25.01.2015 Views

Math 260 Review questions for Multivariable ... - Gilles Cazelais

Math 260 Review questions for Multivariable ... - Gilles Cazelais

Math 260 Review questions for Multivariable ... - Gilles Cazelais

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Math</strong> <strong>260</strong><br />

<strong>Review</strong> <strong>questions</strong> <strong>for</strong> <strong>Multivariable</strong> Calculus<br />

1. Find and classify the critical points of f(x, y) = x 3 + xy 2 − 3x 2 − 4y 2 + 4.<br />

2. Show by substitution that φ(x, y, z) = e 3x+4y sin(5z) satisfy Laplace’s equation<br />

∂ 2 φ<br />

∂x 2 + ∂2 φ<br />

∂y 2 + ∂2 φ<br />

∂z 2 = 0.<br />

3. Find an equation <strong>for</strong> the tangent plane at point (1, −1, 3) on the hyperboloid z 2 − 2x 2 − 2y 2 = 5.<br />

4. Consider the function f(x, y) = x 2 + 3xy.<br />

(a) Find the directional derivative of f at point (−1, 1) in the direction of vector v = 3i − 4j.<br />

(b) Find the smallest directional derivative of f at point (−1, 1) and a unit vector pointing in<br />

the direction in which it occurs.<br />

5. Find Find ∇f(x 0 , y 0 ) given that<br />

D u f(x 0 , y 0 ) = −1,<br />

<strong>for</strong> u = − 4 5 i + 3 5 j<br />

and<br />

D v f(x 0 , y 0 ) = 2, <strong>for</strong> v = 3 5 i + 4 5 j.<br />

6. Write the appropriate chain rule <strong>for</strong> ∂f<br />

∂x<br />

if f depends on u, v; both u and v depends on x, y, z;<br />

and z depends on x and y.<br />

7. Let f(x, y) = sin(x − y) where x = ln(t + s) and y = se 2t . Use the chain rule to find ∂f<br />

∂s<br />

8. The equation e xy + z 3 x − zy 2 = 0 defines z implicitly as a function of x and y. Find ∂z<br />

∂x<br />

and<br />

∂f<br />

∂t .<br />

and<br />

∂z<br />

∂y .<br />

9. Use differentials to estimate the value of f(3.1, 1.8) given that f(3, 2) = 5 and ∇f(3, 2) = 4i − j.<br />

10. By approximately how much will the value of w = x2 y 3<br />

by 2%, and z decreases by 3% <br />

z<br />

change if x increases by 1%, y increases<br />

11. The centripetal acceleration of a particle moving in a circle is a = v2<br />

r<br />

where v is the velocity<br />

and r is the radius of the circle. Use differentials to estimate the maximum relative error of the<br />

acceleration if there are relative errors of ±2% in v and ±1% in r.<br />

12. Find the absolute maximum and minimum values of f(x, y) = xy(3 − x − y) on the triangular<br />

region: x ≥ 0, y ≥ 0, x + y ≤ 4. At what points are these extremum values attained<br />

13. Suppose the temperature T on a disk x 2 + y 2 ≤ 1 is given by T = 2x 2 + y 2 − y. Find the hottest<br />

and coldest spots on the disk.<br />

14. Consider the curve x 2 y = 16.<br />

(a) Find the vectors normal to the curve at points (4, 1) and (2, 4) on the curve.<br />

(b) Use Lagrange multipliers to find the points on the curve that closest to the origin.<br />

(c) Find the vectors normal to the curve at the points you found in (b).<br />

15. Find the minimum value of f(x, y, z) = 3x + 2y + z on the paraboloid z = 9x 2 + 4y 2 . At what<br />

point is the minimum value attained What about the maximum value<br />

16. The curve 17x 2 +12xy+8y 2 = 100 is an ellipse centered at the origin. Use the method of Lagrange<br />

multipliers to locate the points on the ellipse that are closest and farthest from the origin.


<strong>Math</strong> <strong>260</strong> <strong>Review</strong> <strong>questions</strong> <strong>for</strong> <strong>Multivariable</strong> Calculus Page 2 of 4<br />

17. Evaluate ∫∫ R (x + y) dA where R is the region bounded by y = √ x and y = x 2 .<br />

18. Locate the center of mass of the region bounded by the graphs of y = x 2 , x = 0, y = 1 with density<br />

ρ(x, y) = xy.<br />

19. Evaluate the following double integrals.<br />

(a) I =<br />

∫ 2 ∫ 4−x 2<br />

0<br />

0<br />

xe 2y<br />

∫ 2<br />

4 − y dy dx (b) I =<br />

0<br />

∫ 1<br />

y/2<br />

sin(x 2 ) dx dy (c) I =<br />

∫ ln 2 ∫ 2<br />

0<br />

e x 1<br />

ln y<br />

20. Evaluate ∫∫ R y2 dA where R is the region between the circles x 2 + y 2 = 1 and x 2 + y 2 = 4.<br />

21. Set-up iterated double integrals in polar coordinates <strong>for</strong> the following quantities.<br />

(a) The surface area of the part of the surface z = xy that lies in the region<br />

x ≥ 0, 0 ≤ y ≤ x, x 2 + y 2 ≤ 9.<br />

(b) The moment with respect to the y-axis, (i.e., ∫∫ R<br />

x dA) of the region R defined by<br />

1 ≤ x 2 + y 2 ≤ 2, y ≥ 0, 0 ≤ x ≤ √ 3 y.<br />

dy dx.<br />

(c) The moment of inertia I y of the first-quadrant region outside the circle r = 1 and inside the<br />

cardioid r = 1 + cos θ. Assume density is constant.<br />

(d) The volume of the part of the ball x 2 + y 2 + z 2 ≤ 4 that lies in the first octant and inside the<br />

cylinder x 2 + y 2 = 2x.<br />

22. Set-up an iterated triple integral <strong>for</strong> ∫∫∫ Q x2 dV where Q is the first-octant region under the plane<br />

of equation 3x + 2y + z = 6.<br />

23. Assume that p(x, y, z) is a function that measures the air pollutant particles per cubic meters of<br />

air at any point inside BC Place stadium in Vancouver. What does<br />

∫∫∫<br />

p(x, y, z) dV<br />

represent physically<br />

(BC Place)<br />

24. Set-up an iterated triple integral in cylinder coordinates to evaluate ∫∫∫ Q x2 dV where Q is the<br />

region between the paraboloids z = 4 − x 2 − y 2 and z = x 2 + y 2 .<br />

25. Set-up an iterated triple integral in spherical coordinates to evaluate I z = ∫∫∫ Q (x2 + y 2 ) dV where<br />

Q is the region that lies between the spheres x 2 + y 2 + z 2 = 1 and x 2 + y 2 + z 2 = 9, and inside<br />

the cone z = √ 4x 2 + 4y 2 .<br />

26. Use spherical coordinates to evaluate<br />

∫ 1 ∫ √ 1−x 2<br />

−1<br />

∫ √ 2−x 2 −y 2<br />

− √ √<br />

1−x 2 x 2 +y 2<br />

√<br />

x 2 + y 2 + z 2 dz dy dx.<br />

27. Evaluate ∫∫∫ B (x2 + y 2 ) dV where B = {(x, y, z) | x 2 + y 2 + z 2 ≤ 1} is the unit ball in R 3 .<br />

28. Let R be the region bounded by the curves xy = 1, xy = 4, y = 1, and y = 2. Evaluate ∫∫ R exy dA<br />

by using an appropriate change of variables.<br />

29.<br />

∫∫<br />

Let R be the parallelogram region with vertices at (0, 0), (3, −3), (5, −2), and (2, 1). Evaluate<br />

(x + y) dA by using an appropriate change of variables.<br />

R<br />

30. Let R be the region in the first quadrant bounded by the curves xy = 1, xy = 2, y = x, and<br />

y = 3x. Evaluate ∫∫ R y2 dA by using the change of variables u = xy and v = y/x.


<strong>Math</strong> <strong>260</strong> <strong>Review</strong> <strong>questions</strong> <strong>for</strong> <strong>Multivariable</strong> Calculus Page 3 of 4<br />

Answers<br />

1. (0, 0) → relative maximum, (2, 0) → saddle point.<br />

2. We have φ xx = 9 φ, φ yy = 16 φ, and φ zz = −25 φ. Then, φ xx + φ yy + φ zz = 9φ + 16φ − 25φ = 0.<br />

3. −2x + 2y + 3z = 5.<br />

4. (a) 3 (b) Smallest D u f(−1, 1) is − √ 10 in direction u = −1 √<br />

10<br />

i + 3 √<br />

10<br />

j.<br />

5. ∇f(x 0 , y 0 ) = 2i + j = 〈2, 1〉.<br />

6.<br />

7.<br />

8.<br />

∂f<br />

∂x = ∂f ∂u<br />

∂u ∂x + ∂f ∂u ∂z<br />

∂u ∂z ∂x + ∂f ∂v<br />

∂v ∂x + ∂f ∂v ∂z<br />

∂v ∂z ∂x .<br />

∂f<br />

∂s<br />

=<br />

cos(x − y)<br />

t + s<br />

∂z<br />

∂x = −(yexy + z 3 )<br />

3z 2 x − y 2<br />

9. f(3.1, 1.8) ≈ 5.6<br />

− e 2t cos(x − y) and ∂f<br />

∂t<br />

and<br />

10. w increases by about 11%.<br />

∂z<br />

∂y = −(xexy − 2zy)<br />

3z 2 x − y 2 .<br />

=<br />

cos(x − y)<br />

t + s<br />

11. The maximum relative error of the acceleration is about 5%.<br />

− 2se 2t cos(x − y).<br />

12. Absolute maximum value is 1, attained at (1, 1). Absolute minimum value is −4, attained at<br />

(2, 2).<br />

( √ )<br />

13. Hottest spots: ± 3<br />

2 , − 1 2<br />

where T = 9/4. Coldest spot: (0, 1 2<br />

) where T = −1/4.<br />

14. (a) A vector normal at (4, 1) is i + 2j. A vector normal at (2, 4) is 4i + j.<br />

(b) The closest point to the origin are (±2 √ 2, 2).<br />

(c) A vector normal at (−2 √ 2, 2) is − √ 2 i + j. A vector normal at (2 √ 2, 2) is √ 2 i + j.<br />

15. The minimum value is − 1 2 and is attained at (x, y, z) = (− 1 6 , − 1 4 , 1 2<br />

). The function does not have<br />

a maximum value on the paraboloid.<br />

16. Closest points: (−2, −1) and (2, 1). Farthest points: (2, −4) and (−2, 4).<br />

17. 3/10<br />

18. (x, y) = ( 4<br />

7 , 3 )<br />

4<br />

19. (a) (e 8 − 1)/4, (b) 1 − cos(1), (c) 1.<br />

20.<br />

15π<br />

4<br />

21. (a) S =<br />

22.<br />

(c) I y =<br />

∫ π/4 ∫ 3<br />

0 0<br />

∫ π/2 ∫ 1+cos θ<br />

0 1<br />

∫ 2 ∫ (6−3x)/2 ∫ 6−3x−2y<br />

0<br />

0<br />

0<br />

r √ 1 + r 2 dr dθ (b) M y =<br />

r 3 cos 2 θ dr dθ (d) V =<br />

x 2 dz dy dx<br />

∫ π/2 ∫ √ 2<br />

π/6 1<br />

∫ π/2 ∫ 2 cos θ<br />

23. It represents the total amount of pollution inside BC place.<br />

0<br />

0<br />

r 2 cos θ dr dθ<br />

r √ 4 − r 2 dr dθ


<strong>Math</strong> <strong>260</strong> <strong>Review</strong> <strong>questions</strong> <strong>for</strong> <strong>Multivariable</strong> Calculus Page 4 of 4<br />

24.<br />

25.<br />

∫ 2π ∫ √ 2 ∫ 4−r 2<br />

0 0 r 2<br />

∫ 2π ∫ arctan(1/2) ∫ 3<br />

0 0<br />

1<br />

r 3 cos 2 θ dz dr dθ<br />

ρ 4 sin 3 φ dρ dφ dθ<br />

26. π(2 − √ 2)<br />

27. 8π/15<br />

28. (e 4 − e) ln 2<br />

29. We can use the change of variable u = x + y and v = x − 2y to get ∫∫ R<br />

(x + y) dA = 27/2.<br />

Note that if we use rectangular coordinates, we need to evaluate three double integrals.<br />

30. 3/2<br />

∫ 2 ∫ x/2<br />

0<br />

−x<br />

(x + y) dy dx +<br />

∫ 3 ∫ 3−x<br />

2<br />

−x<br />

(x + y) dy dx +<br />

∫ 5 ∫ 3−x<br />

3<br />

(x−9)/2<br />

(x + y) dy dx = 27<br />

2<br />

<strong>Gilles</strong> <strong>Cazelais</strong>, March 13, 2008.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!