2007, 15:15 UTC, <strong>IR10.8</strong>


Multispectral view of convective storms<br />

BTD WV6.2-<strong>IR10.8</strong><br />

HRV channel<br />

2 July 2007, 17:45 UTC, Severe Convection Poland<br />

Source: P. Struzik


Multispectral view of convective storms<br />

29 June 2006, by A. Manzato


Plume, Severe Convection, Poland<br />

<strong>IR10.8</strong><br />

HRV<br />

MSG-1, 31 May 2005, 17:15 UTC<br />

NIR1.6


BT IR 10.8<br />

12:00 UTC<br />

Severe<br />

Storm CZ<br />

13 June 2003<br />

BTD WV6.2 - IR 10.8<br />

IR 3.9<br />

Source: M. Setvak


Multispectral view of convective storms<br />

20 May 2008<br />

by M. Putsay


Combination of satellite & radar data<br />

29 June 2006<br />

by M. Putsay


Combination of satellite, radar & lightning data<br />

20 May 2008<br />

by M. Putsay


Summary: possible satellite indicators for severe convection (if many of<br />

them come together then the likelihood of severe weather increases)<br />

• cold cloud tops (enhanced <strong>IR10.8</strong> image)<br />

• explosive cooling & growth (enhanced <strong>IR10.8</strong> and HRV image)<br />

• cold-ring / cold-U shape (enhanced <strong>IR10.8</strong> image)<br />

• other cloud top textures (e.g. MCS) (<strong>IR10.8</strong> image, ASII product)<br />

• long-living storm system (more than 10 hours, <strong>IR10.8</strong> and HRV image)<br />

• right-moving storm (<strong>IR10.8</strong> and HRV image)<br />

• radial Cirrus clouds (<strong>IR10.8</strong> image)<br />

• above-anvil Cirrus plume (HRV image)<br />

• low-level inflow jet (HRV image)<br />

• convergence line, flanking line, intersection of convergence lines (HRV image)<br />

• convective outflow boundaries top/bottom of troposphere (HRV image)<br />

• upper level divergence (HRV winds)<br />

• gravity waves on Cb anvil (HRV image, WV6.2 image)<br />

• strong overshooting of the tops of convective cells (HRV+IR image and WV6.2 - <strong>IR10.8</strong> difference)<br />

• small ice particles (Convection RGB, IR3.9r effective radius (Reff) product)<br />

• retrieved vertical profiles of cloud particle effective radius and thermodynamic phase (T-Reff plots)<br />

• left-exit region of upper level jet (WV6.2 image, Airmass RGB)<br />

• east side of PV anomaly (WV6.2 image, Airmass RGB)<br />

• high low-level moisture (Dust RGB); upper level moisture flow (WV6.2 and WV7.3 images)<br />

• unstable environment (GII product)<br />

• high precip rate (MPE & CRR products)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!