25.01.2015 Views

Effect of prebiotic and synbiotic injected in ovo on performance ...

Effect of prebiotic and synbiotic injected in ovo on performance ...

Effect of prebiotic and synbiotic injected in ovo on performance ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UNIVERSITY OF MOLISE<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural, Envir<strong>on</strong>mental <str<strong>on</strong>g>and</str<strong>on</strong>g> Food Sciences<br />

INTERNATIONAL Ph.D. <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

“WELFARE, BIOTECHNOLOGY AND QUALITY OF ANIMAL PRODUCTION”<br />

(XXIV CYCLE)<br />

Related discipl<str<strong>on</strong>g>in</str<strong>on</strong>g>ary scientific secti<strong>on</strong>: 07/G1 (Scienze e Tecnologie Animali)<br />

General Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ator: Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Giuseppe Maiorano<br />

Doctorate Thesis Title:<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ovo</str<strong>on</strong>g> <strong>on</strong> <strong>performance</strong>, meat quality <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

hystopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler<br />

chickens<br />

PhD C<str<strong>on</strong>g>and</str<strong>on</strong>g>idate:<br />

Dr. Daniela Cianciullo<br />

Supervisor:<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Giuseppe Maiorano<br />

Academic Year 2011-2012


UNIVERSITY OF MOLISE<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural, Envir<strong>on</strong>mental <str<strong>on</strong>g>and</str<strong>on</strong>g> Food<br />

Science<br />

INTERNATIONAL Ph.D. <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

“WELFARE, BIOTECHNOLOGY AND QUALITY OF ANIMAL PRODUCTION”<br />

(XXIV CYCLE)<br />

Related discipl<str<strong>on</strong>g>in</str<strong>on</strong>g>ary scientific secti<strong>on</strong>: 07/G1 (Scienze e Tecnologie Animali)<br />

General Coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ator: Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Giuseppe Maiorano<br />

Doctorate Thesis Title:<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ovo</str<strong>on</strong>g> <strong>on</strong> <strong>performance</strong>, meat quality <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

hystopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler<br />

chickens<br />

PhD C<str<strong>on</strong>g>and</str<strong>on</strong>g>idate:<br />

Dr. Daniela Cianciullo<br />

Supervisor:<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Giuseppe Maiorano<br />

Academic Year 2011-2012<br />

2


To my beloved husb<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> s<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> my parents.<br />

Their true love <str<strong>on</strong>g>and</str<strong>on</strong>g> happ<str<strong>on</strong>g>in</str<strong>on</strong>g>ess are giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g me strength<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> motivati<strong>on</strong>. Thank you for everyth<str<strong>on</strong>g>in</str<strong>on</strong>g>g that you<br />

have d<strong>on</strong>e for me. With all my love, this is for you.<br />

3


ACKNOWLEDGEMENTS<br />

I owe milli<strong>on</strong> thanks <str<strong>on</strong>g>and</str<strong>on</strong>g> a debt <str<strong>on</strong>g>of</str<strong>on</strong>g> gratitude to many people who made this doctoral dissertati<strong>on</strong><br />

possible.<br />

I would like first <str<strong>on</strong>g>and</str<strong>on</strong>g> foremost to thank my mentor <str<strong>on</strong>g>and</str<strong>on</strong>g> doctoral supervisor Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Giuseppe<br />

Maiorano for be<str<strong>on</strong>g>in</str<strong>on</strong>g>g a supportive advisor any<strong>on</strong>e could hope to have. Thank you very much for his<br />

time, expertise, wisdom <str<strong>on</strong>g>and</str<strong>on</strong>g> great guidance. My s<str<strong>on</strong>g>in</str<strong>on</strong>g>cere gratitude for his k<str<strong>on</strong>g>in</str<strong>on</strong>g>d smiles <str<strong>on</strong>g>and</str<strong>on</strong>g> pats <strong>on</strong> my<br />

shoulder as well as for giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g me the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> jo<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g his work team <str<strong>on</strong>g>and</str<strong>on</strong>g> for the c<strong>on</strong>fidence<br />

accorded to me dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g these four PhD years. He has provided me with advice, enthusiasm <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>spirati<strong>on</strong> as well as with valuable <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> excellent <str<strong>on</strong>g>in</str<strong>on</strong>g>sight throughout the development<br />

for this project. Without him, this project would not be what it is.<br />

I would like also to thank my colleagues <str<strong>on</strong>g>of</str<strong>on</strong>g> the laboratory, Siria Tavaniello <str<strong>on</strong>g>and</str<strong>on</strong>g> Domenico Di<br />

Memmo. They were always able to make work hours less hard or better still more stimulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Their<br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous support, accessibility <str<strong>on</strong>g>and</str<strong>on</strong>g> cooperati<strong>on</strong> were precious for my work. A very special <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

warm thank is deserved to my fellow worker <str<strong>on</strong>g>and</str<strong>on</strong>g>, most <str<strong>on</strong>g>of</str<strong>on</strong>g> all, dear friend Siria Tavaniello that<br />

helped me not <strong>on</strong>ly <strong>on</strong> work level, giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g me her support dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g thesis draw<str<strong>on</strong>g>in</str<strong>on</strong>g>g up <str<strong>on</strong>g>and</str<strong>on</strong>g> experiment<br />

carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g out, but also <strong>on</strong> pers<strong>on</strong>al level, spurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> support<str<strong>on</strong>g>in</str<strong>on</strong>g>g me at hard times.<br />

I would like to thank also my Polish advisors Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Marek Bednarczyk <str<strong>on</strong>g>and</str<strong>on</strong>g> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Jacek<br />

Bardowski for giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g me the possibility to work <str<strong>on</strong>g>in</str<strong>on</strong>g> their laboratory, Dep. <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Biotechnology<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Bydgoszcz (Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Bednarczyk) <str<strong>on</strong>g>and</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> Biophysics, PAN <str<strong>on</strong>g>in</str<strong>on</strong>g> Warsaw<br />

(Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Berdowski). Thank you for their assistance <str<strong>on</strong>g>in</str<strong>on</strong>g> the elaborati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed results. I would<br />

also to thank Joanna Żylińska for her friendship, her scientific <str<strong>on</strong>g>and</str<strong>on</strong>g> pers<strong>on</strong>al support <str<strong>on</strong>g>and</str<strong>on</strong>g> for shar<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

with me the pa<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> glory <str<strong>on</strong>g>of</str<strong>on</strong>g> my stay<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> Pol<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> my work<str<strong>on</strong>g>in</str<strong>on</strong>g>g d<strong>on</strong>e with her.<br />

I would like to thank my family members, especially my parents Vittorio <str<strong>on</strong>g>and</str<strong>on</strong>g> Rosanna, my<br />

brothers, Ol<str<strong>on</strong>g>in</str<strong>on</strong>g>do <str<strong>on</strong>g>and</str<strong>on</strong>g> Mario <str<strong>on</strong>g>and</str<strong>on</strong>g> my sister Guglielm<str<strong>on</strong>g>in</str<strong>on</strong>g>a. Without them I would not have made it<br />

this far <str<strong>on</strong>g>in</str<strong>on</strong>g> life. They have been there for me every step <str<strong>on</strong>g>of</str<strong>on</strong>g> the way, have always loved me<br />

unc<strong>on</strong>diti<strong>on</strong>ally, <str<strong>on</strong>g>and</str<strong>on</strong>g> have aided me through all <str<strong>on</strong>g>of</str<strong>on</strong>g> my tough decisi<strong>on</strong>s. Thank you for everyth<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

that you have d<strong>on</strong>e for me.<br />

F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, I would like to thank my husb<str<strong>on</strong>g>and</str<strong>on</strong>g>, Michele, <str<strong>on</strong>g>and</str<strong>on</strong>g> my little s<strong>on</strong>, Samuele, whom<br />

without their full love, support, <str<strong>on</strong>g>and</str<strong>on</strong>g> sacrifice I never would have realized my full potential. I<br />

thank them every day <str<strong>on</strong>g>of</str<strong>on</strong>g> my life.<br />

4


TABLE OF CONTENTS<br />

Page<br />

Abstract (l<str<strong>on</strong>g>in</str<strong>on</strong>g>gua <str<strong>on</strong>g>in</str<strong>on</strong>g>glese) 9<br />

Riassunto (l<str<strong>on</strong>g>in</str<strong>on</strong>g>gua italiana) 11<br />

PART 1: INTRODUCTION 13<br />

Chapter 1. Poultry producti<strong>on</strong> overview 13<br />

1.1 Historic advances <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry 13<br />

1.2 Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> domestic fowl 16<br />

1.3 Broiler chickens 17<br />

1.3.1 General biology 17<br />

1.3.2 Behaviour 17<br />

1.3.3 Broiler breeder (Parent stock) farms 18<br />

1.4 Poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry challenges 18<br />

Chapter 2. Poultry embryo development 20<br />

2.1 Embry<strong>on</strong>ic use <str<strong>on</strong>g>of</str<strong>on</strong>g> egg nutrients 20<br />

2.1.1 Egg compositi<strong>on</strong> 20<br />

2.1.2 Egg structure 20<br />

2.1.3 Embryo development dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> 21<br />

Chapter 3. The gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry 24<br />

3.1 Anatomy <str<strong>on</strong>g>and</str<strong>on</strong>g> physiology 24<br />

3.2 The gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry 24<br />

3.2.1 Microbes <str<strong>on</strong>g>of</str<strong>on</strong>g> the chicken gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract 24<br />

3.2.2 Role <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota 27<br />

3.3 Antibiotic Growth Promoters (AGPs) <str<strong>on</strong>g>and</str<strong>on</strong>g> animal feed regulati<strong>on</strong>s 28<br />

3.3.1 Antibiotics 28<br />

3.3.2 Feed additives legislati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> antibiotic ban 31<br />

Chapter 4. Alternatives to antibiotics: Probiotics, Prebiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> Synbiotics 33<br />

4.1 Probiotics 33<br />

4.1.1 Regulatory c<strong>on</strong>siderati<strong>on</strong>s 33<br />

4.1.2 Efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> mode <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> 36<br />

4.1.3 Lactic acid bacteria 38<br />

4.1.3.1 Lactococci probiotic applicati<strong>on</strong> 39<br />

4.1.3.2 Bifidobacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> animals <str<strong>on</strong>g>and</str<strong>on</strong>g> probiotic applicati<strong>on</strong> 39<br />

4.1.3.3 Lactobacillus probiotic acti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong> 40<br />

4.1.4 Competitive exclusi<strong>on</strong> 40<br />

4.2 Prebiotics 41<br />

5


4.2.1 FOS, fructooligosaccharides 43<br />

4.2.2 RFOs, raff<str<strong>on</strong>g>in</str<strong>on</strong>g>ose family <str<strong>on</strong>g>of</str<strong>on</strong>g> oligosaccharides 43<br />

4.3 Synbiotics 44<br />

Chapter 5. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Probiotics, Prebiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> Synbiotics 46<br />

Chapter 6. Aid<str<strong>on</strong>g>in</str<strong>on</strong>g>g embryo nutriti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> 50<br />

6.1 Hatchery hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g period 50<br />

6.2 In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g (IOF) c<strong>on</strong>cept 51<br />

6.3 The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pre/probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> 55<br />

6.4 In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts 57<br />

Chapter 7. Structural <str<strong>on</strong>g>and</str<strong>on</strong>g> biochemical aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry muscle 58<br />

7.1 Muscle structure 58<br />

7.1.1 Prote<str<strong>on</strong>g>in</str<strong>on</strong>g> accreti<strong>on</strong> 59<br />

7.1.2 Postmortem events 60<br />

7.2 C<strong>on</strong>nective tissue 61<br />

7.2.1 Collagen 61<br />

7.2.2 Collagen types <str<strong>on</strong>g>and</str<strong>on</strong>g> organizati<strong>on</strong> 62<br />

7.2.3 Biochemical properties 63<br />

7.3 Proteoglycans 65<br />

7.4 C<strong>on</strong>nective tissue degradati<strong>on</strong> 66<br />

Chapter 8. Histological <str<strong>on</strong>g>and</str<strong>on</strong>g> hystopathological aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry muscle 68<br />

8.1 Muscle fiber 68<br />

8.1.1 Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fiber type 68<br />

8.1.2 Muscle fiber size 69<br />

8.2 Neuromuscular desease 71<br />

8.2.1 Breast muscle myopathies 71<br />

8.2.2 Deep pectoral desease 73<br />

8.2.3 PSE-like breast meat 74<br />

8.2.4 Intramuscular c<strong>on</strong>nective tissue defects 76<br />

Chapter 9. Qualitative <str<strong>on</strong>g>and</str<strong>on</strong>g> nutriti<strong>on</strong>al properties <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat 78<br />

9.1 Meat quality c<strong>on</strong>cept 78<br />

9.2 The major factors affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g meat quality 79<br />

9.2.1 Appearance <str<strong>on</strong>g>and</str<strong>on</strong>g> technological characteristics 79<br />

9.2.2 Palatability 79<br />

9.2.3 Wholesomeness 79<br />

9.3 Compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutriti<strong>on</strong>al aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat 79<br />

9.3.1 Factors affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g poultry meat quality 81<br />

9.3.1.1 <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular c<strong>on</strong>nective tissue <strong>on</strong> meat<br />

toughness<br />

83<br />

6


PART 2: AIM OF DISSERTATION 86<br />

PART 3: MATERIALS AND METHODS 87<br />

Chapter 10. Debitter<str<strong>on</strong>g>in</str<strong>on</strong>g>g process <str<strong>on</strong>g>of</str<strong>on</strong>g> alkaloid-rich lup<str<strong>on</strong>g>in</str<strong>on</strong>g> seeds 87<br />

10.1 RFOs isolati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> purificati<strong>on</strong> from seeds <str<strong>on</strong>g>of</str<strong>on</strong>g> lup<str<strong>on</strong>g>in</str<strong>on</strong>g> 87<br />

10.1.1 Imbibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds 88<br />

10.1.2 Extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs 88<br />

10.1.3 RFOs precipitati<strong>on</strong> 88<br />

10.1.4 Purificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs <str<strong>on</strong>g>and</str<strong>on</strong>g> diatomaceous earth <str<strong>on</strong>g>and</str<strong>on</strong>g> charcoal 88<br />

10.1.5 Cati<strong>on</strong>-exchange chromatography 88<br />

10.1.6 Qualitative evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RFO compositi<strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g th<str<strong>on</strong>g>in</str<strong>on</strong>g>-layer<br />

chromatography<br />

10.1.7 Determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total soluble sugars <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> α-galactoside<br />

c<strong>on</strong>tent at particular stages <str<strong>on</strong>g>of</str<strong>on</strong>g> the procedure<br />

10.1.8 HPLC analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs 89<br />

Chapter 11. Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> for the <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> 90<br />

11.1 Bacterial stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> growth c<strong>on</strong>diti<strong>on</strong>s 90<br />

11.2 Commercial <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s 91<br />

Chapter 12. Study design 92<br />

12.1 Birds 92<br />

12.2 Slaughter surveys <str<strong>on</strong>g>and</str<strong>on</strong>g> analyses 95<br />

12.3 Histological <str<strong>on</strong>g>and</str<strong>on</strong>g> hystopathological analyses 96<br />

12.4 Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> cholesterol c<strong>on</strong>tent 96<br />

12.5 Collagen 97<br />

12.6 Statistical analyses 97<br />

PART 4: RESULTS AND DISCUSSION 98<br />

Chapter 13. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> slaughter<br />

<strong>performance</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens<br />

13.1. Slaughter traits, Feed C<strong>on</strong>versi<strong>on</strong> Ratio <str<strong>on</strong>g>and</str<strong>on</strong>g> pH <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens 98<br />

Chapter 14. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> pectoral<br />

muscle qualitative traits <str<strong>on</strong>g>and</str<strong>on</strong>g> cholesterol c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens<br />

14.1 Fibre histological characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular collagen properties 103<br />

14.2 Cholesterol c<strong>on</strong>tent 106<br />

Chapter 15. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong><br />

histopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g> pectoral muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens<br />

15.1 Histopatological changes evaluati<strong>on</strong> 108<br />

PART 5: CONCLUSION 111<br />

89<br />

89<br />

98<br />

103<br />

108<br />

7


References 113<br />

Index <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures 171<br />

Index <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables 173<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Abbreviati<strong>on</strong>s 174<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Publicati<strong>on</strong>s 176<br />

8


Abstract<br />

In poultry farm<str<strong>on</strong>g>in</str<strong>on</strong>g>g, the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota <str<strong>on</strong>g>and</str<strong>on</strong>g> the “gut health” are topical subjects,<br />

especially s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the EU has banned the use <str<strong>on</strong>g>of</str<strong>on</strong>g> aux<str<strong>on</strong>g>in</str<strong>on</strong>g>ic antibiotics to avoid the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

antibiotic resistance <str<strong>on</strong>g>and</str<strong>on</strong>g> safeguard the c<strong>on</strong>sumer health. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

prohibiti<strong>on</strong>, a higher <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> enteric diseases is observed <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry farm<str<strong>on</strong>g>in</str<strong>on</strong>g>g with loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> productivity <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased mortality. In the post-antibiotics era, probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s are proposed as a soluti<strong>on</strong> to the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al problems <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry. Studies carried<br />

<strong>on</strong> these bioactives, adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered <str<strong>on</strong>g>in</str<strong>on</strong>g> feed or water, show c<strong>on</strong>flict<str<strong>on</strong>g>in</str<strong>on</strong>g>g results due to the<br />

different envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s (experimental <str<strong>on</strong>g>and</str<strong>on</strong>g> field c<strong>on</strong>diti<strong>on</strong>s) <str<strong>on</strong>g>and</str<strong>on</strong>g> the way <str<strong>on</strong>g>of</str<strong>on</strong>g> use.<br />

The “<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g>” <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pre-/pro-biotics <str<strong>on</strong>g>and</str<strong>on</strong>g> their comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (<str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>), an emergent<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al technique, shows promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g results similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g> aux<str<strong>on</strong>g>in</str<strong>on</strong>g>ic antibiotics. The<br />

work aimed to evaluate the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> these substances, “<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g>” adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered, <strong>on</strong> growth<br />

<strong>performance</strong>, meat quality traits (cholesterol c<strong>on</strong>tent, <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular collagen properties,<br />

fiber measurements), <str<strong>on</strong>g>and</str<strong>on</strong>g> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> histopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the pectoral muscle<br />

(PS) <str<strong>on</strong>g>of</str<strong>on</strong>g> Ross 308 broiler chickens. On d 12 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong>, 480 eggs were r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly divided<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to five experimental groups treated with different bioactives, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g>: C, c<strong>on</strong>trol<br />

with physiological sal<str<strong>on</strong>g>in</str<strong>on</strong>g>e soluti<strong>on</strong>; T1 with 1.9 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> Raff<str<strong>on</strong>g>in</str<strong>on</strong>g>ose Family Oligosaccharides<br />

(RFOs); T2 <str<strong>on</strong>g>and</str<strong>on</strong>g> T3 with 1.9 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs enriched with two different homemade probiotic<br />

bacteria (from Microbiological Bank <str<strong>on</strong>g>of</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> Biophysics, Warsaw,<br />

Pol<str<strong>on</strong>g>and</str<strong>on</strong>g>), specifically 1,000 cfu <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactococcus lactis ssp. lactis SL1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Lactococcus lactis<br />

ssp. cremoris IBB SC1, respectively; T4 with commercially available <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> Duolac,<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 500 cfu <str<strong>on</strong>g>of</str<strong>on</strong>g> both Lactobacillus acidophilus <str<strong>on</strong>g>and</str<strong>on</strong>g> Streptococcus faecium with the<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lactose (0.001 mg/embryo). Am<strong>on</strong>g the hatched chickens, sixty males were<br />

r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly chosen (12 birds for each group) <str<strong>on</strong>g>and</str<strong>on</strong>g> reared accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the animal welfare<br />

recommendati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> European Uni<strong>on</strong> directive 86/609/EEC <str<strong>on</strong>g>in</str<strong>on</strong>g> an experimental poultry<br />

house that provided good husb<str<strong>on</strong>g>and</str<strong>on</strong>g>ry c<strong>on</strong>diti<strong>on</strong>s. Birds were grown up to 42 d <str<strong>on</strong>g>in</str<strong>on</strong>g> collective<br />

cages (n = 3 birds <str<strong>on</strong>g>in</str<strong>on</strong>g> each 4 cages: replicati<strong>on</strong>s for experimental groups). Broilers were fed<br />

ad libitum commercial diets accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to their age <str<strong>on</strong>g>and</str<strong>on</strong>g> water was provided ad libitum.<br />

Amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> feed <str<strong>on</strong>g>of</str<strong>on</strong>g>fered to each cage were recorded, <str<strong>on</strong>g>and</str<strong>on</strong>g> uneaten feed <str<strong>on</strong>g>in</str<strong>on</strong>g> each cage was<br />

weighed daily (from 1 to 42 d). Cumulative feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take <str<strong>on</strong>g>and</str<strong>on</strong>g> feed c<strong>on</strong>versi<strong>on</strong> ratio (FCR)<br />

were calculated <strong>on</strong> a cage basis. At 42 d <str<strong>on</strong>g>of</str<strong>on</strong>g> age, broilers were weighed <str<strong>on</strong>g>in</str<strong>on</strong>g>dividually (after a<br />

fast<str<strong>on</strong>g>in</str<strong>on</strong>g>g period <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 h) <str<strong>on</strong>g>and</str<strong>on</strong>g> then were electrically stunned <str<strong>on</strong>g>and</str<strong>on</strong>g> slaughtered at a commercial<br />

poultry slaughterhouse. At slaughter, hot carcass weight was recorded, <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass yield<br />

percentage was calculated. Abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al fat was removed, measured <str<strong>on</strong>g>and</str<strong>on</strong>g> its percentage was<br />

calculated based <strong>on</strong> hot carcass weight. The pectoral muscle was removed from all<br />

carcasses (n = 60) <str<strong>on</strong>g>and</str<strong>on</strong>g> its percentage was calculated based <strong>on</strong> hot carcass weight. In<br />

additi<strong>on</strong>, pectoral muscle pH was recorded at 45 m<str<strong>on</strong>g>in</str<strong>on</strong>g> (pH 45 ), 12 h (pH 12 ), <str<strong>on</strong>g>and</str<strong>on</strong>g> 24 h (pH 24 )<br />

postmortem. Samples <str<strong>on</strong>g>of</str<strong>on</strong>g> the right pectoral muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> 40 animals, 8 birds from each<br />

experimental group, were taken <str<strong>on</strong>g>and</str<strong>on</strong>g> frozen <str<strong>on</strong>g>in</str<strong>on</strong>g> liquid nitrogen (-196ºC) for histological <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

histopathological analyses. The left pectoral muscle was vacuum packaged <str<strong>on</strong>g>and</str<strong>on</strong>g> stored<br />

frozen (-40°C) until <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular collagen (IMC) <str<strong>on</strong>g>and</str<strong>on</strong>g> cholesterol analyses. To verify<br />

significant differences <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to the treatments, the data were evaluated by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g 1-way<br />

ANOVA <str<strong>on</strong>g>and</str<strong>on</strong>g> means were separated by Scheffe’s battery <str<strong>on</strong>g>of</str<strong>on</strong>g> pairwise tests (SPSS Inc.,<br />

9


2010). In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> had a low effect <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated<br />

traits, but depend <strong>on</strong> the k<str<strong>on</strong>g>in</str<strong>on</strong>g>d <str<strong>on</strong>g>of</str<strong>on</strong>g> bioactives adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered. Commercial <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> treatment<br />

(T4) reduced carcass yield percentage, <str<strong>on</strong>g>and</str<strong>on</strong>g> the feed c<strong>on</strong>versi<strong>on</strong> ratio was higher <str<strong>on</strong>g>in</str<strong>on</strong>g> T3 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

T4 groups compared with other groups. The abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al fat, the ultimate pH, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

cholesterol <str<strong>on</strong>g>of</str<strong>on</strong>g> the PS were not affected by treatment. Broiler chickens <str<strong>on</strong>g>of</str<strong>on</strong>g> treated groups<br />

with both slightly greater PS <str<strong>on</strong>g>and</str<strong>on</strong>g> fiber diameter had a significantly lower amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

collagen. The greater thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fibers (not significant) <str<strong>on</strong>g>and</str<strong>on</strong>g> the lower fiber<br />

density (statistically significant), observed <str<strong>on</strong>g>in</str<strong>on</strong>g> treated birds <str<strong>on</strong>g>in</str<strong>on</strong>g> comparis<strong>on</strong> with those <str<strong>on</strong>g>of</str<strong>on</strong>g> C<br />

group, are not associated with histopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the PS <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers. The<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> histopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens from exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed groups was low,<br />

which did not affect the deteriorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> meat quality obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from these birds.<br />

Overall, the results obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> this work have asserted how the <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g><br />

adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> show<str<strong>on</strong>g>in</str<strong>on</strong>g>g greater effectiveness <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> uniformity <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>, dose<br />

used <str<strong>on</strong>g>and</str<strong>on</strong>g> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment, as well as homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> the study populati<strong>on</strong> (age,<br />

weight), may represent a valid alternative to the traditi<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> well-established methods<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> post-hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> (feed <str<strong>on</strong>g>and</str<strong>on</strong>g> water) <str<strong>on</strong>g>in</str<strong>on</strong>g> order to m<str<strong>on</strong>g>in</str<strong>on</strong>g>imize all those variables<br />

that could affect the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> bioactive. Moreover, the study has provided<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> for an effective applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these natural agents to be used <str<strong>on</strong>g>in</str<strong>on</strong>g> the future <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry, with significant <str<strong>on</strong>g>and</str<strong>on</strong>g> positive impact <strong>on</strong> animal welfare <str<strong>on</strong>g>and</str<strong>on</strong>g> public<br />

health.<br />

10


Riassunto<br />

Nel pollame, il microbiota <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>ale e la “gut health” s<strong>on</strong>o temi di attualità, soprattutto da<br />

qu<str<strong>on</strong>g>and</str<strong>on</strong>g>o l'UE ha vietato l'uso di antibiotici aux<str<strong>on</strong>g>in</str<strong>on</strong>g>ici per evitare l’<str<strong>on</strong>g>in</str<strong>on</strong>g>sorgenza dell’antibioticoresistenza<br />

e salvaguardare, così, la salute del c<strong>on</strong>sumatore. Come c<strong>on</strong>seguenza della loro<br />

proibizi<strong>on</strong>e, <str<strong>on</strong>g>in</str<strong>on</strong>g> avicoltura si è osservata una maggiore <str<strong>on</strong>g>in</str<strong>on</strong>g>cidenza di malattie enteriche che<br />

hanno determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ato perdite di produttività ed un aumento della mortalità. Nell’era postantibiotici,<br />

i probiotici ed i <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>i s<strong>on</strong>o proposti come soluzi<strong>on</strong>e dei problemi <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>ali<br />

dei polli. Gli studi c<strong>on</strong>dotti su tali composti bioattivi, somm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati direttamente nel cibo o<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> acqua, mostrano risultati c<strong>on</strong>trastanti a causa sia delle diverse c<strong>on</strong>dizi<strong>on</strong>i ambientali<br />

(c<strong>on</strong>dizi<strong>on</strong>i sperimentali e di campo) che del modo di utilizzo. L’<str<strong>on</strong>g>in</str<strong>on</strong>g>iezi<strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> di pre-<br />

/pro-biotici e loro comb<str<strong>on</strong>g>in</str<strong>on</strong>g>azi<strong>on</strong>e (simbiotici), tecnica emergente ed <str<strong>on</strong>g>in</str<strong>on</strong>g>novativa, mostra<br />

risultati promettenti simili a quelli degli antibiotici aux<str<strong>on</strong>g>in</str<strong>on</strong>g>ici. Il presente lavoro ha avuto<br />

come scopo quello di valutare gli effetti di <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>i, utilizzati da soli od <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>azi<strong>on</strong>e<br />

c<strong>on</strong> batteri probiotici rigorosamente selezi<strong>on</strong>ati e caratterizzati (simbiotici; Bardowski <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Kozak, 1981;. Boguslawska et al, 2009), somm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati “<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g>”, sulle <strong>performance</strong> di<br />

crescita, sulla qualità della carne (c<strong>on</strong>tenuto di colesterolo, proprietà del collagene<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscolare, misure delle fibre muscolari), n<strong>on</strong>ché sull’<str<strong>on</strong>g>in</str<strong>on</strong>g>cidenza di alterazi<strong>on</strong>i<br />

istopatologiche a carico del muscolo pettorale di polli da carne l<str<strong>on</strong>g>in</str<strong>on</strong>g>ea Ross 308. Al 12°<br />

giorno di <str<strong>on</strong>g>in</str<strong>on</strong>g>cubazi<strong>on</strong>e, 480 uova s<strong>on</strong>o state divise a r<str<strong>on</strong>g>and</str<strong>on</strong>g>om <str<strong>on</strong>g>in</str<strong>on</strong>g> c<str<strong>on</strong>g>in</str<strong>on</strong>g>que gruppi sperimentali,<br />

cui s<strong>on</strong>o stati somm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati, mediante tecnica di <str<strong>on</strong>g>in</str<strong>on</strong>g>iezi<strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g>, differenti bioattivi: C,<br />

gruppo c<strong>on</strong>trollo <str<strong>on</strong>g>in</str<strong>on</strong>g>iettato c<strong>on</strong> soluzi<strong>on</strong>e fisiologica; gruppo T1 <str<strong>on</strong>g>in</str<strong>on</strong>g>iettato c<strong>on</strong> 1,9 mg di<br />

<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>o (oligosaccaride della famiglia del raff<str<strong>on</strong>g>in</str<strong>on</strong>g>osio, RFOs); gruppi T2 e T3 <str<strong>on</strong>g>in</str<strong>on</strong>g>iettati c<strong>on</strong><br />

due formulazi<strong>on</strong>i simbiotiche c<strong>on</strong>tenenti 1,9 mg di RFOs arricchiti c<strong>on</strong> due diversi batteri<br />

probiotici appartenenti alla banca microbiologica dell’Istituto di Ricerca “Biochemistry<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Biophysics” (IBB) di Varsavia (Pol<strong>on</strong>ia), nello specifico 1,000 ufc di Lactococcus<br />

lactis ssp. lactis SL1 e Lactococcus lactis ssp. cremoris IBB SC1, rispettivamente; gruppo<br />

T4 <str<strong>on</strong>g>in</str<strong>on</strong>g>iettato c<strong>on</strong> un probiotico disp<strong>on</strong>ibile <str<strong>on</strong>g>in</str<strong>on</strong>g> commercio quale Duolac, c<strong>on</strong>tenente 500 ufc<br />

di Lactobacillus acidophilus e 500 ufc di Streptococcus faecium c<strong>on</strong> aggiunta di lattosio<br />

(0.001 mg/embri<strong>on</strong>e). Dopo la schiusa, sessanta pulc<str<strong>on</strong>g>in</str<strong>on</strong>g>i maschi s<strong>on</strong>o stati scelti a r<str<strong>on</strong>g>and</str<strong>on</strong>g>om<br />

(12 pulc<str<strong>on</strong>g>in</str<strong>on</strong>g>i per ogni gruppo) e allevati <str<strong>on</strong>g>in</str<strong>on</strong>g> azienda sperimentale <str<strong>on</strong>g>in</str<strong>on</strong>g> bu<strong>on</strong>e c<strong>on</strong>dizi<strong>on</strong>i di<br />

allevamento sec<strong>on</strong>do le raccom<str<strong>on</strong>g>and</str<strong>on</strong>g>azi<strong>on</strong>i previste dall’Uni<strong>on</strong>e europea <str<strong>on</strong>g>in</str<strong>on</strong>g> materia di<br />

benessere animale (direttiva 86/609/CEE). I polli s<strong>on</strong>o stati allevati f<str<strong>on</strong>g>in</str<strong>on</strong>g>o a 42 giorni di età<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> gabbie collettive (n = 3 uccelli per gabbia: 4 repliche per ciascun gruppo sperimentale),<br />

s<strong>on</strong>o stati alimentati ad libitum c<strong>on</strong> diete commerciali formulate <str<strong>on</strong>g>in</str<strong>on</strong>g> funzi<strong>on</strong>e della loro età e<br />

hanno potuto usufruire di acqua ad libitum. E’ stata registrata la quantità di mangime<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ferto per gabbia, ed il cibo n<strong>on</strong> c<strong>on</strong>sumato è stato pesato giornalmente per ciascuna<br />

gabbia (1-42 giorni). L’assunzi<strong>on</strong>e di cibo e l’<str<strong>on</strong>g>in</str<strong>on</strong>g>dice di c<strong>on</strong>versi<strong>on</strong>e alimentare (FCR) s<strong>on</strong>o<br />

stati calcolati per gabbia. A 42 giorni di età, i polli da carne s<strong>on</strong>o stati pesati<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dividualmente (dopo un periodo di digiuno di 12 ore) e s<strong>on</strong>o stati, successivamente,<br />

storditi elettricamente e macellati presso un macello commerciale. Al momento della<br />

macellazi<strong>on</strong>e, è stato registrato il peso della carcassa e calcolata la resa. Il grasso<br />

addom<str<strong>on</strong>g>in</str<strong>on</strong>g>ale ed il muscolo pettorale s<strong>on</strong>o stati rimossi da tutte le carcasse (n = 60), pesati e<br />

le rispettive percentuali s<strong>on</strong>o state calcolate <str<strong>on</strong>g>in</str<strong>on</strong>g> funzi<strong>on</strong>e del peso della carcassa. Inoltre, è<br />

11


stato registrato il pH del muscolo pettorale a 45 m<str<strong>on</strong>g>in</str<strong>on</strong>g> (pH 45 ), 12 ore (pH 12 ), e 24 h (pH 24 )<br />

post-mortem. I campi<strong>on</strong>i di muscolo pettorale destro di 40 animali, 8 volatili per ciascun<br />

gruppo sperimentale, s<strong>on</strong>o stati prelevati e c<strong>on</strong>gelati <str<strong>on</strong>g>in</str<strong>on</strong>g> azoto liquido (-196°C) per le analisi<br />

istologiche ed istopatologiche. Il muscolo pettorale s<str<strong>on</strong>g>in</str<strong>on</strong>g>istro è stato imballato sottovuoto e<br />

c<strong>on</strong>gelato (-40°C) f<str<strong>on</strong>g>in</str<strong>on</strong>g>o al momento delle analisi del collagene <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscolare (IMC) e del<br />

c<strong>on</strong>tenuto di colesterolo. Al f<str<strong>on</strong>g>in</str<strong>on</strong>g>e di verificare le differenze significative rispetto al<br />

trattamento applicato, i dati s<strong>on</strong>o stati valutati utilizz<str<strong>on</strong>g>and</str<strong>on</strong>g>o 1’ANOVA ad una via. Le<br />

differenze tra le medie s<strong>on</strong>o state valutate mediante il test di Scheffé (SPSS Inc., 2010). La<br />

somm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrazi<strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> di <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>o e simbiotico ha avuto un impatto limitato sulle<br />

caratteristiche prese <str<strong>on</strong>g>in</str<strong>on</strong>g> esame, ciò <str<strong>on</strong>g>in</str<strong>on</strong>g> dipendenza del tipo di bioattivo impiegato. Il<br />

trattamento c<strong>on</strong> simbiotico commerciale (T4) ha determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ato una riduzi<strong>on</strong>e della resa alla<br />

macellazi<strong>on</strong>e, e l’<str<strong>on</strong>g>in</str<strong>on</strong>g>dice di c<strong>on</strong>versi<strong>on</strong>e alimentare è risultato maggiore nei gruppi T3 e T4<br />

rispetto agli altri gruppi. Il grasso addom<str<strong>on</strong>g>in</str<strong>on</strong>g>ale, il pH 24 , ed il c<strong>on</strong>tenuto di colesterolo del<br />

muscolo pettorale n<strong>on</strong> s<strong>on</strong>o stati <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenzati dal trattamento. I polli da carne dei gruppi<br />

trattati, c<strong>on</strong> un’<str<strong>on</strong>g>in</str<strong>on</strong>g>cidenza lievemente maggiore del muscolo pettorale ed un diametro delle<br />

fibre leggermente più gr<str<strong>on</strong>g>and</str<strong>on</strong>g>e, presentavano una quantità di collagene <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscolare<br />

significativamente <str<strong>on</strong>g>in</str<strong>on</strong>g>feriore. Il maggiore spessore delle fibre muscolari (n<strong>on</strong> significativa)<br />

e la m<str<strong>on</strong>g>in</str<strong>on</strong>g>ore densità delle fibre (statisticamente significativa), osservata nei polli trattati<br />

rispetto a quelli del gruppo c<strong>on</strong>trollo, n<strong>on</strong> s<strong>on</strong>o stati associati alle alterazi<strong>on</strong>i<br />

istopatologiche del muscolo pettorale. L’<str<strong>on</strong>g>in</str<strong>on</strong>g>cidenza delle istopatologie nei polli da carne dei<br />

gruppi esam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati è risultata bassa e n<strong>on</strong> ha <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenzato il deterioramento, <str<strong>on</strong>g>in</str<strong>on</strong>g> term<str<strong>on</strong>g>in</str<strong>on</strong>g>i di<br />

qualità, della carne ottenuta da questi polli. Nel complesso, i risultati ottenuti da questo<br />

lavoro hanno c<strong>on</strong>sentito di affermare come la somm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrazi<strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g>, present<str<strong>on</strong>g>and</str<strong>on</strong>g>o<br />

maggiore efficacia <str<strong>on</strong>g>in</str<strong>on</strong>g> term<str<strong>on</strong>g>in</str<strong>on</strong>g>i di uniformità di applicazi<strong>on</strong>e, di dose impiegata e di durata<br />

del trattamento n<strong>on</strong>ché di omogeneità della popolazi<strong>on</strong>e di studio (età, peso), può<br />

rappresentare una valida alternativa ai tradizi<strong>on</strong>ali e già c<strong>on</strong>solidati metodi di<br />

somm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrazi<strong>on</strong>e post-schiusa (mangime e acqua) per ridurre tutte quelle variabili che<br />

poss<strong>on</strong>o <str<strong>on</strong>g>in</str<strong>on</strong>g>ficiare l’efficacia dei bioattivi. Inoltre, hanno fornito <str<strong>on</strong>g>in</str<strong>on</strong>g>formazi<strong>on</strong>i per un uso<br />

efficace di questi agenti naturali da impiegare, <str<strong>on</strong>g>in</str<strong>on</strong>g> futuro, <str<strong>on</strong>g>in</str<strong>on</strong>g> allevamento <str<strong>on</strong>g>in</str<strong>on</strong>g>dustriale, c<strong>on</strong><br />

importanti e positive ricadute sulla salute animale e pubblica.<br />

12


PART 1: INTRODUCTION<br />

Chapter 1. Poultry producti<strong>on</strong> overview<br />

1.1 Historic advances <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry<br />

Poultry meat <str<strong>on</strong>g>and</str<strong>on</strong>g> eggs dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the last 50 years have become am<strong>on</strong>g the most affordable<br />

food staple for people throughout the world. As technological development advanced<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the twentieth century, the world’s populati<strong>on</strong> became more urbanized (Lobo, 2006)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> dependent up<strong>on</strong> c<strong>on</strong>centrated large-scale food producti<strong>on</strong> that can be easily <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

efficiently transported to metropolitan areas. The poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry led this transformati<strong>on</strong><br />

from subsistence agriculture to <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated producti<strong>on</strong> to feed this grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g urbanized<br />

society, elevat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry products ahead <str<strong>on</strong>g>of</str<strong>on</strong>g> other animal products as<br />

the least expensive <str<strong>on</strong>g>and</str<strong>on</strong>g> most popular animal prote<str<strong>on</strong>g>in</str<strong>on</strong>g> source (Hammerstedt, 1999).<br />

Chickens were imported to America from Europe <str<strong>on</strong>g>and</str<strong>on</strong>g> Asia dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the 1800’s, where they<br />

were raised for eggs <str<strong>on</strong>g>and</str<strong>on</strong>g> meat <str<strong>on</strong>g>in</str<strong>on</strong>g> the backyards <str<strong>on</strong>g>of</str<strong>on</strong>g> most homes. Indeed, the most pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itable<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> the poultry bus<str<strong>on</strong>g>in</str<strong>on</strong>g>ess until the early 1920’s was for competitive exhibiti<strong>on</strong>s rather<br />

than for food (W<str<strong>on</strong>g>in</str<strong>on</strong>g>ter <str<strong>on</strong>g>and</str<strong>on</strong>g> Funk, 1960; Hanke et al., 1972). But then the pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it <strong>on</strong> poultry<br />

producti<strong>on</strong> shifted from the exhibiti<strong>on</strong>s fancy feather breeds to the egg <str<strong>on</strong>g>and</str<strong>on</strong>g> meat<br />

producti<strong>on</strong> poultry (W<str<strong>on</strong>g>in</str<strong>on</strong>g>ter <str<strong>on</strong>g>and</str<strong>on</strong>g> Funk, 1960; Hanke et al., 1972). Emphasis <strong>on</strong> poultry meat<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> egg producti<strong>on</strong> accelerated after Herbert Hoover’s 1928 presidential campaign promise<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> “A chicken <str<strong>on</strong>g>in</str<strong>on</strong>g> every pot…<str<strong>on</strong>g>and</str<strong>on</strong>g> a car <str<strong>on</strong>g>in</str<strong>on</strong>g> every garage.” The outcome was so successful<br />

that s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce 1992 poultry meat has been the most c<strong>on</strong>sumed meat <str<strong>on</strong>g>in</str<strong>on</strong>g> the US, surpass<str<strong>on</strong>g>in</str<strong>on</strong>g>g beef<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> pork, based <str<strong>on</strong>g>in</str<strong>on</strong>g> the retail weight series (Smith, 2006a). The growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the poultry<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dustry has been <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g over the time. In Italy were raised 115 milli<strong>on</strong> broiler<br />

chickens <str<strong>on</strong>g>in</str<strong>on</strong>g> 2008, 120 milli<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> 2009 <str<strong>on</strong>g>and</str<strong>on</strong>g> 130 milli<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> 2010 (Faostat, 2012). The<br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken meat <str<strong>on</strong>g>in</str<strong>on</strong>g> Italy was 19 kg per capita <str<strong>on</strong>g>in</str<strong>on</strong>g> 2009 (Eurostat, 2012).<br />

The poultry meat output is 17.6 milli<strong>on</strong> t<strong>on</strong>nes, which is 29.3 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the global total.<br />

After EU (Europe Uni<strong>on</strong>) other <str<strong>on</strong>g>and</str<strong>on</strong>g> EFTA (European Fair Trade Associati<strong>on</strong>), <str<strong>on</strong>g>and</str<strong>on</strong>g> CIS<br />

(Comm<strong>on</strong>wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> Independent States) Europe, EU Central <str<strong>on</strong>g>and</str<strong>on</strong>g> Eastern is the most<br />

important subregi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry producti<strong>on</strong>, which for 14 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> total regi<strong>on</strong>al<br />

producti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> 2010 (Figure 1.1).<br />

Figure 1.1. Poultry meat producti<strong>on</strong> (2010)<br />

Source: Statistics Divisi<strong>on</strong> (FAOSTAT). Metal<str<strong>on</strong>g>in</str<strong>on</strong>g>k: P3.REU.FAO.ESS.POULSC, p.111.<br />

13


The poultry sector is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most rapidly grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g subsectors <str<strong>on</strong>g>of</str<strong>on</strong>g> the livestock <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry.<br />

Producti<strong>on</strong> is becom<str<strong>on</strong>g>in</str<strong>on</strong>g>g more <str<strong>on</strong>g>in</str<strong>on</strong>g>tensive <str<strong>on</strong>g>and</str<strong>on</strong>g> vertically <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated due to technological<br />

advancements. Global dem<str<strong>on</strong>g>and</str<strong>on</strong>g> is expected to c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>and</str<strong>on</strong>g> Asia, prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ently<br />

Ch<str<strong>on</strong>g>in</str<strong>on</strong>g>a, is play<str<strong>on</strong>g>in</str<strong>on</strong>g>g a ma<str<strong>on</strong>g>in</str<strong>on</strong>g> role <str<strong>on</strong>g>in</str<strong>on</strong>g> this trend. In 2010 there were more than 21 billi<strong>on</strong> heads <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

poultry <str<strong>on</strong>g>in</str<strong>on</strong>g> the world, <str<strong>on</strong>g>and</str<strong>on</strong>g> 11 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> this global stock was <str<strong>on</strong>g>in</str<strong>on</strong>g> this regi<strong>on</strong>. The EU other<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> EFTA accounted for five percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the global stock, CIS Europe for three percent, EU<br />

Central <str<strong>on</strong>g>and</str<strong>on</strong>g> Eastern for two percent. The other sub-regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe <str<strong>on</strong>g>and</str<strong>on</strong>g> Central Asia had<br />

lower shares. More than 83 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the 2.5 billi<strong>on</strong> heads <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry <str<strong>on</strong>g>in</str<strong>on</strong>g> this regi<strong>on</strong> (2010<br />

data) was <str<strong>on</strong>g>in</str<strong>on</strong>g> CIS Europe, <str<strong>on</strong>g>and</str<strong>on</strong>g> the EU <str<strong>on</strong>g>and</str<strong>on</strong>g> EFTA sub-regi<strong>on</strong>s. The Caucasus <str<strong>on</strong>g>and</str<strong>on</strong>g> Turkey<br />

accounted for another 11 percent. Nearly 404 milli<strong>on</strong> heads <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry was kept <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Russian Federati<strong>on</strong>, 234 milli<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Turkey <str<strong>on</strong>g>and</str<strong>on</strong>g> 190 milli<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Ukra<str<strong>on</strong>g>in</str<strong>on</strong>g>e. There are further<br />

significant stocks <str<strong>on</strong>g>in</str<strong>on</strong>g> countries like France, the United K<str<strong>on</strong>g>in</str<strong>on</strong>g>gdom, Italy <str<strong>on</strong>g>and</str<strong>on</strong>g> Spa<str<strong>on</strong>g>in</str<strong>on</strong>g>. In 2010,<br />

the average number <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry <str<strong>on</strong>g>in</str<strong>on</strong>g> the world was 422 thous<str<strong>on</strong>g>and</str<strong>on</strong>g> per hundred hectares.<br />

Generally, <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity tends to decrease from west to east, which can be expla<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the<br />

general ec<strong>on</strong>omic c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> technological gaps between the countries (Figure 1.2).<br />

Figure 1.2. Stock <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry, share <str<strong>on</strong>g>of</str<strong>on</strong>g> world total (2010)<br />

Source: Statistics Divisi<strong>on</strong> (FAOSTAT). Metal<str<strong>on</strong>g>in</str<strong>on</strong>g>k: P3.REU.FAO.ESS.POULSC, p.111.<br />

In EU other <str<strong>on</strong>g>and</str<strong>on</strong>g> EFTA the <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator was 744,000 heads per capita, while <str<strong>on</strong>g>in</str<strong>on</strong>g> EU Central<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Eastern the per capita figure was 662,000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 226,000 <str<strong>on</strong>g>in</str<strong>on</strong>g> CIS Europe. Globally,<br />

poultry numbers have <str<strong>on</strong>g>in</str<strong>on</strong>g>creased by two thirds over the last two decades (Figure 1.3). In<br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>e with this, there has been significant growth <str<strong>on</strong>g>in</str<strong>on</strong>g> South Eastern Europe, the Caucasus <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Turkey <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> EU Central <str<strong>on</strong>g>and</str<strong>on</strong>g> Eastern, while c<strong>on</strong>trary to this global trend, <str<strong>on</strong>g>in</str<strong>on</strong>g> CIS Europe<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Central Asia the poultry populati<strong>on</strong> has fallen c<strong>on</strong>siderably (Faostat, 2012).<br />

14


Figure 1.3. Mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry (milli<strong>on</strong> heads, 2010)<br />

Source: Statistics Divisi<strong>on</strong> (FAOSTAT).Metal<str<strong>on</strong>g>in</str<strong>on</strong>g>k: P3.REU.FAO.ESS.POULSC, p.111.<br />

There are several reas<strong>on</strong>s for the success <str<strong>on</strong>g>of</str<strong>on</strong>g> the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry <str<strong>on</strong>g>and</str<strong>on</strong>g> the phenomenal<br />

growth <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>sumer dem<str<strong>on</strong>g>and</str<strong>on</strong>g> for its products, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g rapid applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific<br />

discoveries, specializati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated producti<strong>on</strong> systems, <str<strong>on</strong>g>and</str<strong>on</strong>g> free acceptance <str<strong>on</strong>g>in</str<strong>on</strong>g> world<br />

market. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce its’ beg<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>g, the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry has be<str<strong>on</strong>g>in</str<strong>on</strong>g>g str<strong>on</strong>gly dependent <strong>on</strong> research<br />

(Smith, 2006a). Large scale producti<strong>on</strong> was <strong>on</strong>ly possible after the discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> vitam<str<strong>on</strong>g>in</str<strong>on</strong>g>s,<br />

improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disease test kits, vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

breeder genetic selecti<strong>on</strong> applicati<strong>on</strong> (W<str<strong>on</strong>g>in</str<strong>on</strong>g>ter <str<strong>on</strong>g>and</str<strong>on</strong>g> Funk, 1960; Hanke et al., 1972; Morris,<br />

1980). This c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry progress is based <strong>on</strong> the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scientificallyproven<br />

technologies that help poultry growers <str<strong>on</strong>g>in</str<strong>on</strong>g> improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g producti<strong>on</strong> yield, bird health<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> nutriti<strong>on</strong>, hous<str<strong>on</strong>g>in</str<strong>on</strong>g>g, genetics <str<strong>on</strong>g>and</str<strong>on</strong>g> reproducti<strong>on</strong>, food quality, safety, <str<strong>on</strong>g>and</str<strong>on</strong>g> efficiency<br />

(Smith, 2006a). The best example <str<strong>on</strong>g>of</str<strong>on</strong>g> dramatic advances can be seen <str<strong>on</strong>g>in</str<strong>on</strong>g> animal<br />

<strong>performance</strong>, especially improvements <str<strong>on</strong>g>in</str<strong>on</strong>g> body weights at market. A typical 1957 chicken<br />

stra<str<strong>on</strong>g>in</str<strong>on</strong>g> reached 539 g <str<strong>on</strong>g>of</str<strong>on</strong>g> body weight at 42 days <str<strong>on</strong>g>of</str<strong>on</strong>g> age, while a 2001 commercial broiler<br />

chicken stra<str<strong>on</strong>g>in</str<strong>on</strong>g> reached 2,672 g at the same 42 days <str<strong>on</strong>g>of</str<strong>on</strong>g> age, which c<strong>on</strong>stitutes remarkable<br />

progress (Havenste<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 2003). This improvement <str<strong>on</strong>g>in</str<strong>on</strong>g> growth <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> meat<br />

yield was driven by costumer preference for white breast meat products, <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry’s<br />

focus <strong>on</strong> greater meat yields per unit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>put costs (Smith, 2006b).<br />

Today, most <str<strong>on</strong>g>of</str<strong>on</strong>g> the broiler carcasses are deb<strong>on</strong>ed <str<strong>on</strong>g>and</str<strong>on</strong>g> further processed <str<strong>on</strong>g>and</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

poultry meat produced are susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by heavier birds, even when the number <str<strong>on</strong>g>of</str<strong>on</strong>g> birds<br />

decreases (Smith, 2006b). Such accomplishment could <strong>on</strong>ly be reached by c<strong>on</strong>stant<br />

research <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>novati<strong>on</strong> to overcome challenges, <str<strong>on</strong>g>and</str<strong>on</strong>g> there is still more room for<br />

improvement. Another reas<strong>on</strong> why the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry has grown so much is attributed to<br />

hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g a ref<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>and</str<strong>on</strong>g> specialized segmentati<strong>on</strong>. A few breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g companies provide elite<br />

genetic stock, while producti<strong>on</strong> companies grow out hybrid crosses to produce the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

product (Hammerstedt, 1999). The grower receives a technology package <str<strong>on</strong>g>and</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly<br />

c<strong>on</strong>centrates <strong>on</strong> manag<str<strong>on</strong>g>in</str<strong>on</strong>g>g the birds, while genetic companies c<strong>on</strong>centrate <str<strong>on</strong>g>in</str<strong>on</strong>g> produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

more efficient bird every generati<strong>on</strong>. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, the phenomenal growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the poultry<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dustry would not have occurred if not for few social <str<strong>on</strong>g>and</str<strong>on</strong>g> trade barriers. There are no<br />

15


arriers aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st poultry meat, like religious or cultural impediments that exist to other<br />

meats. This allied to attractive prices, led exports to boom worldwide, provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dustry an even greater <str<strong>on</strong>g>in</str<strong>on</strong>g>centive for growth. In other words, poultry is the perfect animal<br />

product to feed a globalized world.<br />

1.2 Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> domestic fowl<br />

Modern chickens were domesticated from the Red Jungle Fowl (Gallus gallus) over the<br />

last four or five thous<str<strong>on</strong>g>and</str<strong>on</strong>g> years for eggs <str<strong>on</strong>g>and</str<strong>on</strong>g> meat, for game <str<strong>on</strong>g>and</str<strong>on</strong>g> for exhibiti<strong>on</strong> (W<str<strong>on</strong>g>in</str<strong>on</strong>g>ter <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Funk, 1960; Roberts, 1998; Klas<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 2005) <str<strong>on</strong>g>and</str<strong>on</strong>g> they are scientifically classified as the same<br />

species (W<strong>on</strong>g et al. 2004). As such it can <str<strong>on</strong>g>and</str<strong>on</strong>g> does freely <str<strong>on</strong>g>in</str<strong>on</strong>g>terbreed with populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

red jungle fowl (W<strong>on</strong>g et al. 2004). The traditi<strong>on</strong>al poultry farm<str<strong>on</strong>g>in</str<strong>on</strong>g>g view is stated <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Encyclopædia Britannica: "Humans first domesticated chickens <str<strong>on</strong>g>of</str<strong>on</strong>g> Indian orig<str<strong>on</strong>g>in</str<strong>on</strong>g> for the<br />

purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> cockfight<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> Asia, Africa, <str<strong>on</strong>g>and</str<strong>on</strong>g> Europe. Very little formal attenti<strong>on</strong> was given<br />

to egg or meat producti<strong>on</strong>... " (Garrigus, 2007). In the last decade there have been a<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic studies. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <strong>on</strong>e study, a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle domesticati<strong>on</strong> event occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modern Thail<str<strong>on</strong>g>and</str<strong>on</strong>g> created the modern chicken with m<str<strong>on</strong>g>in</str<strong>on</strong>g>or transiti<strong>on</strong>s<br />

separat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the modern breeds (Fumihito et al., 1994). However, that study was later found<br />

to be based <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>complete data, <str<strong>on</strong>g>and</str<strong>on</strong>g> recent studies po<str<strong>on</strong>g>in</str<strong>on</strong>g>t to multiple maternal orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s, with<br />

the clade found <str<strong>on</strong>g>in</str<strong>on</strong>g> the Americas, Europe, Middle East, <str<strong>on</strong>g>and</str<strong>on</strong>g> Africa, orig<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the<br />

Indian subc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ent, where a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> unique haplotypes occur (Liu et al., 2006;<br />

Zeder et al., 2006). It has been claimed (based <strong>on</strong> paleoclimatic assumpti<strong>on</strong>s) that chickens<br />

were domesticated <str<strong>on</strong>g>in</str<strong>on</strong>g> Southern Ch<str<strong>on</strong>g>in</str<strong>on</strong>g>a <str<strong>on</strong>g>in</str<strong>on</strong>g> 6000 BC (West <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhou, 1988). However,<br />

accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a recent study (Al-Nasser et al., 2007), "it is not known whether these birds<br />

made much c<strong>on</strong>tributi<strong>on</strong> to the modern domestic fowl. Chickens from the Harappan culture<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Indus Valley (2500-2100 BC), <str<strong>on</strong>g>in</str<strong>on</strong>g> what today is Pakistan, may have been the ma<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

source <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> throughout the world."<br />

A northern road spread chicken to the Tarim bas<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> central Asia. The chicken reached<br />

Europe (Romania, Turkey, Greece, Ukra<str<strong>on</strong>g>in</str<strong>on</strong>g>e) about 3000 BC (Kiple <str<strong>on</strong>g>and</str<strong>on</strong>g> Ornelas, 2000).<br />

Introducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to Western Europe came far later, about the 1st millennium BC. Phoenicians<br />

spread chickens al<strong>on</strong>g the Mediterranean coasts, to Iberia. Breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>creased under the<br />

Roman Empire, <str<strong>on</strong>g>and</str<strong>on</strong>g> was reduced <str<strong>on</strong>g>in</str<strong>on</strong>g> the Middle Ages (Kiple <str<strong>on</strong>g>and</str<strong>on</strong>g> Ornelas, 2000). Middle<br />

East traces <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken go back to a little earlier than 2000 BC, <str<strong>on</strong>g>in</str<strong>on</strong>g> Syria; chicken went<br />

southward <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1st millennium BC. The chicken reached Egypt for purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> cock<br />

fight<str<strong>on</strong>g>in</str<strong>on</strong>g>g about 1400 BC, <str<strong>on</strong>g>and</str<strong>on</strong>g> became widely bred <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> Ptolemaic Egypt (about 300 BC)<br />

(Kiple <str<strong>on</strong>g>and</str<strong>on</strong>g> Ornelas, 2000). Little is known about the chicken's <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to Africa.<br />

Three possible ways <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> about the early first millennium AD could have<br />

been through the Egyptian Nile Valley, the East Africa Roman-Greek or Indian trade, or<br />

from Carthage <str<strong>on</strong>g>and</str<strong>on</strong>g> the Berbers, across the Sahara. The earliest known rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s are from<br />

Mali, Nubia, East Coast, <str<strong>on</strong>g>and</str<strong>on</strong>g> South Africa <str<strong>on</strong>g>and</str<strong>on</strong>g> date back to the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the first<br />

millennium AD. Domestic chicken <str<strong>on</strong>g>in</str<strong>on</strong>g> the Americas before Western c<strong>on</strong>quest is still an<br />

<strong>on</strong>go<str<strong>on</strong>g>in</str<strong>on</strong>g>g discussi<strong>on</strong>, but blue-egged chicken, found <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> the Americas <str<strong>on</strong>g>and</str<strong>on</strong>g> Asia, suggest<br />

an Asian orig<str<strong>on</strong>g>in</str<strong>on</strong>g> for early American chickens. A lack <str<strong>on</strong>g>of</str<strong>on</strong>g> data from Thail<str<strong>on</strong>g>and</str<strong>on</strong>g>, Russia, the<br />

Indian subc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ent, Southeast Asia <str<strong>on</strong>g>and</str<strong>on</strong>g> Sub-Saharan Africa makes it difficult to lay out a<br />

clear map <str<strong>on</strong>g>of</str<strong>on</strong>g> the spread <str<strong>on</strong>g>of</str<strong>on</strong>g> chickens <str<strong>on</strong>g>in</str<strong>on</strong>g> these areas; better descripti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> genetic analysis<br />

16


<str<strong>on</strong>g>of</str<strong>on</strong>g> local breeds threatened by ext<str<strong>on</strong>g>in</str<strong>on</strong>g>cti<strong>on</strong> may also help with research <str<strong>on</strong>g>in</str<strong>on</strong>g>to this area (Kiple<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Ornelas, 2000).<br />

1.3 Broiler chickens<br />

Broilers are chickens (Gallus gallus domesticus) bred <str<strong>on</strong>g>and</str<strong>on</strong>g> raised specifically for meat<br />

producti<strong>on</strong>.(Kruchten, 2002). Chickens are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most comm<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> widespread<br />

domestic animals, <str<strong>on</strong>g>and</str<strong>on</strong>g> although the global populati<strong>on</strong> has decreased from more than 24<br />

billi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> 2003 (Perr<str<strong>on</strong>g>in</str<strong>on</strong>g>s, 2003) to 19 billi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> 2011 (Faostat, 2012), there are more<br />

chickens <str<strong>on</strong>g>in</str<strong>on</strong>g> the world than any other species <str<strong>on</strong>g>of</str<strong>on</strong>g> bird.<br />

1.3.1 General biology<br />

Modern commercial broilers are specially bred for large scale, efficient meat producti<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> although they are the same species, grow much faster than egg lay<str<strong>on</strong>g>in</str<strong>on</strong>g>g hens or<br />

traditi<strong>on</strong>al dual purpose breeds. They are noted for hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g very fast growth rates, a high<br />

feed c<strong>on</strong>versi<strong>on</strong> ratio, <str<strong>on</strong>g>and</str<strong>on</strong>g> low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> activity. Broilers <str<strong>on</strong>g>of</str<strong>on</strong>g>ten reach a slaughter weight <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

four to five pounds (dressed) <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>ly five weeks (Damerow, 1995), although more slow<br />

grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g free-range <str<strong>on</strong>g>and</str<strong>on</strong>g> organic stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s reach slaughter weight at 12 to 16 weeks <str<strong>on</strong>g>of</str<strong>on</strong>g> age. As<br />

a c<strong>on</strong>sequence, their behaviour <str<strong>on</strong>g>and</str<strong>on</strong>g> physiology are those <str<strong>on</strong>g>of</str<strong>on</strong>g> immature birds rather than<br />

adults. Typical broilers have white feathers <str<strong>on</strong>g>and</str<strong>on</strong>g> yellowish sk<str<strong>on</strong>g>in</str<strong>on</strong>g>. Recent genetic analysis has<br />

revealed that at least the gene for yellow sk<str<strong>on</strong>g>in</str<strong>on</strong>g> was <str<strong>on</strong>g>in</str<strong>on</strong>g>corporated <str<strong>on</strong>g>in</str<strong>on</strong>g>to domestic birds through<br />

hybridizati<strong>on</strong> with the Grey Junglefowl (Gallus s<strong>on</strong>neratii) (Erikss<strong>on</strong> et al., 2008). Modern<br />

crosses are also favorable for meat producti<strong>on</strong> because they lack the typical “hair” which<br />

many breeds have that necessitates s<str<strong>on</strong>g>in</str<strong>on</strong>g>ge<str<strong>on</strong>g>in</str<strong>on</strong>g>g after pluck<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Both male <str<strong>on</strong>g>and</str<strong>on</strong>g> female broilers<br />

are reared for their meat.<br />

1.3.2 Behaviour<br />

Because broiler chickens are the same species as egg lay<str<strong>on</strong>g>in</str<strong>on</strong>g>g hens, their behavioural<br />

repertoires are <str<strong>on</strong>g>in</str<strong>on</strong>g>itially similar, <str<strong>on</strong>g>and</str<strong>on</strong>g> also similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g> other gall<str<strong>on</strong>g>in</str<strong>on</strong>g>aceous birds.<br />

However, broiler behaviour is modified by the envir<strong>on</strong>ment <str<strong>on</strong>g>and</str<strong>on</strong>g> alters as the broilers’ age<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> bodyweight rapidly <str<strong>on</strong>g>in</str<strong>on</strong>g>crease. For example, the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers reared outdoors is<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>itially greater than broilers reared <str<strong>on</strong>g>in</str<strong>on</strong>g>doors, but from six weeks <str<strong>on</strong>g>of</str<strong>on</strong>g> age, decreases to<br />

comparable levels <str<strong>on</strong>g>in</str<strong>on</strong>g> all groups (Weeks et al., 1994). The same study shows that <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

outdoors group, surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>gly little use is made <str<strong>on</strong>g>of</str<strong>on</strong>g> the extra space <str<strong>on</strong>g>and</str<strong>on</strong>g> facilities such as<br />

perches – it was proposed that the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> reas<strong>on</strong> for this was leg weakness as 80 per cent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the birds had a detectable gait abnormality at seven weeks <str<strong>on</strong>g>of</str<strong>on</strong>g> age. There is no evidence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reduced motivati<strong>on</strong> to extend the behavioural repertoire, as, for example, ground peck<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g>ed at significantly higher levels <str<strong>on</strong>g>in</str<strong>on</strong>g> the outdoor groups because this behaviour could<br />

also be performed from a ly<str<strong>on</strong>g>in</str<strong>on</strong>g>g posture rather than st<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Broiler breeders, i.e. males <str<strong>on</strong>g>and</str<strong>on</strong>g> females reared to fertilise <str<strong>on</strong>g>and</str<strong>on</strong>g> lay the eggs <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>of</str<strong>on</strong>g>fspr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

reared for food, perform similar mat<str<strong>on</strong>g>in</str<strong>on</strong>g>g behaviour to other chicken types. They exhibit<br />

male-male aggressi<strong>on</strong>, male-hen aggressi<strong>on</strong>, hen-hen aggressi<strong>on</strong>, male waltzes, hen<br />

crouches, attempted hen mounts, completed hen mounts, attempted hen mat<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

completed hen mat<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. These behaviours are seen less <str<strong>on</strong>g>of</str<strong>on</strong>g>ten <str<strong>on</strong>g>and</str<strong>on</strong>g> may not be exhibited as<br />

vigorously as observed <str<strong>on</strong>g>in</str<strong>on</strong>g> other chicken types (Moyle et al., 2010). The frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

17


sexual behaviour shows a large decrease with age, suggestive <str<strong>on</strong>g>of</str<strong>on</strong>g> a decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> libido. The<br />

decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> libido is not enough to account for reduced fertility <str<strong>on</strong>g>in</str<strong>on</strong>g> heavy cocks at 58 weeks<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> is probably a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the large bulk or the c<strong>on</strong>formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the males at this<br />

age <str<strong>on</strong>g>in</str<strong>on</strong>g>terfer<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> some way with the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> semen dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g copulati<strong>on</strong>s which otherwise<br />

look normal (Duncan et al., 1990).<br />

1.3.3 Broiler breeder (Parent Stock) farms<br />

The “primary breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g sector” c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> companies that breed pedigree stock. Pedigree<br />

stock (“pure l<str<strong>on</strong>g>in</str<strong>on</strong>g>e”) is kept <strong>on</strong> high level biosecure farms. Their eggs are hatched <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

special pedigree hatchery <str<strong>on</strong>g>and</str<strong>on</strong>g> their progeny then goes <strong>on</strong> to the great gr<str<strong>on</strong>g>and</str<strong>on</strong>g>parent (GGP)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> gr<str<strong>on</strong>g>and</str<strong>on</strong>g>parent (GP) generati<strong>on</strong>s. These eggs would then go to a special GP hatchery to<br />

produce parent stock which passes to the producti<strong>on</strong> sector (Elfick, 2012).<br />

Worldwide, the primary sector produced 417 milli<strong>on</strong> parent stock per year (Elfick, 2012).<br />

Numerous techniques are used to assess the pedigree stock. For example, birds might be<br />

exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with ultrasound or x-rays to study the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> muscles <str<strong>on</strong>g>and</str<strong>on</strong>g> b<strong>on</strong>es. The blood<br />

oxygen level is measured to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e cardiovascular health. The walk<str<strong>on</strong>g>in</str<strong>on</strong>g>g ability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pedigree c<str<strong>on</strong>g>and</str<strong>on</strong>g>idates is observed <str<strong>on</strong>g>and</str<strong>on</strong>g> scored (Hardiman, 2007).<br />

The need for high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> Reaserch <str<strong>on</strong>g>and</str<strong>on</strong>g> Development spend<str<strong>on</strong>g>in</str<strong>on</strong>g>g prompted c<strong>on</strong>solidati<strong>on</strong><br />

with<str<strong>on</strong>g>in</str<strong>on</strong>g> the primary breeder <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry. By the late 2000s <strong>on</strong>ly three sizable breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g groups<br />

(Elfick, 2012) rema<str<strong>on</strong>g>in</str<strong>on</strong>g>ed:<br />

- Aviagen (with the Ross, Arbor Acres, Indian River <str<strong>on</strong>g>and</str<strong>on</strong>g> Peters<strong>on</strong> br<str<strong>on</strong>g>and</str<strong>on</strong>g>s);<br />

- Cobb-Vantress (with the Cobb, Avian, Sasso <str<strong>on</strong>g>and</str<strong>on</strong>g> Hybro br<str<strong>on</strong>g>and</str<strong>on</strong>g>s);<br />

- Groupe Grimaud (with the Hubbard <str<strong>on</strong>g>and</str<strong>on</strong>g> Grimaud Frere br<str<strong>on</strong>g>and</str<strong>on</strong>g>s).<br />

1.4 Poultry Industry challenges<br />

The challenges that the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry faces are the opportunities for research <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

development. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Smith (2006a), the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry must commit <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate with research to rema<str<strong>on</strong>g>in</str<strong>on</strong>g> as the lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g food animal sector. A global commitment<br />

to solv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry challenges is necessary because mult<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>al poultry<br />

producti<strong>on</strong> companies now produce a significant share <str<strong>on</strong>g>of</str<strong>on</strong>g> the worldwide trade poultry<br />

products. The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> issues forecasted by specialists are disease p<str<strong>on</strong>g>and</str<strong>on</strong>g>emic, feed stuff<br />

c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, envir<strong>on</strong>mental impact, shortage <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrate sources, metabolic<br />

diseases, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g producti<strong>on</strong> costs (Shelt<strong>on</strong>, 2006; Smith, 2006a). To reduce<br />

producti<strong>on</strong> costs, it is important to improve early growth <strong>performance</strong> characteristics <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

poultry. As dem<str<strong>on</strong>g>and</str<strong>on</strong>g>s for decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g market weight for age c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue, it will become more<br />

important to improve growth <str<strong>on</strong>g>and</str<strong>on</strong>g> development dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the brood<str<strong>on</strong>g>in</str<strong>on</strong>g>g phase (Hulet, 2007).<br />

Genetic selecti<strong>on</strong> has created a more efficient bird, driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g costs down (Hammerstedt,<br />

1999), but that would negated if poults do not survive the first week <str<strong>on</strong>g>of</str<strong>on</strong>g> life.<br />

Great advances <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> genetic selecti<strong>on</strong> for valuable producti<strong>on</strong> traits<br />

have been achieved dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the last 50 years. Many have predicted that the genetic limit for<br />

growth was reached <str<strong>on</strong>g>and</str<strong>on</strong>g> slower progress will be seen from then <strong>on</strong> (Shelt<strong>on</strong>, 2006), but we<br />

still see advances every year. The formula for success depends <strong>on</strong> two ma<str<strong>on</strong>g>in</str<strong>on</strong>g> branches <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

research, genetics <str<strong>on</strong>g>and</str<strong>on</strong>g> nutriti<strong>on</strong>. The first creates a bird with higher potential, <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

sec<strong>on</strong>d has to f<str<strong>on</strong>g>in</str<strong>on</strong>g>d a way to help that bird to achieve as much <str<strong>on</strong>g>of</str<strong>on</strong>g> that potential as possible.<br />

18


Although c<strong>on</strong>siderable progress was been made <str<strong>on</strong>g>in</str<strong>on</strong>g> the <strong>performance</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

breeders <str<strong>on</strong>g>and</str<strong>on</strong>g> commercial poultry, hatchability rate has improvement little dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the last<br />

twenty years. Indeed, 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g eggs do not yield hatchl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs with the<br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed m<strong>on</strong>etary losses <str<strong>on</strong>g>of</str<strong>on</strong>g> low. Each 1% <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> hatchability would result <str<strong>on</strong>g>in</str<strong>on</strong>g> $25<br />

milli<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> return, so f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g ways to improve hatchability <str<strong>on</strong>g>and</str<strong>on</strong>g> early survival have a<br />

significant ec<strong>on</strong>omic impact (Schaal <str<strong>on</strong>g>and</str<strong>on</strong>g> Cherian, 2007). Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Keirs et al. (2007),<br />

<strong>on</strong>ly a small porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-hatched embryos have anatomical abnormalities, so the<br />

majority <str<strong>on</strong>g>of</str<strong>on</strong>g> them should have hatched <str<strong>on</strong>g>and</str<strong>on</strong>g> survived. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the knowledge <strong>on</strong> embry<strong>on</strong>ic<br />

development is based <strong>on</strong> research c<strong>on</strong>ducted over 60 years ago. It is now apparent that<br />

more emphasis <strong>on</strong> optimiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g the growth <str<strong>on</strong>g>and</str<strong>on</strong>g> maturity <str<strong>on</strong>g>of</str<strong>on</strong>g> the develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g embryo is needed<br />

to maximize post-hatch growth <str<strong>on</strong>g>and</str<strong>on</strong>g> development (Hulet, 2007).<br />

19


Chapter 2. Poultry embryo development<br />

2.1 Embry<strong>on</strong>ic use <str<strong>on</strong>g>of</str<strong>on</strong>g> egg nutrients<br />

2.1.1 Egg compositi<strong>on</strong><br />

Embryo development apart from the hen allows poultry producers to h<str<strong>on</strong>g>and</str<strong>on</strong>g>le large number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> animals, but <strong>on</strong> the down side all nutrients must be present <str<strong>on</strong>g>in</str<strong>on</strong>g> the egg to susta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

embry<strong>on</strong>ic development by the time the egg is laid (Fasenko, 2007). Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

typical chicken egg is presented <strong>on</strong> Table 2.1. It is noteworthy that there is very little<br />

energy reserves as carbohydrates <str<strong>on</strong>g>in</str<strong>on</strong>g> the egg (Roman<str<strong>on</strong>g>of</str<strong>on</strong>g>f, 1967), be<str<strong>on</strong>g>in</str<strong>on</strong>g>g most <str<strong>on</strong>g>of</str<strong>on</strong>g> lipids <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

yolk fracti<strong>on</strong>. N<str<strong>on</strong>g>in</str<strong>on</strong>g>ety eight percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the free carbohydrates are present as 0.5% glucose <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the albumen (Davis <str<strong>on</strong>g>and</str<strong>on</strong>g> Reeves, 2002).<br />

Table 2.1. Approximate compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a 60g chicken egg<br />

Egg Dry Prote<str<strong>on</strong>g>in</str<strong>on</strong>g> Lipids Carbohydrate M<str<strong>on</strong>g>in</str<strong>on</strong>g>erals<br />

weight Matter<br />

% % % <strong>on</strong> dry matter basis<br />

Egg yolk 31 49 30 60 1.2 2.2<br />

Egg<br />

58 12 75 0.08 4.2 1.7<br />

white<br />

Egg shell 11 99.7 0.7 - - 98<br />

Total 100<br />

Adapted from: Davis <str<strong>on</strong>g>and</str<strong>on</strong>g> Reeves (2002)<br />

2.1.2 Egg structure<br />

A schematic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the avian egg before <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> is illustrated by Figure 2.1. These<br />

structures simply keep the little embryo alive <str<strong>on</strong>g>and</str<strong>on</strong>g> protected until <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> starts.<br />

Beg<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the outside <str<strong>on</strong>g>of</str<strong>on</strong>g> the egg mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>ward, the egg shell has a porous calcium<br />

carb<strong>on</strong>ate structure that allows gas exchange <str<strong>on</strong>g>and</str<strong>on</strong>g> two membranes. The outer membrane is<br />

attached to the shell, while the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner membrane retracts when egg cools down form<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

air cell space <strong>on</strong> the large end <str<strong>on</strong>g>of</str<strong>on</strong>g> the egg. The next comp<strong>on</strong>ent is the egg white, composed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> three layers <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> generally called albumen. The albumen layers are named based<br />

<strong>on</strong> their density as outer th<str<strong>on</strong>g>in</str<strong>on</strong>g>, dense or thick <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ner th<str<strong>on</strong>g>in</str<strong>on</strong>g>. The central structure is the<br />

yolk, composed <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple layers <str<strong>on</strong>g>of</str<strong>on</strong>g> lipids enveloped by a membrane. Rest<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the yolk is the blastodisc where the embryo resides after the egg is fertilized. C<strong>on</strong>centric<br />

yolk layers can be differentiated by the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> pigment deposited depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g whether<br />

they were formed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g daylight or night darkness. L<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g the yolk to each end <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

egg are the chalazas that act like bungee cords to keep the yolk horiz<strong>on</strong>tally centered <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

egg. These rudimentary structures are present at the time <str<strong>on</strong>g>of</str<strong>on</strong>g> lay but they rapidly change<br />

<strong>on</strong>ce <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> proceeds.<br />

20


Figure 2.1. Draw<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> a midsagittal secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> egg<br />

The layers <str<strong>on</strong>g>of</str<strong>on</strong>g> albumen are <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated. The layers between th<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> thick are not known to be separated<br />

by membranes but still have dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ce boundaries (modified from Kiple <str<strong>on</strong>g>and</str<strong>on</strong>g> Ornelas, 2000).<br />

2.1.3 Embryo development dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong><br />

Moran (2007) presented a comprehensive review <strong>on</strong> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the avian embryo<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> divided embry<strong>on</strong>ic development <str<strong>on</strong>g>in</str<strong>on</strong>g> three dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct periods:<br />

1) the establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> the germ;<br />

2) completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> embry<strong>on</strong>ic formati<strong>on</strong>;<br />

3) preparati<strong>on</strong> for emergence.<br />

Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> the germ, the embryo <str<strong>on</strong>g>and</str<strong>on</strong>g> its susta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g structures resume cell<br />

proliferati<strong>on</strong> from the 40,000 to 60,000 cells already present at ovipositi<strong>on</strong> (Fasenko,<br />

2007). The energy expended at this time arises by glycolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose present at the outer<br />

th<str<strong>on</strong>g>in</str<strong>on</strong>g> layer <str<strong>on</strong>g>of</str<strong>on</strong>g> the albumen. The embryo metabolism is ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly anaerobic, accumulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

lactate because <str<strong>on</strong>g>of</str<strong>on</strong>g> low O 2 diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the primitive hemoglob<str<strong>on</strong>g>in</str<strong>on</strong>g>. The vascular system is<br />

rapidly established <str<strong>on</strong>g>and</str<strong>on</strong>g> germ <str<strong>on</strong>g>in</str<strong>on</strong>g>vag<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s lead to formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the chori<strong>on</strong>ic sac <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

allantoic cavity. The different egg compartments dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> are illustrated by<br />

Figure 2.2. Egg turn<str<strong>on</strong>g>in</str<strong>on</strong>g>g is crucial dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g this period to allow proper formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> egg<br />

compartments <str<strong>on</strong>g>and</str<strong>on</strong>g> to give embry<strong>on</strong>ic access to glucose present <str<strong>on</strong>g>in</str<strong>on</strong>g> the outer th<str<strong>on</strong>g>in</str<strong>on</strong>g>. The <str<strong>on</strong>g>in</str<strong>on</strong>g>ner<br />

cell layer <str<strong>on</strong>g>of</str<strong>on</strong>g> the amniotic membrane secretes amniotic fluid <str<strong>on</strong>g>in</str<strong>on</strong>g> which the embryo floats,<br />

keep<str<strong>on</strong>g>in</str<strong>on</strong>g>g the embryo from dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> protect<str<strong>on</strong>g>in</str<strong>on</strong>g>g it from shock. The chori<strong>on</strong> surrounds all<br />

embry<strong>on</strong>ic structures <str<strong>on</strong>g>and</str<strong>on</strong>g> serves as a protective membrane. The allantois grows larger as<br />

the embryo grows, until it fuses with the chori<strong>on</strong> form<str<strong>on</strong>g>in</str<strong>on</strong>g>g the chorio-allantoic membrane,<br />

resp<strong>on</strong>sible for exchang<str<strong>on</strong>g>in</str<strong>on</strong>g>g oxygen <str<strong>on</strong>g>and</str<strong>on</strong>g> carb<strong>on</strong> dioxide with the envir<strong>on</strong>ment, <str<strong>on</strong>g>and</str<strong>on</strong>g> for<br />

stor<str<strong>on</strong>g>in</str<strong>on</strong>g>g nitrogenous waste (Smith, 2007). The yolk sac membrane selects the nutrients<br />

be<str<strong>on</strong>g>in</str<strong>on</strong>g>g up taken from yolk sac reserves, which <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes lipids, prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

vitam<str<strong>on</strong>g>in</str<strong>on</strong>g>s. The yolk sac membrane can also modify these nutrients <str<strong>on</strong>g>and</str<strong>on</strong>g> serve as their short-<br />

21


term storage. Egg storage <str<strong>on</strong>g>and</str<strong>on</strong>g> storage c<strong>on</strong>diti<strong>on</strong>s prior to <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> can impair formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a fully functi<strong>on</strong>al choriallantois, affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients.<br />

Figure 2.2. Schematic representati<strong>on</strong> egg compartmentalizati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong><br />

From: http://people.eku.edu/ritchis<strong>on</strong>g/avianreproducti<strong>on</strong>.html (viewed September 15 th 2012)<br />

The sec<strong>on</strong>d third <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> is marked by a fully developed vascular system, with the<br />

choriallantois able to assure O 2 -CO 2 exchange. The embryo then undergoes the first drastic<br />

switch <str<strong>on</strong>g>of</str<strong>on</strong>g> its metabolism, from carbohydrate to fully dependent <strong>on</strong> lipid oxidati<strong>on</strong> as the<br />

energy source. The embryo grows very fast <str<strong>on</strong>g>in</str<strong>on</strong>g> size dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g this phase. Essential fatty acids<br />

are preserved for cell membrane synthesis while saturated fatty acids are c<strong>on</strong>sumed to<br />

susta<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g caloric needs <str<strong>on</strong>g>of</str<strong>on</strong>g> formed tissues (Christensen et al., 1996). The<br />

embryo then undergoes another critical period: the transiti<strong>on</strong> for emergence.<br />

In preparati<strong>on</strong> for emergence, embry<strong>on</strong>ic size <str<strong>on</strong>g>and</str<strong>on</strong>g> movements cause rupture <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

membrane that separated the albumen <str<strong>on</strong>g>and</str<strong>on</strong>g> amniotic fluid, caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g them to mix. The<br />

embryo then orally c<strong>on</strong>sumes the amniotic fluid, which passes through the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

system. At this stage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al development, enterocytes <str<strong>on</strong>g>of</str<strong>on</strong>g> the duodenum <str<strong>on</strong>g>and</str<strong>on</strong>g> jejunum<br />

are able to absorb macromolecules <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g> a process similar to mammalian<br />

absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> colostrum. Such c<strong>on</strong>sumpti<strong>on</strong> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ues until the albumen-amniotic fluid<br />

disappears <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal pipp<str<strong>on</strong>g>in</str<strong>on</strong>g>g beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce embry<strong>on</strong>ic skeletal tissue development is<br />

complete at this po<str<strong>on</strong>g>in</str<strong>on</strong>g>t, the nutrients absorbed are used for visceral organs maturati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> it is stored as glycogen. The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> present <str<strong>on</strong>g>in</str<strong>on</strong>g> the fluid is called <str<strong>on</strong>g>ovo</str<strong>on</strong>g>mucoid,<br />

which has extensive amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrate. Glycogen is deposited <str<strong>on</strong>g>in</str<strong>on</strong>g> liver <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle.<br />

Some residual albumen-allantoic fluid <str<strong>on</strong>g>in</str<strong>on</strong>g>gested enters the yolk <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ues to express<br />

digestive enzymes obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed while pass<str<strong>on</strong>g>in</str<strong>on</strong>g>g through gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al systems. Digesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nutrients then can occur <str<strong>on</strong>g>in</str<strong>on</strong>g> the yolk <str<strong>on</strong>g>and</str<strong>on</strong>g> be absorbed by yolk sac cell villi, especially very<br />

low density lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s (VLDL), which accumulates triglycerides <str<strong>on</strong>g>in</str<strong>on</strong>g> sub-dermal locati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the embryo. Cholesterol accumulates <str<strong>on</strong>g>in</str<strong>on</strong>g> the liver, caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g it to grow <str<strong>on</strong>g>in</str<strong>on</strong>g> size <str<strong>on</strong>g>and</str<strong>on</strong>g> become<br />

yellow <str<strong>on</strong>g>in</str<strong>on</strong>g> appearance. At the same time high-density lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s (HDL) aggregates <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

granules <str<strong>on</strong>g>and</str<strong>on</strong>g> are covered with calcium from circulati<strong>on</strong>. These granules rema<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the yolk<br />

sac until pipp<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mammary knobs adjacent to the choriallantois-shell<br />

membrane <str<strong>on</strong>g>in</str<strong>on</strong>g>terface mobilizes great amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium, which rises <str<strong>on</strong>g>in</str<strong>on</strong>g> the circulati<strong>on</strong><br />

favor<str<strong>on</strong>g>in</str<strong>on</strong>g>g calcificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the skelet<strong>on</strong>, which was ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly cartilage until then. Now the<br />

embryo is ready to start pipp<str<strong>on</strong>g>in</str<strong>on</strong>g>g the weakened shell <str<strong>on</strong>g>and</str<strong>on</strong>g> membranes (Moran, 2007).<br />

22


Emergence starts when the embryo breaks the choriallantois <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner shell membrane<br />

near the air cell, <str<strong>on</strong>g>in</str<strong>on</strong>g> what is called <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal pipp<str<strong>on</strong>g>in</str<strong>on</strong>g>g. At this po<str<strong>on</strong>g>in</str<strong>on</strong>g>t the embryo must <str<strong>on</strong>g>in</str<strong>on</strong>g>itiate<br />

pulm<strong>on</strong>ary respirati<strong>on</strong>, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the outer shell membrane is los<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>tact with the shell. This<br />

is a critical period because limited supply <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen suppresses c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g use <str<strong>on</strong>g>of</str<strong>on</strong>g> lipids as<br />

energy, so metabolism switches aga<str<strong>on</strong>g>in</str<strong>on</strong>g> to the anaerobic catabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose from<br />

glycogen reserves produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g lactate. The rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g yolk sac is retracted <str<strong>on</strong>g>in</str<strong>on</strong>g>to the<br />

abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al cavity, <str<strong>on</strong>g>and</str<strong>on</strong>g> peripheral blood is recovered <str<strong>on</strong>g>in</str<strong>on</strong>g>to the embryo. A relatively great<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy is used to susta<str<strong>on</strong>g>in</str<strong>on</strong>g> embry<strong>on</strong>ic pipp<str<strong>on</strong>g>in</str<strong>on</strong>g>g movements to break the shell, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

body rotati<strong>on</strong>. Shell pierc<str<strong>on</strong>g>in</str<strong>on</strong>g>g is achieved by the coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pipp<str<strong>on</strong>g>in</str<strong>on</strong>g>g muscle movements<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the egg tooth <str<strong>on</strong>g>of</str<strong>on</strong>g> the beak. The pipp<str<strong>on</strong>g>in</str<strong>on</strong>g>g or hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g muscle is a specialized muscle<br />

located <str<strong>on</strong>g>in</str<strong>on</strong>g> the back <str<strong>on</strong>g>of</str<strong>on</strong>g> the head. Hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g muscle fibers are exclusively anaerobic <str<strong>on</strong>g>and</str<strong>on</strong>g> relay<br />

<strong>on</strong> glycogen stored there previously. It also has a special nervous system to coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate its<br />

movements. External air access now provides enough oxygen for oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fatty acids<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> lactate recovery <str<strong>on</strong>g>in</str<strong>on</strong>g> the liver. At this po<str<strong>on</strong>g>in</str<strong>on</strong>g>t the choriallantois cannot l<strong>on</strong>ger extract<br />

calcium from the shell, so calcium mobilizati<strong>on</strong> beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s from HDL granules. The embryo<br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ues break<str<strong>on</strong>g>in</str<strong>on</strong>g>g the shell, rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the feet to push until it is free from the<br />

shell (Moran, 2007). The blood vessels l<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g the navel to the shell membrane are<br />

detached, <str<strong>on</strong>g>and</str<strong>on</strong>g> the hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g process is over. Although yolk sac lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue to be<br />

an important nutrient source at this time, fatty acid recovery from preformed body depots<br />

appears to dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate. Extensive hepatic cholesterol <str<strong>on</strong>g>in</str<strong>on</strong>g> place at hatch rapidly dissipates<br />

al<strong>on</strong>g with the depots. Cholesterol, together with depot essential fatty acids, enables<br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued membrane formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth. A high c<strong>on</strong>current dem<str<strong>on</strong>g>and</str<strong>on</strong>g> for glucose appears<br />

to reside with its need to support growth <str<strong>on</strong>g>of</str<strong>on</strong>g> glycolytic muscle. In the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e, cell<br />

proliferati<strong>on</strong> is stimulated by feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take to replace embry<strong>on</strong>ic enterocytes, able to absorb<br />

macromolecules, by mature <strong>on</strong>es, able to produce digestive enzymes <str<strong>on</strong>g>and</str<strong>on</strong>g> to absorb external<br />

feed nutrients. The complete transiti<strong>on</strong> may take up to two weeks post-hatch, <str<strong>on</strong>g>and</str<strong>on</strong>g> is<br />

delayed if feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g is delayed (Moran, 2007).<br />

23


Chapter 3. The gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry<br />

3.1 Anatomy <str<strong>on</strong>g>and</str<strong>on</strong>g> physiology<br />

The gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract (GIT) <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry (Figure 3.1) is relatively short <str<strong>on</strong>g>and</str<strong>on</strong>g> appears<br />

particularly well adapted for transform<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrated diets <str<strong>on</strong>g>in</str<strong>on</strong>g>to nutrients. The extremely<br />

rapid rate <str<strong>on</strong>g>of</str<strong>on</strong>g> passage <str<strong>on</strong>g>of</str<strong>on</strong>g> digesta, which is around 10 hours, implies highly efficient<br />

mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> digesti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> absorpti<strong>on</strong>. In comparis<strong>on</strong> with mammals, the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

tract <str<strong>on</strong>g>of</str<strong>on</strong>g> birds is dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guished by the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g features:<br />

i) replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> the lips <str<strong>on</strong>g>in</str<strong>on</strong>g> mammals with beak;<br />

ii) existence <str<strong>on</strong>g>of</str<strong>on</strong>g> two successive <str<strong>on</strong>g>and</str<strong>on</strong>g> dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct stomachs. The proventriculus or gl<str<strong>on</strong>g>and</str<strong>on</strong>g>ular<br />

stomach is the “chemical” stomach. The gizzard, or “mechanical” stomach ensures<br />

homogenizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> a certa<str<strong>on</strong>g>in</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> gr<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the food;<br />

iii) the uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> the term<str<strong>on</strong>g>in</str<strong>on</strong>g>al regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tract, or cloaca, which acts both as the<br />

rectum <str<strong>on</strong>g>and</str<strong>on</strong>g> the exit for the ur<str<strong>on</strong>g>in</str<strong>on</strong>g>o-genital system.<br />

The development <str<strong>on</strong>g>of</str<strong>on</strong>g> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract is very precocious. In the embryo the<br />

primordial <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e develops from the sec<strong>on</strong>d day <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong>. At hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g the tract<br />

represents up to 25% <str<strong>on</strong>g>of</str<strong>on</strong>g> the live weight. This proporti<strong>on</strong> dim<str<strong>on</strong>g>in</str<strong>on</strong>g>ishes rapidly <str<strong>on</strong>g>and</str<strong>on</strong>g> falls to less<br />

than 5% <str<strong>on</strong>g>in</str<strong>on</strong>g> a 8-week old broiler.<br />

Figure 3.1. The digestive system <str<strong>on</strong>g>of</str<strong>on</strong>g> the chickens - general structure<br />

From the website <str<strong>on</strong>g>of</str<strong>on</strong>g> the Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Forestry, Qeensl<str<strong>on</strong>g>and</str<strong>on</strong>g> Government<br />

http://www.daff.qld.gov.au/27_2705.htm (viewed October 10 th 2012)<br />

3.2 The gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry<br />

3.2.1 Microbes <str<strong>on</strong>g>of</str<strong>on</strong>g> the chicken gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract<br />

The gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract <str<strong>on</strong>g>of</str<strong>on</strong>g> warm-blooded animals is densely populated by bacteria.<br />

Compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> the microbiota can vary a lot am<strong>on</strong>g <str<strong>on</strong>g>in</str<strong>on</strong>g>dividuals because it is<br />

markedly affected by the bacterial compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>oculum received at birth or hatch,<br />

24


the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the host <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al epithelium <str<strong>on</strong>g>and</str<strong>on</strong>g> the diet (Apajalahti <str<strong>on</strong>g>and</str<strong>on</strong>g> Kettunen, 2006;<br />

Zhu et al., 2002). Settlement <str<strong>on</strong>g>of</str<strong>on</strong>g> the microbial populati<strong>on</strong> depends <strong>on</strong> the egg’s microbial<br />

envir<strong>on</strong>ment at hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g which determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es the order <str<strong>on</strong>g>in</str<strong>on</strong>g> which animals are exposed to<br />

microorganisms, their ability to col<strong>on</strong>ize the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> their <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s (Gabriel et al.,<br />

2006). Previously, the <strong>on</strong>ly way to characterize the microbiota was cultur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> selective<br />

growth media <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequent identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria through biochemical tests, but such<br />

methods are laborious <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>complete <str<strong>on</strong>g>and</str<strong>on</strong>g>, therefore, not suitable for extensive m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the unknown microbiota. Recent developments <str<strong>on</strong>g>in</str<strong>on</strong>g> the total microbial community<br />

analysis by DNA-based methods have brought a new <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g>to gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract<br />

microbiology <str<strong>on</strong>g>of</str<strong>on</strong>g> chickens <str<strong>on</strong>g>and</str<strong>on</strong>g> many other animal species (Apajalahti et al., 1998; G<strong>on</strong>g et<br />

al., 2002; van der Wielen et al., 2002; Zhu et al., 2002; Zhu <str<strong>on</strong>g>and</str<strong>on</strong>g> Joerger, 2003; Apajalahti<br />

et al., 2004). The % G+C (guan<str<strong>on</strong>g>in</str<strong>on</strong>g>e + cytos<str<strong>on</strong>g>in</str<strong>on</strong>g>e) pr<str<strong>on</strong>g>of</str<strong>on</strong>g>il<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> 16S ribosomal RNA sequence<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota underl<str<strong>on</strong>g>in</str<strong>on</strong>g>e that <strong>on</strong>ly 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al bacteria represents previously known bacterial species. Advances <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

ribosomal DNA-based molecular techniques have made it possible to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> new<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> by identify<str<strong>on</strong>g>in</str<strong>on</strong>g>g different bacterial populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al c<strong>on</strong>tents <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

mucosal samples as compared with rout<str<strong>on</strong>g>in</str<strong>on</strong>g>e cultur<str<strong>on</strong>g>in</str<strong>on</strong>g>g methods. These techniques are also<br />

helpful for m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> diets <str<strong>on</strong>g>and</str<strong>on</strong>g> other variables <strong>on</strong> the microbial communities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the GIT under commercial c<strong>on</strong>diti<strong>on</strong>s (Apajalahti et al., 1998, 2001; G<strong>on</strong>g et al., 2002;<br />

Knarreborg et al., 2002; Van der Wielen et al., 2002; Amit-Romach et al., 2004). The early<br />

stage <str<strong>on</strong>g>of</str<strong>on</strong>g> the post-hatch period is critical for the establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> the gut microbial<br />

community. This process starts from a sterile gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al envir<strong>on</strong>ment at the moment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ues toward establish<str<strong>on</strong>g>in</str<strong>on</strong>g>g a relatively stable status as the animal ages<br />

(Richards et al., 2005; Verstegen et al., 2005). It has been shown that the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora changes <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the chickens, dietary factors, breed, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

geographic locati<strong>on</strong> (Salanitro et al., 1974; Apajalahti et al., 2001; Knarreborg et al., 2002;<br />

Van der Wielen et al., 2002; Lu et al., 2003). Thirty five percent represents previously<br />

unknown species with a known bacterial genus <str<strong>on</strong>g>and</str<strong>on</strong>g> the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 55% represent bacteria<br />

for which even the genus is totally unknown. Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g this molecular approach 640 different<br />

species <str<strong>on</strong>g>and</str<strong>on</strong>g> 140 different bacterial genera have been found <str<strong>on</strong>g>in</str<strong>on</strong>g> the chicken gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

tract (Apajalahti et al., 2004). Bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract have nutriti<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

spatial requirements, they derive most <str<strong>on</strong>g>of</str<strong>on</strong>g> their energy for reproducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth from<br />

dietary compounds which are either resistant to attack by digestive fluids or absorbed so<br />

slowly by the host that bacteria can successfully compete for them. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce bacterial species<br />

differ from each other <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to their substrate preferences <str<strong>on</strong>g>and</str<strong>on</strong>g> growth requirements,<br />

the chemical compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the digesta largely determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the species<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the microbial community <str<strong>on</strong>g>in</str<strong>on</strong>g> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract. As a c<strong>on</strong>sequence,<br />

bacterial community structure is very much dependent up<strong>on</strong> the diet as the ultimate source<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> substrates for metabolism. C<strong>on</strong>versely, the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> the host digestive system to digest<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> absorb nutrients is, <str<strong>on</strong>g>in</str<strong>on</strong>g> part, dependent up<strong>on</strong> the species distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> total<br />

populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resident microbes. Hence, changes <str<strong>on</strong>g>in</str<strong>on</strong>g> dietary compositi<strong>on</strong> or nutrient density<br />

can have dramatic effects <strong>on</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota populati<strong>on</strong>s, which <str<strong>on</strong>g>in</str<strong>on</strong>g> turn can<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> the animal to digest <str<strong>on</strong>g>and</str<strong>on</strong>g> absorb dietary nutrients (Apajalahti et al.,<br />

2004; Gabriel et al., 2006). The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>digenous microbiota with<str<strong>on</strong>g>in</str<strong>on</strong>g> the avian GIT<br />

25


is therefore organized qualitatively <str<strong>on</strong>g>and</str<strong>on</strong>g> quantitatively al<strong>on</strong>g vertical <str<strong>on</strong>g>and</str<strong>on</strong>g> horiz<strong>on</strong>tal regi<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the GIT. The vertical distributi<strong>on</strong> refers to the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria from the crop to<br />

the caeca. Furthermore, bacteria are distributed horiz<strong>on</strong>tally al<strong>on</strong>g the GIT <str<strong>on</strong>g>and</str<strong>on</strong>g> occupy the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al lumen, mucous l<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g, crypt spaces <str<strong>on</strong>g>and</str<strong>on</strong>g> adhere also to the epithelial cells. Each<br />

segment <str<strong>on</strong>g>and</str<strong>on</strong>g> horiz<strong>on</strong>tal layer harbors its own specific bacterial community <str<strong>on</strong>g>and</str<strong>on</strong>g> this<br />

depends, as already <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated <strong>on</strong> envir<strong>on</strong>mental factors such as nutriti<strong>on</strong>, bile salts, oxygen<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the different segments (Thoms<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Applegate, 2005; van der<br />

Wielen et al., 2002).<br />

The diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant bacterial community <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract <str<strong>on</strong>g>in</str<strong>on</strong>g>creases when<br />

broilers grow older. Moreover, it seems that the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant bacterial community <str<strong>on</strong>g>in</str<strong>on</strong>g> crop,<br />

duodenum <str<strong>on</strong>g>and</str<strong>on</strong>g> ileum with<str<strong>on</strong>g>in</str<strong>on</strong>g> the same chicken is very similar <str<strong>on</strong>g>in</str<strong>on</strong>g> 4-day-old broilers. Even<br />

the similarity between the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant bacterial community <str<strong>on</strong>g>of</str<strong>on</strong>g> the ceca with the other three<br />

parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract is much higher <str<strong>on</strong>g>in</str<strong>on</strong>g> 4-day-old broilers. This suggests that the<br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s al<strong>on</strong>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract are rather similar <str<strong>on</strong>g>and</str<strong>on</strong>g> do not allow niche<br />

differentiati<strong>on</strong>. When broilers age, similarity between b<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> crop, duodenum,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ileum decrease c<strong>on</strong>siderably. This <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates that envir<strong>on</strong>mental factors <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

change specifically <str<strong>on</strong>g>in</str<strong>on</strong>g> each compartment. These results can be important for studies related<br />

to the manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al bacterial community <str<strong>on</strong>g>in</str<strong>on</strong>g> chickens (van der Wielen et<br />

al., 2002). The maximum bacterial density is found to be reached <str<strong>on</strong>g>in</str<strong>on</strong>g> about <strong>on</strong>e week <str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

after this phase <str<strong>on</strong>g>of</str<strong>on</strong>g> microbiota development, another <strong>on</strong>e starts that can be called<br />

“maturati<strong>on</strong> phase” <str<strong>on</strong>g>and</str<strong>on</strong>g> it is characterized by:<br />

(i) a low growth rate equal to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the digesta passage;<br />

(ii) gradual selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria that most efficiently adapt to the prevail<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s.<br />

In chicken, the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> sites <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial activity are the crop <str<strong>on</strong>g>and</str<strong>on</strong>g> the caeca <str<strong>on</strong>g>and</str<strong>on</strong>g>, to a lesser<br />

extent, the small <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e (Gabriel et al., 2006).<br />

The crop microbiota is ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly composed <str<strong>on</strong>g>of</str<strong>on</strong>g> lactobacilli attached to the epithelium <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

form<str<strong>on</strong>g>in</str<strong>on</strong>g>g an almost c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous layer, <str<strong>on</strong>g>and</str<strong>on</strong>g> enterococci, coliforms <str<strong>on</strong>g>and</str<strong>on</strong>g> yeasts (Gabriel et al.,<br />

2006).<br />

Bacterial density reaches at maturity 10 3 -10 5 bacterial cells per gram <str<strong>on</strong>g>of</str<strong>on</strong>g> digesta <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

proximal small <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e (duodenum) because it is characterized by rapid flow <str<strong>on</strong>g>of</str<strong>on</strong>g> the highly<br />

fluid digesta, while the distal small <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e (jejunum <str<strong>on</strong>g>and</str<strong>on</strong>g> ileum) harbors >10 9 bacteria<br />

cells per gram <str<strong>on</strong>g>of</str<strong>on</strong>g> digesta (G<strong>on</strong>g et al., 2007; Brisb<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 2008a). Generally the ma<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

genera <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria with<str<strong>on</strong>g>in</str<strong>on</strong>g> the chicken small <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e are Lactobacillus, Enterococcus <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Clostridium, with some bacteria from the family Enterobacteriaceae (Brisb<str<strong>on</strong>g>in</str<strong>on</strong>g> et al.,<br />

2008a). The most predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant Lactobacillus species <str<strong>on</strong>g>in</str<strong>on</strong>g> the upper GIT (gizzard, duodenum,<br />

jejunum <str<strong>on</strong>g>and</str<strong>on</strong>g> ileum) seem to be L. aviaries <str<strong>on</strong>g>and</str<strong>on</strong>g> L. salivarius (G<strong>on</strong>g et al., 2007).<br />

The caeca c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> a more diverse community <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g species <str<strong>on</strong>g>of</str<strong>on</strong>g> the genera<br />

Bacteroides, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Fusobacterium,<br />

Lactobacillus, Streptococcus <str<strong>on</strong>g>and</str<strong>on</strong>g> Campylobacter, <str<strong>on</strong>g>and</str<strong>on</strong>g> reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g >10 11 cell/g <str<strong>on</strong>g>of</str<strong>on</strong>g> digesta<br />

(Apajalahti <str<strong>on</strong>g>and</str<strong>on</strong>g> Kettunen, 2006; Brisb<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 2008a). G<strong>on</strong>g et al. (2007) <str<strong>on</strong>g>and</str<strong>on</strong>g> Bjerrum et<br />

al. (2006) <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated Faecalibacterium prausnitzii <str<strong>on</strong>g>and</str<strong>on</strong>g> butyrateproduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteria (ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly<br />

F. prausnitzii, Clostridium <str<strong>on</strong>g>and</str<strong>on</strong>g> Rum<str<strong>on</strong>g>in</str<strong>on</strong>g>ococcus) as the largest groups <str<strong>on</strong>g>in</str<strong>on</strong>g> the caeca.<br />

26


3.2.2 Role <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota<br />

Microbes <str<strong>on</strong>g>of</str<strong>on</strong>g> the GIT can be generally divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to potentially pathogenic or beneficial<br />

groups. Harmful bacteria may be <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> localized or systemic <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>s, <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

putrefacti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> tox<str<strong>on</strong>g>in</str<strong>on</strong>g> formati<strong>on</strong>. Some <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al organisms may have beneficial effects<br />

such as vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> producti<strong>on</strong>, stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the immune system through n<strong>on</strong>pathogenic<br />

mechanisms, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>hibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the growth <str<strong>on</strong>g>and</str<strong>on</strong>g> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> harmful microbial groups<br />

(Jeurissen et al., 2002). The benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> normal microbiota such as provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g nutrients<br />

(Annis<strong>on</strong> et al., 1968) <str<strong>on</strong>g>and</str<strong>on</strong>g> competitive exclusi<strong>on</strong> (preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong>izati<strong>on</strong> by pathogenic<br />

bacteria) are costly for the host animal (Snoeyenbos et al., 1978; Soerjadi et al., 1982). The<br />

cost associated with these benefits may <str<strong>on</strong>g>in</str<strong>on</strong>g>clude competiti<strong>on</strong> with the host for nutrients,<br />

stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rapid turnover <str<strong>on</strong>g>of</str<strong>on</strong>g> absorptive epithelial cells, secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic compounds,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>on</strong>go<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>flammatory resp<strong>on</strong>se <str<strong>on</strong>g>in</str<strong>on</strong>g> the GIT. All these effects occur at<br />

the expense <str<strong>on</strong>g>of</str<strong>on</strong>g> animal producti<strong>on</strong> <strong>performance</strong> (Drew et al., 2003; Richards et al., 2005;<br />

Verstegen et al., 2005).<br />

The microbiota <str<strong>on</strong>g>of</str<strong>on</strong>g> the GIT <str<strong>on</strong>g>of</str<strong>on</strong>g> mammals can be c<strong>on</strong>sidered a metabolically active organ<br />

with its wide biodiversity <str<strong>on</strong>g>in</str<strong>on</strong>g> term <str<strong>on</strong>g>of</str<strong>on</strong>g> species <str<strong>on</strong>g>and</str<strong>on</strong>g> the high number <str<strong>on</strong>g>of</str<strong>on</strong>g> cells (Macfarlane <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Macfarlane, 2004, Backhed et al., 2005, Murphy et al., 2009). Under normal<br />

circumstances, commensal bacteria are an essential health asset with a nutriti<strong>on</strong>al functi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a protective <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al structure <str<strong>on</strong>g>and</str<strong>on</strong>g> homeostasis. A balanced gut<br />

microbiota c<strong>on</strong>stitutes an efficient barrier aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st pathogen col<strong>on</strong>izati<strong>on</strong>; moreover, it<br />

produces metabolic substrates (e.g. vitam<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> short cha<str<strong>on</strong>g>in</str<strong>on</strong>g> fatty acids) <str<strong>on</strong>g>and</str<strong>on</strong>g> stimulates the<br />

immune system <str<strong>on</strong>g>in</str<strong>on</strong>g> a n<strong>on</strong>-<str<strong>on</strong>g>in</str<strong>on</strong>g>flammatory manner. Thus, there is evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> a correlati<strong>on</strong><br />

between the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the col<strong>on</strong>iz<str<strong>on</strong>g>in</str<strong>on</strong>g>g microbiota <str<strong>on</strong>g>and</str<strong>on</strong>g> variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> immunity (O’Hara<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Shanahan, 2006). The gut microbiota, with its metabolic, trophic <str<strong>on</strong>g>and</str<strong>on</strong>g> protective<br />

functi<strong>on</strong>s, is able to affect positively the <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al barrier. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tegrity (i.e., <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al barrier dysfuncti<strong>on</strong>) leads to a progressive <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

permeability, <str<strong>on</strong>g>in</str<strong>on</strong>g>duc<str<strong>on</strong>g>in</str<strong>on</strong>g>g a switch from “physiological” to “pathological” <str<strong>on</strong>g>in</str<strong>on</strong>g>flammati<strong>on</strong> that<br />

is characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> diseases such as <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al bowel disease (IBD) (Frank et al., 2007;<br />

Lambert, 2009). Intest<str<strong>on</strong>g>in</str<strong>on</strong>g>al pathogens produce tox<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> other classes <str<strong>on</strong>g>of</str<strong>on</strong>g> substances i.e.<br />

muc<str<strong>on</strong>g>in</str<strong>on</strong>g>ases, adhes<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vas<str<strong>on</strong>g>in</str<strong>on</strong>g>s, which <str<strong>on</strong>g>in</str<strong>on</strong>g>terfere with epithelial metabolism. All together,<br />

the pathogenic phenotype is likely to directly trigger unc<strong>on</strong>trolled pathological<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>flammati<strong>on</strong>. Increas<str<strong>on</strong>g>in</str<strong>on</strong>g>g evidence <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates that changes <str<strong>on</strong>g>in</str<strong>on</strong>g> gut microbiota, with an<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> pathogenic bacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> health-promot<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteria, such as<br />

bifidobacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> lactobacilli, play an important role <str<strong>on</strong>g>in</str<strong>on</strong>g> promot<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al <str<strong>on</strong>g>in</str<strong>on</strong>g>flammati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> IBD (Andoh <str<strong>on</strong>g>and</str<strong>on</strong>g> Fujiyama, 2006).<br />

The <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota <str<strong>on</strong>g>in</str<strong>on</strong>g> fact actively exchanges developmental <str<strong>on</strong>g>and</str<strong>on</strong>g> regulatory signals<br />

with the host that prime <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>struct mucosal immunity (O’Hara <str<strong>on</strong>g>and</str<strong>on</strong>g> Shanahan, 2007;<br />

Brisb<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 2008a). Physiological <str<strong>on</strong>g>and</str<strong>on</strong>g> psychological stressors, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to dysfuncti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> to the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al permeability, have an impact <strong>on</strong> gut<br />

microbial compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> susceptibility to enteric pathogens (Gareau et al., 2009).<br />

Moreover, stress situati<strong>on</strong>s generally result <str<strong>on</strong>g>in</str<strong>on</strong>g> a poor growth rate <str<strong>on</strong>g>and</str<strong>on</strong>g> productivity <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

livestock <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry. In poultry producti<strong>on</strong> systems, birds are rout<str<strong>on</strong>g>in</str<strong>on</strong>g>ely subjected to<br />

stressors such as feed withdrawal, temperature fluctuati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ement dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

transportati<strong>on</strong> augment<str<strong>on</strong>g>in</str<strong>on</strong>g>g disease <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence (St-Pierre et al., 2003; Humphrey, 2006).<br />

27


3.3 Antibiotic Growth Promoters (AGPs) <str<strong>on</strong>g>and</str<strong>on</strong>g> animal feed regulati<strong>on</strong>s<br />

3.3.1 Antibiotics<br />

Feed additive antibiotics have been used as growth promoters for >50 years <str<strong>on</strong>g>in</str<strong>on</strong>g> the feed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dustry all over the world. Antibiotics <str<strong>on</strong>g>in</str<strong>on</strong>g>duce their effect by stabiliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

microbial flora thereby prevent<str<strong>on</strong>g>in</str<strong>on</strong>g>g proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specific <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al pathogens (Visek,<br />

1978; Shane, 2005). Today, the n<strong>on</strong>-prescripti<strong>on</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry feeds has<br />

been elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated or severely limited <str<strong>on</strong>g>in</str<strong>on</strong>g> many countries because <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cerns related to<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotic-resistant human pathogenic bacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> legislative acti<strong>on</strong> to<br />

limit their use <str<strong>on</strong>g>in</str<strong>on</strong>g> probable <str<strong>on</strong>g>in</str<strong>on</strong>g> many others. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the proposed total ban <strong>on</strong> sub-therapeutic<br />

feed antibiotics, products such as <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s, organic acids <str<strong>on</strong>g>and</str<strong>on</strong>g> probiotics are receiv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

c<strong>on</strong>siderable attenti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> animal nutriti<strong>on</strong> because <str<strong>on</strong>g>of</str<strong>on</strong>g> their n<strong>on</strong>-residual <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-resistant<br />

properties (Mellor, 2000; Gill, 2001; Hertrampf, 2001; Kocher, 2005; Plail, 2006).<br />

Antibiotics have been widely used <str<strong>on</strong>g>in</str<strong>on</strong>g> veter<str<strong>on</strong>g>in</str<strong>on</strong>g>ary medic<str<strong>on</strong>g>in</str<strong>on</strong>g>e for disease treatment <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

prophylaxis as well as <str<strong>on</strong>g>in</str<strong>on</strong>g> the character <str<strong>on</strong>g>of</str<strong>on</strong>g> the growth promoters. Antibiotics growth<br />

promoters (AGPs) act by modify<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora, especially aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st Grampositive<br />

bacteria, which are associated with animals’ poorer health <strong>performance</strong>.The AGPs<br />

have been very cost-effective <str<strong>on</strong>g>and</str<strong>on</strong>g> efficient <str<strong>on</strong>g>in</str<strong>on</strong>g> improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g animals’ <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> health,<br />

especially <str<strong>on</strong>g>in</str<strong>on</strong>g> pigs <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry (de Lange et al., 2010). However, <str<strong>on</strong>g>in</str<strong>on</strong>g> 2006 the European<br />

Uni<strong>on</strong> banned the use <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics as growth promoters.<br />

Genetic improvement applied <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry significantly <str<strong>on</strong>g>in</str<strong>on</strong>g>creased growth parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

broilers. At the same time, higher rear<str<strong>on</strong>g>in</str<strong>on</strong>g>g density escalated disease challenges, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

birds more susceptible to various pathogens, especially enteropathic microbes. Without<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the AGPs, pathogenic bacteria, such as Salm<strong>on</strong>ella spp., Escherichia coli, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Clostridium perfr<str<strong>on</strong>g>in</str<strong>on</strong>g>gens can proliferate <str<strong>on</strong>g>and</str<strong>on</strong>g> become dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant compared with other<br />

bacteria present <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e, allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g for <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> disease <str<strong>on</strong>g>and</str<strong>on</strong>g> dim<str<strong>on</strong>g>in</str<strong>on</strong>g>ished<br />

nutritive value <str<strong>on</strong>g>of</str<strong>on</strong>g> feed c<strong>on</strong>sumed (Collier et al., 2003; Niewold, 2007).<br />

Enteric diseases are major ec<strong>on</strong>omic c<strong>on</strong>cern <str<strong>on</strong>g>in</str<strong>on</strong>g> the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry, which result <str<strong>on</strong>g>in</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

productivity <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased mortality <str<strong>on</strong>g>in</str<strong>on</strong>g> flocks. Besides, as reported by European Food<br />

Safety Authority (EFSA), poultry producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry products can be c<strong>on</strong>sidered as a<br />

potential major source <str<strong>on</strong>g>of</str<strong>on</strong>g> human campylobacteriosis <str<strong>on</strong>g>and</str<strong>on</strong>g> salm<strong>on</strong>ellosis, <str<strong>on</strong>g>in</str<strong>on</strong>g> the EU.<br />

Campylobacteriosis <str<strong>on</strong>g>and</str<strong>on</strong>g> salm<strong>on</strong>ellosis are now the most frequently reported foodborne<br />

illnesses <str<strong>on</strong>g>in</str<strong>on</strong>g> the EU (40.7 <str<strong>on</strong>g>and</str<strong>on</strong>g> 38.2 cases per 100,000 populati<strong>on</strong>, respectively). H<str<strong>on</strong>g>and</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

preparati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler meat may account for 20% to 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> causes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

campylobacteriosis <str<strong>on</strong>g>in</str<strong>on</strong>g> human (EFSA, 2006, 2010).<br />

Modern food animal producti<strong>on</strong> depends <strong>on</strong> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics for<br />

disease c<strong>on</strong>trol (Aarestrup, 2002). In 1949, quite by accident, while c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g nutriti<strong>on</strong><br />

studies with poultry, Jukes <str<strong>on</strong>g>of</str<strong>on</strong>g> Lederle Laboratory <str<strong>on</strong>g>and</str<strong>on</strong>g> McG<str<strong>on</strong>g>in</str<strong>on</strong>g>nis <str<strong>on</strong>g>of</str<strong>on</strong>g> Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> State<br />

University obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed startl<str<strong>on</strong>g>in</str<strong>on</strong>g>g growth resp<strong>on</strong>ses from feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g a residue from Aureomyc<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

producti<strong>on</strong>. Later experiments revealed that the supplement used by Jukes <str<strong>on</strong>g>and</str<strong>on</strong>g> McG<str<strong>on</strong>g>in</str<strong>on</strong>g>nis –<br />

the residue <str<strong>on</strong>g>of</str<strong>on</strong>g> Aureomyc<str<strong>on</strong>g>in</str<strong>on</strong>g> producti<strong>on</strong> – supplied the antibiotic chlortetracycl<str<strong>on</strong>g>in</str<strong>on</strong>g>e. This was<br />

the birth <str<strong>on</strong>g>of</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g antibiotics to livestock (Scanes et al., 2004). However, over the past<br />

few decades awareness has grown that this applicati<strong>on</strong> creates favourable c<strong>on</strong>diti<strong>on</strong>s for<br />

selecti<strong>on</strong>, spread<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> antimicrobial-resistant bacteria capable <str<strong>on</strong>g>of</str<strong>on</strong>g> caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

28


<str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> animals <str<strong>on</strong>g>and</str<strong>on</strong>g> humans. It has thus become clear that antimicrobial resistance<br />

poses a threat to public <str<strong>on</strong>g>and</str<strong>on</strong>g> animal health <str<strong>on</strong>g>and</str<strong>on</strong>g> is a reas<strong>on</strong> for serious c<strong>on</strong>cern.<br />

In food animal producti<strong>on</strong> antimicrobial agents are normally used <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> four different<br />

ways, i.e. i) therapy: treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ically affected animals, preferably based<br />

<strong>on</strong> a bacteriological diagnosis, ii) metaphylactics: treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ically healthy animals<br />

bel<strong>on</strong>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the same flock or pen as animals show<str<strong>on</strong>g>in</str<strong>on</strong>g>g cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ical signs; <str<strong>on</strong>g>in</str<strong>on</strong>g> this way <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>s<br />

may be treated before they become cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ically apparent <str<strong>on</strong>g>and</str<strong>on</strong>g> the entire treatment period may<br />

thereby be shortened. In fact, <str<strong>on</strong>g>in</str<strong>on</strong>g> view <str<strong>on</strong>g>of</str<strong>on</strong>g> the modern producti<strong>on</strong> systems, this may <str<strong>on</strong>g>of</str<strong>on</strong>g>ten be<br />

the <strong>on</strong>ly effective approach to treat for <str<strong>on</strong>g>in</str<strong>on</strong>g>stance large broiler flocks through water<br />

medicati<strong>on</strong>, iii) prophylactics: treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> healthy animals <str<strong>on</strong>g>in</str<strong>on</strong>g> a period <str<strong>on</strong>g>of</str<strong>on</strong>g> stress (e.g. early<br />

wean<str<strong>on</strong>g>in</str<strong>on</strong>g>g) to prevent diseases; <str<strong>on</strong>g>in</str<strong>on</strong>g> such cases the use <str<strong>on</strong>g>of</str<strong>on</strong>g> antimicrobials is <str<strong>on</strong>g>in</str<strong>on</strong>g>dicative for<br />

general management problems, <str<strong>on</strong>g>and</str<strong>on</strong>g> hence <str<strong>on</strong>g>in</str<strong>on</strong>g> most countries is either illegal or c<strong>on</strong>sidered<br />

imprudent; <str<strong>on</strong>g>and</str<strong>on</strong>g>, f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, iv) growth promoti<strong>on</strong>: the c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antimicrobials<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> animal feed to prevent (subcl<str<strong>on</strong>g>in</str<strong>on</strong>g>ical) <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> hence promote growth; such usage is<br />

under serious debate (Aarestrup, 2002).<br />

The primary reas<strong>on</strong> for us<str<strong>on</strong>g>in</str<strong>on</strong>g>g antibiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry feeds is for their growth stimulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

effect, for which they are generally used <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler rati<strong>on</strong>s. The reas<strong>on</strong> for the beneficial<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics still rema<str<strong>on</strong>g>in</str<strong>on</strong>g> obscure, but the best explanati<strong>on</strong> is the disease level<br />

theory, based <strong>on</strong> the fact that antibiotics have failed to show any measurable effect <strong>on</strong> birds<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed under germ-free c<strong>on</strong>diti<strong>on</strong>s (Scanes et al., 2004). The exact mechanisms by<br />

which these improvements occur, however, are still not fully understood. Currently, four<br />

mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> growth promoti<strong>on</strong> have been proposed by various scientists. Because early<br />

researches have <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated that orally dosed antibiotics do not promote growth <str<strong>on</strong>g>in</str<strong>on</strong>g> germ-free<br />

chicks, each <str<strong>on</strong>g>of</str<strong>on</strong>g> these proposed mechanisms are based <strong>on</strong> the hypothesis that the presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e reduces animal growth, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>clude hypotheses that: 1)<br />

antibiotics <str<strong>on</strong>g>in</str<strong>on</strong>g>hibit the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> sub-cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ical <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>s, 2) antibiotics reduce producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> growth-depress<str<strong>on</strong>g>in</str<strong>on</strong>g>g microbial metabolites, 3) antibiotics reduce the use <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients by<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbes, <str<strong>on</strong>g>and</str<strong>on</strong>g> 4) antibiotics allow for enhanced uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients because they<br />

have been shown to reduce the thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al wall. Regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> the fact that<br />

the exact mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotic-mediated growth promoti<strong>on</strong> are currently <str<strong>on</strong>g>in</str<strong>on</strong>g>completely<br />

understood, most researchers support the theory that antibiotics reduce the overall numbers<br />

or diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> gut bacteria, which may promote growth (Thomps<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Applegate, 2005).<br />

In additi<strong>on</strong> to their use as growth stimulators, antibiotics are used to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease egg<br />

producti<strong>on</strong>, hatchability, <str<strong>on</strong>g>and</str<strong>on</strong>g> shell quality <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry. They are also added to feed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

substantially higher quantities to remedy pathological c<strong>on</strong>diti<strong>on</strong>s. Antibiotics are generally<br />

fed to poultry at levels <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 to 50 g per t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> feed, depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g up<strong>on</strong> the particular antibiotic<br />

used. Higher levels <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics (100 to 400 g per t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> feed) are used for disease-c<strong>on</strong>trol<br />

purposes. The antibiotics most comm<strong>on</strong>ly used <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry rati<strong>on</strong>s are bacitrac<str<strong>on</strong>g>in</str<strong>on</strong>g>,<br />

virg<str<strong>on</strong>g>in</str<strong>on</strong>g>iamyc<str<strong>on</strong>g>in</str<strong>on</strong>g>, bambermyc<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>comyc<str<strong>on</strong>g>in</str<strong>on</strong>g>. High levels <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium <str<strong>on</strong>g>in</str<strong>on</strong>g> a lay<str<strong>on</strong>g>in</str<strong>on</strong>g>g mash will<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>hibit assimilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> certa<str<strong>on</strong>g>in</str<strong>on</strong>g> tetracycl<str<strong>on</strong>g>in</str<strong>on</strong>g>e-type antibiotics to the bloodstream <str<strong>on</strong>g>and</str<strong>on</strong>g> reduce<br />

their effectiveness. In all probability, antibiotics will always be used as feed additives to<br />

c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> treat health problems <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry. But the status <str<strong>on</strong>g>of</str<strong>on</strong>g> subtherapeutically used<br />

antibiotics as producti<strong>on</strong> stimulators is, at the present time, tenuous. Pressure from<br />

c<strong>on</strong>sumer groups <str<strong>on</strong>g>and</str<strong>on</strong>g> medical people may result <str<strong>on</strong>g>in</str<strong>on</strong>g> bann<str<strong>on</strong>g>in</str<strong>on</strong>g>g many <str<strong>on</strong>g>of</str<strong>on</strong>g> the antibiotics that are<br />

29


primarily used for medic<str<strong>on</strong>g>in</str<strong>on</strong>g>al purposes <str<strong>on</strong>g>in</str<strong>on</strong>g> humans from the list <str<strong>on</strong>g>of</str<strong>on</strong>g> approved producti<strong>on</strong><br />

promoters. However, <str<strong>on</strong>g>in</str<strong>on</strong>g> the future, an <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g number <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics will likely be<br />

developed specifically for the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g poultry <strong>performance</strong>. One example is<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> bambermyc<str<strong>on</strong>g>in</str<strong>on</strong>g>. This antibiotic was developed solely for use as a producti<strong>on</strong><br />

promoter, serv<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease rate <str<strong>on</strong>g>of</str<strong>on</strong>g> ga<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> feed efficiency <str<strong>on</strong>g>in</str<strong>on</strong>g> chickens <str<strong>on</strong>g>and</str<strong>on</strong>g> sw<str<strong>on</strong>g>in</str<strong>on</strong>g>e. It has<br />

no medical applicati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g>, therefore, poses no health hazard with regards to bacteria<br />

becom<str<strong>on</strong>g>in</str<strong>on</strong>g>g resistant to it (Scanes et al., 2004).<br />

As <str<strong>on</strong>g>in</str<strong>on</strong>g> human medic<str<strong>on</strong>g>in</str<strong>on</strong>g>e, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> antimicrobial agents <str<strong>on</strong>g>in</str<strong>on</strong>g> agriculture creates a selective<br />

pressure for the emergence <str<strong>on</strong>g>and</str<strong>on</strong>g> dissem<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antimicrobial-resistant bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

animal pathogens, human pathogens which have food animal reservoirs, <str<strong>on</strong>g>and</str<strong>on</strong>g> other bacteria<br />

that are present <str<strong>on</strong>g>in</str<strong>on</strong>g> food animals. In fact, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary antibiotics resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> comm<strong>on</strong><br />

problems such as development <str<strong>on</strong>g>of</str<strong>on</strong>g> drug-resistant bacteria (Sorum <str<strong>on</strong>g>and</str<strong>on</strong>g> Sunde, 2001), drug<br />

residues <str<strong>on</strong>g>in</str<strong>on</strong>g> the body <str<strong>on</strong>g>of</str<strong>on</strong>g> the birds (Burgat, 1999), <str<strong>on</strong>g>and</str<strong>on</strong>g> imbalance <str<strong>on</strong>g>of</str<strong>on</strong>g> normal micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora<br />

(Andrem<strong>on</strong>t, 2000). Approximately 8,164,662 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics are used annually <str<strong>on</strong>g>in</str<strong>on</strong>g> animal<br />

farm<str<strong>on</strong>g>in</str<strong>on</strong>g>g (70% <str<strong>on</strong>g>of</str<strong>on</strong>g> which is used for n<strong>on</strong>therapeutic purposes such as growth promoti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

disease preventi<strong>on</strong>) compared with <strong>on</strong>ly 1,363,636 kg per year used <str<strong>on</strong>g>in</str<strong>on</strong>g> human medic<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

(Roe <str<strong>on</strong>g>and</str<strong>on</strong>g> Pillai, 2003).<br />

These resistant bacteria may be transferred to humans either through the food supply or by<br />

direct c<strong>on</strong>tact with animals. The transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> resistant bacteria from food-produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g animals<br />

to humans is most evident <str<strong>on</strong>g>in</str<strong>on</strong>g> human bacterial pathogens which have food animal sources,<br />

such as Campylobacter, which has a reservoir <str<strong>on</strong>g>in</str<strong>on</strong>g> chickens <str<strong>on</strong>g>and</str<strong>on</strong>g> turkeys <str<strong>on</strong>g>and</str<strong>on</strong>g> Salm<strong>on</strong>ella,<br />

which has reservoirs <str<strong>on</strong>g>in</str<strong>on</strong>g> the cattle, chicken, pig <str<strong>on</strong>g>and</str<strong>on</strong>g> turkey. Pathogenic bacteria, such as<br />

Campylobacter <str<strong>on</strong>g>and</str<strong>on</strong>g> Salm<strong>on</strong>ella, are not the <strong>on</strong>ly c<strong>on</strong>cern when c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g antimicrobial<br />

resistance <str<strong>on</strong>g>in</str<strong>on</strong>g> bacteria with food animal reservoirs. Commensal bacteria, which are naturally<br />

occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g host microbiota, c<strong>on</strong>stitute an enormous potential reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance genes<br />

for pathogenic bacteria. The prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotic resistance <str<strong>on</strong>g>in</str<strong>on</strong>g> the commensal bacteria<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> humans <str<strong>on</strong>g>and</str<strong>on</strong>g> animals is c<strong>on</strong>sidered to be a good <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> the selective pressure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

antibiotic usage <str<strong>on</strong>g>and</str<strong>on</strong>g> reflects the potential for resistance <str<strong>on</strong>g>in</str<strong>on</strong>g> future <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>s.<br />

Antibiotic-resistant organisms from animals reenter the human <str<strong>on</strong>g>and</str<strong>on</strong>g> animal populati<strong>on</strong>s<br />

through several pathways <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g natural water, irrigati<strong>on</strong> water, dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g water,<br />

vegetables, <str<strong>on</strong>g>and</str<strong>on</strong>g> foods (Roe <str<strong>on</strong>g>and</str<strong>on</strong>g> Pillai, 2003). These resistant bacteria are shed <str<strong>on</strong>g>in</str<strong>on</strong>g> feces,<br />

where they can share extra chromosomal antibiotic resistance plasmids (r-plasmids) with<br />

native bacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> may be dissem<str<strong>on</strong>g>in</str<strong>on</strong>g>ated to other animals. As the reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> resistant<br />

commensal bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g>creases, the plasmid reservoir becomes larger <str<strong>on</strong>g>and</str<strong>on</strong>g> enables more<br />

frequent transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance to pathogenic bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g Salm<strong>on</strong>ella <str<strong>on</strong>g>and</str<strong>on</strong>g> Shigella.<br />

Escherichia coli, which is the predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant isolate <str<strong>on</strong>g>of</str<strong>on</strong>g> aerobic faecal microbiota <str<strong>on</strong>g>in</str<strong>on</strong>g> humans<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> most animals, has dem<strong>on</strong>strated its ability to transfer resistance genes to other species,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g pathogenic bacteria (Anders<strong>on</strong> et al., 2005). Additi<strong>on</strong>ally, there is <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong><br />

cross-talk between pathogens <str<strong>on</strong>g>and</str<strong>on</strong>g> epithelial tissues, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> extensive rearrangement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epithelial cells up<strong>on</strong> col<strong>on</strong>izati<strong>on</strong> by pathogens (Goosney et al., 2000; Sans<strong>on</strong>etti, 2001).<br />

Hooper et al. (2001) have shown that cross-talk between Bacteroides thetaiotaomicr<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the epithelium results <str<strong>on</strong>g>in</str<strong>on</strong>g> epithelial secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specific glycans, which are utilized by the<br />

bacterium.<br />

30


3.3.2 Feed additives legislati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> antibiotic ban<br />

Feed additives encompass a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> products. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the currently applicable<br />

legislati<strong>on</strong> (EC 1831/2003, Art. 2 (2a)), “feed additives” means substances,<br />

microorganisms or preparati<strong>on</strong>s – other than feed materials premixtures – which are<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tenti<strong>on</strong>ally added to feed or water to perform, <str<strong>on</strong>g>in</str<strong>on</strong>g> particular, <strong>on</strong>e or more <str<strong>on</strong>g>of</str<strong>on</strong>g> the functi<strong>on</strong>s<br />

menti<strong>on</strong>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> Article 5. Article 5 can be summarized as follows: a feed additive should<br />

favourably affect <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> feed or animal products; colour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ornamental fish or birds; the envir<strong>on</strong>ment; animal producti<strong>on</strong>, <strong>performance</strong> or welfare<br />

through positive effects at gut level, or satisfy the nutriti<strong>on</strong>al needs <str<strong>on</strong>g>of</str<strong>on</strong>g> animals or have a<br />

coccidiostatic or histom<strong>on</strong>ostatic effect (Doeschate <str<strong>on</strong>g>and</str<strong>on</strong>g> Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>e, 2006).<br />

At EU level, Directive 70/524 (23 November 1970) was really the first <strong>on</strong>e that tried to<br />

regulate the use <str<strong>on</strong>g>of</str<strong>on</strong>g> feed additives across the EU Member States; but even though the<br />

directive was <str<strong>on</strong>g>in</str<strong>on</strong>g>tended to lead to c<strong>on</strong>sistent legislati<strong>on</strong> across the EU, it did not achieve<br />

this. Moreover, the fact that the Sc<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>avian countries banned antibiotic-growth<br />

promoters ahead <str<strong>on</strong>g>of</str<strong>on</strong>g> the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> a campaign to get these products banned<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the whole <str<strong>on</strong>g>of</str<strong>on</strong>g> the EU. Directive 70/524 appears complicated, with many annexes <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

different authorizati<strong>on</strong> periods for different products. The <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry worked with the<br />

Directive <str<strong>on</strong>g>and</str<strong>on</strong>g> the country-specific implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Directive <str<strong>on</strong>g>in</str<strong>on</strong>g>to law as well as<br />

possible. Regulati<strong>on</strong> 1831/2003 thus sets out to review all the rules <strong>on</strong> additives, with a<br />

change <str<strong>on</strong>g>of</str<strong>on</strong>g> emphasis towards the protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human health, animal health <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

envir<strong>on</strong>ment, based <strong>on</strong> precauti<strong>on</strong>ary pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple. Regulati<strong>on</strong> 1831/2003 applies directly <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

each Member State, <str<strong>on</strong>g>and</str<strong>on</strong>g> there should thus be less opportunity for country-specific rules<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> derogati<strong>on</strong>s. All additives authorized under regulati<strong>on</strong> 1831/2003 will be given timelimited<br />

authorizati<strong>on</strong> to allow technological progress <str<strong>on</strong>g>and</str<strong>on</strong>g> scientific developments to be<br />

taken <str<strong>on</strong>g>in</str<strong>on</strong>g>to account <str<strong>on</strong>g>in</str<strong>on</strong>g> the review <str<strong>on</strong>g>of</str<strong>on</strong>g> the product authorizati<strong>on</strong>.<br />

The categories <str<strong>on</strong>g>of</str<strong>on</strong>g> additives identified <str<strong>on</strong>g>in</str<strong>on</strong>g> 1831/2003 are:<br />

- technological additives: any substances added to feed for a technological purpose;<br />

- sensory additives: any substance, the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> which improves or changes the<br />

organoleptic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the feed, or the visual characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the food derived from<br />

animals;<br />

- nutriti<strong>on</strong>al additives (such as am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids);<br />

- zootechnical additives: any additive used to affect favourably the <strong>performance</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> animals<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> good health or used to affect favourably the envir<strong>on</strong>ment;<br />

- coccidiostats <str<strong>on</strong>g>and</str<strong>on</strong>g> histom<strong>on</strong>ostats.<br />

Regulati<strong>on</strong> 1831/2003 has at least stated that antibiotics, other than coccidiostats <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

histom<strong>on</strong>ostats, might be marketed <str<strong>on</strong>g>and</str<strong>on</strong>g> used as feed additives <strong>on</strong>ly until December 31,<br />

2005; as from January 1, 2006, those substances would be deleted from the Community<br />

Register <str<strong>on</strong>g>of</str<strong>on</strong>g> authorized feed additives (Castan<strong>on</strong>, 2007). The removal <str<strong>on</strong>g>of</str<strong>on</strong>g> these compounds<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> animal diet result <str<strong>on</strong>g>in</str<strong>on</strong>g> changes to the microbial compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract, which<br />

may <str<strong>on</strong>g>in</str<strong>on</strong>g> turn have c<strong>on</strong>sequences for commercial poultry flocks (Knarreborg et al., 2002)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> has put tremendous pressure <strong>on</strong> the livestock <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry farms, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the ma<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

c<strong>on</strong>sequences be<str<strong>on</strong>g>in</str<strong>on</strong>g>g a substantial <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> therapeutic antibiotics (Casewell et<br />

al., 2003). It has been evidenced that AGP have l<strong>on</strong>g been effective <str<strong>on</strong>g>in</str<strong>on</strong>g> preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

31


necrotic enteritis (NE) <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry flocks <str<strong>on</strong>g>and</str<strong>on</strong>g> that the <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> NE have <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

countries where AGP have been stopped (Van Immerseel et al., 2004).<br />

In other ways, the ban <str<strong>on</strong>g>of</str<strong>on</strong>g> growth promoters dem<str<strong>on</strong>g>and</str<strong>on</strong>g>s the improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> the hygiene from<br />

farms. It was shown that under good producti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s it is possible to reach good <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

competitive producti<strong>on</strong> results for the rear<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry without the c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

antibiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> feeds. Moreover, safer n<strong>on</strong>antimicrobial substances have been studied as<br />

alternatives for replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g antibiotics to <str<strong>on</strong>g>in</str<strong>on</strong>g>teract with the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

enzymes, <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> probiotics or acidificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diets (Castan<strong>on</strong>, 2007).<br />

32


Chapter 4. Alternatives to antibiotics: Probiotics, Prebiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> Synbiotics<br />

4.1 Probiotics<br />

Many def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>s have been proposed for the term probiotic. Probiotics are pure cultures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>on</strong>e or more live bacteria that exhibit a beneficial effect <strong>on</strong> the health <str<strong>on</strong>g>of</str<strong>on</strong>g> the host when they<br />

are <str<strong>on</strong>g>in</str<strong>on</strong>g>gested. Improved epithelial cell <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrity, <str<strong>on</strong>g>in</str<strong>on</strong>g>creased immune resp<strong>on</strong>se, well balanced<br />

gut micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora, better utilisati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> digesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diet are also additive beneficial effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dietary probiotics (J<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 1998; P<str<strong>on</strong>g>and</str<strong>on</strong>g>a et al., 2001).<br />

The most recent <strong>on</strong>e is “live microorganisms which, when adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered <str<strong>on</strong>g>in</str<strong>on</strong>g> adequate<br />

amounts, c<strong>on</strong>fer a health benefit <strong>on</strong> the host” (FAO/WHO, 2002). In this def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> it is<br />

implicit that a health effect must be dem<strong>on</strong>strated for the probiotics. The beneficial modes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>clude: regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbial homeostasis, stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al barrier functi<strong>on</strong> (Salm<str<strong>on</strong>g>in</str<strong>on</strong>g>en et al., 1996), expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterioc<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

(Mazmanian et al., 2008), enzymatic activity <str<strong>on</strong>g>in</str<strong>on</strong>g>duc<str<strong>on</strong>g>in</str<strong>on</strong>g>g absorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutriti<strong>on</strong> (Hooper,<br />

2002; Timmerman et al., 2005), immunomodulatory effects (Salzman et al., 2003),<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>hibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> procarc<str<strong>on</strong>g>in</str<strong>on</strong>g>ogenic enzymes <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terference with the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> pathogens to<br />

col<strong>on</strong>ize <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>fect the mucosa (Gill, 2003). The expected health-promot<str<strong>on</strong>g>in</str<strong>on</strong>g>g characteristics<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> safety criteria <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> Table 4.1.<br />

Table 4.1. Expected characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> safety criteria <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics<br />

N<strong>on</strong> toxic <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong> pathogenic<br />

Accurate tax<strong>on</strong>omic identificati<strong>on</strong><br />

Normal <str<strong>on</strong>g>in</str<strong>on</strong>g>habitant <str<strong>on</strong>g>of</str<strong>on</strong>g> the targeted species<br />

Survival, col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> be<str<strong>on</strong>g>in</str<strong>on</strong>g>g metabolically active <str<strong>on</strong>g>in</str<strong>on</strong>g> the targeted site, which implies:<br />

resistance to gastric juice <str<strong>on</strong>g>and</str<strong>on</strong>g> bile<br />

persistence <str<strong>on</strong>g>in</str<strong>on</strong>g> the GIT<br />

adhesi<strong>on</strong> to epithelium or mucus<br />

competiti<strong>on</strong> with the resident microbiota<br />

Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antimicrobial substances<br />

Antag<strong>on</strong>ism towards pathogenic bacteria<br />

Modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses<br />

Ability to exert at least <strong>on</strong>e scientifically-supported health promot<str<strong>on</strong>g>in</str<strong>on</strong>g>g properties<br />

Genetic stability<br />

Amenability <str<strong>on</strong>g>of</str<strong>on</strong>g> the stra<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the desired characteristics dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g process<str<strong>on</strong>g>in</str<strong>on</strong>g>g, storage <str<strong>on</strong>g>and</str<strong>on</strong>g> delivery<br />

Viability at high populati<strong>on</strong>s<br />

Desirable organoleptic <str<strong>on</strong>g>and</str<strong>on</strong>g> technological properties when <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial processes<br />

4.1.1 Regulatory c<strong>on</strong>siderati<strong>on</strong>s<br />

Significant progress <str<strong>on</strong>g>in</str<strong>on</strong>g> legislati<strong>on</strong> for the safety evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics, has been made <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

USA, Canada, <str<strong>on</strong>g>and</str<strong>on</strong>g> Europe (FAO/WHO, 2002; EFSA, 2005a; HC, 2006); however, no<br />

unique st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard is available. In the USA, microorganisms c<strong>on</strong>sidered safe for human<br />

c<strong>on</strong>sumpti<strong>on</strong> are awarded GRAS status (Generally Regarded As Safe) by the Food <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Drug Adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong>. In Europe, the European Food Safety Authority has <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced the<br />

c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> Qualified Presumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Safety (QPS) similar <str<strong>on</strong>g>in</str<strong>on</strong>g> purpose to the GRAS<br />

approach. The QPS c<strong>on</strong>cept provides a generic assessment system for use with<str<strong>on</strong>g>in</str<strong>on</strong>g> EFSA<br />

that <str<strong>on</strong>g>in</str<strong>on</strong>g> pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple can be applied to all requests received for the safety assessments <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microorganisms deliberately <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced <str<strong>on</strong>g>in</str<strong>on</strong>g>to the food cha<str<strong>on</strong>g>in</str<strong>on</strong>g> (EFSA, 2005b). Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

recent evaluati<strong>on</strong> (Wassenaar <str<strong>on</strong>g>and</str<strong>on</strong>g> Kle<str<strong>on</strong>g>in</str<strong>on</strong>g>, 2008), QPS system appears more flexible because<br />

33


it takes <str<strong>on</strong>g>in</str<strong>on</strong>g>to account additi<strong>on</strong>al criteria to evaluate the safety <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial additives such as a<br />

history <str<strong>on</strong>g>of</str<strong>on</strong>g> safe use <str<strong>on</strong>g>in</str<strong>on</strong>g> the food <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry <str<strong>on</strong>g>and</str<strong>on</strong>g> the acquisiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotic resistance or<br />

virulence determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ants. EFSA has published a list <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganism, which possess a<br />

known historical safety, proposed for QPS status (EFSA, 2007). This list does not <str<strong>on</strong>g>in</str<strong>on</strong>g>clude<br />

Enterococcus species, even if E. faecium shows a l<strong>on</strong>g history <str<strong>on</strong>g>of</str<strong>on</strong>g> apparent safe use <str<strong>on</strong>g>in</str<strong>on</strong>g> food<br />

or feed. The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> reas<strong>on</strong> is due to the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g transmissible resistance to<br />

antibiotics by Enterococcus spp. (EFSA, 2007).<br />

A list <str<strong>on</strong>g>of</str<strong>on</strong>g> the probiotic species for studies or applicati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> animal feed is showed <str<strong>on</strong>g>in</str<strong>on</strong>g> Table<br />

4.2; these data derived from extensive literature <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ternet search <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial<br />

products. In broiler nutriti<strong>on</strong>, a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial species have been used as probiotics,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g species <str<strong>on</strong>g>of</str<strong>on</strong>g> Bacillus, Bifidobacterium, Enterococcus, E. coli, Lactobacillus,<br />

Lactococcus, Streptococcus, a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> yeast species such as Saccharomyces cerevisiae,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> undef<str<strong>on</strong>g>in</str<strong>on</strong>g>ed mixed cultures (Endo <str<strong>on</strong>g>and</str<strong>on</strong>g> Nakano, 1999; Mahajan et al., 2000; Casula <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 2002; Patters<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Burkholder, 2003; Huang et al., 2004; Kabir et al., 2004;<br />

Karaoglu et al., 2004; Aksu et al., 2005; Ahmad, 2006; Mountzouris et al., 2007). These<br />

probiotic species showed a beneficial effect <strong>on</strong> broiler <strong>performance</strong> (Tortuero, 1973;<br />

Ow<str<strong>on</strong>g>in</str<strong>on</strong>g>gs et al., 1990; J<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 1998; Zulkifli et al., 2000; Kalavathy et al., 2003; Kabir et<br />

al., 2004; Gil De Los Santos et al., 2005), modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>and</str<strong>on</strong>g> pathogen<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>hibiti<strong>on</strong> (Rada <str<strong>on</strong>g>and</str<strong>on</strong>g> Rychly, 1995; L<str<strong>on</strong>g>in</str<strong>on</strong>g>e et al., 1998; Pascual et al., 1999), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

immunomodulati<strong>on</strong> (Zulkifli et al., 2000; Dalloul et al., 2003; Kabir et al., 2004; Koenen et<br />

al., 2004). Generally, Lactobacillus <str<strong>on</strong>g>and</str<strong>on</strong>g> Bifidobacterium species have been used most<br />

extensively <str<strong>on</strong>g>in</str<strong>on</strong>g> humans, whereas species <str<strong>on</strong>g>of</str<strong>on</strong>g> Bacillus, Enterococcus, <str<strong>on</strong>g>and</str<strong>on</strong>g> Saccharomyces<br />

yeast have been the most comm<strong>on</strong> organisms used <str<strong>on</strong>g>in</str<strong>on</strong>g> livestock (Sim<strong>on</strong> et al., 2001).<br />

However, there has been a recent <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> research <strong>on</strong> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g Lactobacillus to livestock<br />

(Gusils et al., 1999; Pascual et al., 1999; J<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 2000; Tellez et al., 2001). No study has<br />

been carried out <strong>on</strong> sporeform<str<strong>on</strong>g>in</str<strong>on</strong>g>g lactic acid-produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteria such as Bacillus coagulans<br />

as probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> chickens. Many factors make B. coagulans a good c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate for probiotic<br />

use; it produces organic acids, possesses the capacity to sporulate, <str<strong>on</strong>g>and</str<strong>on</strong>g> is easily cultured <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

bulk (Hyr<strong>on</strong>imus et al., 2000). In additi<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> the spore form, it is more resistant to heat,<br />

which facilitates the pellet<str<strong>on</strong>g>in</str<strong>on</strong>g>g process used <str<strong>on</strong>g>in</str<strong>on</strong>g> the mass producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic chicken<br />

feeds.<br />

An important po<str<strong>on</strong>g>in</str<strong>on</strong>g>t is the viability <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently derived c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> viable<br />

bacteria <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic preparati<strong>on</strong>s at the moment <str<strong>on</strong>g>of</str<strong>on</strong>g> the adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> to the animals. It is<br />

fundamental to study proper formulati<strong>on</strong>s which will allow the maximum viability <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

bacteria species utilized.<br />

Table 4.2. List <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics applied or studied for applicati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> animal feed<br />

Genus<br />

Species (a)<br />

Bacteria<br />

Bifidobacterium<br />

B. animalis (B. animalis subsp. animalis)<br />

B. lactis (B. lactis subsp. lactis)<br />

B. l<strong>on</strong>gum (B. l<strong>on</strong>gum subsp. l<strong>on</strong>gum)<br />

B. pseudol<strong>on</strong>gum (B. pseudol<strong>on</strong>gum subsp.<br />

pseudol<strong>on</strong>gum)<br />

34


B. thermophilum<br />

Enterococcus<br />

Lactobacillus<br />

Lactococcus<br />

Leuc<strong>on</strong>ostoc<br />

Pediococcus<br />

Propi<strong>on</strong>ibacterium<br />

Streptococcus<br />

E. faecium<br />

E. faecalis<br />

L. acidophilus<br />

L. amyl<str<strong>on</strong>g>ovo</str<strong>on</strong>g>rus<br />

L. brevis<br />

L. casei (L. casei subsp. casei)<br />

L. crispatus<br />

L. farmic<str<strong>on</strong>g>in</str<strong>on</strong>g>is<br />

L. fermentum<br />

L. mur<str<strong>on</strong>g>in</str<strong>on</strong>g>us<br />

L. plantarum (L. plantarum subsp. plantarum)<br />

L. reuteri<br />

L. rhamnosus<br />

L. salivarius<br />

L. sobrius (L. amyl<str<strong>on</strong>g>ovo</str<strong>on</strong>g>rus)<br />

L. lactis subsp. cremoris<br />

L. lactis subsp. lactis<br />

L. citreum<br />

L. lactis<br />

L. mesenteroides<br />

P. acidilactici<br />

P. pentosaceus subsp. pentosaceus<br />

P. freudenreichii<br />

S. cremoris<br />

S. faecalis<br />

S. faecium<br />

S. <str<strong>on</strong>g>in</str<strong>on</strong>g>fantarius<br />

S. salivarius subsp. salivarius<br />

S. salivarius subsp. thermophilum<br />

Bacillus<br />

B. cereus var. toyoi<br />

B. licheniformis<br />

B. subtilis<br />

Yeast<br />

Saccharomyces<br />

Kluyveromyces<br />

S. cerevisiae<br />

S. boulardii (S. cerevisiae)<br />

S. pastorianus (syn<strong>on</strong>ym <str<strong>on</strong>g>of</str<strong>on</strong>g> Saccharomyces<br />

carlsbergensis)<br />

K. fragilis<br />

Fungi<br />

Aspergyllus<br />

A. orizae<br />

A. niger<br />

(a) In bracket valid tax<strong>on</strong>omic name.<br />

35


4.1.2 Efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> mode <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong><br />

Probiotic foods have been c<strong>on</strong>sumed for centuries, either as natural comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> foods.<br />

A food can be said functi<strong>on</strong>al if it c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s a comp<strong>on</strong>ent (which may or may not be a<br />

nutrient) that affects <strong>on</strong>e or a limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the body <str<strong>on</strong>g>in</str<strong>on</strong>g> a targeted way so<br />

as to have positive effects <strong>on</strong> health (Bellisle et al., 1998) or if it has a physiologic or<br />

psychologic effect bey<strong>on</strong>d the traditi<strong>on</strong>al nutriti<strong>on</strong>al effect (Clydesdale, 1997). Am<strong>on</strong>gst<br />

the most promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g targets for functi<strong>on</strong>al foods are the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al functi<strong>on</strong>s, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

those that c<strong>on</strong>trol transit time, bowel habits, <str<strong>on</strong>g>and</str<strong>on</strong>g> mucosal motility as well as those that<br />

modulate epithelial cell proliferati<strong>on</strong>. Promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g targets are also gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al functi<strong>on</strong>s<br />

that are associated with a balance col<strong>on</strong>ic micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora, that are associated with c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nutrient bioavailability (i<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> particular), that modify gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al immune activity, or<br />

that are mediated by the endocr<str<strong>on</strong>g>in</str<strong>on</strong>g>e activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al system. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, some<br />

systemic functi<strong>on</strong>s such as lipid homeostasis that are <str<strong>on</strong>g>in</str<strong>on</strong>g>directly <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced by nutrient<br />

digesti<strong>on</strong> or fermentati<strong>on</strong> represent promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g targets (Roberfroid, 1996; Clydesdale,<br />

1997). Havenaar <str<strong>on</strong>g>and</str<strong>on</strong>g> Spanhaak (1994) has reported that probiotics stimulate the immunity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the chickens <str<strong>on</strong>g>in</str<strong>on</strong>g> two ways (i) flora from probiotic migrate throughout the gut wall <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

multiply to a limited extent or (ii) antigen released by the dead organisms are absorbed <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

thus stimulate the immune system. At present it is believed that there is some relati<strong>on</strong>ship<br />

between the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> stra<str<strong>on</strong>g>in</str<strong>on</strong>g> to translocate <str<strong>on</strong>g>and</str<strong>on</strong>g> the ability to be immunogenic. The<br />

improvement <str<strong>on</strong>g>in</str<strong>on</strong>g> the immune system may be by three different ways:<br />

(a) enhanced macrophage activity <str<strong>on</strong>g>and</str<strong>on</strong>g> enhanced ability to phagocytose microorganism or<br />

carb<strong>on</strong> particles;<br />

(b) <str<strong>on</strong>g>in</str<strong>on</strong>g>creased producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antibodies usually <str<strong>on</strong>g>of</str<strong>on</strong>g> immunoglobul<str<strong>on</strong>g>in</str<strong>on</strong>g> (Ig) IgG <str<strong>on</strong>g>and</str<strong>on</strong>g> IgM classes<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terfer<strong>on</strong> (a n<strong>on</strong>specific antiviral agent);<br />

(c) <str<strong>on</strong>g>in</str<strong>on</strong>g>creased local antibodies at mucosal surfaces such as the gut wall (usually IgA).<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> animal feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g could be enhanced by a prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro<br />

screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g: antimicrobial activity, survival <str<strong>on</strong>g>in</str<strong>on</strong>g> the GIT, adhesive studies <str<strong>on</strong>g>and</str<strong>on</strong>g> antibiotic<br />

susceptibility are am<strong>on</strong>g the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> probiotic properties that should be analysed to assess<br />

functi<strong>on</strong>ality <str<strong>on</strong>g>and</str<strong>on</strong>g> safety. The advanced molecular methods, e.g. microarrays, will improve<br />

the detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these multiple characteristics allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g also the analysis, at genomic level,<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phenotypic <str<strong>on</strong>g>and</str<strong>on</strong>g> genetic properties useful for <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial producti<strong>on</strong>.<br />

Different stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic bacteria may exert different effects based <strong>on</strong> specific<br />

capabilities <str<strong>on</strong>g>and</str<strong>on</strong>g> enzymatic activities, even with<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e species (Bernet et al., 1993;<br />

Ouweh<str<strong>on</strong>g>and</str<strong>on</strong>g> et al., 1999). Different microorganisms express habitat preferences that may<br />

differ <str<strong>on</strong>g>in</str<strong>on</strong>g> various host species (Freter, 1992). Lactobacilli are am<strong>on</strong>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>digenous flora<br />

col<strong>on</strong>iz<str<strong>on</strong>g>in</str<strong>on</strong>g>g the chicken's crop, stomach <str<strong>on</strong>g>of</str<strong>on</strong>g> mice <str<strong>on</strong>g>and</str<strong>on</strong>g> rats, <str<strong>on</strong>g>and</str<strong>on</strong>g> the lower ileum <str<strong>on</strong>g>in</str<strong>on</strong>g> man.<br />

Bacteria such high-transit-rate sites must adhere firmly to mucosal epithelium (Savage,<br />

1972; Fuller, 1973; Beachey, 1980). Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the bacterial col<strong>on</strong>ies adhere to the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

wall <str<strong>on</strong>g>and</str<strong>on</strong>g> so does the probiotic. This is reas<strong>on</strong> that the col<strong>on</strong>ies are not swept away due to<br />

the peristalsis’s al<strong>on</strong>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al wall. This effect prevents the pathogenic bacterial<br />

col<strong>on</strong>izati<strong>on</strong> al<strong>on</strong>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al wall <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore, prevents disease development (Fuller,<br />

2000). Numerous studies have shown that probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g>hibit pathogens <str<strong>on</strong>g>and</str<strong>on</strong>g> disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota with the antibiotics can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease susceptibility to <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong> but<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g>crease the resistance to <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong> (Stavric <str<strong>on</strong>g>and</str<strong>on</strong>g> Kornegay, 1995;<br />

36


Rolfe, 2000). Proposed mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> pathogen <str<strong>on</strong>g>in</str<strong>on</strong>g>hibiti<strong>on</strong> by the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clude competiti<strong>on</strong> for nutrient, producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> compounds (volatile<br />

fatty acids, low pH <str<strong>on</strong>g>and</str<strong>on</strong>g> bacteroic<str<strong>on</strong>g>in</str<strong>on</strong>g>s), competiti<strong>on</strong> for b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites <strong>on</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

epithelium <str<strong>on</strong>g>and</str<strong>on</strong>g> stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the immune system (Fuller, 1989; Gibs<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Fuller, 2000;<br />

Rolfe, 2000). The mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics is not yet known <str<strong>on</strong>g>and</str<strong>on</strong>g> is open for<br />

research, although there are several hypotheses. There is <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g evidence to suggest<br />

that probiotics act by stimulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the host's immune systems. The <strong>on</strong>ly accepted example<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> effective protecti<strong>on</strong> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>s provided by liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g micro-organism is the “Nurmi<br />

c<strong>on</strong>cept”, whereby <strong>on</strong>e-day-old chicks acquire an enhanced protecti<strong>on</strong> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st Salm<strong>on</strong>ella<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>s when they are adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered the complex <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al flora <str<strong>on</strong>g>of</str<strong>on</strong>g> older chicks. The<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <strong>on</strong> the growth, feed c<strong>on</strong>versi<strong>on</strong> or producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> farm animals are,<br />

even <str<strong>on</strong>g>in</str<strong>on</strong>g> specific situati<strong>on</strong>s, not c<strong>on</strong>sistent enough to c<strong>on</strong>sider their use out <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic<br />

c<strong>on</strong>siderati<strong>on</strong>s (Veldman, 1992). In a very short period <str<strong>on</strong>g>of</str<strong>on</strong>g> time, many studies have been<br />

c<strong>on</strong>ducted to validate the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics as a viable modality <str<strong>on</strong>g>in</str<strong>on</strong>g> the poultry<br />

producti<strong>on</strong>. Some known beneficial effects <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g>clude reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the severity<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rotavirus diarrhea (Oberhelman et al., 1999), reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

traveler’s diarrhea (Ribeiro <str<strong>on</strong>g>and</str<strong>on</strong>g> V<str<strong>on</strong>g>and</str<strong>on</strong>g>erho<str<strong>on</strong>g>of</str<strong>on</strong>g>, 1998), reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> relaps<str<strong>on</strong>g>in</str<strong>on</strong>g>g after<br />

the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> Clostridium difficile - associated diarrhea (Pochap<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 1998),<br />

reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotic-associated diarrhea <str<strong>on</strong>g>in</str<strong>on</strong>g> children (V<str<strong>on</strong>g>and</str<strong>on</strong>g>erho<str<strong>on</strong>g>of</str<strong>on</strong>g> et al., 1999),<br />

immune enhancement (Prowrie, 2001), stimulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the growth (Kumprechtova et al., 2000;<br />

Zulkifli et al., 2000; Lan et al., 2003) feed c<strong>on</strong>versi<strong>on</strong> ratio (Ergun et al., 2000; P<str<strong>on</strong>g>and</str<strong>on</strong>g>a et<br />

al., 2000; Silva et al., 2000) digesti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> absorpti<strong>on</strong> (Fuller, 1997), compet<str<strong>on</strong>g>in</str<strong>on</strong>g>g for<br />

adhesi<strong>on</strong> receptors (Savage, 1972; Fuller, 1973; Beachey, 1981). Although the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organisms studied is small, the list is grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> it is likely that many more probiotic<br />

organisms with a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> different benefits will be discovered. Additi<strong>on</strong>al organisms<br />

may eventually be developed through genetic eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g (V<str<strong>on</strong>g>and</str<strong>on</strong>g>erho<str<strong>on</strong>g>of</str<strong>on</strong>g>, 2001).<br />

Probiotic activity could be related to genera, species, or stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. An approach <str<strong>on</strong>g>in</str<strong>on</strong>g> probiotic<br />

applicati<strong>on</strong> could be the use <str<strong>on</strong>g>of</str<strong>on</strong>g> mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s bel<strong>on</strong>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g to different genera or species<br />

(Timmerman et al., 2004). The available body <str<strong>on</strong>g>of</str<strong>on</strong>g> literature <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>flict<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

results c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics for <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g growth <strong>performance</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers;<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>sistent results have been also reported from other authors (Estrada et al., 2001; O‘Dea<br />

et al., 2006) show<str<strong>on</strong>g>in</str<strong>on</strong>g>g a c<strong>on</strong>fus<str<strong>on</strong>g>in</str<strong>on</strong>g>g state <str<strong>on</strong>g>of</str<strong>on</strong>g> the art. In fact, Stavric <str<strong>on</strong>g>and</str<strong>on</strong>g> Kornegay (1995)<br />

summarized several experiments <str<strong>on</strong>g>in</str<strong>on</strong>g> which different types <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics were supplied <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

feed or dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g water. They c<strong>on</strong>cluded that results were generally <str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>sistent. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the<br />

report <str<strong>on</strong>g>of</str<strong>on</strong>g> Stavric <str<strong>on</strong>g>and</str<strong>on</strong>g> Kornegay (1995), the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered <str<strong>on</strong>g>in</str<strong>on</strong>g> feed or<br />

water <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry have been studied by many groups. Reported effects <str<strong>on</strong>g>of</str<strong>on</strong>g> these beneficial<br />

bacteria <strong>on</strong> chicken, hen <str<strong>on</strong>g>and</str<strong>on</strong>g> turkey <strong>performance</strong> varied from: little to no effect (Waldroup<br />

et al., 2003; Karaoglu <str<strong>on</strong>g>and</str<strong>on</strong>g> Durdag, 2005; Stanczuk et al., 2005; D<strong>on</strong>als<strong>on</strong> et al., 2008)<br />

through mixed effects (Anjum et al., 2005; Biggs et al., 2007; Bozkurt et al., 2009; Kim et<br />

al., 2011) to stimulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g effects (Kabir et al., 2004; Awad et al, 2008; Mátéová at al., 2008;<br />

Willis <str<strong>on</strong>g>and</str<strong>on</strong>g> Reid, 2008). In additi<strong>on</strong>, Timmerman et al. (2006) underl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed the importance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

way, dose, tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> as ma<str<strong>on</strong>g>in</str<strong>on</strong>g> factors affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the efficacy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the probiotic preparati<strong>on</strong>. Another determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ant may be the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the animals; dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

early life, col<strong>on</strong>izati<strong>on</strong> patterns are <str<strong>on</strong>g>in</str<strong>on</strong>g>stable <str<strong>on</strong>g>and</str<strong>on</strong>g> newborn animals are then susceptible to<br />

37


envir<strong>on</strong>mental pathogens. Initial col<strong>on</strong>izati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance to the host because the<br />

bacteria can modulate expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genes <str<strong>on</strong>g>in</str<strong>on</strong>g> epithelial cells thus creat<str<strong>on</strong>g>in</str<strong>on</strong>g>g a favourable<br />

habitat for themselves (Siggers et al., 2007). However, it was difficult to directly assess<br />

different studies us<str<strong>on</strong>g>in</str<strong>on</strong>g>g probiotics because the efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> a probiotic applicati<strong>on</strong> depended<br />

<strong>on</strong> many factors (Patters<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Burkholder, 2003) such as species compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

viability, adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> level, applicati<strong>on</strong> method, frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>, overall diet,<br />

bird age, overall farm hygiene, <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental stress factors. Probiotic adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong><br />

via the feed, compared to adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g water, resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> a higher <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> average daily ga<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

Eggs producti<strong>on</strong> has been also <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to probiotic applicati<strong>on</strong>; Davis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Anders<strong>on</strong> (2002) reported that a mixed cultures <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus acidophilus, L. casei,<br />

Bifidobacterium thermophilus <str<strong>on</strong>g>and</str<strong>on</strong>g> Enterococcus faecium, improved egg size <str<strong>on</strong>g>and</str<strong>on</strong>g> lowered<br />

feed cost <str<strong>on</strong>g>in</str<strong>on</strong>g> lay<str<strong>on</strong>g>in</str<strong>on</strong>g>g hens. Moreover, probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g>crease egg producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> quality<br />

(Kurtoglu et al., 2004; P<str<strong>on</strong>g>and</str<strong>on</strong>g>a et al., 2008).<br />

4.1.3. Lactic acid bacteria<br />

Lactic acid bacteria (LAB) represent a greatly diverse group <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria, some <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

bel<strong>on</strong>g to natural microbiota <str<strong>on</strong>g>of</str<strong>on</strong>g> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract. LAB c<strong>on</strong>stitute a diverse group <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Gram-positive bacteria, characterized by some comm<strong>on</strong> morphological, metabolic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

physiological traits. They are anaerobic bacteria, n<strong>on</strong>-sporulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, acid tolerant <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

produce ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly lactic acid as an end product <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrate fermentati<strong>on</strong>. Moreover,<br />

several LAB stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s have been dem<strong>on</strong>strated to exert a positive effect <strong>on</strong> a human or<br />

animal health, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus be<str<strong>on</strong>g>in</str<strong>on</strong>g>g used as probiotics. Pro-health acti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> LAB stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s are<br />

based <strong>on</strong> their various biological activities – physical, physiological, biochemical <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

metabolic. Am<strong>on</strong>g these, a rapid <str<strong>on</strong>g>and</str<strong>on</strong>g> str<strong>on</strong>g acidificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>ment <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antimicrobials, like bacterioc<str<strong>on</strong>g>in</str<strong>on</strong>g>s, seem to be very efficient <str<strong>on</strong>g>in</str<strong>on</strong>g> probiotic<br />

acti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> LAB. It is important to identify those LAB stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s which show the widest<br />

carbohydrate-digestive range, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the potential to digest sugars present <str<strong>on</strong>g>in</str<strong>on</strong>g> feed is<br />

important for both- lower<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>ter gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al pH <str<strong>on</strong>g>and</str<strong>on</strong>g> protect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the avian<br />

organism aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st pathogenic microbes. In fact, their preservative effect is ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly due to the<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lactic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> other organic acids which results <str<strong>on</strong>g>in</str<strong>on</strong>g> lower<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> pH<br />

(Daeschel, 1989). Preservati<strong>on</strong> is enhanced by the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> other antimicrobial<br />

compounds, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydrogen peroxide, CO 2 , diacetyl, acetaldehyde, <str<strong>on</strong>g>and</str<strong>on</strong>g> bacterioc<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

(Klaenhammer 1988; 1993; Stiles <str<strong>on</strong>g>and</str<strong>on</strong>g> Hast<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, 1991).<br />

Physiologically, based <strong>on</strong> the LAB stra<str<strong>on</strong>g>in</str<strong>on</strong>g>, they are able to release to the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

track <str<strong>on</strong>g>of</str<strong>on</strong>g> the host where they reside, different substances (e.g. antimicrobials) that <str<strong>on</strong>g>in</str<strong>on</strong>g>teract<br />

with the GALT (Gut-Associated Lymphoid Tissue). This way they can stimulate cytok<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

producti<strong>on</strong> by lymphocytes, which leads to regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>nate <str<strong>on</strong>g>and</str<strong>on</strong>g> adaptive immune<br />

resp<strong>on</strong>ses. Therefore, to assess the functi<strong>on</strong>al aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> the immunomodulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the LAB<br />

stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s analyzed, the impact <strong>on</strong> the lymphocytes which are the crucial immune cells can be<br />

analyzed <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro.<br />

In additi<strong>on</strong>, to the antimicrobial effects specific LAB also possess health promot<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

properties. Evidence from <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro systems, animal models, <str<strong>on</strong>g>and</str<strong>on</strong>g> human cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ical studies<br />

suggest that LAB functi<strong>on</strong> as immunomodulators <str<strong>on</strong>g>and</str<strong>on</strong>g> can enhance both specific <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

38


n<strong>on</strong>specific immune resp<strong>on</strong>ses (Ouweh<str<strong>on</strong>g>and</str<strong>on</strong>g> et al. 1999; O’Flaherty <str<strong>on</strong>g>and</str<strong>on</strong>g> Klaenhammer,<br />

2010) justify<str<strong>on</strong>g>in</str<strong>on</strong>g>g their use as health promot<str<strong>on</strong>g>in</str<strong>on</strong>g>g supplements or probiotics both for humans<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> animals.<br />

4.1.3.1 Lactococci probiotic applicati<strong>on</strong><br />

Lactococci have a l<strong>on</strong>g history <str<strong>on</strong>g>of</str<strong>on</strong>g> use <str<strong>on</strong>g>in</str<strong>on</strong>g> milk fermentati<strong>on</strong>s, from small-scale traditi<strong>on</strong>al<br />

operati<strong>on</strong>s <strong>on</strong> the farm or <str<strong>on</strong>g>in</str<strong>on</strong>g> the family home to ever-<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial scale processes.<br />

The c<strong>on</strong>sequent need for more robust, efficient <str<strong>on</strong>g>and</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>e-tuned manufactur<str<strong>on</strong>g>in</str<strong>on</strong>g>g practice has<br />

led to a sharp <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> fundamental <str<strong>on</strong>g>and</str<strong>on</strong>g> applied research <strong>on</strong> the bacterial species<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>volved, Lactococcus lactis. Lactococcus lactis is able to reach <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al cells <str<strong>on</strong>g>and</str<strong>on</strong>g> lives <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

for a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> days <str<strong>on</strong>g>and</str<strong>on</strong>g>, for this, some stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s, such as Lactococcus lactis subsp lactis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Lactococcus lactis subsp. cremoris, are c<strong>on</strong>siderable as probiotic. Many stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Lactococcus lactis are resistant to some antibiotics such as tetracicl<str<strong>on</strong>g>in</str<strong>on</strong>g> because they c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

a tetracicl<str<strong>on</strong>g>in</str<strong>on</strong>g> resistant gene. This observati<strong>on</strong> proves that Lactococci are able to pick up<br />

multiple antibiotic resistance elements <str<strong>on</strong>g>in</str<strong>on</strong>g> an antibiotic challenged habitat from other<br />

member <str<strong>on</strong>g>of</str<strong>on</strong>g> the microbial gene exchange community that share genetic pieces. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

most promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>trollable expressi<strong>on</strong> systems that has been developed is based <strong>on</strong> the<br />

autoregulatory properties <str<strong>on</strong>g>of</str<strong>on</strong>g> nis<str<strong>on</strong>g>in</str<strong>on</strong>g> biosynthesis by Lactococcus lactis (de Ruyter et al.,<br />

1996; Kuipers et al., 1997). Nis<str<strong>on</strong>g>in</str<strong>on</strong>g>, a very active bacterioc<str<strong>on</strong>g>in</str<strong>on</strong>g> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st others Lactococcus<br />

species <str<strong>on</strong>g>and</str<strong>on</strong>g> sometimes aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st harmful bacteria like Enterobacteriaceae <str<strong>on</strong>g>and</str<strong>on</strong>g> Salm<strong>on</strong>ella, is<br />

a posttranslati<strong>on</strong>ally modified antimicrobial peptide (34 am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid residues) that is widely<br />

used <str<strong>on</strong>g>in</str<strong>on</strong>g> the food <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry as a natural preservative, designated as E234 (Klaenhammer,<br />

1993) <str<strong>on</strong>g>and</str<strong>on</strong>g> used to protect high moisture food commodities aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st the pathogenic Listeria<br />

m<strong>on</strong>ocytogenes or Clostridium botul<str<strong>on</strong>g>in</str<strong>on</strong>g>um, but also aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st spoilage by clostridia <str<strong>on</strong>g>and</str<strong>on</strong>g> other<br />

Gram positive bacteria. (Delves-Brought<strong>on</strong> et al., 1996)<br />

4.1.3.2 Bifidobacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> animals <str<strong>on</strong>g>and</str<strong>on</strong>g> probiotic applicati<strong>on</strong><br />

Studies <strong>on</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota, carried out mostly <strong>on</strong> domestic animals, have revealed<br />

a complex microbiota: Bacteroides, eubacteria, anaerobic lactobacilli, anaerobic Grampositive<br />

cocci, spirillaceae <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten bifidobacteria. Almost all chickens, dogs, pigs, rats<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> hamsters presented bifidobacteria, although <str<strong>on</strong>g>in</str<strong>on</strong>g> a smaller quantity than lactobacilli.<br />

Mice, rabbits <str<strong>on</strong>g>and</str<strong>on</strong>g> horses rarely displayed bifidobacteria, <str<strong>on</strong>g>and</str<strong>on</strong>g> cats <str<strong>on</strong>g>and</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>ks never had<br />

them. Many factors <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bifidobacteria microbiota <str<strong>on</strong>g>in</str<strong>on</strong>g> animals: the<br />

age, the species <str<strong>on</strong>g>and</str<strong>on</strong>g> the diet <str<strong>on</strong>g>of</str<strong>on</strong>g> the host. Some species apparently are host-specific: B.<br />

magnum <str<strong>on</strong>g>and</str<strong>on</strong>g> B. cuniculi have <strong>on</strong>ly been found <str<strong>on</strong>g>in</str<strong>on</strong>g> rabbit faecal samples, B. pullorum <str<strong>on</strong>g>and</str<strong>on</strong>g> B.<br />

gall<str<strong>on</strong>g>in</str<strong>on</strong>g>arum <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g> chickens <str<strong>on</strong>g>and</str<strong>on</strong>g> B. suis <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> piglet faeces (Matteuzzi et<br />

al., 1971; Figure 4.1).<br />

39


Figure 4.1. Bifidobacterium species found <str<strong>on</strong>g>in</str<strong>on</strong>g> animals<br />

In the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tracts <str<strong>on</strong>g>of</str<strong>on</strong>g> animals <str<strong>on</strong>g>and</str<strong>on</strong>g> humans bifidobacteria are c<strong>on</strong>sidered <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the key<br />

genus. Their presence <str<strong>on</strong>g>in</str<strong>on</strong>g> high number is associated to good health status <str<strong>on</strong>g>of</str<strong>on</strong>g> the host. There<br />

is a general believe that Bifidobacterium are helpful <str<strong>on</strong>g>in</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g appropriate balance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the microbiota <str<strong>on</strong>g>in</str<strong>on</strong>g> the GIT reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> pathogen <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>. Several species are host<br />

specific (Biavati <str<strong>on</strong>g>and</str<strong>on</strong>g> Mattarelli, 2006). Bifidobacteria possess very promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g probiotics<br />

properties; they are frequently used <str<strong>on</strong>g>in</str<strong>on</strong>g> food <str<strong>on</strong>g>and</str<strong>on</strong>g> pharmaceutical preparati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> their<br />

applicati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> animal feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g is <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

4.1.3.3 Lactobacillus probiotic acti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong><br />

Lactobacillus spp. are am<strong>on</strong>g the most frequent <str<strong>on</strong>g>and</str<strong>on</strong>g> better characterized microorganisms<br />

used as a probiotic. Important c<strong>on</strong>siderati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> a probiotic <str<strong>on</strong>g>in</str<strong>on</strong>g>clude safety,<br />

functi<strong>on</strong>al aspects <str<strong>on</strong>g>and</str<strong>on</strong>g> technological aspects (D<strong>on</strong>ohue et al., 1998). Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the species<br />

are significant c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> the normal gut microbiota <str<strong>on</strong>g>of</str<strong>on</strong>g> humans <str<strong>on</strong>g>and</str<strong>on</strong>g> animals, <str<strong>on</strong>g>and</str<strong>on</strong>g> their<br />

occurrence <str<strong>on</strong>g>and</str<strong>on</strong>g> number are host dependent. Several species <str<strong>on</strong>g>of</str<strong>on</strong>g> the genus are <str<strong>on</strong>g>in</str<strong>on</strong>g>tenti<strong>on</strong>ally<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>troduced <str<strong>on</strong>g>in</str<strong>on</strong>g> the food cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s, be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> food <str<strong>on</strong>g>and</str<strong>on</strong>g> feed fermentati<strong>on</strong>s,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> applied as probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> humans <str<strong>on</strong>g>and</str<strong>on</strong>g> animals (Hammes <str<strong>on</strong>g>and</str<strong>on</strong>g> Hertel, 2007). However, an<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g number <str<strong>on</strong>g>of</str<strong>on</strong>g> reports stated that these microorganisms might occasi<strong>on</strong>ally be<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> human diseases, where L. casei <str<strong>on</strong>g>and</str<strong>on</strong>g> L. rhamnosus are the most comm<strong>on</strong><br />

(Vesterlund et al., 2007). No report can be found <strong>on</strong> safety c<strong>on</strong>cerns related to lactobacilli<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> animals.<br />

4.1.4 Competitive exclusi<strong>on</strong><br />

Competitive exclusi<strong>on</strong> (CE), also <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated as the “Nurmi c<strong>on</strong>cept”, has its orig<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> the<br />

f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g that the newly hatched chicken could be protected aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st Salm<strong>on</strong>ella col<strong>on</strong>izati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the gut by dos<str<strong>on</strong>g>in</str<strong>on</strong>g>g it with a suspensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gut c<strong>on</strong>tent prepared from healthy adult<br />

chickens (Nurmi <str<strong>on</strong>g>and</str<strong>on</strong>g> Rantala, 1973). The <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CE bacteria from the gut c<strong>on</strong>tent<br />

should occur early <str<strong>on</strong>g>in</str<strong>on</strong>g> life, such that the CE bacteria are preferentially established <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

40


gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al system to become competitive or antag<strong>on</strong>istic to opportunistic pathogens.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> undef<str<strong>on</strong>g>in</str<strong>on</strong>g>ed preparati<strong>on</strong>s from the cecal or fecal material could result<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pathogens, regulatory restricti<strong>on</strong>s for probiotic microorganisms<br />

(SCAN, 2000) made this k<str<strong>on</strong>g>in</str<strong>on</strong>g>d <str<strong>on</strong>g>of</str<strong>on</strong>g> products difficult to be authorized. However, CE products<br />

with def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>and</str<strong>on</strong>g> identified microorganism have been developed <str<strong>on</strong>g>and</str<strong>on</strong>g> applied <str<strong>on</strong>g>in</str<strong>on</strong>g> animal<br />

breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Schneitz, 2005).<br />

4.2 Prebiotics<br />

Prebiotics are n<strong>on</strong>digestible food <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients that beneficially affect the host by selectively<br />

stimulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the growth <str<strong>on</strong>g>and</str<strong>on</strong>g>/or activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e or a limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract, thus improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the host's microbial balance. (Gibs<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberfroid,<br />

1995). For a dietary substrate to be classed as a <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>, at least three criteria are<br />

required: (1) the substrate must not be hydrolyzed or absorbed <str<strong>on</strong>g>in</str<strong>on</strong>g> the stomach or small<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e, (2) it must be selective for beneficial commensal bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> the large <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

such as the bifidobacteria, (3) fermentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate should <str<strong>on</strong>g>in</str<strong>on</strong>g>duce beneficial<br />

lum<str<strong>on</strong>g>in</str<strong>on</strong>g>al/systemic effects with<str<strong>on</strong>g>in</str<strong>on</strong>g> the host (Scantlebury-Mann<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> Gibs<strong>on</strong>, 2004). The<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary fiber <strong>on</strong> upper <str<strong>on</strong>g>and</str<strong>on</strong>g> lower gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> Table 4.3.<br />

Most identified <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s are carbohydrates <str<strong>on</strong>g>and</str<strong>on</strong>g> oligosaccharides (OS) normally occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> human <str<strong>on</strong>g>and</str<strong>on</strong>g> animal diet, with different molecular structures; dietary carbohydrates such<br />

as fibers, are c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s, but most promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g are n<strong>on</strong>-digestible oligosaccharides<br />

(NDOs). NDOs which meet the critical po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> are fructo-oligosaccharides<br />

(FOS, olig<str<strong>on</strong>g>of</str<strong>on</strong>g>ructose, <str<strong>on</strong>g>in</str<strong>on</strong>g>ul<str<strong>on</strong>g>in</str<strong>on</strong>g>), galacto-oligosaccharides (GOS) or transgalactooligosaccharides<br />

(TOS), <str<strong>on</strong>g>and</str<strong>on</strong>g> lactulose; however a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> other NDOs, to which<br />

less rigorous studies have been so far applied are glucooligosaccharides,<br />

glycooligosaccharides, lactitol, isomaltooligosaccharides, chitooligosaccharides (which<br />

have dem<strong>on</strong>strated to possess <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> activity <str<strong>on</strong>g>in</str<strong>on</strong>g> human) (Campbell et al., 1997; Francis<br />

Suh <str<strong>on</strong>g>and</str<strong>on</strong>g> Matthew, 2000; Zentek et al., 2002; Wu et al., 2005; Shoaf et al., 2006),<br />

maltooligosaccharides, xylo-oligosaccharides, stachyose, raff<str<strong>on</strong>g>in</str<strong>on</strong>g>ose, <str<strong>on</strong>g>and</str<strong>on</strong>g> sucrose thermal<br />

oligosaccharides have also been <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated (Patters<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Burkholder, 2003). Although<br />

mannanoligosaccharides (MOS) have been used <str<strong>on</strong>g>in</str<strong>on</strong>g> the same manner as the <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s listed<br />

above, they do not selectively enrich for beneficial bacterial populati<strong>on</strong>s. Investigati<strong>on</strong> <strong>on</strong><br />

the mode <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mannanoligosaccharide po<str<strong>on</strong>g>in</str<strong>on</strong>g>ted out that these compounds are able to<br />

b<str<strong>on</strong>g>in</str<strong>on</strong>g>d to mannose-specific lect<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gram-negative pathogens that express Type-1 fimbrieae<br />

such as Salm<strong>on</strong>ella <str<strong>on</strong>g>and</str<strong>on</strong>g> E. coli result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> their excreti<strong>on</strong> from the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e (Baurhoo et<br />

al., 2007; Thomas et al., 2004).<br />

Table 4.3. Intest<str<strong>on</strong>g>in</str<strong>on</strong>g>al functi<strong>on</strong>s assigned to <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s<br />

Dietary fibers <str<strong>on</strong>g>and</str<strong>on</strong>g> gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al functi<strong>on</strong>s<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <strong>on</strong> upper GI tract Resistance to digesti<strong>on</strong><br />

Retarded gastric empty<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Increased oro-caecal transit time<br />

Reduced glucose absorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> low glycaemic <str<strong>on</strong>g>in</str<strong>on</strong>g>dex<br />

Hyperplasia <str<strong>on</strong>g>of</str<strong>on</strong>g> the small <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al epithelium<br />

Stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al horm<strong>on</strong>al peptides<br />

Act<str<strong>on</strong>g>in</str<strong>on</strong>g>g as food for col<strong>on</strong>ic microbiota<br />

41


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <strong>on</strong> upper GI tract<br />

Act<str<strong>on</strong>g>in</str<strong>on</strong>g>g as substrate for col<strong>on</strong>ic fermentati<strong>on</strong><br />

Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fermentati<strong>on</strong> end products (ma<str<strong>on</strong>g>in</str<strong>on</strong>g>lt SCFAs)<br />

Stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> saccharolytic fermentati<strong>on</strong><br />

Acidificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the col<strong>on</strong>ic c<strong>on</strong>tent<br />

Hyperplasia <str<strong>on</strong>g>of</str<strong>on</strong>g> the col<strong>on</strong>ic epithelium<br />

Stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong>ic horm<strong>on</strong>al peptides<br />

Bulk<str<strong>on</strong>g>in</str<strong>on</strong>g>g effect <strong>on</strong> stool producti<strong>on</strong><br />

Regularizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stool producti<strong>on</strong> (frequency <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>sistence)<br />

Accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> caeco-anal transit<br />

Dietary modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the human gut flora has been carried out for many years. In humans,<br />

<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> additi<strong>on</strong> to the diet has brought positive aspects to the gut microbial balance. The<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> animal producti<strong>on</strong>, as possible alternative to antimicrobial growth<br />

promoters, has given c<strong>on</strong>flict<str<strong>on</strong>g>in</str<strong>on</strong>g>g results, while their use <str<strong>on</strong>g>in</str<strong>on</strong>g> the modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the gut<br />

microbial equilibrium is worthwhile. They c<strong>on</strong>tribute to the establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> a healthier<br />

microbiota where bifidobacteria <str<strong>on</strong>g>and</str<strong>on</strong>g>/or lactobacilli become predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant <str<strong>on</strong>g>and</str<strong>on</strong>g> exert possible<br />

health-promot<str<strong>on</strong>g>in</str<strong>on</strong>g>g effects at the expense <str<strong>on</strong>g>of</str<strong>on</strong>g> more harmful species.<br />

It has been shown that <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s stimulate the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> endogenous microbial populati<strong>on</strong><br />

groups such as bifidobacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> lactobacilli.<br />

Several reports have shown that supplement<str<strong>on</strong>g>in</str<strong>on</strong>g>g a diet with OS improved the chicken<br />

growth (Kim et al., 2011), while other reports (Solis de los Santos et al., 2007) did not f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<br />

any growth effect <str<strong>on</strong>g>of</str<strong>on</strong>g> this treatment. The reas<strong>on</strong>s for the different results are not clear.<br />

However, it can be suggested that this effect may be due to the disadvantageous <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong><br />

between various fodder additi<strong>on</strong>s such as oligosaccharides, antibiotics, growth horm<strong>on</strong>es,<br />

coccidiostatics, different chemical structure <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the OS used (Patters<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Burkholder, 2003), as well as the time <str<strong>on</strong>g>and</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> feed <str<strong>on</strong>g>and</str<strong>on</strong>g>/or water <str<strong>on</strong>g>in</str<strong>on</strong>g>take<br />

c<strong>on</strong>sumpti<strong>on</strong>. C<strong>on</strong>sequently, c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s is very different <str<strong>on</strong>g>in</str<strong>on</strong>g> the first h/d<br />

after the hatch <str<strong>on</strong>g>of</str<strong>on</strong>g> chickens. In this period, the c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> by the detrimental bacteria is<br />

possible. In general, available energy is a limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g factor for the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong>ic<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora. Hence, enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> a diet with NDOs results <str<strong>on</strong>g>in</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic<br />

activity <str<strong>on</strong>g>and</str<strong>on</strong>g> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> beneficial bifidobacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> the col<strong>on</strong> (Mitsuoka et al.<br />

1987; Gibs<strong>on</strong> et al. 1994; Gibs<strong>on</strong>, 1998; Tomomatsu 1994; Van Loo et al. 1999; Gulewicz<br />

et al. 2002). As it is known from the literature, OS as <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s c<strong>on</strong>tribute to health <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

many ways: (i) they <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bifidobacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> reduce the numbers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

detrimental microorganisms; (ii) they reduce toxic metabolites <str<strong>on</strong>g>and</str<strong>on</strong>g> detrimental enzymes;<br />

(iii) they prevent pathogenic <str<strong>on</strong>g>and</str<strong>on</strong>g> autogenous diarrhea; they prevent c<strong>on</strong>stipati<strong>on</strong> by<br />

stimulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al peristalsis <str<strong>on</strong>g>and</str<strong>on</strong>g> by <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g faecal moisture with osmotic pressure;<br />

(iv) they alleviate the detoxify<str<strong>on</strong>g>in</str<strong>on</strong>g>g load <str<strong>on</strong>g>of</str<strong>on</strong>g> the liver; (v) they reduce the serum cholesterol<br />

level; (vi) they reduce blood pressure; (vii) they show anticancer activity; (viii) they<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vitam<str<strong>on</strong>g>in</str<strong>on</strong>g>s B1, B2, B6, B12, nicotic <str<strong>on</strong>g>and</str<strong>on</strong>g> folic acids (Corrier et al.<br />

1990; Bailey et al. 1991; Waldroup et al. 1993; Choi et al. 1994; Tomomatsu, 1994;<br />

Ammerman et al. 1988).<br />

42


4.2.1 FOS, fructooligosaccharides<br />

Fructooligosaccharides are natural food <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients comm<strong>on</strong>ly found <str<strong>on</strong>g>in</str<strong>on</strong>g> vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

percentages <str<strong>on</strong>g>in</str<strong>on</strong>g> dietary foods. They are present <str<strong>on</strong>g>in</str<strong>on</strong>g> > 36.000 plant species. They are present<br />

as storage carbohydrate, together with <str<strong>on</strong>g>in</str<strong>on</strong>g>ul<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetables <str<strong>on</strong>g>and</str<strong>on</strong>g> plants<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g wheat, <strong>on</strong>i<strong>on</strong>, bananas, garlic <str<strong>on</strong>g>and</str<strong>on</strong>g> chicory. Fructooligosaccharide products<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clude <str<strong>on</strong>g>in</str<strong>on</strong>g>ul<str<strong>on</strong>g>in</str<strong>on</strong>g>, olig<str<strong>on</strong>g>of</str<strong>on</strong>g>ructose, <str<strong>on</strong>g>and</str<strong>on</strong>g> short-cha<str<strong>on</strong>g>in</str<strong>on</strong>g> fructooligosaccharide (SCFOS). FOS has<br />

been shown to be <str<strong>on</strong>g>in</str<strong>on</strong>g>digestible by human enzymes <str<strong>on</strong>g>in</str<strong>on</strong>g> the small <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e, but is extensively<br />

fermented <str<strong>on</strong>g>in</str<strong>on</strong>g> the large bowel (Mitsuoka et al., 1987) to short cha<str<strong>on</strong>g>in</str<strong>on</strong>g> fatty acids (SCFA),<br />

which can be absorbed <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolized by the host. To further <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate the role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

selected oligosaccharides <strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cecal SCFA, total large bowel wet weight<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> wall weight, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota, <str<strong>on</strong>g>and</str<strong>on</strong>g> to discuss the<br />

mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> oligosaccharides’ acti<strong>on</strong> to the host, it was tested the effect <strong>on</strong> the large<br />

bowel by gavage <str<strong>on</strong>g>of</str<strong>on</strong>g> selected oligosaccharides <str<strong>on</strong>g>in</str<strong>on</strong>g> mice model. SCFA <str<strong>on</strong>g>and</str<strong>on</strong>g> lactate <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cecum <str<strong>on</strong>g>in</str<strong>on</strong>g> mice were <str<strong>on</strong>g>in</str<strong>on</strong>g>creased by the <str<strong>on</strong>g>in</str<strong>on</strong>g>take <str<strong>on</strong>g>of</str<strong>on</strong>g> selected <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> oligosaccharides,<br />

especially FOS <str<strong>on</strong>g>and</str<strong>on</strong>g> GOS. The cecal total weight <str<strong>on</strong>g>and</str<strong>on</strong>g> wall weight were also <str<strong>on</strong>g>in</str<strong>on</strong>g>creased,<br />

which may be a result <str<strong>on</strong>g>of</str<strong>on</strong>g> SCFA change. In additi<strong>on</strong>, these selected oligosaccharides<br />

stimulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the bifidobacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> lactobacilli <str<strong>on</strong>g>in</str<strong>on</strong>g> the cecum may be useful <str<strong>on</strong>g>in</str<strong>on</strong>g> promot<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al health (McBa<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Macfarlane, 2001; Smiricky-Tjardes et al., 2003).<br />

Thus, provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g these oligosaccharides as <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients <str<strong>on</strong>g>in</str<strong>on</strong>g> nutriti<strong>on</strong>al formulas could benefit<br />

the health <str<strong>on</strong>g>of</str<strong>on</strong>g> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract. In additi<strong>on</strong>, FOS also may help c<strong>on</strong>trol or reduce the<br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> harmful bacteria such as Clostridium perfr<str<strong>on</strong>g>in</str<strong>on</strong>g>gens, which is especially important<br />

to the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry because this bacterium is a primary cause <str<strong>on</strong>g>of</str<strong>on</strong>g> necrotic enteritis that<br />

has been estimated to cost the worldwide poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry $2 billi<strong>on</strong> each year (Dahiya et<br />

al., 2006).<br />

In all the nutriti<strong>on</strong>al trials so far reported that have tested for the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> FOS <strong>on</strong> human<br />

microbiota, the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> bifidobacteria has been reported <str<strong>on</strong>g>and</str<strong>on</strong>g> it has been<br />

observed that:<br />

• the number <str<strong>on</strong>g>of</str<strong>on</strong>g> bifidobacteria becomes significant <str<strong>on</strong>g>and</str<strong>on</strong>g> reaches its maximum probably <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

less than a week;<br />

• rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s as l<strong>on</strong>g as the <str<strong>on</strong>g>in</str<strong>on</strong>g>take <str<strong>on</strong>g>of</str<strong>on</strong>g> the probiotic c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ues;<br />

• progressively (with<str<strong>on</strong>g>in</str<strong>on</strong>g> 1-2 weeks) disappears when the <str<strong>on</strong>g>in</str<strong>on</strong>g>take stops.<br />

It has been dem<strong>on</strong>strated also that the <str<strong>on</strong>g>in</str<strong>on</strong>g>take <str<strong>on</strong>g>of</str<strong>on</strong>g> FOS reduces significantly the count <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Bacteroides, Fusobacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> Clostridia. The <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> bifidobacterial flora is<br />

accompanied with other beneficial effects such as: modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al functi<strong>on</strong>s,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> stool weight, decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> faecal pH (probably l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked to the suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> putrefactive substances <str<strong>on</strong>g>in</str<strong>on</strong>g> the col<strong>on</strong>), modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cholesterol levels <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral metabolism (Roberfroid, 2000).<br />

4.2.2 RFOs, raff<str<strong>on</strong>g>in</str<strong>on</strong>g>ose family <str<strong>on</strong>g>of</str<strong>on</strong>g> oligosaccharides<br />

Up to now, fructooligosaccharides have been the best known <str<strong>on</strong>g>and</str<strong>on</strong>g> most comm<strong>on</strong>ly applied<br />

oligosaccharides (Hidaka et al., 1986; J<strong>on</strong>g W<strong>on</strong>, 1996). In this aspect, compounds such as<br />

α-galactosides, also called raff<str<strong>on</strong>g>in</str<strong>on</strong>g>ose family oligosaccharides (RFOs) are known to a lesser<br />

extent. These saccharides occur ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> plants bel<strong>on</strong>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the Fabaceae family, where<br />

they perform a very important physiological functi<strong>on</strong> (Larss<strong>on</strong> et al., 1993; Horbowicz <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

43


Obendorf, 1994; Górecki et al., 1997). RFOs accumulate <str<strong>on</strong>g>in</str<strong>on</strong>g> seeds, stems, leaves, roots, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

tubers <str<strong>on</strong>g>of</str<strong>on</strong>g> plants (Avigad <str<strong>on</strong>g>and</str<strong>on</strong>g> Dey, 1997). The highest RFOs c<strong>on</strong>centrati<strong>on</strong> is found <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

seeds, where RFOs play important roles dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g seed germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, acquisiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

desiccati<strong>on</strong> tolerance <str<strong>on</strong>g>and</str<strong>on</strong>g> preservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seed l<strong>on</strong>gevity. RFOs are soluble carbohydrates<br />

which c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear galactosyl residues attached to the glucose moiety <str<strong>on</strong>g>of</str<strong>on</strong>g> sucrose via a α-<br />

(1→6) glycosidic l<str<strong>on</strong>g>in</str<strong>on</strong>g>kage (Avigad <str<strong>on</strong>g>and</str<strong>on</strong>g> Dey, 1997; Figure 4.2). These n<strong>on</strong>-reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g sugars<br />

can be regarded as derivatives <str<strong>on</strong>g>of</str<strong>on</strong>g> sucrose with a vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g number <str<strong>on</strong>g>of</str<strong>on</strong>g> galactosyl residues<br />

attached (Dey, 1980). The most comm<strong>on</strong> forms <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs <str<strong>on</strong>g>in</str<strong>on</strong>g>clude raff<str<strong>on</strong>g>in</str<strong>on</strong>g>ose, stachyose,<br />

verbascose <str<strong>on</strong>g>and</str<strong>on</strong>g> ajugose which are tri-, tetra-, penta-, <str<strong>on</strong>g>and</str<strong>on</strong>g> hexa-saccharides, respectively<br />

(Figure 4.2). Dicotyled<strong>on</strong>ous plants primarily accumulate stachyose <str<strong>on</strong>g>and</str<strong>on</strong>g> verbascose,<br />

whereas raff<str<strong>on</strong>g>in</str<strong>on</strong>g>ose is the major RFOs <str<strong>on</strong>g>in</str<strong>on</strong>g> m<strong>on</strong>ocotyled<strong>on</strong>ous plants (Peterbauer <str<strong>on</strong>g>and</str<strong>on</strong>g> Richter,<br />

2001). From the nutriti<strong>on</strong>al po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>of</str<strong>on</strong>g> view, RFOs have been c<strong>on</strong>sidered thus far as<br />

ant<str<strong>on</strong>g>in</str<strong>on</strong>g>utriti<strong>on</strong>al factors because they are not hydrolyzed by mucosal enzymes <str<strong>on</strong>g>in</str<strong>on</strong>g> the small<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ogastric animals <str<strong>on</strong>g>and</str<strong>on</strong>g> are fermented <str<strong>on</strong>g>in</str<strong>on</strong>g> the lower gut with liberati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gas<br />

caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g arduous flatulence (Crist<str<strong>on</strong>g>of</str<strong>on</strong>g>aro et al., 1974; Sa<str<strong>on</strong>g>in</str<strong>on</strong>g>i <str<strong>on</strong>g>and</str<strong>on</strong>g> Gladst<strong>on</strong>es, 1986; Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ce et<br />

al., 1988). The op<str<strong>on</strong>g>in</str<strong>on</strong>g>i<strong>on</strong> about the total functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs <str<strong>on</strong>g>in</str<strong>on</strong>g> nutriti<strong>on</strong> has recently changed<br />

due to the elaborati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a simple <str<strong>on</strong>g>and</str<strong>on</strong>g> rapid method <str<strong>on</strong>g>of</str<strong>on</strong>g> their isolati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> purificati<strong>on</strong> from<br />

legume extracts, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g lup<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e (Gulewicz et al., 2000; Mart<str<strong>on</strong>g>in</str<strong>on</strong>g>ez-Villaluenga et al.,<br />

2004). It allows for wide studies <str<strong>on</strong>g>of</str<strong>on</strong>g> these sugars <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> their <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> activity. In fact,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> recent years, these compounds have been an object <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>of</str<strong>on</strong>g> nutriti<strong>on</strong>ists as<br />

<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s due to the fact that they modify the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the col<strong>on</strong> bacterial<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora.<br />

The chicken embryo is an excellent model for the <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological activity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural plant products <str<strong>on</strong>g>and</str<strong>on</strong>g> their effect <strong>on</strong> embry<strong>on</strong>ic development.<br />

Figure 4.2. Structures <str<strong>on</strong>g>of</str<strong>on</strong>g> sucrose <str<strong>on</strong>g>and</str<strong>on</strong>g> major RFOs (Avigad <str<strong>on</strong>g>and</str<strong>on</strong>g> Dey, 1997)<br />

4.3 Synbiotics<br />

Probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s act as growth promoters feed savers, nutriti<strong>on</strong>al bio-regulators,<br />

immune stimulators <str<strong>on</strong>g>and</str<strong>on</strong>g> help <str<strong>on</strong>g>in</str<strong>on</strong>g> improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> health (Falaki et al., 2011).<br />

44


In simplest def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>, symbiotic is a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s (Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Gibs<strong>on</strong>, 1999). This comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> can improve the viability <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic microorganisms,<br />

s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce they are able to use <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s as a substra for fermentati<strong>on</strong> (Bengmark, 2001).<br />

Synbiotics may be def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s that beneficially<br />

affects the host by improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the survival <str<strong>on</strong>g>and</str<strong>on</strong>g> implantati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> live microbial dietary<br />

supplements <str<strong>on</strong>g>in</str<strong>on</strong>g> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract (Gibs<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberfroid, 1995). The acquisiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

data <strong>on</strong> the efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> products as feed additives <str<strong>on</strong>g>in</str<strong>on</strong>g> livestock <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry needs<br />

further <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>. However, results <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> vivo trials are promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g, either <str<strong>on</strong>g>in</str<strong>on</strong>g> young<br />

animals or adults: the coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> a probiotic <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> could also yield a synergistic<br />

effect <str<strong>on</strong>g>in</str<strong>on</strong>g> the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> food-borne pathogenic bacterial populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> food animals prior<br />

to slaughter (Bomba et al., 2002).<br />

45


Chapter 5. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Probiotics, Prebiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> Synbiotics<br />

The adaptati<strong>on</strong> to the post hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g period <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased stressors, deriv<str<strong>on</strong>g>in</str<strong>on</strong>g>g from<br />

practices used <str<strong>on</strong>g>in</str<strong>on</strong>g> modern broiler producti<strong>on</strong>, e.g. feed changes or imbalances,<br />

transportati<strong>on</strong>, process<str<strong>on</strong>g>in</str<strong>on</strong>g>g at the hatchery <str<strong>on</strong>g>and</str<strong>on</strong>g> high stock<str<strong>on</strong>g>in</str<strong>on</strong>g>g densities (P<str<strong>on</strong>g>in</str<strong>on</strong>g>chasov <str<strong>on</strong>g>and</str<strong>on</strong>g> Noy,<br />

1993), may weaken immune functi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> thus predispose broilers to col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract by bacterial pathogens, pos<str<strong>on</strong>g>in</str<strong>on</strong>g>g a threat to birds health <str<strong>on</strong>g>and</str<strong>on</strong>g> food safety.<br />

Am<strong>on</strong>g pathogens, Salm<strong>on</strong>ella spp. has been the most studied because <str<strong>on</strong>g>of</str<strong>on</strong>g> its ability to<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fect chickens <str<strong>on</strong>g>and</str<strong>on</strong>g> hens <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> through the food cha<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

(Humphrey, 2006).<br />

In the last years, applicati<strong>on</strong> studies have been extended to other bacteria such as<br />

Campylobacter jejuni <str<strong>on</strong>g>and</str<strong>on</strong>g> Clostridium perfr<str<strong>on</strong>g>in</str<strong>on</strong>g>gens, which could be both c<strong>on</strong>sidered an<br />

emerg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g threat for poultry <str<strong>on</strong>g>and</str<strong>on</strong>g> human health (Humphrey et al., 2007; Van<br />

Immerseel et al., 2004). Probiotics could be a possible strategy to c<strong>on</strong>trol pathogens<br />

shedd<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> thus ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> a healthy <str<strong>on</strong>g>in</str<strong>on</strong>g>digenous gut microbiota.<br />

The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry is strictly associated with the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> CE. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce<br />

the first applicati<strong>on</strong>s <strong>on</strong> new hatched chicks, several experiments with undef<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed probiotic cultures have been developed <str<strong>on</strong>g>and</str<strong>on</strong>g> successfully applied to c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

reduce Salm<strong>on</strong>ella col<strong>on</strong>izati<strong>on</strong>. Moreover, it has been shown experimentally that the CE<br />

treatment also protect chicks aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st C. jejuni, Listeria m<strong>on</strong>ocytogenes, pathogenic E. coli,<br />

Yers<str<strong>on</strong>g>in</str<strong>on</strong>g>ia enterocolitica <str<strong>on</strong>g>and</str<strong>on</strong>g> C. perfr<str<strong>on</strong>g>in</str<strong>on</strong>g>gens (Nisbet, 2002; Schneitz, 2005).<br />

A variety <str<strong>on</strong>g>of</str<strong>on</strong>g> well-characterized probiotic stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s have been selected to evaluate the<br />

modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the avian gut microbiota <str<strong>on</strong>g>and</str<strong>on</strong>g> the protecti<strong>on</strong> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> pathogens;<br />

however there has been a recent <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Lactobacillus spp. to broilers, focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s previously selected <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro for adhesi<strong>on</strong><br />

properties <str<strong>on</strong>g>and</str<strong>on</strong>g> antimicrobial activity (Patters<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Burkholder, 2003).<br />

Higg<str<strong>on</strong>g>in</str<strong>on</strong>g>s et al. (2008) showed that Lactobacillus-based probiotic cultures reduced<br />

significantly Salm<strong>on</strong>ella enteritidis recovery <str<strong>on</strong>g>in</str<strong>on</strong>g> challenged ne<strong>on</strong>atal broiler chicks.<br />

Furthermore, the adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> by vent applicati<strong>on</strong>, compared to traditi<strong>on</strong>al applicati<strong>on</strong> by<br />

dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g water, resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> significant reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. enteritidis <strong>on</strong>e hour follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g oral<br />

challenge. In a previous trial, the same probiotic cultures affected the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S.<br />

enteritidis, both <str<strong>on</strong>g>in</str<strong>on</strong>g> cecal t<strong>on</strong>sils <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> caeca c<strong>on</strong>tent, whereas no relevant results were<br />

obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed towards S. thipymurium (Higg<str<strong>on</strong>g>in</str<strong>on</strong>g>s et al., 2007).<br />

No differences <str<strong>on</strong>g>in</str<strong>on</strong>g> cecal <str<strong>on</strong>g>and</str<strong>on</strong>g> col<strong>on</strong>ic counts were observed test<str<strong>on</strong>g>in</str<strong>on</strong>g>g the efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> L.<br />

johns<strong>on</strong>ii F19185 <str<strong>on</strong>g>in</str<strong>on</strong>g> reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> shedd<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> S. enteriditis <str<strong>on</strong>g>in</str<strong>on</strong>g> newly<br />

hatched chicks; nevertheless, the col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> E. coli O78K80 <str<strong>on</strong>g>and</str<strong>on</strong>g> Clostridium<br />

perfr<str<strong>on</strong>g>in</str<strong>on</strong>g>gens were compromised significantly (La Ragi<strong>on</strong>e et al., 2004). Lactobacilli were<br />

also successful <str<strong>on</strong>g>in</str<strong>on</strong>g> decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g mortality due to necrotic enteritis from 60% to 30% <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

challenge trial, when they were given orally to day-old chicks (H<str<strong>on</strong>g>of</str<strong>on</strong>g>acre et al., 2003).<br />

To date, few studies evidenced a possible role <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> prevent<str<strong>on</strong>g>in</str<strong>on</strong>g>g the shedd<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Campylobacter jejuni at the level <str<strong>on</strong>g>of</str<strong>on</strong>g> primary producti<strong>on</strong>, although <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro studies reported<br />

a str<strong>on</strong>g antimicrobial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> several species <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus towards this pathogen<br />

(Chaveerach et al., 2004; Fooks <str<strong>on</strong>g>and</str<strong>on</strong>g> Gibs<strong>on</strong>, 2002). Willis <str<strong>on</strong>g>and</str<strong>on</strong>g> Reid (2008) showed that C.<br />

jejuni presence was lower <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens fed with a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard diet supplemented with a<br />

46


m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum presence <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 8 cfu/gr <str<strong>on</strong>g>of</str<strong>on</strong>g> L. acidophilus, L. casei, Bifidobacterium thermophilus,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> E. faecium.<br />

With regard to probiotic microorganisms, other than Lactobacillus spp., Vila et al. (2009)<br />

reported a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. enteritidis col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vasi<strong>on</strong> by feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uously<br />

spores <str<strong>on</strong>g>of</str<strong>on</strong>g> the probiotic stra<str<strong>on</strong>g>in</str<strong>on</strong>g> B. cereus var. toyoi, both <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens <str<strong>on</strong>g>and</str<strong>on</strong>g> white<br />

leghorn chickens.<br />

In a study c<strong>on</strong>ducted by La Ragi<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> Woodward (2003), 1-day-old <str<strong>on</strong>g>and</str<strong>on</strong>g> 20-day-old<br />

specific pathogen free chicks were dosed with a suspensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B. subtilis spores prior to<br />

challenge with S. enteritidis <str<strong>on</strong>g>and</str<strong>on</strong>g> C. perfr<str<strong>on</strong>g>in</str<strong>on</strong>g>gens; the treatment suppressed completely the<br />

persistence <str<strong>on</strong>g>and</str<strong>on</strong>g> col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both pathogens. Studies test<str<strong>on</strong>g>in</str<strong>on</strong>g>g the use <str<strong>on</strong>g>and</str<strong>on</strong>g> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Bifidobacterium spp., follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g pathogen challenge, have not yet been described. Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly,<br />

authors have been focused <strong>on</strong> the beneficial impact <strong>on</strong> the gut microbiota <str<strong>on</strong>g>and</str<strong>on</strong>g> growth<br />

<strong>performance</strong> (Estrada et al., 2001; Jung et al., 2008).<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> bifidobacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g is less comm<strong>on</strong> with respect to lactobacilli<br />

adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong>. Al<strong>on</strong>g with the c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> foodborne pathogens <str<strong>on</strong>g>in</str<strong>on</strong>g> the avian gut, selected<br />

probiotic cultures, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly Lactobacillus spp., may also potentially <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <strong>performance</strong><br />

parameters; am<strong>on</strong>g poultry farmers, objectives such as <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g growth rate, improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

feed c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality are undoubtedly <str<strong>on</strong>g>of</str<strong>on</strong>g> primary importance.<br />

Kalavathy et al. (2003) found that a supplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> twelve Lactobacillus stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

broiler diets improved the body weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g>, feed c<strong>on</strong>versi<strong>on</strong> rate <str<strong>on</strong>g>and</str<strong>on</strong>g> was effective <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al fat depositi<strong>on</strong>.<br />

Mountzouris et al. (2007) <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated the efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> selected probiotic bacteria, isolated<br />

from the gut <str<strong>on</strong>g>of</str<strong>on</strong>g> healthy chickens (Lactobacillus reuteri, L. salivarius, Enterococcus<br />

faecium, Bifidobacterium animalis <str<strong>on</strong>g>and</str<strong>on</strong>g> Pediococcus acidi lactici) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> body weight, feed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>take <str<strong>on</strong>g>and</str<strong>on</strong>g> feed c<strong>on</strong>versi<strong>on</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens; overall the probiotic formula added to<br />

water <str<strong>on</strong>g>and</str<strong>on</strong>g> feed displayed a growth-promot<str<strong>on</strong>g>in</str<strong>on</strong>g>g effect that was comparable to avilamyc<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

treatment. In additi<strong>on</strong>, the probiotic cultures modulated the compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the enzymatic<br />

activities <str<strong>on</strong>g>of</str<strong>on</strong>g> the cecal microbiota, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a significant probiotic effect.<br />

To date, probiotics are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> major food supplements for poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

c<strong>on</strong>cerns about cholesterol, there are a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> attempts to produce foods with low<br />

cholesterol. It has been reported that L. acidophilus can absorb cholesterol from <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro<br />

system <str<strong>on</strong>g>and</str<strong>on</strong>g> this phenomen<strong>on</strong> can decrease the cholesterol level <str<strong>on</strong>g>of</str<strong>on</strong>g> medium (Gillil<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Speck, 1977; Gillil<str<strong>on</strong>g>and</str<strong>on</strong>g> et al., 1985). There are reports that probiotics can reduce the<br />

cholesterol level <str<strong>on</strong>g>of</str<strong>on</strong>g> blood <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens (Mohan et al., 1996; Khani et al, 2008).<br />

P<str<strong>on</strong>g>and</str<strong>on</strong>g>a et al. (2003) reported that probiotics cause the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> serum <str<strong>on</strong>g>and</str<strong>on</strong>g> yolk<br />

cholesterol <str<strong>on</strong>g>and</str<strong>on</strong>g> also the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> egg producti<strong>on</strong>.<br />

The cholesterol level <str<strong>on</strong>g>of</str<strong>on</strong>g> serum significantly decreased <str<strong>on</strong>g>in</str<strong>on</strong>g> groups supplemented with<br />

probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> compared to c<strong>on</strong>trol group. L. acidophilus is capable to dec<strong>on</strong>jucate glyco<br />

cholic <str<strong>on</strong>g>and</str<strong>on</strong>g> taurocholic acids under anaerobic c<strong>on</strong>diti<strong>on</strong> (Gillil<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Speck, 1977).<br />

Dec<strong>on</strong>jucati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gallbladder acids <str<strong>on</strong>g>in</str<strong>on</strong>g> small <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e can affects c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> serum<br />

cholesterol, while dec<strong>on</strong>jucated acids are not capable to solve <str<strong>on</strong>g>and</str<strong>on</strong>g> absorb fatty acids as<br />

c<strong>on</strong>jucated acids. As a c<strong>on</strong>sequence,they prevent from absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cholesterol. Also free<br />

gallbladder acids attach to bacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> fibres <str<strong>on</strong>g>and</str<strong>on</strong>g> this can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease the excreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> them.<br />

47


Probiotic prescripti<strong>on</strong> is a good alternative for antibiotics for several reas<strong>on</strong>s: suitable<br />

functi<strong>on</strong>, n<strong>on</strong>-existence <str<strong>on</strong>g>of</str<strong>on</strong>g> residue <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry producti<strong>on</strong>s, envir<strong>on</strong>mental protecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

also prohibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics usage <str<strong>on</strong>g>in</str<strong>on</strong>g> Europe uni<strong>on</strong> (Dilworth <str<strong>on</strong>g>and</str<strong>on</strong>g> Day, 1978; Tortuero<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Fern<str<strong>on</strong>g>and</str<strong>on</strong>g>ez, 1995).<br />

The <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> approach has not a l<strong>on</strong>g history <str<strong>on</strong>g>of</str<strong>on</strong>g> use <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens (Yang et al., 2009).<br />

However, applicati<strong>on</strong> studies have been <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the last years to assess their effect <strong>on</strong><br />

gut health, <strong>performance</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pathogen shedd<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Xu et al. (2003) found a<br />

dose-dependent effect <str<strong>on</strong>g>of</str<strong>on</strong>g> FOS <strong>on</strong> average daily ga<str<strong>on</strong>g>in</str<strong>on</strong>g>; whereas Juskiewicz et al. (2006)<br />

reported no impact <strong>on</strong> the <strong>performance</strong> or productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> turkeys after feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g for eight<br />

weeks with different amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> FOS. By feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g chycory fructans to broilers, Yusrizal<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Chen (2003a) showed an improvement <str<strong>on</strong>g>in</str<strong>on</strong>g> weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g>, feed c<strong>on</strong>versi<strong>on</strong>, carcass weight<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> serum cholesterol decrease; additi<strong>on</strong>ally, the supplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fructans resulted <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> lactobacilli counts <str<strong>on</strong>g>in</str<strong>on</strong>g> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract <str<strong>on</strong>g>and</str<strong>on</strong>g> Campylobacter <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Salm<strong>on</strong>ella decrease (Yusrizal <str<strong>on</strong>g>and</str<strong>on</strong>g> Chen, 2003b). Klessen et al. (2003) described decreased<br />

C. perfr<str<strong>on</strong>g>in</str<strong>on</strong>g>gens number <str<strong>on</strong>g>and</str<strong>on</strong>g> a reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> bacterial endotox<str<strong>on</strong>g>in</str<strong>on</strong>g> levels by add<str<strong>on</strong>g>in</str<strong>on</strong>g>g 0,5% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fructan-rich Jerusalem artichokes syrup <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g water. No weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g> was<br />

observed <str<strong>on</strong>g>in</str<strong>on</strong>g> turkeys fed with two different c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ul<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

mannanoligosaccharides (Stanczuk et al., 2005), whereas Sims et al. (2004) reported an<br />

improvement <strong>on</strong> live weight after feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g turkeys a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard diet supplemented with MOS.<br />

Yeast cell wall c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g MOS reduced <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al Salm<strong>on</strong>ella c<strong>on</strong>centrati<strong>on</strong>s by 26% <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

broiler chicks compared with chicks fed with an unsupplemented diet (Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g et al., 2000,<br />

Gaggìa et al., 2010). Thitaram et al. (2005), with different amounts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

isomaltooligosaccharide, showed a significant 2-log reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>oculated S.<br />

enterica serovar typhimurium present <str<strong>on</strong>g>in</str<strong>on</strong>g> the caeca <str<strong>on</strong>g>of</str<strong>on</strong>g> young broiler chickens. Feed<br />

c<strong>on</strong>sumpti<strong>on</strong>, feed c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> feed efficiency were not significant compared to the<br />

c<strong>on</strong>trol; however, the IMO c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g diets significantly <str<strong>on</strong>g>in</str<strong>on</strong>g>creased the number <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al bifidobacteria. Feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g young chicks with five different oligosaccharides (<str<strong>on</strong>g>in</str<strong>on</strong>g>ul<str<strong>on</strong>g>in</str<strong>on</strong>g>,<br />

olig<str<strong>on</strong>g>of</str<strong>on</strong>g>ructose, mannanoligosaccharide, shortcha<str<strong>on</strong>g>in</str<strong>on</strong>g> fructooligosaccharide, <str<strong>on</strong>g>and</str<strong>on</strong>g> transgalactooligosaccharide)<br />

did not registered any significant resp<strong>on</strong>ses <str<strong>on</strong>g>in</str<strong>on</strong>g> weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g> for any<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the oligosaccharides; moreover the study outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed that high dosage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s can<br />

have negative effects <strong>on</strong> the gut system <str<strong>on</strong>g>and</str<strong>on</strong>g> retard the growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> birds (Biggs et al.,<br />

2007).<br />

Likewise, a recent study reported no effects <str<strong>on</strong>g>in</str<strong>on</strong>g> body weight, feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take <str<strong>on</strong>g>and</str<strong>on</strong>g> feed<br />

c<strong>on</strong>versi<strong>on</strong> ratio <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens fed with a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard diet <str<strong>on</strong>g>and</str<strong>on</strong>g> GOS at two different<br />

c<strong>on</strong>centrati<strong>on</strong>s; however the study clearly showed a significant <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

bifidobacteria populati<strong>on</strong> (Jung et al., 2008). Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly, <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s seem to enhance<br />

selectively lactobacilli <str<strong>on</strong>g>and</str<strong>on</strong>g> bifidobacteria populati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> reduce col<strong>on</strong>izati<strong>on</strong> by<br />

pathogenic bacteria (Biggs <str<strong>on</strong>g>and</str<strong>on</strong>g> Pars<strong>on</strong>s, 2008; Baurhoo et al., 2009). Results <strong>on</strong> animal<br />

<strong>performance</strong>, either with a probiotic or a <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> treatment, are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>tradictory <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

mostly affected by the microorganisms or compound chosen, the dietary supplementati<strong>on</strong><br />

level, <str<strong>on</strong>g>and</str<strong>on</strong>g> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> use. In many cases, the envir<strong>on</strong>mental <str<strong>on</strong>g>and</str<strong>on</strong>g> the stress status <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

animals are not reported or c<strong>on</strong>sidered as the experimental sett<str<strong>on</strong>g>in</str<strong>on</strong>g>g are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten too far from<br />

the farm c<strong>on</strong>diti<strong>on</strong>s.<br />

48


Recent development <str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> products have been focused <strong>on</strong> the<br />

assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> beneficial effects <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry health <str<strong>on</strong>g>and</str<strong>on</strong>g> producti<strong>on</strong>; however, there is still<br />

scarce <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> available to date. Mohnl et al. (2007) found that a <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> product had<br />

a comparable potential to improve broiler <strong>performance</strong> as avilamyc<str<strong>on</strong>g>in</str<strong>on</strong>g> treatment. A<br />

Lactobacillus spp.-based probiotic product, <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with dietary lactose, was<br />

successfully assessed, improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g body weight <str<strong>on</strong>g>and</str<strong>on</strong>g> feed c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Salm<strong>on</strong>ellachallenged<br />

turkeys (Vicente et al., 2007). Li et al. (2008), add<str<strong>on</strong>g>in</str<strong>on</strong>g>g FOS <str<strong>on</strong>g>and</str<strong>on</strong>g> B. subtilis to the<br />

diet, observed that average daily ga<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> feed c<strong>on</strong>versi<strong>on</strong> ratio were improved; diarrhoea<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> mortality rate were reduced compared to aureomyc<str<strong>on</strong>g>in</str<strong>on</strong>g> treatment. A c<strong>on</strong>siderable<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the bifidobacteria, lactobacilli <str<strong>on</strong>g>and</str<strong>on</strong>g> total anaerobes populati<strong>on</strong>s has been shown<br />

by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a diet c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a GOS <str<strong>on</strong>g>and</str<strong>on</strong>g> Bifidobacterium lactis; <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trast,<br />

no effect <strong>on</strong> body weight, feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take <str<strong>on</strong>g>and</str<strong>on</strong>g> feed c<strong>on</strong>versi<strong>on</strong> has been observed (Jung et al.,<br />

2008). Awad et al. (2009) <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a dietary treatment with a <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g><br />

product (a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> E. faecium, a <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> derived from chicory, <str<strong>on</strong>g>and</str<strong>on</strong>g> an immune<br />

modulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g substances derived from sea algae) <strong>on</strong> broiler chickens. The body weight,<br />

average daily weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g>, carcass yield percentage, <str<strong>on</strong>g>and</str<strong>on</strong>g> feed c<strong>on</strong>versi<strong>on</strong> rate were<br />

significantly <str<strong>on</strong>g>in</str<strong>on</strong>g>creased compared with the c<strong>on</strong>trol, whereas no <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> organs weight<br />

was found with excepti<strong>on</strong> for the small <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e; a significant <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the villus height<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> both duodenum <str<strong>on</strong>g>and</str<strong>on</strong>g> ileum was also observed. Overall, all the authors agreed that a<br />

symbiotic product displayed a greater effect than <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual preparati<strong>on</strong>s (Awad et al.,<br />

2009; Jung et al., 2008; Revolledo et al., 2009; V<str<strong>on</strong>g>and</str<strong>on</strong>g>eplas et al., 2009). This coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

could represent an important <str<strong>on</strong>g>and</str<strong>on</strong>g> synergic strategy to improve gut health <str<strong>on</strong>g>of</str<strong>on</strong>g> chickens from<br />

the first days <str<strong>on</strong>g>of</str<strong>on</strong>g> life <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol pathogen release <str<strong>on</strong>g>in</str<strong>on</strong>g> the envir<strong>on</strong>ment decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g the risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

foodborne <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> humans. Thus, future research <str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> field trials are<br />

necessary to look for new comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with the aim to produce st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard safe compositi<strong>on</strong><br />

at a high functi<strong>on</strong>al level (Gaggìa et al., 2010).<br />

49


Chapter 6. Aid<str<strong>on</strong>g>in</str<strong>on</strong>g>g embryo nutriti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g><br />

6.1 Hatchery hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g period<br />

It is comm<strong>on</strong> practice <str<strong>on</strong>g>in</str<strong>on</strong>g> the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry to hold poults without feed <str<strong>on</strong>g>and</str<strong>on</strong>g> water for<br />

many hours after hatch. Poults may rema<str<strong>on</strong>g>in</str<strong>on</strong>g> for up to 36 hours after hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g before they<br />

are pulled from the hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g cab<str<strong>on</strong>g>in</str<strong>on</strong>g>et, <str<strong>on</strong>g>and</str<strong>on</strong>g> then it may take an additi<strong>on</strong>al 72 hours before<br />

they are be serviced <str<strong>on</strong>g>and</str<strong>on</strong>g> transported to brooder farms where they f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally have access to<br />

feed <str<strong>on</strong>g>and</str<strong>on</strong>g> water. Poult servic<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes sex<str<strong>on</strong>g>in</str<strong>on</strong>g>g, toe trimm<str<strong>on</strong>g>in</str<strong>on</strong>g>g, snood removal, beak<br />

trimm<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics (D<strong>on</strong>alds<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Christensen, 1991; D<strong>on</strong>alds<strong>on</strong> et al.,<br />

1991). After endur<str<strong>on</strong>g>in</str<strong>on</strong>g>g this stress <str<strong>on</strong>g>of</str<strong>on</strong>g> servic<str<strong>on</strong>g>in</str<strong>on</strong>g>g poults are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten held <str<strong>on</strong>g>in</str<strong>on</strong>g> transportati<strong>on</strong> boxes<br />

stacked <str<strong>on</strong>g>in</str<strong>on</strong>g> a dim room for up to 24 hours so they can recover <str<strong>on</strong>g>and</str<strong>on</strong>g> endure the stress <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transport <str<strong>on</strong>g>and</str<strong>on</strong>g> placement. D<strong>on</strong>alds<strong>on</strong> et al. (1991) c<strong>on</strong>firmed that poults recuperate liver<br />

glycogen c<strong>on</strong>centrati<strong>on</strong> to levels prior to servic<str<strong>on</strong>g>in</str<strong>on</strong>g>g when held for 24 hours, however this<br />

glycogen status recover occurs at the expense <str<strong>on</strong>g>of</str<strong>on</strong>g> cataboliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g their own prote<str<strong>on</strong>g>in</str<strong>on</strong>g> reserves<br />

(D<strong>on</strong>alds<strong>on</strong>, 1995; Keirs et al., 2002) s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce they have no access to feed or water dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g this<br />

time. Several studies were performed to evaluate the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> this early fast<str<strong>on</strong>g>in</str<strong>on</strong>g>g period <strong>on</strong><br />

poult development, compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g hatchl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs that were held for 24 hours with those given ad<br />

libitum access to feed <str<strong>on</strong>g>and</str<strong>on</strong>g> water immediately after they were removed from the hatcher.<br />

Careghi et al. (2005) observed that broiler chicks fed immediately after hatch showed<br />

higher weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g> later <str<strong>on</strong>g>in</str<strong>on</strong>g> life as compared to the held chicks, <str<strong>on</strong>g>and</str<strong>on</strong>g> that late hatchers<br />

benefit more from early access to feed. Uni et al. (1998) dem<strong>on</strong>strated that early fast<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

clearly delays gut maturati<strong>on</strong>, affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the development <str<strong>on</strong>g>of</str<strong>on</strong>g> mucosal morphology <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al enzyme activity. Fed poults <str<strong>on</strong>g>and</str<strong>on</strong>g> chicks also have more goblet cells per villus, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

more proliferat<str<strong>on</strong>g>in</str<strong>on</strong>g>g enterocytes, <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trast to more apoptotic cells <str<strong>on</strong>g>in</str<strong>on</strong>g> fasted birds (Uni et<br />

al., 1998; Potturi et al., 2005; Smirnov et al., 2006). Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Potturi et al. (2005),<br />

poults fed immediately after hatch had 5.0μm l<strong>on</strong>ger <str<strong>on</strong>g>and</str<strong>on</strong>g> 6.8μm wider <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al villi, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

5.6μm deeper villi crypts than fasted-held poults. These fasted poults also had more<br />

aerobic bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> their small <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e (Potturi et al., 2005). Feed restricti<strong>on</strong> early <str<strong>on</strong>g>in</str<strong>on</strong>g> life<br />

also programmed birds for obesity later <str<strong>on</strong>g>in</str<strong>on</strong>g> life (Zhan et al., 2007) by permanently alter<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

energy related enzyme producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>. Velleman <str<strong>on</strong>g>and</str<strong>on</strong>g> Mozdziak (2005) found<br />

reduced muscle growth am<strong>on</strong>g chicks that experienced a 72 hour <str<strong>on</strong>g>of</str<strong>on</strong>g> fast<str<strong>on</strong>g>in</str<strong>on</strong>g>g after hatch.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the literature sited above, there is great <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> ways to aid poult nutriti<strong>on</strong><br />

before placement, as Careghi et al. (2005) suggested to provide an energy source <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

hatch basked <str<strong>on</strong>g>and</str<strong>on</strong>g> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g transport. There are several other management practices <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong>s that can accentuate the adverse effects <str<strong>on</strong>g>of</str<strong>on</strong>g> a l<strong>on</strong>g post-hatch hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g period,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g egg storage period, egg size, <str<strong>on</strong>g>and</str<strong>on</strong>g> hatch w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow. There are many factors that may<br />

delay the <str<strong>on</strong>g>in</str<strong>on</strong>g>itiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>and</str<strong>on</strong>g> it is a challenge to manage all these factors to reduce<br />

their impact <strong>on</strong> hatchability, viability <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>performance</strong>. New technologies are welcome <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

necessary to address these problems.<br />

While changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the way hatcheries h<str<strong>on</strong>g>and</str<strong>on</strong>g>le poults have not been implemented dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

last 3 decades, a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> studies have been focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> early feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g. One hypothesis is that<br />

hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g the first feed formulated to improve gut development could compensate for the<br />

previous l<strong>on</strong>g period <str<strong>on</strong>g>of</str<strong>on</strong>g> fast<str<strong>on</strong>g>in</str<strong>on</strong>g>g. For example, feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g yeast extract to turkey poults has<br />

50


een shown to accelerate gut maturati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> comparis<strong>on</strong> to poults fed regular diets (Solis de<br />

los Santos et al., 2007). Even just the physical presence <str<strong>on</strong>g>of</str<strong>on</strong>g> solids with no nutritive value <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e is enough to stimulate maturati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth, but with no last<str<strong>on</strong>g>in</str<strong>on</strong>g>g effects (Noy<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Sklan, 1998a). Early feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g stimulates gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al motility <str<strong>on</strong>g>and</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> yolk sac<br />

nutrients necessary for growth (Noy <str<strong>on</strong>g>and</str<strong>on</strong>g> Sklan, 1998a, 1998b, 1999a, 2001). Offer<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

glucose <str<strong>on</strong>g>in</str<strong>on</strong>g> dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g water was the earliest <str<strong>on</strong>g>in</str<strong>on</strong>g>itiative to improve chick energy status, but the<br />

practice was later found to be detrimental because glucose suppresses gluc<strong>on</strong>eogenesis,<br />

which is the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy to the early hatchl<str<strong>on</strong>g>in</str<strong>on</strong>g>g (D<strong>on</strong>alds<strong>on</strong>, 1995). One other<br />

opti<strong>on</strong> is to <str<strong>on</strong>g>of</str<strong>on</strong>g>fer feed <str<strong>on</strong>g>in</str<strong>on</strong>g> the transport boxes, which led to the design <str<strong>on</strong>g>of</str<strong>on</strong>g> products like Oasis<br />

(Novus Internati<strong>on</strong>al, Inc., MO), which is made <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, carbohydrate, fat <str<strong>on</strong>g>and</str<strong>on</strong>g> fiber <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

green granular form. The product attracts chicks <str<strong>on</strong>g>and</str<strong>on</strong>g> poults to eat dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g transport or when<br />

dressed <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> feed trays <str<strong>on</strong>g>in</str<strong>on</strong>g> the brooder house. Although gavage <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients is not<br />

practical under commercial c<strong>on</strong>diti<strong>on</strong>s, it was found to be effective as Oasis <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

body weight <str<strong>on</strong>g>and</str<strong>on</strong>g> breast meat yield (Noy <str<strong>on</strong>g>and</str<strong>on</strong>g> Sklan, 1999b). Even at market age early fed<br />

birds were 8-10% heavier <str<strong>on</strong>g>and</str<strong>on</strong>g> had 7-9% bigger breasts than birds held without feed (Noy<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Sklan, 1998a, 1999b). Another opti<strong>on</strong> tested was subcutaneous <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients at<br />

servic<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Gluc<strong>on</strong>eogenic substrates like am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids <str<strong>on</strong>g>and</str<strong>on</strong>g> vitam<str<strong>on</strong>g>in</str<strong>on</strong>g>s were <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g><br />

subcutaneously <str<strong>on</strong>g>in</str<strong>on</strong>g> just hatched broiler chicks <str<strong>on</strong>g>and</str<strong>on</strong>g> resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> 10% ga<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> body weight <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

24 hours <str<strong>on</strong>g>and</str<strong>on</strong>g> nearly double their weights <str<strong>on</strong>g>in</str<strong>on</strong>g> 96 hours due to reduced tissue catabolism<br />

(Keirs et al., 2002; Peebles et al., 2006). Another study test<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

alan<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>cluded that under proper brood<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> timely feed provisi<strong>on</strong>, growth<br />

was not improved (D<strong>on</strong>alds<strong>on</strong>, 1995; Keirs et al., 2002; Peebles et al., 2006). John et al.<br />

(1987) tested the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> immerg<str<strong>on</strong>g>in</str<strong>on</strong>g>g eggs <str<strong>on</strong>g>in</str<strong>on</strong>g> a glucose-antibiotic soluti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> saw no<br />

differences <str<strong>on</strong>g>in</str<strong>on</strong>g> glycogen reserves, but an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <strong>on</strong> lactate, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>creased glycolysis.<br />

From all opti<strong>on</strong>s tested, early feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g seems to be the most advantageous, while gavage,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> egg dipp<str<strong>on</strong>g>in</str<strong>on</strong>g>g showed to be unpractical or have <str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>sistent results.<br />

6.2 In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g (IOF) c<strong>on</strong>cept<br />

To date, approximately 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers are vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong>. In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong><br />

technology not <strong>on</strong>ly provides a method for vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, but also a practical means by<br />

which to safely <str<strong>on</strong>g>in</str<strong>on</strong>g>troduce external nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g>to develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g embryos. Vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

manufacturers today are desir<str<strong>on</strong>g>in</str<strong>on</strong>g>g to develop new products that can be <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> to<br />

enhance vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>e efficacy <str<strong>on</strong>g>and</str<strong>on</strong>g> to improve broiler embryogenesis <str<strong>on</strong>g>and</str<strong>on</strong>g> posthatch<br />

<strong>performance</strong>. Nutrients <str<strong>on</strong>g>and</str<strong>on</strong>g> other metabolic compounds for <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong>, such as am<str<strong>on</strong>g>in</str<strong>on</strong>g>o<br />

acids, carbohydrates, vitam<str<strong>on</strong>g>in</str<strong>on</strong>g>s, stimulants, <str<strong>on</strong>g>and</str<strong>on</strong>g> horm<strong>on</strong>es, are under <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> (Gore<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Qureshi, 1997; Johnst<strong>on</strong> et al., 1997; Henry <str<strong>on</strong>g>and</str<strong>on</strong>g> Burke, 1999; Kocamis et al., 1999,<br />

2000; Ohta et al., 1999; Jochemsen <str<strong>on</strong>g>and</str<strong>on</strong>g> Jeurissen, 2002; Tako et al., 2004; Uni et al., 2005;<br />

Foye et al., 2006; Kadam et al., 2008; Zhai et al., 2008; Keralapurath et al., 2010a,b).<br />

Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g late embryogenesis, soluti<strong>on</strong>s <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the amni<strong>on</strong>ic fluid are subsequently<br />

swallowed, digested, <str<strong>on</strong>g>and</str<strong>on</strong>g> absorbed by the embryo before pipp<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Uni et al., 2005). In <str<strong>on</strong>g>ovo</str<strong>on</strong>g><br />

feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> supplemental nutrients may help late-term embryos to overcome the c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> limited egg nutrients (Foye et al., 2006). Rapid growth coupled with a high energy<br />

requirement, especially dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g late embryogenesis, may make <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

supplemental carbohydrates beneficial to broiler embryos. In fact, it was hypothesized that<br />

51


the adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various types <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrates to the amni<strong>on</strong> may improve the energy<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> the broiler embryo <str<strong>on</strong>g>and</str<strong>on</strong>g> reduce <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal energy c<strong>on</strong>sumpti<strong>on</strong> (prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> lipids)<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g pipp<str<strong>on</strong>g>in</str<strong>on</strong>g>g, thereby <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g subsequent hatchability <str<strong>on</strong>g>and</str<strong>on</strong>g> chick body weight. It has<br />

previously been shown that the <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrates dissolved <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

sal<str<strong>on</strong>g>in</str<strong>on</strong>g>e (sucrose (a m<strong>on</strong>osaccharide), maltose (a disaccharide), <str<strong>on</strong>g>and</str<strong>on</strong>g> dextr<str<strong>on</strong>g>in</str<strong>on</strong>g> (a<br />

polysaccharide) with or without β-hydroxy-β-methylbutyrate (HMB, a leuc<str<strong>on</strong>g>in</str<strong>on</strong>g>e metabolite)<br />

<strong>on</strong> day 17 or 17.5 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> improved embry<strong>on</strong>ic <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al development <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

subsequently <str<strong>on</strong>g>in</str<strong>on</strong>g>creased total chick body weight at hatch (Tako et al., 2004; Uni <str<strong>on</strong>g>and</str<strong>on</strong>g> Ferket,<br />

2004; Uni et al., 2005; Smirnov et al., 2006).<br />

The greatest opportunity to facilitate improvements <str<strong>on</strong>g>in</str<strong>on</strong>g> hatchability <str<strong>on</strong>g>and</str<strong>on</strong>g> hatchl<str<strong>on</strong>g>in</str<strong>on</strong>g>g viability<br />

was, for a l<strong>on</strong>g time, to change <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s. In the early days <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry,<br />

Smith (1937) advised farmers to <str<strong>on</strong>g>in</str<strong>on</strong>g>vest <str<strong>on</strong>g>in</str<strong>on</strong>g> turkey hen nutriti<strong>on</strong> because, after the egg was<br />

laid, it was impossible to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease any <str<strong>on</strong>g>of</str<strong>on</strong>g> the food essentials for development <str<strong>on</strong>g>and</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the embryo until it hatches. In the beg<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the 80’s, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> technology has become an<br />

alternative to the vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chicks aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st disease (Sharma <str<strong>on</strong>g>and</str<strong>on</strong>g> Burmester,<br />

1982). In fact, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st Marek’s disease was proven to be effective<br />

aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st early exposure to the virus (Sharma <str<strong>on</strong>g>and</str<strong>on</strong>g> Burmester, 1982). These same authors<br />

developed a successful method <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong>. Experimental <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs, vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g> the egg dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> was tested al<strong>on</strong>g the<br />

years. The <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g> the egg dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> is d<strong>on</strong>e by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g special<br />

needle that is <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced through the shell <str<strong>on</strong>g>and</str<strong>on</strong>g> membranes until the tip reaches the target<br />

(the amni<strong>on</strong>), deliver<str<strong>on</strong>g>in</str<strong>on</strong>g>g nutrients without harm<str<strong>on</strong>g>in</str<strong>on</strong>g>g the embryo (Figure 6.1)<br />

Figure 6.1. Schematic representati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong><br />

A summary <str<strong>on</strong>g>of</str<strong>on</strong>g> early research papers menti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> is presented <strong>on</strong><br />

Table 6.1.<br />

Table 6.1. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> research papers menti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> substances<br />

Article In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> substance Target<br />

Balaban <str<strong>on</strong>g>and</str<strong>on</strong>g> Hill, 1971 L-thyrox<str<strong>on</strong>g>in</str<strong>on</strong>g>e, thiourea embryo<br />

Al-Murrani, 1982 am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids yolk<br />

Decuypere et al., 1982 Iopanoic acid allanotic circulati<strong>on</strong><br />

Sharma <str<strong>on</strong>g>and</str<strong>on</strong>g> Burmester, 1982,<br />

vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>es<br />

amni<strong>on</strong>/embryo<br />

1984<br />

Sharma, 1984 vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>es amni<strong>on</strong>/embryo<br />

52


Sharma, 1985 vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>es amni<strong>on</strong>/embryo<br />

Wakenell <str<strong>on</strong>g>and</str<strong>on</strong>g> Sharma, 1986 vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>es amni<strong>on</strong>/embryo<br />

Iqbal et al., 1987 methimazole allanotic circulati<strong>on</strong><br />

Hargis et al., 1989 growth horm<strong>on</strong>e albumen<br />

Ahmad <str<strong>on</strong>g>and</str<strong>on</strong>g> Sharma, 1992 vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>es amni<strong>on</strong>/embryo<br />

Sharma et al., 1994 vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>es amni<strong>on</strong>/embryo<br />

Johnst<strong>on</strong> et al., 1997 vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>es amni<strong>on</strong>/embryo<br />

Edens et al., 1997 lactobacillus air cell, amni<strong>on</strong>, embryo<br />

Kocamis et al., 1999 growth horm<strong>on</strong>e albumen (pre-<str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong>)<br />

Henry <str<strong>on</strong>g>and</str<strong>on</strong>g> Burke, 1999 testoster<strong>on</strong>e, anti<str<strong>on</strong>g>and</str<strong>on</strong>g>rogen albumen (pre-<str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong>)<br />

Coles et al., 1999 peptide yy air cell<br />

McReynolds et al., 2000 antibiotics amni<strong>on</strong><br />

Williams <str<strong>on</strong>g>and</str<strong>on</strong>g> Brake, 2000 fungicides, mold <str<strong>on</strong>g>in</str<strong>on</strong>g>hibitors air cell<br />

Williams et al., 2000<br />

c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated air<br />

air cell<br />

antibodies aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st adipocyte<br />

Wu et al., 2000 membrane allantoic circulati<strong>on</strong><br />

Kocamis et al., 2000 <str<strong>on</strong>g>in</str<strong>on</strong>g>sul<str<strong>on</strong>g>in</str<strong>on</strong>g>-like growth factor-i albumen<br />

Ohta <str<strong>on</strong>g>and</str<strong>on</strong>g> Kidd, 2001 am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids yolk<br />

Otha et al., 2001 am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids yolk<br />

Jochemsen <str<strong>on</strong>g>and</str<strong>on</strong>g> Jeurissen, 2002 detectable particles <str<strong>on</strong>g>and</str<strong>on</strong>g> vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>es amni<strong>on</strong><br />

Weber et al., 2004 Eimeria air cell<br />

Tako et al., 2004 carbohydrates, HMB amni<strong>on</strong><br />

Uni et al., 2005 carbohydrate, HMB amni<strong>on</strong><br />

Tako et al., 2005<br />

z<str<strong>on</strong>g>in</str<strong>on</strong>g>c-methi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

amni<strong>on</strong><br />

egg white, HMB<br />

Foye, 2005 carbohydrate, arg<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>e amni<strong>on</strong><br />

Moore, 2005 egg white, HMB amni<strong>on</strong><br />

Smirnov et al., 2006 carbohydrates amni<strong>on</strong><br />

Foye et al., 2006 egg white, HMB, carbohydrates amni<strong>on</strong><br />

Kim et al., 2006 antibodies aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st myostat<str<strong>on</strong>g>in</str<strong>on</strong>g> albumen or yolk<br />

Matsushita et al., 2006 pesticides albumen (pre-<str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong>)<br />

Pedrosa et al., 2006 glucose amni<strong>on</strong><br />

Kim et al., 2007 antibodies aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st myostat<str<strong>on</strong>g>in</str<strong>on</strong>g> yolk<br />

The <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> studies presented <strong>on</strong> Table 6.1 show a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> substances be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

different compartments <str<strong>on</strong>g>of</str<strong>on</strong>g> the egg. The first studies <str<strong>on</strong>g>of</str<strong>on</strong>g> Balaban <str<strong>on</strong>g>and</str<strong>on</strong>g> Hill (1971), Al-<br />

Murrani (1982), Sharma <str<strong>on</strong>g>and</str<strong>on</strong>g> Burmester (1982), Sharma <str<strong>on</strong>g>and</str<strong>on</strong>g> Burmester (1984) determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

that <str<strong>on</strong>g>in</str<strong>on</strong>g>ject<str<strong>on</strong>g>in</str<strong>on</strong>g>g soluti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the air cell or <strong>on</strong> the chorioallantoic membrane depressed<br />

hatchability. Balaban <str<strong>on</strong>g>and</str<strong>on</strong>g> Hill (1971) proved that hatchability is dependent <strong>on</strong> thyroid<br />

horm<strong>on</strong>es, which was later c<strong>on</strong>firmed by Decuypere et al. (1982). Al-Murrani (1982) was<br />

the first to attempt improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g embryo body weight by add<str<strong>on</strong>g>in</str<strong>on</strong>g>g am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids to the yolk sac<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chicken embryos at 7 days <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong>. He c<strong>on</strong>cluded that embryos used the extra<br />

prote<str<strong>on</strong>g>in</str<strong>on</strong>g> to grow heavier <strong>on</strong>ly when they reached late embry<strong>on</strong>ic growth, <str<strong>on</strong>g>and</str<strong>on</strong>g> that<br />

supplemented chicks were heavier all the way to market age. His idea was not to make <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ovo</str<strong>on</strong>g> supplementati<strong>on</strong> commercially viable, but to prove that lay<str<strong>on</strong>g>in</str<strong>on</strong>g>g hens needed additi<strong>on</strong>al<br />

prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> their diets.<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the studies d<strong>on</strong>e dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g two decades were focused <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g><br />

vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (Johnst<strong>on</strong> et al., 1997). Research was d<strong>on</strong>e to test the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> growth horm<strong>on</strong>e<br />

53


(Hargis et al., 1989; Kocamis et al., 1999), testoster<strong>on</strong>e (Henry <str<strong>on</strong>g>and</str<strong>on</strong>g> Burke, 1999), peptide<br />

YY (Coles et al., 1999), antibiotics (McReynolds et al., 2000), <str<strong>on</strong>g>in</str<strong>on</strong>g>sul<str<strong>on</strong>g>in</str<strong>on</strong>g>-like growth factor-I<br />

(Kocamis, et al., 2000), pathogens (Williams et al., 2000; Weber, et al., 2004), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fungicides <str<strong>on</strong>g>and</str<strong>on</strong>g> toxic compounds (Williams et al., 2000; Matsushita et al., 2006). Otha et al.<br />

(2001) resumed Al-Murrani’s work, with the goal to improve hatchability <str<strong>on</strong>g>and</str<strong>on</strong>g> chick weight<br />

(Ohta <str<strong>on</strong>g>and</str<strong>on</strong>g> Kidd, 2001; Ohta et al., 2001); to that end, they <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> a mixed am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid<br />

soluti<strong>on</strong> similar to the am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> egg white <str<strong>on</strong>g>in</str<strong>on</strong>g>to different embry<strong>on</strong>ic<br />

compartments <strong>on</strong> day 7 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> then, they c<strong>on</strong>cluded that the yolk sac or the<br />

extra-embry<strong>on</strong>ic cavity was the best target for am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> at 7 days <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong><br />

to positively affect hatchability. However, <str<strong>on</strong>g>in</str<strong>on</strong>g>ject<str<strong>on</strong>g>in</str<strong>on</strong>g>g this am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid soluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the<br />

amni<strong>on</strong> at 7 days <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> embry<strong>on</strong>ic death with<str<strong>on</strong>g>in</str<strong>on</strong>g> 24 hours. Yolk <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

extra-embry<strong>on</strong>ic coelom supplemented chicks hatched heavier than the c<strong>on</strong>trols (Ohta <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Kidd, 2001), <str<strong>on</strong>g>and</str<strong>on</strong>g> had higher am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> their tissues (Ohta et al., 2001).<br />

In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> has become a widely adopted practice by the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry (Johnst<strong>on</strong><br />

et al., 1997), <str<strong>on</strong>g>and</str<strong>on</strong>g> after the technology was patented (Sharma <str<strong>on</strong>g>and</str<strong>on</strong>g> Burmester, 1984). In fact,<br />

Uni <str<strong>on</strong>g>and</str<strong>on</strong>g> Ferket (2003) patented (Uni <str<strong>on</strong>g>and</str<strong>on</strong>g> Ferket 2003, US patent, 6.592.878) the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g a nutritive soluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the amniotic fluid so as to “feed” supplemental<br />

nutrients to the embryo which c<strong>on</strong>sumes the amniotic fluid prior to hatch. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

Uni <str<strong>on</strong>g>and</str<strong>on</strong>g> Ferket (2004), if early access to feed is critical for early development post-hatch,<br />

then feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g the embryo before hatch by <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> would be expected to<br />

enhance hatchability, <str<strong>on</strong>g>and</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> the digestive tract, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>crease body weight <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

nutriti<strong>on</strong>al status <str<strong>on</strong>g>of</str<strong>on</strong>g> the hatchl<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Smith (2006b) menti<strong>on</strong>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> techniques as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

biggest c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry research, al<strong>on</strong>g with feather sex<str<strong>on</strong>g>in</str<strong>on</strong>g>g, nutriti<strong>on</strong>al strategies to<br />

avoid leg problems, blood screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g to elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate pathogen carriers, <str<strong>on</strong>g>and</str<strong>on</strong>g> genome<br />

sequenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g over early feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g is the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> help<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the struggl<str<strong>on</strong>g>in</str<strong>on</strong>g>g embryos to hatch. The IOF may not replace the benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> early feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g, but<br />

it should potentialize its effects if both practices were comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, <str<strong>on</strong>g>and</str<strong>on</strong>g> at least m<str<strong>on</strong>g>in</str<strong>on</strong>g>imize the<br />

adverse effects <str<strong>on</strong>g>of</str<strong>on</strong>g> post-hatch hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g if the poults do not have access to early feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Many studies have been c<strong>on</strong>ducted c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the development <str<strong>on</strong>g>of</str<strong>on</strong>g> techniques for <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g><br />

feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g>, to that end, researchers c<strong>on</strong>cluded that <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g must be applied while<br />

the embryo c<strong>on</strong>sumes the amniotic fluid, be<str<strong>on</strong>g>in</str<strong>on</strong>g>g around embry<strong>on</strong>ic day (ED) 17 until ED 18<br />

for chicken embryos, as the amniotic fluid is orally c<strong>on</strong>sumed by the embryos towards<br />

hatch <str<strong>on</strong>g>and</str<strong>on</strong>g>, therefore, nutrients are delivered to the embry<strong>on</strong>ic <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al development <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> is <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated with <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amniotic<br />

c<strong>on</strong>tents while feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take after hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g will cause a further stimulati<strong>on</strong>. In additi<strong>on</strong>, both<br />

IOF <str<strong>on</strong>g>and</str<strong>on</strong>g> early feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g after hatch improve body weight until at least 35 days post-hatch<br />

(Uni <str<strong>on</strong>g>and</str<strong>on</strong>g> Ferket, 2004; Uni et al., 2005). Therefore, the questi<strong>on</strong> arises if there is a carryover<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> IOF <strong>on</strong> the already beneficial effects <str<strong>on</strong>g>of</str<strong>on</strong>g> early feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g after hatch. An<br />

argument for this carry-over effect is based <strong>on</strong> muscle growth post-hatch. Satellite cell<br />

mitotic activity is the highest <str<strong>on</strong>g>in</str<strong>on</strong>g> the per<str<strong>on</strong>g>in</str<strong>on</strong>g>atal period <str<strong>on</strong>g>and</str<strong>on</strong>g> decreases with birds age<br />

(Velleman, 2007). Delay <str<strong>on</strong>g>in</str<strong>on</strong>g> feed access decreases satellite cell mitotic activity when<br />

compared to their fed counterparts (Halevy et al., 2000; Mozdziak et al., 2002; Moore et<br />

al., 2005). Therefore, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g may <str<strong>on</strong>g>in</str<strong>on</strong>g>duce proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> myoblasts dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

embry<strong>on</strong>ic development <str<strong>on</strong>g>and</str<strong>on</strong>g> could be resp<strong>on</strong>sible for a higher number <str<strong>on</strong>g>of</str<strong>on</strong>g> satellite cells <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

54


early post-hatch development. In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g, gender <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile affected<br />

embryo development <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> enteric development <str<strong>on</strong>g>and</str<strong>on</strong>g> maturati<strong>on</strong>, (Uni <str<strong>on</strong>g>and</str<strong>on</strong>g> Ferket,<br />

2004; Tako et al., 2005; Smirnov et al., 2006; Uni et al., 2006), improves hatchability<br />

(Ferket et al., 2005), <str<strong>on</strong>g>and</str<strong>on</strong>g> energy status (Uni et al., 2005). <str<strong>on</strong>g>and</str<strong>on</strong>g> post-hatch <strong>performance</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g body weight <str<strong>on</strong>g>and</str<strong>on</strong>g> relative pectoral muscle size at hatch (Ferket et al., 2005; Uni<br />

et al., 2005).<br />

This improved nutriti<strong>on</strong>al status <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> fed birds is expected to yield several advantages:<br />

more efficient feed nutrient utilizati<strong>on</strong>; reduced post-hatch mortality <str<strong>on</strong>g>and</str<strong>on</strong>g> morbidity;<br />

improved immune resp<strong>on</strong>se to enteric antigens; deduced <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> developmental<br />

skeletal disorders; <str<strong>on</strong>g>in</str<strong>on</strong>g>creased muscle development <str<strong>on</strong>g>and</str<strong>on</strong>g> breast meat yield. These benefits<br />

will ultimately reduce the producti<strong>on</strong> cost per kg <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sumable poultry meat. At the time<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hatch, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> fed birds had gastro-<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tracts that were functi<strong>on</strong>ally at a similar<br />

stage <str<strong>on</strong>g>of</str<strong>on</strong>g> development as a c<strong>on</strong>venti<strong>on</strong>al 2-day old chick <str<strong>on</strong>g>of</str<strong>on</strong>g>fered feed immediately after<br />

hatch.<br />

Therefore, the <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> technology may revoluti<strong>on</strong>ize early nutriti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> even <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong><br />

practices. The challenge is to overcome the IOF formulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> delivery c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

order to be commercially applied <strong>on</strong> large scale applicati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> even to achieve a better<br />

return <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestment.<br />

6.3 The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pre/probiotic <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g><br />

The pre/probiotics could be a reas<strong>on</strong>able alternative to antibiotics, however their exact<br />

mode <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> is still not def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. There are several hypotheses which are discussed<br />

below. Initially, it was suggested that adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic bacteria directly to<br />

ne<strong>on</strong>ates reduced <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong> by pathogens because <str<strong>on</strong>g>of</str<strong>on</strong>g> the “competitive exclusi<strong>on</strong>” between<br />

the bacteria. Currently, it is understood that the commensal bacteria can prevent <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong><br />

by pathogens through ma<str<strong>on</strong>g>in</str<strong>on</strong>g>tenance <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrity <str<strong>on</strong>g>of</str<strong>on</strong>g> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the immune system. The suggested mode <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics acti<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cludes: (i) ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g normal <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora by competitive exclusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

antag<strong>on</strong>ism (ii) alter<str<strong>on</strong>g>in</str<strong>on</strong>g>g metabolism by <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g digestive enzyme activity <str<strong>on</strong>g>and</str<strong>on</strong>g> decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

bacterial enzyme activity <str<strong>on</strong>g>and</str<strong>on</strong>g> amm<strong>on</strong>ia producti<strong>on</strong> (iii) improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

digesti<strong>on</strong>; (iv) stimulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the immune system (reviewed <str<strong>on</strong>g>in</str<strong>on</strong>g> Kabir, 2009). Underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the complete mechanism, effectiveness, <str<strong>on</strong>g>and</str<strong>on</strong>g> potential effect <str<strong>on</strong>g>of</str<strong>on</strong>g> bioactives like pre-/pro-/<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s have been hampered till now by the unavailability <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

methods used, especially:<br />

a) mode <str<strong>on</strong>g>of</str<strong>on</strong>g> bioactive adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong>;<br />

b) microbiota identificati<strong>on</strong>;<br />

c) microbiome-host <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s.<br />

A major problem with the use <str<strong>on</strong>g>of</str<strong>on</strong>g> bioactives is their efficient adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> under fully<br />

c<strong>on</strong>trolled c<strong>on</strong>diti<strong>on</strong>s. In order to be effective, they have to be adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered to animal as<br />

early <str<strong>on</strong>g>in</str<strong>on</strong>g> life as possible. Above that unc<strong>on</strong>trolled variables (i.e. water quality) should be<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>imized. To elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate some <str<strong>on</strong>g>of</str<strong>on</strong>g> these factors that could <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the resp<strong>on</strong>ses to<br />

bioactives, the <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> technology <str<strong>on</strong>g>of</str<strong>on</strong>g> these bioactives, directly <str<strong>on</strong>g>in</str<strong>on</strong>g>to a chicken<br />

embryo, has been def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed (Gulewicz <str<strong>on</strong>g>and</str<strong>on</strong>g> Bednarczyk, Polish patent Nb. 197726). By <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong>, pre-/pro-/<str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s are adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered as early <str<strong>on</strong>g>in</str<strong>on</strong>g> life as possible, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

55


unc<strong>on</strong>trolled envir<strong>on</strong>mental factors are m<str<strong>on</strong>g>in</str<strong>on</strong>g>imized <str<strong>on</strong>g>and</str<strong>on</strong>g>/or elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated. The chicken is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the primary models for embryology <str<strong>on</strong>g>and</str<strong>on</strong>g> development because its embry<strong>on</strong>ic development<br />

occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g>. Avian eggs <str<strong>on</strong>g>of</str<strong>on</strong>g>fer a mechanism for study<str<strong>on</strong>g>in</str<strong>on</strong>g>g embry<strong>on</strong>ic development <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

pathology <str<strong>on</strong>g>in</str<strong>on</strong>g> detail, because the chicken embryo is readily accessible from the period <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gastrulati<strong>on</strong> through neurulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> organogenesis until hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g. In additi<strong>on</strong>, the period<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> embry<strong>on</strong>ic development <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken comprises 21 days <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> <strong>on</strong>ly, <str<strong>on</strong>g>and</str<strong>on</strong>g> as a<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> it reproducti<strong>on</strong> a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs, embryos or progeny are possible. It is a<br />

comm<strong>on</strong> op<str<strong>on</strong>g>in</str<strong>on</strong>g>i<strong>on</strong> that embry<strong>on</strong>ic development <str<strong>on</strong>g>of</str<strong>on</strong>g> the chicken happens <str<strong>on</strong>g>in</str<strong>on</strong>g> sterile<br />

envir<strong>on</strong>ment (Amit-Romach et al., 2004) <str<strong>on</strong>g>and</str<strong>on</strong>g> the first c<strong>on</strong>tact with micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora occurs <strong>on</strong>ly<br />

after hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Although Deem<str<strong>on</strong>g>in</str<strong>on</strong>g>g (2005) found that microorganisms may be <str<strong>on</strong>g>in</str<strong>on</strong>g>ternalized<br />

from yolk at 18 day <str<strong>on</strong>g>of</str<strong>on</strong>g> embry<strong>on</strong>ic development. Pedrosa (2009) discovered that the<br />

embryo’s <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract is far from sterile <str<strong>on</strong>g>and</str<strong>on</strong>g> this pi<strong>on</strong>eer microbial community<br />

dem<strong>on</strong>strates signs <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the last 4-5 days before hatch. Inoculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pre- or<br />

probiotics to the embryo can stimulate/modulate very early the develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g immune<br />

mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>nate <str<strong>on</strong>g>and</str<strong>on</strong>g> adaptive immunity, <str<strong>on</strong>g>and</str<strong>on</strong>g> this fact may be more important<br />

than competitive exclusi<strong>on</strong> the digestive tract, especially cecum. Studies compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

biological activity <str<strong>on</strong>g>of</str<strong>on</strong>g> various oligosaccharides us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the chicken embryo model require the<br />

prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many factors as time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> preparati<strong>on</strong><br />

dose. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Johnst<strong>on</strong> et al. (1997), different factors <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence effective delivery <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> substances to embryos. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s, the additi<strong>on</strong>al source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variati<strong>on</strong> that <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced the resp<strong>on</strong>se to <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> is the time from its <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong><br />

to hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g, necessary to promote the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> bifidobacteria. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, after<br />

twelve days <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong>, the completely developed <str<strong>on</strong>g>and</str<strong>on</strong>g> highly vascularized<br />

allantochori<strong>on</strong> serves as the more efficient transport route from air cell to the blood<br />

(Roman<str<strong>on</strong>g>of</str<strong>on</strong>g>f, 1960). However, studies c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the way that oligosaccharide preparati<strong>on</strong>s<br />

applied dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g embryogenesis <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence post-embry<strong>on</strong>ic development <str<strong>on</strong>g>of</str<strong>on</strong>g> organisms (for<br />

example <strong>on</strong> meat trials <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler), the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> oligosaccharides <strong>on</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> other bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g harmful <str<strong>on</strong>g>and</str<strong>on</strong>g> toxic <strong>on</strong>es, or oligosaccharides as substitutes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

antibiotics <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g embryo development are presently be<str<strong>on</strong>g>in</str<strong>on</strong>g>g undertaken<br />

(Villaluenga et al., 2004).<br />

It has been dem<strong>on</strong>strated that a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to 12 day old chicken<br />

embryo leads to an <str<strong>on</strong>g>in</str<strong>on</strong>g>creased number <str<strong>on</strong>g>of</str<strong>on</strong>g> bifidobacteria at the moment <str<strong>on</strong>g>of</str<strong>on</strong>g> hatch, <str<strong>on</strong>g>and</str<strong>on</strong>g> it also<br />

assures the l<strong>on</strong>g-term ma<str<strong>on</strong>g>in</str<strong>on</strong>g>tenance <str<strong>on</strong>g>of</str<strong>on</strong>g> a high level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e bifidobacteria (Villaluenga et<br />

al., 2004; Pilarski et al., 2005). The same <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> approach realized <strong>on</strong> a<br />

large scale (1.9 mili<strong>on</strong> broilers) <str<strong>on</strong>g>in</str<strong>on</strong>g> the field c<strong>on</strong>diti<strong>on</strong> suggests that the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s to the chicken diet can be successfully replaced by <str<strong>on</strong>g>in</str<strong>on</strong>g>ject<str<strong>on</strong>g>in</str<strong>on</strong>g>g these compounds <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> very low doses (Bednarczyk et al., 2009, 2011a). This method <str<strong>on</strong>g>of</str<strong>on</strong>g> pre/(<str<strong>on</strong>g>and</str<strong>on</strong>g> possibly)<br />

probiotic <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> has an additi<strong>on</strong>al advantage. Such an <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> with fully<br />

def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed dose <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> bioactives provided directly to the chicken embryo realizes<br />

two goals: firstly an immune system is fully developed <str<strong>on</strong>g>and</str<strong>on</strong>g> can pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it from these<br />

bioactives, <str<strong>on</strong>g>and</str<strong>on</strong>g> sec<strong>on</strong>dly a chicken embryo is not c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ated <str<strong>on</strong>g>and</str<strong>on</strong>g> might be populated<br />

with the beneficial bacteria.<br />

Prebiotic adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> could have, also, a positive effect <strong>on</strong> chicken hatchability<br />

even if literature reports few works about this <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> not so clear results. In fact,<br />

56


Bednarczyk et al. (2011b) found that the hatchability percentage was significantly higher<br />

for chicken treated with antibiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g water <str<strong>on</strong>g>in</str<strong>on</strong>g> comparis<strong>on</strong> to the eggs <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ovo</str<strong>on</strong>g> with RFOs <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s. The exact reas<strong>on</strong> for the decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> hatchability <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g><br />

embryos is unknown. In fact, different factors <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the hatchability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g><br />

embryos, as site <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong>, features <str<strong>on</strong>g>and</str<strong>on</strong>g> doses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> substances <str<strong>on</strong>g>and</str<strong>on</strong>g> technology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong>. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> a caecal culture c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g highly proteolytic organisms resulted <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

depressed hatchability, when the material was <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced <str<strong>on</strong>g>in</str<strong>on</strong>g>to the air cell. Introduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

preparati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the amni<strong>on</strong> killed all the embryos (Edens et al., 1997). However,<br />

Lactobacillus reuteri could be adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> hatchability (Edens et<br />

al., 1997). Their unpublished data, c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g 1.9 milli<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treated embryos, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated<br />

that the different hatchability effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> depended <strong>on</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong><br />

technology used, <str<strong>on</strong>g>and</str<strong>on</strong>g> was +1.7%, -3.2%, <str<strong>on</strong>g>and</str<strong>on</strong>g> -1.5%, compared to the c<strong>on</strong>trol group<br />

(Bednarczyk et al., 2011b).<br />

6.4 In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts<br />

Ent<str<strong>on</strong>g>in</str<strong>on</strong>g>g et al. (2007) tested breeder diets with different nutrient densities <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>cluded that<br />

available practical diets produced eggs with reduced egg white compared to a c<strong>on</strong>trol diet.<br />

The authors c<strong>on</strong>cluded that the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> egg white <str<strong>on</strong>g>in</str<strong>on</strong>g> these eggs at the time <str<strong>on</strong>g>of</str<strong>on</strong>g> lay was<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>sufficient to susta<str<strong>on</strong>g>in</str<strong>on</strong>g> proper embry<strong>on</strong>ic development. This is <strong>on</strong>e situati<strong>on</strong> where IOF can<br />

be beneficial to the embryos. However, several technical questi<strong>on</strong>s need to be addressed<br />

for IOF to succeed under commercial c<strong>on</strong>diti<strong>on</strong>s: 1) what is the best time to <str<strong>on</strong>g>in</str<strong>on</strong>g>ject (embryo<br />

age or stage <str<strong>on</strong>g>of</str<strong>on</strong>g> development); 2) how much volume can or need to be <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g>; 3) what is<br />

the best osmolality <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong> so it will not harm amni<strong>on</strong>/embryo osmotic balance; 4)<br />

what nutrients <str<strong>on</strong>g>and</str<strong>on</strong>g> how much can be <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> fed without <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g metabolic load or<br />

caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g toxicity to the embryo. Therefore, questi<strong>on</strong>s related to the physical c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the egg <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolic c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>of</str<strong>on</strong>g> the embryo must be answered.<br />

The idea <str<strong>on</strong>g>of</str<strong>on</strong>g> supplement<str<strong>on</strong>g>in</str<strong>on</strong>g>g carbohydrates to chicks <str<strong>on</strong>g>and</str<strong>on</strong>g> poults <str<strong>on</strong>g>in</str<strong>on</strong>g>to the amni<strong>on</strong> before hatch<br />

may seem simple, but it is technologically difficult. As already menti<strong>on</strong>ed, just giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

glucose <str<strong>on</strong>g>in</str<strong>on</strong>g> the dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g water to chicks at placement ended up be<str<strong>on</strong>g>in</str<strong>on</strong>g>g detrimental because it<br />

suppressed gluc<strong>on</strong>eogenic enzymatic activity (D<strong>on</strong>alds<strong>on</strong>, 1995). So the k<str<strong>on</strong>g>in</str<strong>on</strong>g>d <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient<br />

that can be <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> fed <str<strong>on</strong>g>and</str<strong>on</strong>g> how it will affect embry<strong>on</strong>ic metabolism must be carefully<br />

studied. A popular trade magaz<str<strong>on</strong>g>in</str<strong>on</strong>g>e asked the questi<strong>on</strong>s: “Can nutriti<strong>on</strong>ists f<str<strong>on</strong>g>in</str<strong>on</strong>g>d ways to put<br />

more vitality <str<strong>on</strong>g>in</str<strong>on</strong>g>to day-olds”, <str<strong>on</strong>g>and</str<strong>on</strong>g> “Will it be via breeder feed or by direct applicati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

the egg” (Horrox, 2006). S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce it is difficult to <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence egg compositi<strong>on</strong> via hen<br />

nutriti<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g>fers an <str<strong>on</strong>g>in</str<strong>on</strong>g>trigu<str<strong>on</strong>g>in</str<strong>on</strong>g>g soluti<strong>on</strong>.<br />

57


Chapter 7: Structural <str<strong>on</strong>g>and</str<strong>on</strong>g> biochemical aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry muscle<br />

7.1 Muscle structure<br />

The meat sold <str<strong>on</strong>g>in</str<strong>on</strong>g> the market is based <strong>on</strong> skeletal muscle. A muscle is usually enclosed by a<br />

thick sheath <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>nective tissue, the epimysium (Figure 7.1a), <str<strong>on</strong>g>and</str<strong>on</strong>g> divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to bundles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fibres by a c<strong>on</strong>nective tissue network, the perimysium. The <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual muscle fibres are<br />

surrounded by a plasma membrane itself bound by a th<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>nective tissue network, the<br />

endomysium. This c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a base membrane surrounded by a reticular layer, <str<strong>on</strong>g>in</str<strong>on</strong>g> which<br />

collagen fibrils are set <str<strong>on</strong>g>in</str<strong>on</strong>g> a matrix.<br />

Figure 7.1.a Diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle <str<strong>on</strong>g>and</str<strong>on</strong>g> associated c<strong>on</strong>nective tissues<br />

From http://www.ivy-rose.co.uk (viewed April 25th , 2013)<br />

The skeletal muscle is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> numerous muscle fibers. Each muscle fiber is a<br />

mult<str<strong>on</strong>g>in</str<strong>on</strong>g>ucleated, cross-striated cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical cell <str<strong>on</strong>g>and</str<strong>on</strong>g> shows very regular crossways striati<strong>on</strong>s<br />

al<strong>on</strong>g their length (between 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 300 mm). Fiber c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a cell membrane called<br />

sarcolemma, which encloses the cytoplasm (sarcoplasm). There are two types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

substances embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> the sarcoplasm: (i) several nuclei arranged at the periphery<br />

beneath the sarcolemma; (ii) a number <str<strong>on</strong>g>of</str<strong>on</strong>g> evenly distributed l<strong>on</strong>gitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al threads called<br />

my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrils. Each my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibril shows alternate light <str<strong>on</strong>g>and</str<strong>on</strong>g> dark b<str<strong>on</strong>g>and</str<strong>on</strong>g>s. Dark b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are<br />

anisotropic <str<strong>on</strong>g>and</str<strong>on</strong>g> thus are known as A-b<str<strong>on</strong>g>and</str<strong>on</strong>g>s. The light b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are isotropic <str<strong>on</strong>g>and</str<strong>on</strong>g> thus are<br />

known as I-b<str<strong>on</strong>g>and</str<strong>on</strong>g>s. The b<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> adjacent fibrils are aligned transversely, so that the muscle<br />

fiber appears cross striated. In the middles <str<strong>on</strong>g>of</str<strong>on</strong>g> the A b<str<strong>on</strong>g>and</str<strong>on</strong>g> (dark b<str<strong>on</strong>g>and</str<strong>on</strong>g>) there is a light H<br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g>. In the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the H b<str<strong>on</strong>g>and</str<strong>on</strong>g> there is a dark M l<str<strong>on</strong>g>in</str<strong>on</strong>g>e. In the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the I b<str<strong>on</strong>g>and</str<strong>on</strong>g> (light<br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g>) there is a dark Z disk also known as Krause’s membrane. The segment <str<strong>on</strong>g>of</str<strong>on</strong>g> my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibril<br />

between successive two Z-l<str<strong>on</strong>g>in</str<strong>on</strong>g>e is called sarcomere, which represent the structural unit <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrils (Figure 7.1b). The striati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrils are caused by a highly organized<br />

array <str<strong>on</strong>g>of</str<strong>on</strong>g> two k<str<strong>on</strong>g>in</str<strong>on</strong>g>ds <str<strong>on</strong>g>of</str<strong>on</strong>g> filaments: the thick filaments <str<strong>on</strong>g>and</str<strong>on</strong>g> the th<str<strong>on</strong>g>in</str<strong>on</strong>g> filaments (Warris, 2000).<br />

58


Figure 7.1b The fibrous microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> meat<br />

From http://comenius.susqu.edu/bi/320/L5%20Muscle.ppt (viewed April 25th , 2013)<br />

The slid<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> my<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments relative to each other occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g animals<br />

with the c<strong>on</strong>tracti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated by the nervous system. This c<strong>on</strong>tracti<strong>on</strong> occurs by the act<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> myos<str<strong>on</strong>g>in</str<strong>on</strong>g> filaments slid<str<strong>on</strong>g>in</str<strong>on</strong>g>g with respect to each other. This activity is <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated by release<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> calcium from the sarcoplasmic reticulum. Then activated <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued by ATP.<br />

Usually as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> death, the muscles are <str<strong>on</strong>g>in</str<strong>on</strong>g> rigor which means <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

calcium <str<strong>on</strong>g>and</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> ATP. The depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle energy stocks leads to rigor mortis<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a change <str<strong>on</strong>g>in</str<strong>on</strong>g> status i.e. the muscles becomes meat (Warris, 2000).<br />

7.1.1 Prote<str<strong>on</strong>g>in</str<strong>on</strong>g> accreti<strong>on</strong><br />

Increas<str<strong>on</strong>g>in</str<strong>on</strong>g>g growth rate also changes the prote<str<strong>on</strong>g>in</str<strong>on</strong>g> dynamics. Accreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle is a<br />

dynamic process between oppos<str<strong>on</strong>g>in</str<strong>on</strong>g>g anabolism <str<strong>on</strong>g>and</str<strong>on</strong>g> catabolism <str<strong>on</strong>g>and</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> either or<br />

both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the equilibrium will result <str<strong>on</strong>g>in</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscle. Adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

b-ag<strong>on</strong>ists results <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle hypertrophy <str<strong>on</strong>g>in</str<strong>on</strong>g> rats, lambs, cattle, <str<strong>on</strong>g>and</str<strong>on</strong>g> chickens by chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the proteolytic activity. In the study <str<strong>on</strong>g>of</str<strong>on</strong>g> Reeds et al. (1986), adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the b-ag<strong>on</strong>ist,<br />

clenbuterol, to rats suggested that the hypertrophy was entirely due to a reduced prote<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

catabolism. Degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscular prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s therefore c<strong>on</strong>stitutes an important regulatory<br />

mechanism for muscle growth (Goll et al., 1992). There are three proteolytic systems <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

muscle: the catheps<str<strong>on</strong>g>in</str<strong>on</strong>g>s (lysosomal), the calpa<str<strong>on</strong>g>in</str<strong>on</strong>g>s (calcium-dependent) <str<strong>on</strong>g>and</str<strong>on</strong>g> the proteasome<br />

(adenos<str<strong>on</strong>g>in</str<strong>on</strong>g>e triphosphate (ATP)/ubiquit<str<strong>on</strong>g>in</str<strong>on</strong>g> dependent). All <str<strong>on</strong>g>of</str<strong>on</strong>g> these enzymes have been<br />

sequenced <str<strong>on</strong>g>and</str<strong>on</strong>g> specific <str<strong>on</strong>g>in</str<strong>on</strong>g>hibitors (cystat<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> calpastat<str<strong>on</strong>g>in</str<strong>on</strong>g>, respectively) have been<br />

purified for the first two systems. In vivo, the proteasome appears to be resp<strong>on</strong>sible for the<br />

majority <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> turnover (Goldberg et al., 1997), calpa<str<strong>on</strong>g>in</str<strong>on</strong>g>s appear to be resp<strong>on</strong>sible for<br />

the degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cytoskelet<strong>on</strong>, whereas lysosomal activity <str<strong>on</strong>g>in</str<strong>on</strong>g>creases after damage or<br />

disease. The catheps<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> calpa<str<strong>on</strong>g>in</str<strong>on</strong>g>s have been studied extensively, but little <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> is<br />

available <strong>on</strong> proteasome <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to muscle growth. Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> growth rate<br />

<strong>on</strong> the proteolytic capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> breast muscle (Table 7.1) show that slow grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g birds have<br />

59


a higher ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> enzyme to <str<strong>on</strong>g>in</str<strong>on</strong>g>hibitor. In the slow-grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g birds, the enzyme is <str<strong>on</strong>g>in</str<strong>on</strong>g> excess,<br />

whereas <str<strong>on</strong>g>in</str<strong>on</strong>g> fast-grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g birds, the <str<strong>on</strong>g>in</str<strong>on</strong>g>hibitor is <str<strong>on</strong>g>in</str<strong>on</strong>g> excess. White Leghorns showed the<br />

largest proteolytic capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the calpa<str<strong>on</strong>g>in</str<strong>on</strong>g> system <str<strong>on</strong>g>and</str<strong>on</strong>g> a high activity <str<strong>on</strong>g>of</str<strong>on</strong>g> catheps<str<strong>on</strong>g>in</str<strong>on</strong>g> H <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

cystat<str<strong>on</strong>g>in</str<strong>on</strong>g>s.<br />

Stra<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Table 7.1. Proteolytic capacities <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to growth rate 1<br />

Feed c<strong>on</strong>versi<strong>on</strong><br />

ratio<br />

μ-Calpa<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Catheps<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

B <str<strong>on</strong>g>and</str<strong>on</strong>g> L<br />

Catheps<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

H<br />

White Leghorns 2.527 7.08 3.40 1.44<br />

Ross 1.758 0.37 1.53 1.28<br />

Very high growth rate 1.701 0.57 1.29 1.09<br />

1 Values are the potential proteolytic activities for calpa<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> catheps<str<strong>on</strong>g>in</str<strong>on</strong>g>s taken as the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> enzyme to that <str<strong>on</strong>g>of</str<strong>on</strong>g> their specific <str<strong>on</strong>g>in</str<strong>on</strong>g>hibitor for Pectoralis muscles from male chickens from White<br />

Leghorn (650 g at 6 wk), Ross (2.4 kg at 6 wk), <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e selected for very high growth rate (2.5 kg at 6<br />

wk). Data taken from Schreurs et al. (1995). Enzyme activities are <str<strong>on</strong>g>in</str<strong>on</strong>g> micromoles <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate per m<str<strong>on</strong>g>in</str<strong>on</strong>g>ute<br />

per gram <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle.<br />

These studies suggest that the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased growth <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle mass <str<strong>on</strong>g>in</str<strong>on</strong>g> modern l<str<strong>on</strong>g>in</str<strong>on</strong>g>es could be<br />

largely governed by reduced prote<str<strong>on</strong>g>in</str<strong>on</strong>g> catabolism. Catheps<str<strong>on</strong>g>in</str<strong>on</strong>g>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> particularly calpa<str<strong>on</strong>g>in</str<strong>on</strong>g>s,<br />

have been implicated <str<strong>on</strong>g>in</str<strong>on</strong>g> postmortem proteolysis <str<strong>on</strong>g>and</str<strong>on</strong>g> weaken<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscle fibers<br />

lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to tenderizati<strong>on</strong>. With the reduced proteolytic potential <str<strong>on</strong>g>in</str<strong>on</strong>g> faster grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<str<strong>on</strong>g>in</str<strong>on</strong>g>es,<br />

there is less activity <str<strong>on</strong>g>and</str<strong>on</strong>g>, therefore, reduced tenderizati<strong>on</strong>. (Dransfield <str<strong>on</strong>g>and</str<strong>on</strong>g> Sosnicki, 1999)<br />

7.1.2 Postmortem events<br />

After death <str<strong>on</strong>g>of</str<strong>on</strong>g> the animal, anaerobic metabolism reduces the pH from about 7.2 <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle<br />

to 5.8 <str<strong>on</strong>g>in</str<strong>on</strong>g> meat <str<strong>on</strong>g>and</str<strong>on</strong>g> stiffness develops (rigor mortis). The rate <str<strong>on</strong>g>of</str<strong>on</strong>g> rigor mortis development<br />

can be affected at all stages <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> (Fr<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g et al., 1978), both pre- <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

postslaughter, <str<strong>on</strong>g>and</str<strong>on</strong>g> variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> its rate <str<strong>on</strong>g>in</str<strong>on</strong>g> turn affect the sensory <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>al properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> raw meat <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> further processed products (Richards<strong>on</strong>, 1995). Heat stress is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent ante mortem envir<strong>on</strong>mental factors that cause a rapid early postmortem<br />

glycolysis (McKee <str<strong>on</strong>g>and</str<strong>on</strong>g> Sams, 1997). Glycolytic fibers have a more rapid rigor mortis<br />

development. Thus <str<strong>on</strong>g>in</str<strong>on</strong>g> beef, rigor would normally take about a day, whereas <str<strong>on</strong>g>in</str<strong>on</strong>g> pork, rigor<br />

is complete <str<strong>on</strong>g>in</str<strong>on</strong>g> several hours <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> chicken breast muscle takes about 1h. Growth<br />

<strong>performance</strong> can <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the rate <str<strong>on</strong>g>and</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> rigor development <str<strong>on</strong>g>in</str<strong>on</strong>g> the meat. For<br />

example, the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> pH fall was the same <str<strong>on</strong>g>in</str<strong>on</strong>g> breast muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> selected l<str<strong>on</strong>g>in</str<strong>on</strong>g>es for high growth<br />

rate but a prote<str<strong>on</strong>g>in</str<strong>on</strong>g>-<str<strong>on</strong>g>in</str<strong>on</strong>g>efficient l<str<strong>on</strong>g>in</str<strong>on</strong>g>e (White Leghorn) had higher ultimate pH values (Schreurs<br />

et al., 1995). At high ultimate pH, water-hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g properties <str<strong>on</strong>g>of</str<strong>on</strong>g> myos<str<strong>on</strong>g>in</str<strong>on</strong>g> will rema<str<strong>on</strong>g>in</str<strong>on</strong>g> high.<br />

Also, <str<strong>on</strong>g>in</str<strong>on</strong>g> fast-grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g turkeys, the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> pH decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> pectoral muscle was about 0.04<br />

units/m<str<strong>on</strong>g>in</str<strong>on</strong>g>, about twice the rate than that <str<strong>on</strong>g>of</str<strong>on</strong>g> a slow grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<str<strong>on</strong>g>in</str<strong>on</strong>g>e (Santé et al., 1995). The<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> pH decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e varies am<strong>on</strong>g chicken genetic l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>and</str<strong>on</strong>g> between <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual birds,<br />

typically pH values at 15 m<str<strong>on</strong>g>in</str<strong>on</strong>g>. after slaughter vary from 6.2 to 6.6 (Gardzielewska et al.,<br />

1995). Arbor Acres broilers showed the fastest decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e with 6% <str<strong>on</strong>g>of</str<strong>on</strong>g> breast muscles hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g a<br />

pH 5.7. In commercial producti<strong>on</strong>, with the variety <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental factors, pH at 15 m<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

60


postmortem may typically vary from 6.2 to 6.8 <str<strong>on</strong>g>in</str<strong>on</strong>g> breast muscle from 10-wk-old turkey<br />

hens <str<strong>on</strong>g>and</str<strong>on</strong>g> vary more widely <str<strong>on</strong>g>in</str<strong>on</strong>g> male <str<strong>on</strong>g>and</str<strong>on</strong>g> female chicken muscles. Rapid pH decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e at high<br />

temperature will <str<strong>on</strong>g>in</str<strong>on</strong>g>activate the calpa<str<strong>on</strong>g>in</str<strong>on</strong>g> system <str<strong>on</strong>g>and</str<strong>on</strong>g> reduce postmortem tenderizati<strong>on</strong><br />

(Dransfield, 1994), lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to toughen<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Table 7.2). With a faster pH decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e, myos<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

will be more susceptible to denaturati<strong>on</strong>. Rapid denaturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> myos<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases the<br />

likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced water hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity, pale color, similar to pale, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

exudative (PSE) c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> pork. In vitro studies show that lower<str<strong>on</strong>g>in</str<strong>on</strong>g>g the pH by 1 unit<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> denaturati<strong>on</strong> 12 times (Offer, 1991).<br />

Table 7.2. Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> rigor mortis development <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat<br />

Rapid chill<br />

Slow chill<br />

Rapid rigor<br />

High drip, pale meat,<br />

tough, rapid ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Slow rigor<br />

High drip, tough,<br />

slow ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Temperature is also critical, with an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 C (<str<strong>on</strong>g>in</str<strong>on</strong>g> the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 C)<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g denaturati<strong>on</strong> 20-fold. Thus, the potential detrimental PSE-like effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fastgrow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>es could be partially <str<strong>on</strong>g>of</str<strong>on</strong>g>fset by <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass cool<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Table 7.2).<br />

However, rapid cool<str<strong>on</strong>g>in</str<strong>on</strong>g>g will toughen slow glycolys<str<strong>on</strong>g>in</str<strong>on</strong>g>g muscles (Wakefield et al., 1989).<br />

Ideally, the most tender meat will be produced by reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g about 10°C when the pH is 6.2.<br />

So, for example, those carcasses with rapid rigor should be chilled quickly to reduce<br />

prote<str<strong>on</strong>g>in</str<strong>on</strong>g> denaturati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> those with slower rigor mortis development chilled more slowly<br />

reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g their toughen<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Table 7.2) (Dransfield <str<strong>on</strong>g>and</str<strong>on</strong>g> Sosnicki, 1999).<br />

7.2 C<strong>on</strong>nective tissue<br />

Unlike other tissue types that are formed ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly by cells, the major c<strong>on</strong>stituent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>nective tissue is its extracellular matrix (ECM), composed <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen, elastic fibers,<br />

glycoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> proteoglycans.<br />

7.2.1 Collagen<br />

The collagens are a large family <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules. Each collagen molecule is composed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

three polypeptide cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s which form a unique triple helical structure (Figure 7.2). The<br />

cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> repeat<str<strong>on</strong>g>in</str<strong>on</strong>g>g unit <str<strong>on</strong>g>of</str<strong>on</strong>g> –Gly-Xaa-Yaa, where Xaa <str<strong>on</strong>g>and</str<strong>on</strong>g> Yaa can be any<br />

am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid but are frequently the im<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids prol<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> hydroxyprol<str<strong>on</strong>g>in</str<strong>on</strong>g>e (Kadler et al.,<br />

1996). The collagen molecule c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s about 33 % <str<strong>on</strong>g>of</str<strong>on</strong>g> the am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid glyc<str<strong>on</strong>g>in</str<strong>on</strong>g>e, 12 % prol<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 11 % hydroxy-prol<str<strong>on</strong>g>in</str<strong>on</strong>g>e. The different cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s are designated α1, α2, α3. The cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

collagen molecule can be similar or different, depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the type <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen. The cha<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

is stabilized by H-b<strong>on</strong>ds. For the three cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s to w<str<strong>on</strong>g>in</str<strong>on</strong>g>d <str<strong>on</strong>g>in</str<strong>on</strong>g>to a triple helix they must have the<br />

smallest am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid, glyc<str<strong>on</strong>g>in</str<strong>on</strong>g>e at every third residue al<strong>on</strong>g the cha<str<strong>on</strong>g>in</str<strong>on</strong>g> (Kadler et al., 1996).<br />

61


Figure 7.2. Collagen molecule<br />

From https://chempolymerproject.wikispaces.com/Collagen-D-apml (viewed April 29th, 2013)<br />

7.2.2 Collagen types <str<strong>on</strong>g>and</str<strong>on</strong>g> organizati<strong>on</strong><br />

C<strong>on</strong>nective tissue envelopes muscles, muscle bundles <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle fibers. The endomysium<br />

is the f<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>nective tissue layer separat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual muscle fibres. The vast majority <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

its thickness is made up <str<strong>on</strong>g>of</str<strong>on</strong>g> a near- r<str<strong>on</strong>g>and</str<strong>on</strong>g>om feltwork <str<strong>on</strong>g>of</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>e, wavy collagen fibres. This<br />

collagen feltwork can easily reorientate with chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g the muscle length (Purslow <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Trotter, 1994). The c<strong>on</strong>nective tissue layer that separates each muscle <str<strong>on</strong>g>in</str<strong>on</strong>g>to muscle fiber<br />

bundles, or fascicles is the perimysium. There are large (primary) fascicles <str<strong>on</strong>g>and</str<strong>on</strong>g> smaller<br />

(sec<strong>on</strong>dary) fascicles. Primary <str<strong>on</strong>g>and</str<strong>on</strong>g> sec<strong>on</strong>dary perimysiums are arranged <str<strong>on</strong>g>in</str<strong>on</strong>g> a crossed-ply<br />

arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> two sets <str<strong>on</strong>g>of</str<strong>on</strong>g> wavy collagen fibers (Rowe, 1981). Reorientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

collagen network allows the perimysium to easily follow el<strong>on</strong>gati<strong>on</strong> or shorten<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

muscle fascicles. The epimysium is the c<strong>on</strong>nective tissue sheath del<str<strong>on</strong>g>in</str<strong>on</strong>g>eat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> separat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dividual muscle. In many muscles collagen fibers <str<strong>on</strong>g>in</str<strong>on</strong>g> the epimysium are arranged <str<strong>on</strong>g>in</str<strong>on</strong>g>to a<br />

crossed-ply arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> two sets <str<strong>on</strong>g>of</str<strong>on</strong>g> wavy collagen fibers or <str<strong>on</strong>g>in</str<strong>on</strong>g> muscles where the<br />

epimysium clearly participates <str<strong>on</strong>g>in</str<strong>on</strong>g> transferr<str<strong>on</strong>g>in</str<strong>on</strong>g>g load to adjacent structures (e.g bov<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

semitend<str<strong>on</strong>g>in</str<strong>on</strong>g>osus), the collagen fibers are more closepacked <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>gitud<str<strong>on</strong>g>in</str<strong>on</strong>g>ally arranged, like<br />

a tend<strong>on</strong> (Purslow, 2002).<br />

Collagen can be divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to three major groups; fibrous collagen (types I, II <str<strong>on</strong>g>and</str<strong>on</strong>g> III),<br />

n<strong>on</strong>fibrous collagen (type IV/basement collagen) <str<strong>on</strong>g>and</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrillar collagen (types VI,<br />

VII, V IX, X), VIII <str<strong>on</strong>g>and</str<strong>on</strong>g> XI) (Xi<strong>on</strong>g, 1994). The micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrillar collagen molecules form a<br />

loosely packed filamentous structure with anti-parallel alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual molecules.<br />

Type IV collagen molecules are the <strong>on</strong>ly members <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>-fibrous category found <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

muscle. They form a “chicken wire” structure, which can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> basement membranes<br />

(West<strong>on</strong> et al., 2002).<br />

The fibrous collagen self- assembles to form a characteristic b<str<strong>on</strong>g>and</str<strong>on</strong>g> pattern. The formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> collagen fibril is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> Figure 7.3. The fibrous collagen is created by m<strong>on</strong>omers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tropocollagen molecules. Tropocollagen is a l<strong>on</strong>g th<str<strong>on</strong>g>in</str<strong>on</strong>g> molecule with a molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

300000 Da <str<strong>on</strong>g>and</str<strong>on</strong>g> a length <str<strong>on</strong>g>of</str<strong>on</strong>g> 280 nm (West<strong>on</strong> et al., 2002).<br />

62


Each tropocollagen molecule overlaps its lateral counterpart by slightly less than <strong>on</strong>efourth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its length <str<strong>on</strong>g>and</str<strong>on</strong>g> is aligned <str<strong>on</strong>g>in</str<strong>on</strong>g> a quarter – stagger fashi<strong>on</strong> (similar to build<str<strong>on</strong>g>in</str<strong>on</strong>g>g bricks).<br />

Each unit extends about three- quarters the length <str<strong>on</strong>g>of</str<strong>on</strong>g> its neighbor <str<strong>on</strong>g>and</str<strong>on</strong>g> is b<strong>on</strong>ded together at<br />

frequent <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals to prevent slid<str<strong>on</strong>g>in</str<strong>on</strong>g>g under tensi<strong>on</strong>. These b<strong>on</strong>ds are referred to as crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>k<br />

(Bailey, 1972).<br />

Figure 7.3. Diagrammatic illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the molecular structure <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen, tropocollagen<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid sequence. It shows the collagen fibril formati<strong>on</strong> (Jugde et al., 1989).<br />

After the collagen molecules are synthesized, they are secreted from the cell <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the<br />

extracellular space <str<strong>on</strong>g>and</str<strong>on</strong>g> align <str<strong>on</strong>g>in</str<strong>on</strong>g>to a quarter-stagger array. Larger fibrils are formed by<br />

crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g between the fibrils (Reiser et al., 1992).<br />

7.2.3 Biochemical property<br />

Fibril collagens have unique biomechanical properties. The collagen fibers have a high<br />

tensile strength due to <str<strong>on</strong>g>in</str<strong>on</strong>g>tra- <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>termolecular cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>kages. Intramolecular crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>kages<br />

are those which are formed between the α-cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s with<str<strong>on</strong>g>in</str<strong>on</strong>g> the same molecules.<br />

Intermolecular cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>kages are formed between α-cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> different molecules (Bailey<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Light, 1989). Intermolecular cross l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks are important <str<strong>on</strong>g>in</str<strong>on</strong>g> the stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

collagen fibers (West<strong>on</strong> et al., 2002).<br />

The collagen molecules are cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked <str<strong>on</strong>g>in</str<strong>on</strong>g>ternally <str<strong>on</strong>g>and</str<strong>on</strong>g> to other collagen molecules by<br />

different mechanism. Intra- or <str<strong>on</strong>g>in</str<strong>on</strong>g>ter molecular disulfide b<strong>on</strong>ds are c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to a few<br />

collagen types such as type III <str<strong>on</strong>g>and</str<strong>on</strong>g> type IV. In collagen type III molecules three cyste<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

side cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s are present, <strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> each α-cha<str<strong>on</strong>g>in</str<strong>on</strong>g>. It is possible for two <str<strong>on</strong>g>of</str<strong>on</strong>g> these residues to react<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tramolecularly to form a disulphide bridge. The third free cyste<str<strong>on</strong>g>in</str<strong>on</strong>g>e side cha<str<strong>on</strong>g>in</str<strong>on</strong>g> can make<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>termolecular disulphide b<strong>on</strong>ds with other cyste<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> adjacent type III molecules (Bailey<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Light, 1989).<br />

63


Collagen crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks with divalent b<strong>on</strong>ds l<str<strong>on</strong>g>in</str<strong>on</strong>g>k two collagen cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the same or different<br />

molecules. This is <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated by the enzyme lysyl oxidase which c<strong>on</strong>verts the am<str<strong>on</strong>g>in</str<strong>on</strong>g>e group <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lys<str<strong>on</strong>g>in</str<strong>on</strong>g>e or hydroxylys<str<strong>on</strong>g>in</str<strong>on</strong>g>e residues <str<strong>on</strong>g>in</str<strong>on</strong>g> the n<strong>on</strong>-helical N- <str<strong>on</strong>g>and</str<strong>on</strong>g> C- term<str<strong>on</strong>g>in</str<strong>on</strong>g>als <str<strong>on</strong>g>of</str<strong>on</strong>g> each α-cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

regi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to aldehydes. The aldeydes derived from lys<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> hydroylys<str<strong>on</strong>g>in</str<strong>on</strong>g>e are called<br />

allys<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> hydroxallys<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Allys<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> hydroxallys<str<strong>on</strong>g>in</str<strong>on</strong>g>e react with the am<str<strong>on</strong>g>in</str<strong>on</strong>g>o group <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hydroxylys<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> an adjacent collagen molecule, where allys<str<strong>on</strong>g>in</str<strong>on</strong>g>e forms an aldim<str<strong>on</strong>g>in</str<strong>on</strong>g>e b<strong>on</strong>d<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> hydroxyallys<str<strong>on</strong>g>in</str<strong>on</strong>g>e form a ketoamide b<strong>on</strong>d. The aldim<str<strong>on</strong>g>in</str<strong>on</strong>g>e b<strong>on</strong>d c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s a double b<strong>on</strong>ded<br />

system formed between the am<str<strong>on</strong>g>in</str<strong>on</strong>g>o nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> the aldehyde carb<strong>on</strong> (Figure 7.4). The<br />

aldim<str<strong>on</strong>g>in</str<strong>on</strong>g>e b<strong>on</strong>d is stable under physiological c<strong>on</strong>diti<strong>on</strong> but is disrupted by heat <str<strong>on</strong>g>and</str<strong>on</strong>g> low pH.<br />

The aldim<str<strong>on</strong>g>in</str<strong>on</strong>g>e b<strong>on</strong>d can therefore be chemically reduced with agents such as sodium<br />

borohydride (Figure 7.4). The ketoamide b<strong>on</strong>d is stable at both low pH <str<strong>on</strong>g>and</str<strong>on</strong>g> high<br />

temperatures (Bailey <str<strong>on</strong>g>and</str<strong>on</strong>g> Light, 1989).<br />

Figure 7.4. The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the aldim<str<strong>on</strong>g>in</str<strong>on</strong>g>e b<strong>on</strong>d: A double b<strong>on</strong>d between the am<str<strong>on</strong>g>in</str<strong>on</strong>g>o nitrogen<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the aldehyde carb<strong>on</strong> is formed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The b<strong>on</strong>d is reducible at low pH <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

when heated (Bailey <str<strong>on</strong>g>and</str<strong>on</strong>g> Light, 1989).<br />

Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g age the collagen matrices become str<strong>on</strong>ger <str<strong>on</strong>g>and</str<strong>on</strong>g> more rigid. One might expect that<br />

this is not because <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more reducible cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks; however, it has actually<br />

been shown that the number <str<strong>on</strong>g>of</str<strong>on</strong>g> reducible cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks decreases dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g. It is suggested<br />

that these cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks were not disappear<str<strong>on</strong>g>in</str<strong>on</strong>g>g but where further react<str<strong>on</strong>g>in</str<strong>on</strong>g>g with other<br />

comp<strong>on</strong>ents to be more complex <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-reducible. The n<strong>on</strong>-reduible crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks forms<br />

trivalente <str<strong>on</strong>g>and</str<strong>on</strong>g> tetravalente cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks. The divalente aldim<str<strong>on</strong>g>in</str<strong>on</strong>g>e cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks can for example<br />

react with histed<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> a third molecule to form a trivalent cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>k which is n<strong>on</strong>reducible.<br />

The c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-reducible <str<strong>on</strong>g>and</str<strong>on</strong>g> heat stable cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with age <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the animals as shown <str<strong>on</strong>g>in</str<strong>on</strong>g> Figure 7.5 (Bailey <str<strong>on</strong>g>and</str<strong>on</strong>g> Light, 1989).<br />

64


Figure 7.5. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> collagen dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g are shown<br />

—— = reducible crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks, ―――― = n<strong>on</strong>-reducible mature crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks (Bailey <str<strong>on</strong>g>and</str<strong>on</strong>g> Light, 1989).<br />

7.3 Proteoglycans<br />

Proteoglycans (PGs) are complex <str<strong>on</strong>g>and</str<strong>on</strong>g> multifuncti<strong>on</strong>al molecules c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> a prote<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

core with variable number <str<strong>on</strong>g>of</str<strong>on</strong>g> covalently attached carbohydrate side cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s. The<br />

polysaccharide cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s are named glycosam<str<strong>on</strong>g>in</str<strong>on</strong>g>oglycans (Esko et al., 2009). Examples <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

some ECM proteoglycans are showed <str<strong>on</strong>g>in</str<strong>on</strong>g> Figure 7.6. The structural diversity due to<br />

disaccaride compositi<strong>on</strong> gives the proteoglycans unique features <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>s. The<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> attached Glycosam<str<strong>on</strong>g>in</str<strong>on</strong>g>oglycans cha<str<strong>on</strong>g>in</str<strong>on</strong>g> varies from <strong>on</strong>ly <strong>on</strong>e (e.g., decor<str<strong>on</strong>g>in</str<strong>on</strong>g>) to more<br />

than 100 cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s (e.g., aggrecan) (Esko et al., 2009).<br />

Figure 7.6. Some ECM proteoglycans. The proteoglycans c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> a prote<str<strong>on</strong>g>in</str<strong>on</strong>g> core<br />

(brown) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e or more covalently attached glycosam<str<strong>on</strong>g>in</str<strong>on</strong>g>oglycan cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s (blue <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

yellow) (Esko et al., 2009)<br />

Proteoglycans have a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> biological functi<strong>on</strong>s, they act as tissue organizers,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluence cell growth <str<strong>on</strong>g>and</str<strong>on</strong>g> maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specialized tissue, play a role as biological filters<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> modulate growth-factor activities, regulate collagen fibrillogenesis <str<strong>on</strong>g>and</str<strong>on</strong>g> sk<str<strong>on</strong>g>in</str<strong>on</strong>g> tensile<br />

strength, affect tumor cell growth <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vasi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence corneal transparency <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

neurite outgrowth (reviewed <str<strong>on</strong>g>in</str<strong>on</strong>g> Iozzo, 1998).<br />

65


7.4 C<strong>on</strong>nective tissue degradati<strong>on</strong><br />

Muscles are active comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the body, resp<strong>on</strong>sible for locomoti<strong>on</strong> under strict c<strong>on</strong>trol<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the nervous system <str<strong>on</strong>g>and</str<strong>on</strong>g> well supplied with oxygen <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrients. After slaughter <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

animal, muscle become isolated structures with no supply <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrients. Many<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the biochemical reacti<strong>on</strong>s present <str<strong>on</strong>g>in</str<strong>on</strong>g> the liv<str<strong>on</strong>g>in</str<strong>on</strong>g>g state reta<str<strong>on</strong>g>in</str<strong>on</strong>g>. Due to residual <str<strong>on</strong>g>in</str<strong>on</strong>g>tracellular<br />

glucose <str<strong>on</strong>g>and</str<strong>on</strong>g> glycogen, glycolysis c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ues for some time. In absence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

product <str<strong>on</strong>g>of</str<strong>on</strong>g> glycolysis is lactic acid, which accumulates <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>duces a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> the pH <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the muscle. The c<strong>on</strong>tractile apparatus, deprived <str<strong>on</strong>g>of</str<strong>on</strong>g> its store <str<strong>on</strong>g>of</str<strong>on</strong>g> ATP, goes <str<strong>on</strong>g>in</str<strong>on</strong>g>to a state <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

excessive <str<strong>on</strong>g>and</str<strong>on</strong>g> unc<strong>on</strong>trolled c<strong>on</strong>tracti<strong>on</strong> called rigor mortis (the stiffness <str<strong>on</strong>g>of</str<strong>on</strong>g> dead). The<br />

muscle does not rema<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> this “stiffened” state but becomes s<str<strong>on</strong>g>of</str<strong>on</strong>g>t due to a series <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

enzymatic degradati<strong>on</strong> (Bailey <str<strong>on</strong>g>and</str<strong>on</strong>g> Light, 1989). When the pH reaches the isoelectric po<str<strong>on</strong>g>in</str<strong>on</strong>g>t<br />

(~ pH 5) <str<strong>on</strong>g>of</str<strong>on</strong>g> act<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> myos<str<strong>on</strong>g>in</str<strong>on</strong>g>, there will be an equal number <str<strong>on</strong>g>of</str<strong>on</strong>g> positively <str<strong>on</strong>g>and</str<strong>on</strong>g> negatively<br />

charged groups. At this po<str<strong>on</strong>g>in</str<strong>on</strong>g>t the groups tend to be attracted to each other, <str<strong>on</strong>g>and</str<strong>on</strong>g> there will be<br />

few groups that are available for water b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The swell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen <strong>on</strong> either side <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

its isoelectric po<str<strong>on</strong>g>in</str<strong>on</strong>g>t has been well <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated. It has been shown that when the swell<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases, the tensile strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the fiber decreases, <str<strong>on</strong>g>and</str<strong>on</strong>g> the collagen is more label to heat<br />

(Bailey <str<strong>on</strong>g>and</str<strong>on</strong>g> Light 1989).<br />

It has been suggested that collagen with large fiber diameters <str<strong>on</strong>g>and</str<strong>on</strong>g> highly packed bundles<br />

c<strong>on</strong>tribute to tough meat. The bundles <str<strong>on</strong>g>and</str<strong>on</strong>g> the thick collagen fibers are more difficult to<br />

damage by proteases dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g storage.<br />

The large proteoglycan with aggrecan characteristic has been shown to be degraded the<br />

first 24 h after slaughter (Eggen et al., 1994) postmortem (Figure 7.7). The tenderness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

meat is improved dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g post mortem age<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The weaken<str<strong>on</strong>g>in</str<strong>on</strong>g>g mechanism <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular<br />

c<strong>on</strong>nective tissue is not known. Some comp<strong>on</strong>ents <str<strong>on</strong>g>in</str<strong>on</strong>g> ECM are degraded by<br />

metalloprote<str<strong>on</strong>g>in</str<strong>on</strong>g>ases <str<strong>on</strong>g>and</str<strong>on</strong>g> lysosomal enzymes <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro (Bailey <str<strong>on</strong>g>and</str<strong>on</strong>g> Light, 1989). But it is not<br />

clear whether the extracellular matrix <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle is degraded by these enzymes dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g post<br />

mortem ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g. PGs are degraded by β- glucur<strong>on</strong>idase which is released from the lysosomes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> postmortem muscle (Møller et al., 1976). The activity <str<strong>on</strong>g>of</str<strong>on</strong>g> free β- glucur<strong>on</strong>idase <str<strong>on</strong>g>in</str<strong>on</strong>g>creases<br />

with the postmortem ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Duts<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Lawrie, 1974).<br />

66


Figure 7.7. Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular c<strong>on</strong>nective tissue dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

post mortem ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

In muscle immediately after slaughter PGs l<str<strong>on</strong>g>in</str<strong>on</strong>g>k collagen fibrils <str<strong>on</strong>g>and</str<strong>on</strong>g> stabilize the <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular<br />

c<strong>on</strong>nective tissue. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g post mortem ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g, PGs are degraded <str<strong>on</strong>g>and</str<strong>on</strong>g> the l<str<strong>on</strong>g>in</str<strong>on</strong>g>kage between collagen<br />

fibrils is weakened. This structural change <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular c<strong>on</strong>nective tissue c<strong>on</strong>tributes to the<br />

tenderizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aged meat (Nishimura, 2010).<br />

67


Chapter 8. Hystological <str<strong>on</strong>g>and</str<strong>on</strong>g> hystopathological aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry muscle<br />

8.1 Muscle fiber<br />

Skeletal muscle is a very heterogeneous tissue that is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> a large variety <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

functi<strong>on</strong>ally diverse fiber types. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the unique features <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal muscle is its<br />

numerous fiber types <str<strong>on</strong>g>and</str<strong>on</strong>g> their dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct functi<strong>on</strong>al characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong>s, which<br />

c<strong>on</strong>tribute to a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al capabilities (Pette <str<strong>on</strong>g>and</str<strong>on</strong>g> Star<strong>on</strong>, 2001). These fiber types<br />

can be grouped accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to various parameters, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrillar prote<str<strong>on</strong>g>in</str<strong>on</strong>g> is<str<strong>on</strong>g>of</str<strong>on</strong>g>orms,<br />

metabolic enzyme pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles, <str<strong>on</strong>g>and</str<strong>on</strong>g> structural <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tractile properties (Schiaff<str<strong>on</strong>g>in</str<strong>on</strong>g>o <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Reggiani, 1996; Bott<str<strong>on</strong>g>in</str<strong>on</strong>g>elli <str<strong>on</strong>g>and</str<strong>on</strong>g> Reggiani, 2000). Therefore, the morphological <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

biochemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fiber types are major factors that <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence energy<br />

metabolism with<str<strong>on</strong>g>in</str<strong>on</strong>g> the skeletal muscles <str<strong>on</strong>g>of</str<strong>on</strong>g> live animals, as well as dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the postmortem<br />

c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle to meat (Ryu <str<strong>on</strong>g>and</str<strong>on</strong>g> Kim, 2005, 2006).<br />

Because muscle fibers occupy 75–90% <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscle volume, morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fiber<br />

is a major determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ant factor <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle mass. Morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fiber is represented<br />

by their total number <str<strong>on</strong>g>of</str<strong>on</strong>g> fibers (TNF), cross-secti<strong>on</strong>al area <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fiber (CSAF), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fiber. Muscle growth potential is closely related to TNF <str<strong>on</strong>g>and</str<strong>on</strong>g> CSAF<br />

(Rehfeldt et al., 2000; Ruusunen <str<strong>on</strong>g>and</str<strong>on</strong>g> Puolanne, 1997).<br />

8.1.1 Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fiber type<br />

Fiber type compositi<strong>on</strong> can vary markedly <str<strong>on</strong>g>in</str<strong>on</strong>g> different species <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle types,<br />

depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> functi<strong>on</strong> (Kl<strong>on</strong>t et al., 1998). Moreover, there are many factors that<br />

c<strong>on</strong>tribute to fiber type variati<strong>on</strong>, such as sex (Ozawa et al., 2000), age (C<str<strong>on</strong>g>and</str<strong>on</strong>g>ek-Potokar et<br />

al., 1998), breed (Ryu et al., 2008), horm<strong>on</strong>es (Flor<str<strong>on</strong>g>in</str<strong>on</strong>g>i et al., 1996), <str<strong>on</strong>g>and</str<strong>on</strong>g> physical activity<br />

(Jurie et al., 1999). These fiber type variati<strong>on</strong>s differ accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to their molecular,<br />

metabolic, structural, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tractile properties (Schiaff<str<strong>on</strong>g>in</str<strong>on</strong>g>o et al., 1989). Therefore, hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

an underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> such muscle fiber characteristics is important for the study <str<strong>on</strong>g>of</str<strong>on</strong>g> overall<br />

muscle characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequent meat quality.<br />

The structure <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> avian muscle fiber types are revealed <str<strong>on</strong>g>in</str<strong>on</strong>g> metabolic<br />

differences <str<strong>on</strong>g>in</str<strong>on</strong>g> the red <str<strong>on</strong>g>and</str<strong>on</strong>g> white fibers. Red fibers are narrow <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter, myoglob<str<strong>on</strong>g>in</str<strong>on</strong>g> rich,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> adapted to aerobic (oxidative) metabolism for rapid, fatigue-resistant activity, whereas<br />

white fibers are larger <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter, adapted to anaerobic (glycolytic) metabolism, fastfatigu<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> used for brief bursts <str<strong>on</strong>g>of</str<strong>on</strong>g> activity (George <str<strong>on</strong>g>and</str<strong>on</strong>g> Berger, 1966). With <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

growth rate, fibers become more glycolytic (fast twitch, glycolytic; type IIB fibers).<br />

The functi<strong>on</strong>al, structural, <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the four major muscle fiber<br />

types differ <str<strong>on</strong>g>in</str<strong>on</strong>g> adult animals (Bott<str<strong>on</strong>g>in</str<strong>on</strong>g>elli <str<strong>on</strong>g>and</str<strong>on</strong>g> Reggiani, 2000). Fiber type I, or slow-twitch<br />

fibers, generate energy for ATP resynthesis predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly by aerobic energy transfer.<br />

They possess a low myos<str<strong>on</strong>g>in</str<strong>on</strong>g> ATPase activity level <str<strong>on</strong>g>and</str<strong>on</strong>g> a glycolytic capacity that is less<br />

developed than fast-twitch fibers. Slow-twitch fibers have a wider Z-b<str<strong>on</strong>g>and</str<strong>on</strong>g> than fast-twitch<br />

fibers, with type IIB fibers hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g the th<str<strong>on</strong>g>in</str<strong>on</strong>g>ner Z-b<str<strong>on</strong>g>and</str<strong>on</strong>g> (Sjostrom <str<strong>on</strong>g>and</str<strong>on</strong>g> Squire, 1977). In the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic speed <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tracti<strong>on</strong>, the shorten<str<strong>on</strong>g>in</str<strong>on</strong>g>g velocities <str<strong>on</strong>g>of</str<strong>on</strong>g> fast-twitch fibers are<br />

approximately three times faster than those <str<strong>on</strong>g>of</str<strong>on</strong>g> slow-twitch fibers (Schiaff<str<strong>on</strong>g>in</str<strong>on</strong>g>o <str<strong>on</strong>g>and</str<strong>on</strong>g> Reggiani,<br />

1996). Types IIX <str<strong>on</strong>g>and</str<strong>on</strong>g> IIA fibers display shorten<str<strong>on</strong>g>in</str<strong>on</strong>g>g velocities that are similar to each other,<br />

but are slower than type IIB fibers (Schiaff<str<strong>on</strong>g>in</str<strong>on</strong>g>o <str<strong>on</strong>g>and</str<strong>on</strong>g> Reggiani, 1996). Type I fibers c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

68


elatively large <str<strong>on</strong>g>and</str<strong>on</strong>g> numerous mitoch<strong>on</strong>dria, myoglob<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> ir<strong>on</strong>-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g cytochrome<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> transfer cha<str<strong>on</strong>g>in</str<strong>on</strong>g>. High c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mitoch<strong>on</strong>drial enzymes <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

myoglob<str<strong>on</strong>g>in</str<strong>on</strong>g> also support an enhanced aerobic metabolic capacity (Nemeth <str<strong>on</strong>g>and</str<strong>on</strong>g> Lowry,<br />

1984). Moreover, type I fibers c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> a higher amount <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid, some <str<strong>on</strong>g>of</str<strong>on</strong>g> which presumably<br />

serves as a source <str<strong>on</strong>g>of</str<strong>on</strong>g> aerobic metabolic fuel; they also c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> lower amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> glycogen<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> glucose than type IIB fibers (Peter et al., 1972; H<str<strong>on</strong>g>in</str<strong>on</strong>g>tz et al., 1984). Thus, type IIB<br />

fibers predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly use glucose as fuel. Also, type IIB fibers have a more extensively<br />

developed Sarcoplasmic Reticulum (SR) <str<strong>on</strong>g>and</str<strong>on</strong>g> T-tubule system, both <str<strong>on</strong>g>of</str<strong>on</strong>g> which are c<strong>on</strong>sistent<br />

with their more rapid c<strong>on</strong>tracti<strong>on</strong> speed; however, they are relatively easily fatigued.<br />

Therefore, type II fibers, especially type IIB, have the ability to rapidly transfer energy for<br />

quick, forceful muscle acti<strong>on</strong>s. For example, the ATP splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g rate is three to four times<br />

faster <str<strong>on</strong>g>in</str<strong>on</strong>g> type IIB fibers than <str<strong>on</strong>g>in</str<strong>on</strong>g> type I fibers, <str<strong>on</strong>g>and</str<strong>on</strong>g> types IIA <str<strong>on</strong>g>and</str<strong>on</strong>g> IIX fibers are <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate<br />

(Bott<str<strong>on</strong>g>in</str<strong>on</strong>g>elli et al., 1994, Stienen et al., 1996). In additi<strong>on</strong>, the tensi<strong>on</strong> cost, which is the ratio<br />

between ATPase <str<strong>on</strong>g>and</str<strong>on</strong>g> tensi<strong>on</strong>, is several times lower <str<strong>on</strong>g>in</str<strong>on</strong>g> type I fibers than <str<strong>on</strong>g>in</str<strong>on</strong>g> types IIA, IIX,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> IIB fibers (Bott<str<strong>on</strong>g>in</str<strong>on</strong>g>elli et al., 1994; Stienen et al., 1996). These results imply that when<br />

movements require the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical power, type I fibers are energetically<br />

more ec<strong>on</strong>omical than IIA, IIX, <str<strong>on</strong>g>and</str<strong>on</strong>g> IIB fibers (Bott<str<strong>on</strong>g>in</str<strong>on</strong>g>elli et al., 1994, Stienen et al., 1996).<br />

8.1.2 Muscle fiber size<br />

Skeletal muscle fiber is made up <str<strong>on</strong>g>of</str<strong>on</strong>g> mult<str<strong>on</strong>g>in</str<strong>on</strong>g>ucleate, membrane-bound cells that are typically<br />

10 to 100 μm <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter, <str<strong>on</strong>g>and</str<strong>on</strong>g> their lengths can vary from several millimeters to more than<br />

30 cm (Bechtel, 1986). This my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibril striati<strong>on</strong> pattern repeats with a periodicity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

approximately 2 to 3 μm, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> vertebrate muscle, the sarcomere is a complex structure<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g at least 28 different prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s (Craig <str<strong>on</strong>g>and</str<strong>on</strong>g> Padr<strong>on</strong>, 2003). The diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal<br />

muscle can be attributed to the heterogeneous characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual muscle<br />

fibers <str<strong>on</strong>g>and</str<strong>on</strong>g> the mosaic compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the numerous fiber types (Schiaff<str<strong>on</strong>g>in</str<strong>on</strong>g>o <str<strong>on</strong>g>and</str<strong>on</strong>g> Reggiani,<br />

1996; Bott<str<strong>on</strong>g>in</str<strong>on</strong>g>elli <str<strong>on</strong>g>and</str<strong>on</strong>g> Reggiani, 2000).<br />

In general, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> fibers is related to changes throughout growth, <str<strong>on</strong>g>and</str<strong>on</strong>g> fast-grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

farm animals have more muscle fibers than slower grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. With<str<strong>on</strong>g>in</str<strong>on</strong>g> stra<str<strong>on</strong>g>in</str<strong>on</strong>g>, the fiber<br />

number may <str<strong>on</strong>g>in</str<strong>on</strong>g>crease with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g average daily ga<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> ga<str<strong>on</strong>g>in</str<strong>on</strong>g>:feed ratio (Stickl<str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

1995). In poultry, the muscle fiber cross-secti<strong>on</strong>al area <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with age (Table 8.1).<br />

Geese, selected for meat yield, have larger fibers than birds selected for egg producti<strong>on</strong><br />

(Klosowska et al., 1993) <str<strong>on</strong>g>and</str<strong>on</strong>g> fast-grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g chickens have larger diameter fibers than slowgrow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>es (Table 8.1). This <str<strong>on</strong>g>in</str<strong>on</strong>g>crease is also associated with an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> giant fibers, which typically have cross-secti<strong>on</strong>al areas three to five times larger than<br />

normal, although these may also result from severe c<strong>on</strong>tracti<strong>on</strong> (hyperc<strong>on</strong>tracted fibers).<br />

Smaller fiber diameters may allow a higher pack<str<strong>on</strong>g>in</str<strong>on</strong>g>g density <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>crease toughness <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

meat.<br />

69


Table 8.1. Growth, fiber diameter, <str<strong>on</strong>g>and</str<strong>on</strong>g> fiber type <str<strong>on</strong>g>in</str<strong>on</strong>g> two stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken 1<br />

Age Live weight Fiber area Citrate synthase<br />

activity 2<br />

Rapid Slow Rapid Slow Rapid Slow<br />

(wk) (g) (μm 2 )<br />

0 36 31 20 23 6.4 7.4<br />

11 1,882 675 1,256 664 4.4 3.9<br />

55 3,285 1,883 2,755 1,946 4.6 3.6<br />

1 Values are the means <str<strong>on</strong>g>of</str<strong>on</strong>g> the Pectoralis muscle for rapid- <str<strong>on</strong>g>and</str<strong>on</strong>g> slow-grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> male chickens. Data<br />

from Rémign<strong>on</strong> et al. (1995).<br />

2 Micromoles <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate per m<str<strong>on</strong>g>in</str<strong>on</strong>g>ute per gram <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle.<br />

It is well known that the my<str<strong>on</strong>g>of</str<strong>on</strong>g>iber number <str<strong>on</strong>g>in</str<strong>on</strong>g> chickens is established before hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g. So,<br />

any <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle weight post-hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g depends <strong>on</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> length <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers. My<str<strong>on</strong>g>of</str<strong>on</strong>g>iber numbers differ between breeds regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> nutriti<strong>on</strong><br />

treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> sex, <str<strong>on</strong>g>and</str<strong>on</strong>g> rema<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>stant dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g growth to market weight (Swatl<str<strong>on</strong>g>and</str<strong>on</strong>g>, 1984).<br />

In essence, genetically programmed <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle mass must be due to a larger<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers, larger my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers, or a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these two factors (Smith,<br />

1963). Aberle <str<strong>on</strong>g>and</str<strong>on</strong>g> Stewart (1983) studied fiber characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> muscles from broiler <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

lay<str<strong>on</strong>g>in</str<strong>on</strong>g>g stra<str<strong>on</strong>g>in</str<strong>on</strong>g> chicks between 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 11 weeks <str<strong>on</strong>g>of</str<strong>on</strong>g> age. My<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler muscles had a<br />

greater cross-secti<strong>on</strong>al diameter than those from the lay<str<strong>on</strong>g>in</str<strong>on</strong>g>g stra<str<strong>on</strong>g>in</str<strong>on</strong>g>. Moreover, Fowler et al.<br />

(1980) found that the difference <str<strong>on</strong>g>in</str<strong>on</strong>g> Semimembranosus size between a large-bodied l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Japanese quail <str<strong>on</strong>g>and</str<strong>on</strong>g> the small-bodied l<str<strong>on</strong>g>in</str<strong>on</strong>g>e was primarily due to cell numbers rather than cell<br />

size. Several other experimental avian models had been used to study genetic <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences <strong>on</strong><br />

mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle growth, <str<strong>on</strong>g>and</str<strong>on</strong>g> it appeared that different muscle growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different populati<strong>on</strong>s resulted from significant differences <str<strong>on</strong>g>in</str<strong>on</strong>g> my<str<strong>on</strong>g>of</str<strong>on</strong>g>iber numbers,<br />

differences <str<strong>on</strong>g>in</str<strong>on</strong>g> my<str<strong>on</strong>g>of</str<strong>on</strong>g>iber area <str<strong>on</strong>g>and</str<strong>on</strong>g> undoubtedly differences <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle length. Prentis et al.<br />

(1984) dem<strong>on</strong>strated that the breed difference <str<strong>on</strong>g>in</str<strong>on</strong>g> Iliotibialis lateralis muscle weight<br />

resulted from different fiber diameters, while, <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trast with this, the breed difference <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Pectoralis muscle was due to different numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> fibers.<br />

Muscle development <str<strong>on</strong>g>in</str<strong>on</strong>g> avian species occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> 2 dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ctive periods. First, dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

embry<strong>on</strong>ic phase, the muscle fiber number (MFN) is established when a large number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

precursor cells are committed to the expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle-specific genes (Christ <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Br<str<strong>on</strong>g>and</str<strong>on</strong>g>-Saberi, 2002). Later, dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the post-hatch period, the hypertrophy <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscle<br />

takes place, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly by accreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> nuclei orig<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the proliferati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> satellite cells (Moss, 1968). Embry<strong>on</strong>ic muscle growth is the result <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

balance between proliferati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> differentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> myoblasts <str<strong>on</strong>g>in</str<strong>on</strong>g>to myotubes, such that an<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased myoblast proliferati<strong>on</strong> rate is expected to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease the MFN, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle growth <str<strong>on</strong>g>and</str<strong>on</strong>g> enlargement <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle size (Cout<str<strong>on</strong>g>in</str<strong>on</strong>g>ho et al., 1993;<br />

Thomas et al., 2000; Christ <str<strong>on</strong>g>and</str<strong>on</strong>g> Br<str<strong>on</strong>g>and</str<strong>on</strong>g>-Saberi, 2002). Higher myoblast proliferati<strong>on</strong> rate<br />

might be related to the tim<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> myogenesis, as delay <str<strong>on</strong>g>in</str<strong>on</strong>g> the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the somites <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> myogenic regulatory factors <str<strong>on</strong>g>and</str<strong>on</strong>g> myos<str<strong>on</strong>g>in</str<strong>on</strong>g> heavy cha<str<strong>on</strong>g>in</str<strong>on</strong>g> was observed for<br />

growth-selected quail when compared with c<strong>on</strong>trol l<str<strong>on</strong>g>in</str<strong>on</strong>g>es (Cout<str<strong>on</strong>g>in</str<strong>on</strong>g>ho et al., 1993).<br />

70


8.2 Neuromuscular desease<br />

Neuromuscular diseases are generally divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to two categories: the neuropathies <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

myopathies. Neuropathic disorders are those <str<strong>on</strong>g>in</str<strong>on</strong>g> which motor nerve cells or their processes<br />

are first affected, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g sec<strong>on</strong>darily <str<strong>on</strong>g>in</str<strong>on</strong>g> atrophy <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle. In the primary myopathies the<br />

disease process is assumed to <str<strong>on</strong>g>in</str<strong>on</strong>g>volve the muscle directly, without damag<str<strong>on</strong>g>in</str<strong>on</strong>g>g its nerve<br />

supply. Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ical, laboratory, <str<strong>on</strong>g>and</str<strong>on</strong>g> electromyographic f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten useful <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guish<str<strong>on</strong>g>in</str<strong>on</strong>g>g between these two classes <str<strong>on</strong>g>of</str<strong>on</strong>g> disorders, but the muscle biopsy may be the<br />

decid<str<strong>on</strong>g>in</str<strong>on</strong>g>g factor.<br />

In general, <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscle biopsy has been based <strong>on</strong> two pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciples: (1)<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g denervati<strong>on</strong>, muscle fibers bel<strong>on</strong>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the same motor unit undergo atrophy<br />

together <str<strong>on</strong>g>and</str<strong>on</strong>g> are located <str<strong>on</strong>g>in</str<strong>on</strong>g> groups. By c<strong>on</strong>trast, myopathies attack <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual muscle fibers<br />

at r<str<strong>on</strong>g>and</str<strong>on</strong>g>om, giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g rise to scattered changes throughout the muscle. (2) In myopathic<br />

disorders architectural changes are found <str<strong>on</strong>g>in</str<strong>on</strong>g> medium-sized <str<strong>on</strong>g>and</str<strong>on</strong>g> larger muscle fibers. On the<br />

other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, denervati<strong>on</strong> leads to simple atrophy <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fibers. Degenerative changes are<br />

said not to occur until the denervated fibers have become very small. The follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g list<br />

gives the histological features c<strong>on</strong>sidered to be typical <str<strong>on</strong>g>of</str<strong>on</strong>g> myopathy by the most<br />

authoritative sources available. The degree <str<strong>on</strong>g>of</str<strong>on</strong>g> reliance placed <strong>on</strong> each <str<strong>on</strong>g>of</str<strong>on</strong>g> these descriptive<br />

features varies from source to source:<br />

1. r<str<strong>on</strong>g>and</str<strong>on</strong>g>om variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> fiber size (triangular, trapezoidal, square);<br />

2. r<str<strong>on</strong>g>and</str<strong>on</strong>g>om variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> fiber shape (atrophic fibers, giant fibers);<br />

3. fiber degenerati<strong>on</strong>: loss <str<strong>on</strong>g>of</str<strong>on</strong>g> striati<strong>on</strong>s (hyal<str<strong>on</strong>g>in</str<strong>on</strong>g>e change), granular change, floccular<br />

change, vacuolar change;<br />

4. phagocytosis;<br />

5. regenerati<strong>on</strong> (basophilia, vesicular nuclei, prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent nucleoli);<br />

6. endomysial fibrosis;<br />

7. fiber splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g;<br />

8. central nuclei;<br />

9. r<str<strong>on</strong>g>in</str<strong>on</strong>g>ged fibers (“r<str<strong>on</strong>g>in</str<strong>on</strong>g>gb<str<strong>on</strong>g>in</str<strong>on</strong>g>den”).<br />

The muscle histology may permit a clear-cut dist<str<strong>on</strong>g>in</str<strong>on</strong>g>cti<strong>on</strong> between neuropathy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

myopathy. However, <str<strong>on</strong>g>in</str<strong>on</strong>g> l<strong>on</strong>g-st<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g disorders, the muscle frequently presents a<br />

c<strong>on</strong>fus<str<strong>on</strong>g>in</str<strong>on</strong>g>g picture which is difficult to <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the c<strong>on</strong>venti<strong>on</strong>al criteria.<br />

(Drachman et al., 1967).<br />

8.2.1 Breast muscle myopathies<br />

Ris<str<strong>on</strong>g>in</str<strong>on</strong>g>g dem<str<strong>on</strong>g>and</str<strong>on</strong>g> for meat <str<strong>on</strong>g>and</str<strong>on</strong>g> meat products give a reas<strong>on</strong> for <str<strong>on</strong>g>in</str<strong>on</strong>g>tensificati<strong>on</strong> animal<br />

producti<strong>on</strong>. L<strong>on</strong>g-term selecti<strong>on</strong> work allowed to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> bigger, faster grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g, better<br />

fodder utiliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> more muscular animals. Genetic studies c<strong>on</strong>tributed to improve the<br />

animal producti<strong>on</strong> potential; however, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> this acti<strong>on</strong>s are pathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

muscles (Dransfield <str<strong>on</strong>g>and</str<strong>on</strong>g> Sosnicki, 1999).<br />

C<strong>on</strong>stant selecti<strong>on</strong> for <strong>performance</strong>, especially heavier weights, has its c<strong>on</strong>sequences. One<br />

big setback is that selecti<strong>on</strong> for higher post-hatch growth is negatively correlated with<br />

embryo survival (Nestor <str<strong>on</strong>g>and</str<strong>on</strong>g> Noble, 1995; Christensen et al., 2000). Coll<str<strong>on</strong>g>in</str<strong>on</strong>g> et al. (2007)<br />

po<str<strong>on</strong>g>in</str<strong>on</strong>g>ted out that selecti<strong>on</strong> for breast meat yield leads to poor visceral system. This<br />

phenomen<strong>on</strong> was expla<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by Foye (2005), who said that selecti<strong>on</strong> for growth is push<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

71


precocial poultry to become more altricial by direct<str<strong>on</strong>g>in</str<strong>on</strong>g>g resources to growth stead <str<strong>on</strong>g>of</str<strong>on</strong>g> viscera<br />

maturati<strong>on</strong>. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> visceral capacity relative to body<br />

size am<strong>on</strong>g modern broilers selected for rapid growth is exemplified by the <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> ascites. Ascites have been liked to limited cardiopulm<strong>on</strong>ary capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

animal to attend body dem<str<strong>on</strong>g>and</str<strong>on</strong>g>s. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the strategies to reduce the <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> ascites is<br />

to slow down early growth by feed restricti<strong>on</strong>; but if it is too severe, the restricti<strong>on</strong> may not<br />

be compensated later <str<strong>on</strong>g>in</str<strong>on</strong>g> life, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> lower weights <str<strong>on</strong>g>and</str<strong>on</strong>g> yields at process<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Ozkan et<br />

al., 2006). Selecti<strong>on</strong> for weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g> also <str<strong>on</strong>g>in</str<strong>on</strong>g>creases risk <str<strong>on</strong>g>of</str<strong>on</strong>g> obesity, lower fertility, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

lower hatchability (Joseph <str<strong>on</strong>g>and</str<strong>on</strong>g> Moran, 2005). The value <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry has <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

tremendously <str<strong>on</strong>g>in</str<strong>on</strong>g> the last twenty years. The broiler <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry has grown from $5.68 billi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

1985 to $20.9 billi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> 2005. Associated with this <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> meat poultry producti<strong>on</strong> was<br />

annual <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler eggs set <str<strong>on</strong>g>in</str<strong>on</strong>g> hatcheries <str<strong>on</strong>g>of</str<strong>on</strong>g> 98%.<br />

Adverse effects result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> farmed birds, are best seen <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

studied <str<strong>on</strong>g>in</str<strong>on</strong>g> adult <str<strong>on</strong>g>in</str<strong>on</strong>g>dividuals. They <str<strong>on</strong>g>in</str<strong>on</strong>g>volve a number <str<strong>on</strong>g>of</str<strong>on</strong>g> disorders, rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from skeletal<br />

deformities to reproductive disorders (Dick<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong> et al., 1968). Dunn<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Siegel<br />

(1996) represent the five ma<str<strong>on</strong>g>in</str<strong>on</strong>g> groups <str<strong>on</strong>g>of</str<strong>on</strong>g> traits that are affected by selecti<strong>on</strong> for high body<br />

weight: growth <str<strong>on</strong>g>and</str<strong>on</strong>g> development, metabolism, reproductive traits, nucleotide sequence or<br />

resistance. It has been found that <str<strong>on</strong>g>in</str<strong>on</strong>g>dividuals selected for higher body weight were<br />

characterized by reduced antibody producti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>. Study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Helm<str<strong>on</strong>g>in</str<strong>on</strong>g>owska-Wenda et al. (2004), <str<strong>on</strong>g>and</str<strong>on</strong>g> Klosowska et al. (1993) <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that<br />

hystopathological changes are most extensive <str<strong>on</strong>g>in</str<strong>on</strong>g> birds with higher growth rate <str<strong>on</strong>g>and</str<strong>on</strong>g> high<br />

meat<str<strong>on</strong>g>in</str<strong>on</strong>g>ess. There is a high probability <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal muscle myopathy al<strong>on</strong>g with the <str<strong>on</strong>g>in</str<strong>on</strong>g>tense<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fibers <str<strong>on</strong>g>in</str<strong>on</strong>g> these birds. Sosnicki et al. (1991) <str<strong>on</strong>g>and</str<strong>on</strong>g> Hov<str<strong>on</strong>g>in</str<strong>on</strong>g>g-<br />

Bal<str<strong>on</strong>g>in</str<strong>on</strong>g>k et al. (2000) dem<strong>on</strong>strated that many cases <str<strong>on</strong>g>of</str<strong>on</strong>g> myopathy <str<strong>on</strong>g>in</str<strong>on</strong>g> modern l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>of</str<strong>on</strong>g> fast<br />

growth chickens <str<strong>on</strong>g>and</str<strong>on</strong>g> turkeys result from <str<strong>on</strong>g>in</str<strong>on</strong>g>adequate blood supply to the pectoral muscle.<br />

Significant <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fibers, which transport oxygen through the<br />

capillaries is limited <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently it leads to hypoxia <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscle cells <str<strong>on</strong>g>and</str<strong>on</strong>g> necrosis.<br />

Necrosis is the most pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound <str<strong>on</strong>g>and</str<strong>on</strong>g> irreversible retroactive change. It arises as the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

external <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal factors (Gallup <str<strong>on</strong>g>and</str<strong>on</strong>g> Dubowitz, 1973; Sosnicki <str<strong>on</strong>g>and</str<strong>on</strong>g> Wils<strong>on</strong>, 1991)<br />

lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to cell death (Rowińska-Marcińska et al., 1998).<br />

Differences <str<strong>on</strong>g>in</str<strong>on</strong>g> the histochemical structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the breast muscle <str<strong>on</strong>g>in</str<strong>on</strong>g> galliform poultry<br />

(chickens, turkeys) <str<strong>on</strong>g>and</str<strong>on</strong>g> geese can also affect the different resp<strong>on</strong>siveness <str<strong>on</strong>g>of</str<strong>on</strong>g> these birds to<br />

the selecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> specific envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s. Chickens broiler breast muscle is<br />

characterized by a far smaller share <str<strong>on</strong>g>of</str<strong>on</strong>g> red fibers (ßR) with oxygen metabolism <str<strong>on</strong>g>and</str<strong>on</strong>g> worse<br />

blood circulati<strong>on</strong> dem<strong>on</strong>strated by a smaller number <str<strong>on</strong>g>of</str<strong>on</strong>g> capillaries <str<strong>on</strong>g>in</str<strong>on</strong>g> a muscle fiber <str<strong>on</strong>g>and</str<strong>on</strong>g> a<br />

lower c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> myoglob<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle tissue (Elm<str<strong>on</strong>g>in</str<strong>on</strong>g>owska-Wenda, 2004). Regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the muscle compositi<strong>on</strong>, the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> changes caused by selecti<strong>on</strong> pressure <str<strong>on</strong>g>in</str<strong>on</strong>g>clude the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fibers <str<strong>on</strong>g>and</str<strong>on</strong>g> their microstructure. The diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscle cell, <str<strong>on</strong>g>in</str<strong>on</strong>g> normal<br />

c<strong>on</strong>diti<strong>on</strong>s, depends ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly <strong>on</strong> the age <str<strong>on</strong>g>and</str<strong>on</strong>g> activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the animal <str<strong>on</strong>g>and</str<strong>on</strong>g> the type <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle.<br />

The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> giant fibers is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten found <str<strong>on</strong>g>in</str<strong>on</strong>g> the nervous stimulati<strong>on</strong>. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> giant<br />

fibers with muscle c<strong>on</strong>tracti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> it can be a prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary step to the hial<str<strong>on</strong>g>in</str<strong>on</strong>g> degenerati<strong>on</strong><br />

(Klosowska et al., 1993).<br />

Muscle fibertrophy is a pathological process result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from many different factors <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients <str<strong>on</strong>g>in</str<strong>on</strong>g> the cells <str<strong>on</strong>g>and</str<strong>on</strong>g> a general reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

72


metabolic rate with a predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ance <str<strong>on</strong>g>of</str<strong>on</strong>g> catabolism. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> these changes cells, tissue<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ultimately the entire organs reduce <str<strong>on</strong>g>in</str<strong>on</strong>g> size <str<strong>on</strong>g>and</str<strong>on</strong>g> the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> the blood supply. The<br />

reas<strong>on</strong> for this may be nerve damage, ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g or physiological state <str<strong>on</strong>g>of</str<strong>on</strong>g> cachexia (Rowińska-<br />

Marcińska et al., 1998). So, muscle hypertrophy, def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as excessive growth, is<br />

c<strong>on</strong>sidered as abnormal <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrils <str<strong>on</strong>g>and</str<strong>on</strong>g> it is the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

excessive activity. Transportati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen <str<strong>on</strong>g>and</str<strong>on</strong>g> energy material to the central parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

muscle fiber is h<str<strong>on</strong>g>in</str<strong>on</strong>g>dered by the c<strong>on</strong>siderable <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> its diameter caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g the formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary structural changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the fiber (Rowińska-Marcińska et al., 1998). The most<br />

comm<strong>on</strong> reacti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>clude splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> necrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> central parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the fibers (Gallup <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Dubowitz, 1973). Splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g is a comm<strong>on</strong> n<strong>on</strong>-specific change <str<strong>on</strong>g>in</str<strong>on</strong>g> the fiber structure. The<br />

emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> the gap separat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the partially hypertrophic fibers <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

pathology. The next phase is complete separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e or more parts <str<strong>on</strong>g>of</str<strong>on</strong>g> fiber. The reas<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g the fibers is overloaded cell. Hypertrophic fibers undergo fissi<strong>on</strong> (Gallup <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Dubowitz, 1973).<br />

C<strong>on</strong>nective tissue hypertrophy is a characteristic histopathological change <str<strong>on</strong>g>of</str<strong>on</strong>g> stress<br />

myopathy (Sośnicki <str<strong>on</strong>g>and</str<strong>on</strong>g> Wils<strong>on</strong>, 1991). Grow rank c<strong>on</strong>nective tissues may lead to the<br />

oxygen deficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> fibers <str<strong>on</strong>g>and</str<strong>on</strong>g> to the formati<strong>on</strong> degenerative changes by pressure <strong>on</strong><br />

blood vessels capillaries <str<strong>on</strong>g>in</str<strong>on</strong>g> the muscle (Gallup <str<strong>on</strong>g>and</str<strong>on</strong>g> Dubowitz, 1973).<br />

8.2.2 Deep pectoral desease<br />

Deep pectoral disease (DPM) has the more important impact <strong>on</strong> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al product quality issues<br />

(Figure 8.1). Deep pectoral disease, also known as Oreg<strong>on</strong> disease or green muscle disease,<br />

was first described <str<strong>on</strong>g>in</str<strong>on</strong>g> 1968 as “degenerative myopathy” <str<strong>on</strong>g>in</str<strong>on</strong>g> turkeys (Dick<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong> et al., 1968)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> it was subsequently studied at the Oreg<strong>on</strong> State University (Harper et al., 1983; Siller,<br />

1985). Even though this c<strong>on</strong>diti<strong>on</strong> was first recognized <str<strong>on</strong>g>in</str<strong>on</strong>g> adult meat-type turkey <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

chicken breeders, it has become more <str<strong>on</strong>g>and</str<strong>on</strong>g> more comm<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> meat-type grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g birds<br />

(Richards<strong>on</strong> et al., 1980; Bilgili <str<strong>on</strong>g>and</str<strong>on</strong>g> Hess, 2002.) DPM occurs exclusively <str<strong>on</strong>g>in</str<strong>on</strong>g> birds that<br />

have been selected for breast muscle development (Siller, 1985). It is generally recognized<br />

that deep pectoral myopathy is an ischemic necrosis that develops <str<strong>on</strong>g>in</str<strong>on</strong>g> the deep pectoral<br />

muscle (supracoracoideus or pectoralis m<str<strong>on</strong>g>in</str<strong>on</strong>g>or muscle) ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly because this muscle is<br />

surrounded by <str<strong>on</strong>g>in</str<strong>on</strong>g>elastic fascia <str<strong>on</strong>g>and</str<strong>on</strong>g> the sternum, which do not allow the muscle mass to<br />

swell <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to the physiological changes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g when muscles are exercised, as <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

w<str<strong>on</strong>g>in</str<strong>on</strong>g>g flapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Jordan <str<strong>on</strong>g>and</str<strong>on</strong>g> Pattis<strong>on</strong>, 1998). It has been estimated that, <str<strong>on</strong>g>in</str<strong>on</strong>g> turkeys <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

broilers, the supracoracoid <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> weight by about 20% dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g activity for the huge<br />

blood flow <str<strong>on</strong>g>in</str<strong>on</strong>g>to the muscle. The <str<strong>on</strong>g>in</str<strong>on</strong>g>creased size <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscle is so marked <str<strong>on</strong>g>in</str<strong>on</strong>g> the heavy<br />

breeds that the muscle becomes strangulated <str<strong>on</strong>g>and</str<strong>on</strong>g> ischemic, because the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased pressure<br />

with<str<strong>on</strong>g>in</str<strong>on</strong>g> the muscle occludes the blood vessels <str<strong>on</strong>g>and</str<strong>on</strong>g> causes a necrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscle. The<br />

lesi<strong>on</strong> does not impair the general health <str<strong>on</strong>g>of</str<strong>on</strong>g> birds <str<strong>on</strong>g>and</str<strong>on</strong>g> is generally found dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g cut-up <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

deb<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g; moreover, it can be both unilateral or bilateral, affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g just <strong>on</strong>e or both<br />

pectoralis m<str<strong>on</strong>g>in</str<strong>on</strong>g>or muscles, respectively. No public health significance is associated to deep<br />

pectoral myopathy, but it is aesthetically undesirable. The fillet should be removed<br />

whereas the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the carcass is still fit for human c<strong>on</strong>sumpti<strong>on</strong>. However, the required<br />

trimm<str<strong>on</strong>g>in</str<strong>on</strong>g>g operati<strong>on</strong>s cause the downgrad<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the products <str<strong>on</strong>g>and</str<strong>on</strong>g> produce an ec<strong>on</strong>omic loss<br />

for the <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry, especially because it affects the more valuable part <str<strong>on</strong>g>of</str<strong>on</strong>g> the carcass. The<br />

73


<str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses affected by deep pectoral myopathy was estimated to be just below<br />

1% (Bianchi et al., 2006). The <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> DPM <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with market weight <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers,<br />

with more cases reported <str<strong>on</strong>g>in</str<strong>on</strong>g> higher-yield<str<strong>on</strong>g>in</str<strong>on</strong>g>g stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> males. Increased bird activity<br />

(flock nervousness, flight<str<strong>on</strong>g>in</str<strong>on</strong>g>ess, struggle, <str<strong>on</strong>g>and</str<strong>on</strong>g> w<str<strong>on</strong>g>in</str<strong>on</strong>g>g flapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g) <str<strong>on</strong>g>in</str<strong>on</strong>g>duced by factors such as<br />

feed or water outages, light<str<strong>on</strong>g>in</str<strong>on</strong>g>g programs <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, human activity, <str<strong>on</strong>g>and</str<strong>on</strong>g> excessive<br />

noises <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> around chicken houses should be looked at as a trigger for the development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> DPM <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers (Bilgili et al., 2000).<br />

Figure 8.1. Deep pectoral myopathy (Bilgili et al., 2000)<br />

Based <strong>on</strong> data obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by Bianchi et al. (2006), DPM prevalence can be different when<br />

diverse breeds are c<strong>on</strong>sidered, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g that genetics may play an important role <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this c<strong>on</strong>diti<strong>on</strong>. As a c<strong>on</strong>sequence, genetic selecti<strong>on</strong> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st DPM has been<br />

undertaken by broiler breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g companies. Moreover, recent developments <str<strong>on</strong>g>in</str<strong>on</strong>g> wholegenome<br />

selecti<strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g dense DNA-markers should provide effective <str<strong>on</strong>g>and</str<strong>on</strong>g> powerful tools<br />

to reduce DPM importance <str<strong>on</strong>g>in</str<strong>on</strong>g> the future (Petracci <str<strong>on</strong>g>and</str<strong>on</strong>g> Cavani, 2012).<br />

8.2.3 PSE-like breast meat<br />

Color is an important quality attribute that <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences c<strong>on</strong>sumer acceptance <str<strong>on</strong>g>of</str<strong>on</strong>g> many food<br />

products, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g poultry meat. C<strong>on</strong>sumers will <str<strong>on</strong>g>of</str<strong>on</strong>g>ten reject products <str<strong>on</strong>g>in</str<strong>on</strong>g> which the color<br />

varies from the expected normal appearance. Birren (1963) po<str<strong>on</strong>g>in</str<strong>on</strong>g>ted out that color is<br />

everywhere <str<strong>on</strong>g>and</str<strong>on</strong>g> that psychological resp<strong>on</strong>ses to color, as they relate to appetite, are<br />

c<strong>on</strong>sidered important to processors <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sumers. C<strong>on</strong>sequently, color is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used to<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e ec<strong>on</strong>omic value <str<strong>on</strong>g>of</str<strong>on</strong>g> food (Qiao et al., 2001).<br />

Color is important for both the c<strong>on</strong>sumer’s <str<strong>on</strong>g>in</str<strong>on</strong>g>itial selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a raw meat product <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

marketplace <str<strong>on</strong>g>and</str<strong>on</strong>g> for the c<strong>on</strong>sumer’s f<str<strong>on</strong>g>in</str<strong>on</strong>g>al evaluati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> ultimate acceptance <str<strong>on</strong>g>of</str<strong>on</strong>g> the cooked<br />

product up<strong>on</strong> c<strong>on</strong>sumpti<strong>on</strong>. Fr<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g (1995) reviewed the many live bird producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

process<str<strong>on</strong>g>in</str<strong>on</strong>g>g factors associated with poultry meat color. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the most frequent challenges<br />

to the meat <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry associated with the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensive selecti<strong>on</strong> for <str<strong>on</strong>g>in</str<strong>on</strong>g>creased muscl<str<strong>on</strong>g>in</str<strong>on</strong>g>g is the<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> pale, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t <str<strong>on</strong>g>and</str<strong>on</strong>g> exudative meat. The term PSE was orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ally a descriptor for<br />

a pork product, characterized by light color, flaccid texture, poor water-hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> substantially reduced cook<str<strong>on</strong>g>in</str<strong>on</strong>g>g yield. With the advent <str<strong>on</strong>g>of</str<strong>on</strong>g> technologies to identify <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate this major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme cases <str<strong>on</strong>g>of</str<strong>on</strong>g> PSE, a great reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

severity <str<strong>on</strong>g>of</str<strong>on</strong>g> PSE has been realized, even if products with poor water hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity still<br />

exist (Barbut et al., 2008). The suggesti<strong>on</strong> that a pale, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t, <str<strong>on</strong>g>and</str<strong>on</strong>g> exudative (PSE-like)<br />

74


c<strong>on</strong>diti<strong>on</strong> exists <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry was menti<strong>on</strong>ed some decades ago (Figure 8.2). Barbut (2009)<br />

reported that the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> PSE meat <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens ranged from 0 to 28% <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

seven different flocks. A grocery store survey <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,000 b<strong>on</strong>eless, sk<str<strong>on</strong>g>in</str<strong>on</strong>g>less, broiler breast<br />

fillet packages showed that approximately 7% <str<strong>on</strong>g>of</str<strong>on</strong>g> the multiple-fillet packages had <strong>on</strong>e or<br />

more fillets that were significantly different <str<strong>on</strong>g>in</str<strong>on</strong>g> color, either lighter or darker, than the other<br />

fillets <str<strong>on</strong>g>in</str<strong>on</strong>g> the same package (Fletcher, 1999). However, to date, there is no evidence to<br />

support or refute a genetic mutati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> chicken <str<strong>on</strong>g>and</str<strong>on</strong>g> turkeys as related to PSE development<br />

(Strasburg <str<strong>on</strong>g>and</str<strong>on</strong>g> Chiang, 2009). The metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> the breast muscle <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s at<br />

slaughter could c<strong>on</strong>tribute to PSE-type meat because there are large glycogen stores with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the breast muscle with a high propensity to produce lactic acid (entirely glycolytic) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

therefore the potential for rapid drop <str<strong>on</strong>g>in</str<strong>on</strong>g> pH <str<strong>on</strong>g>and</str<strong>on</strong>g>/or low ultimate pH post mortem exists. In<br />

additi<strong>on</strong>, there is the potential for high muscle temperatures due to flapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g, struggle,<br />

stress, <str<strong>on</strong>g>and</str<strong>on</strong>g> high metabolic rate <str<strong>on</strong>g>in</str<strong>on</strong>g> the lead-up to slaughter <str<strong>on</strong>g>and</str<strong>on</strong>g> the large breast muscle mass<br />

(particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> turkeys) be<str<strong>on</strong>g>in</str<strong>on</strong>g>g difficult to chill post mortem (Barbut et al., 2008).<br />

Figure 8.2. Pale, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t <str<strong>on</strong>g>and</str<strong>on</strong>g> exudative (PSE)-like broiler breast meat<br />

a. b.<br />

a. Normal; b. PSE-like.<br />

Several studies have been c<strong>on</strong>ducted to establish directly or <str<strong>on</strong>g>in</str<strong>on</strong>g>directly the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> causes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PSE-like c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry (Petracci et al., 2009; Owens et al., 2009). These studies can<br />

be divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to two categories: those evaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the role exerted by genetic selecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

those c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental factors. As for genetics, it has been shown<br />

that selecti<strong>on</strong> for body weight or muscle development has <str<strong>on</strong>g>in</str<strong>on</strong>g>duced histological <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

biochemical modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscle tissue, which can be related with PSE-like<br />

c<strong>on</strong>diti<strong>on</strong> (Barbut et al., 2008). Am<strong>on</strong>g envir<strong>on</strong>mental factors to <str<strong>on</strong>g>in</str<strong>on</strong>g>duce PSE-like meat<br />

occurrence, heat stress dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g phase or preslaughter period seems to<br />

play the major role (Petracci et al., 2010). Faster grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g or heavier birds have been shown<br />

to be more susceptible to heat stress <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated by great metabolic heat producti<strong>on</strong>,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased body temperature, <str<strong>on</strong>g>and</str<strong>on</strong>g> mortality. S<str<strong>on</strong>g>and</str<strong>on</strong>g>ercock et al. (2001, 2006) found that<br />

rapidly grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>of</str<strong>on</strong>g> birds may exhibit a reduced thermoregulatory capacity compared<br />

with their genetic predecessors <str<strong>on</strong>g>and</str<strong>on</strong>g> may thus be more susceptible to heat stress dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

preslaughter period <str<strong>on</strong>g>and</str<strong>on</strong>g> to c<strong>on</strong>sequent problems <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g muscle damage, acid-base<br />

disturbances, <str<strong>on</strong>g>and</str<strong>on</strong>g> reduced meat quality (Petracci <str<strong>on</strong>g>and</str<strong>on</strong>g> Cavani, 2012).<br />

75


Although color variati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> their related problems occur <str<strong>on</strong>g>in</str<strong>on</strong>g> the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry, they<br />

tend to be sporadic, <str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>sistent <str<strong>on</strong>g>in</str<strong>on</strong>g> severity, <str<strong>on</strong>g>and</str<strong>on</strong>g> are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten not well described (Qiao et al.,<br />

2001).<br />

8.2.4 Intramuscular c<strong>on</strong>nective tissue defects<br />

A newer emerg<str<strong>on</strong>g>in</str<strong>on</strong>g>g quality issue <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry is the poor cohesiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> meat due to<br />

immaturity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular c<strong>on</strong>nective tissue (IMC) <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to the very early slaughter<br />

age <str<strong>on</strong>g>of</str<strong>on</strong>g> modern chicken <str<strong>on</strong>g>and</str<strong>on</strong>g> turkey stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. The strength <str<strong>on</strong>g>of</str<strong>on</strong>g> IMC is based <strong>on</strong> collagen fibrils<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> there are cross-bridges between the collagen molecule units. These cross-bridges<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the physical strength <str<strong>on</strong>g>and</str<strong>on</strong>g> heat stability <str<strong>on</strong>g>of</str<strong>on</strong>g> IMC. The number <str<strong>on</strong>g>and</str<strong>on</strong>g> stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cross-bridges <str<strong>on</strong>g>in</str<strong>on</strong>g>crease with age determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a reduced tenderness. Modern poultry is not<br />

tough, but the problem is <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly the opposite. The collagen c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> lean meat is<br />

0.2–0.4%. In fast-grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g birds the collagen is immature result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> low heat stability.<br />

C<strong>on</strong>sequently, poultry meat is tender, but may turn fragile, even mushy (Poulanne <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Voutila, 2009). Voutila et al. (2009) <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated that currently there are two emerg<str<strong>on</strong>g>in</str<strong>on</strong>g>g types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> defect <str<strong>on</strong>g>in</str<strong>on</strong>g> commercial poultry meat: (1) cooked chicken breast meat is generally<br />

fragmented (s<str<strong>on</strong>g>of</str<strong>on</strong>g>t) (Figure 8.3); <str<strong>on</strong>g>and</str<strong>on</strong>g> (2) raw turkey breast meat is so loose <str<strong>on</strong>g>in</str<strong>on</strong>g> structure<br />

(dis<str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated) that it is possible to pull the muscle fiber bundles away with the f<str<strong>on</strong>g>in</str<strong>on</strong>g>gers.<br />

(Swatl<str<strong>on</strong>g>and</str<strong>on</strong>g>, 1990). The mushy structure <str<strong>on</strong>g>of</str<strong>on</strong>g> cooked chicken breast meat can be perceived so<br />

that the need to chew before swallow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the piece <str<strong>on</strong>g>of</str<strong>on</strong>g> meat is m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal (Voutila, 2009).<br />

Figure 8.3. Broiler breast meat with poor cohesiveness<br />

As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> this IMC defect, new quality issue was recently observed regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> breast muscle. McKee et al. (2010) <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated that <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> emerg<str<strong>on</strong>g>in</str<strong>on</strong>g>g meat<br />

quality problems is the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> white strip<str<strong>on</strong>g>in</str<strong>on</strong>g>g or striati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry breast fillets<br />

follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fibers (Figure 8.4). While the phenomen<strong>on</strong> has not be<br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked to any particular eat<str<strong>on</strong>g>in</str<strong>on</strong>g>g attributes <str<strong>on</strong>g>of</str<strong>on</strong>g> cooked poultry, it does affect the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

raw meat <str<strong>on</strong>g>and</str<strong>on</strong>g> would possibly lead to c<strong>on</strong>sumers not select<str<strong>on</strong>g>in</str<strong>on</strong>g>g the product due to its<br />

76


appearance. Histological observati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> degenerative <str<strong>on</strong>g>and</str<strong>on</strong>g> atrophic<br />

fibers <str<strong>on</strong>g>in</str<strong>on</strong>g> breast fillets affected by white strip<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

Figure 8.4. Broiler breast meat with “white strip<str<strong>on</strong>g>in</str<strong>on</strong>g>g” defect<br />

As previously discussed for PSE-like issue, proteomics can be also very helpful to identity<br />

potential prote<str<strong>on</strong>g>in</str<strong>on</strong>g> markers for underst<str<strong>on</strong>g>and</str<strong>on</strong>g> defects such as poor texture <str<strong>on</strong>g>and</str<strong>on</strong>g> white strip<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

poultry related with <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular c<strong>on</strong>nective tissue development. For example, there are<br />

an <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g number <str<strong>on</strong>g>of</str<strong>on</strong>g> publicati<strong>on</strong>s try<str<strong>on</strong>g>in</str<strong>on</strong>g>g to reduce toughness problems <str<strong>on</strong>g>in</str<strong>on</strong>g> beef meat<br />

(Hollung et al., 2007; Eggen <str<strong>on</strong>g>and</str<strong>on</strong>g> Hocquette, 2003). However, until now, no clear<br />

relati<strong>on</strong>ship between collagen c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> fiber type compositi<strong>on</strong> has been reported <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

livestock species (Lefaucheur, 2010). Unfortunately, to date, proteomic studies related this<br />

topic <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry are limited because <str<strong>on</strong>g>of</str<strong>on</strong>g> less practical importance <str<strong>on</strong>g>in</str<strong>on</strong>g> respect to meat<br />

tenderness issues <str<strong>on</strong>g>in</str<strong>on</strong>g> beef <str<strong>on</strong>g>and</str<strong>on</strong>g> pork meat.<br />

It seems that ma<str<strong>on</strong>g>in</str<strong>on</strong>g> current problems related to meat quality <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry are related to<br />

selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the birds for growth rate <str<strong>on</strong>g>and</str<strong>on</strong>g> breast yield, even if <str<strong>on</strong>g>in</str<strong>on</strong>g>volved underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g genetic<br />

mechanisms are not fully understood. This c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ues to create new challenges for the food<br />

scientists who must work with meat from birds selected primarily for quantitative traits.<br />

Today, with the advent <str<strong>on</strong>g>of</str<strong>on</strong>g> “omics” science there are more possibilities to further<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate these issues. Overall proteomics, even if is at an early stage, may allow the<br />

identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> markers for muscle growth <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality properties <str<strong>on</strong>g>and</str<strong>on</strong>g> underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the molecular mechanisms that <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence texture <str<strong>on</strong>g>and</str<strong>on</strong>g> water-hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> meat<br />

(Petracci <str<strong>on</strong>g>and</str<strong>on</strong>g> Cavani, 2012).<br />

77


Chapter 9. Qualitative <str<strong>on</strong>g>and</str<strong>on</strong>g> nutriti<strong>on</strong>al properties <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat<br />

9.1 Meat quality c<strong>on</strong>cept<br />

The c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> meat quality has received a great deal <str<strong>on</strong>g>of</str<strong>on</strong>g> attenti<strong>on</strong> from food<br />

manufacturers, small traders, as well as public <str<strong>on</strong>g>in</str<strong>on</strong>g>stituti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> health centers. Food quality<br />

is c<strong>on</strong>sidered to be the most difficult to def<str<strong>on</strong>g>in</str<strong>on</strong>g>e the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> the food <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry, which has<br />

become particularly acute problem <str<strong>on</strong>g>in</str<strong>on</strong>g> recent years (Brunso et al., 2004). There is no<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> meat quality that meets all the quality comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the meat<br />

producti<strong>on</strong>; however the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> meat producti<strong>on</strong> is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

safety <str<strong>on</strong>g>of</str<strong>on</strong>g> food cha<str<strong>on</strong>g>in</str<strong>on</strong>g> (Akkerman et al., 2010). In fact, it is very difficult to develop comm<strong>on</strong><br />

quality st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards for the meat market as meat quality c<strong>on</strong>cept is chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g significantly<br />

over time (Frisby et al., 2005; Bogosavljević-Bošković, 2007). The supply <str<strong>on</strong>g>of</str<strong>on</strong>g> meat which<br />

is wholesome, safe, nutritious, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> high quality to the c<strong>on</strong>sumer will ensure c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued<br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> meat. In affluent countries, c<strong>on</strong>sumers are <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly dem<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g meat<br />

products which are <str<strong>on</strong>g>of</str<strong>on</strong>g> high quality 100% <str<strong>on</strong>g>of</str<strong>on</strong>g> the time. In order for livestock <str<strong>on</strong>g>in</str<strong>on</strong>g>dustries to<br />

c<strong>on</strong>sistently produce high quality meat, there must be an underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the factors that<br />

cause quality to vary, <str<strong>on</strong>g>and</str<strong>on</strong>g> implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> management systems to m<str<strong>on</strong>g>in</str<strong>on</strong>g>imize quality<br />

variati<strong>on</strong>. Meat quality is def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by those traits the c<strong>on</strong>sumer perceives as desirable which<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cludes both visual <str<strong>on</strong>g>and</str<strong>on</strong>g> sensory traits <str<strong>on</strong>g>and</str<strong>on</strong>g> credence traits <str<strong>on</strong>g>of</str<strong>on</strong>g> safety, health <str<strong>on</strong>g>and</str<strong>on</strong>g> more<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tangible traits such as ‘clean' <str<strong>on</strong>g>and</str<strong>on</strong>g> ‘green’ or welfare status <str<strong>on</strong>g>of</str<strong>on</strong>g> the producti<strong>on</strong> system<br />

(Becker, 2000). Important visual traits <str<strong>on</strong>g>in</str<strong>on</strong>g>clude; color <str<strong>on</strong>g>and</str<strong>on</strong>g> texture <str<strong>on</strong>g>of</str<strong>on</strong>g> the meat, fat color,<br />

amount <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fat as well as the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> excess water (purge) <str<strong>on</strong>g>in</str<strong>on</strong>g> the tray<br />

(Glitsch, 2000). Once cooked, c<strong>on</strong>sumer satisfacti<strong>on</strong> is largely determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by how tender<br />

the meat is as well as its flavor/odor <str<strong>on</strong>g>and</str<strong>on</strong>g> juic<str<strong>on</strong>g>in</str<strong>on</strong>g>ess (Glitsch, 2000).<br />

So, meat quality is a generic term used to describe properties <str<strong>on</strong>g>and</str<strong>on</strong>g> percepti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> meat. It<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cludes attributes such as carcass compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>formati<strong>on</strong>, the eat<str<strong>on</strong>g>in</str<strong>on</strong>g>g quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

meat, health issues associated with meat such as Escherichia coli 0157 c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

bov<str<strong>on</strong>g>in</str<strong>on</strong>g>e sp<strong>on</strong>giform encaphalopathy, <str<strong>on</strong>g>and</str<strong>on</strong>g> producti<strong>on</strong>-related issues <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g animal welfare<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental impact. These factors comb<str<strong>on</strong>g>in</str<strong>on</strong>g>e to give an overall assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> meat<br />

quality by the ultimate arbiter, the c<strong>on</strong>sumer. The critical po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>of</str<strong>on</strong>g> appraisal <str<strong>on</strong>g>of</str<strong>on</strong>g> meat quality<br />

occurs when the c<strong>on</strong>sumer eats the product, <str<strong>on</strong>g>and</str<strong>on</strong>g> it is this outcome, together with views <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

color, health<str<strong>on</strong>g>in</str<strong>on</strong>g>ess <str<strong>on</strong>g>and</str<strong>on</strong>g> price, that determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es the decisi<strong>on</strong> to repurchase (Boleman et al.,<br />

1997). The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> source <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sumer compla<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>and</str<strong>on</strong>g> the primary cause <str<strong>on</strong>g>of</str<strong>on</strong>g> failure to<br />

repurchase is the variability <str<strong>on</strong>g>in</str<strong>on</strong>g> eat<str<strong>on</strong>g>in</str<strong>on</strong>g>g quality, especially tenderness (Tarrant, 1998; B<str<strong>on</strong>g>in</str<strong>on</strong>g>d<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> J<strong>on</strong>es, 2001). Despite the efforts to c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> optimise the peri-slaughter<br />

envir<strong>on</strong>ment (Meat <str<strong>on</strong>g>and</str<strong>on</strong>g> Livestock Commissi<strong>on</strong>, 1991; Tatum et al., 1999; Mol<strong>on</strong>ey et al.,<br />

2001), which has a particular impact <strong>on</strong> tenderness (Fergus<strong>on</strong> et al., 2001), there is still<br />

unacceptable variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> eat<str<strong>on</strong>g>in</str<strong>on</strong>g>g quality, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g that determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ants <str<strong>on</strong>g>of</str<strong>on</strong>g> meat eat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

quality are multifactorial <str<strong>on</strong>g>and</str<strong>on</strong>g> complex. This situati<strong>on</strong> is not surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>g s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce muscle is<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sically a highly organized <str<strong>on</strong>g>and</str<strong>on</strong>g> complex structure, so that the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> meat are<br />

likely to be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed at different levels rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the molecular to the mechanical.<br />

78


9.2 The major factors affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g meat quality<br />

9.2.1 Appearance <str<strong>on</strong>g>and</str<strong>on</strong>g> technological characteristics<br />

Generally, c<strong>on</strong>sumers decide to purchase meat based <strong>on</strong> its appearance. The colour <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

meat greatly affects its saleability. Moreover, its water-hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity (WHC) is also<br />

important to the c<strong>on</strong>sumer. It can be said that appearance <str<strong>on</strong>g>and</str<strong>on</strong>g> technological characteristics<br />

are c<strong>on</strong>nected. The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> WHC can be classified <str<strong>on</strong>g>in</str<strong>on</strong>g>to three secti<strong>on</strong>s; firstly, poor<br />

WHC can be c<strong>on</strong>nected to the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the meat. WHC is obvious to the c<strong>on</strong>sumer<br />

when exam<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the Styr<str<strong>on</strong>g>of</str<strong>on</strong>g>oam packag<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the retail stores. Poor WHC results <str<strong>on</strong>g>in</str<strong>on</strong>g> the drip<br />

rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the package - result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a negative appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the meat. Sec<strong>on</strong>dly, the<br />

drip loss is c<strong>on</strong>nected to the weight <str<strong>on</strong>g>of</str<strong>on</strong>g> the meat.<br />

In processed meats, poor WHC may reduce water retenti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore yield <str<strong>on</strong>g>of</str<strong>on</strong>g> product<br />

is reduced. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, the juic<str<strong>on</strong>g>in</str<strong>on</strong>g>ess <str<strong>on</strong>g>of</str<strong>on</strong>g> the meat after cook<str<strong>on</strong>g>in</str<strong>on</strong>g>g is also affected by the WHC.<br />

Poor WHC meat may be dry or taste may be negatively affected. Beside colour <str<strong>on</strong>g>and</str<strong>on</strong>g> WHC,<br />

there is also a relati<strong>on</strong>ship between appearance <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular fat (IMF) or marbl<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

This is also an important factor for determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the meat. High marbl<str<strong>on</strong>g>in</str<strong>on</strong>g>g is a<br />

requirement for some c<strong>on</strong>sumers such as <str<strong>on</strong>g>in</str<strong>on</strong>g> Japan, whereas low marbl<str<strong>on</strong>g>in</str<strong>on</strong>g>g is required by<br />

some other countries as <str<strong>on</strong>g>in</str<strong>on</strong>g> France (M<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>, 1999; Warris, 2000).<br />

9.2.2 Palatability<br />

Palatability or eat<str<strong>on</strong>g>in</str<strong>on</strong>g>g quality <str<strong>on</strong>g>of</str<strong>on</strong>g> meat can be def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by three characteristics. Those are<br />

tenderness, juic<str<strong>on</strong>g>in</str<strong>on</strong>g>ess, <str<strong>on</strong>g>and</str<strong>on</strong>g> flavour or odour. In most countries, people want their meat<br />

tender, but that is not the case for many African countries, where they prefer their meat<br />

chewy. Juic<str<strong>on</strong>g>in</str<strong>on</strong>g>ess <str<strong>on</strong>g>of</str<strong>on</strong>g> the meat is ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly related to the WHC <str<strong>on</strong>g>of</str<strong>on</strong>g> the meat or low IMF level.<br />

Flavour <str<strong>on</strong>g>and</str<strong>on</strong>g> odour are closely related. Generally, flavour is l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked to water-soluble<br />

materials, <str<strong>on</strong>g>and</str<strong>on</strong>g> odour is related to fat-soluble volatile elements. If the meat smells<br />

unpleasant, it is mostly related to the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the meat. It can be an <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

spoilage. But it is not always the case. For <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, some unpleasant smell can be caused<br />

by the boar’s ta<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>of</str<strong>on</strong>g> male pigs (Warris, 2000).<br />

9.2.3 Wholesomeness<br />

Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the Canadian Food Inspecti<strong>on</strong> Agency, “Wholesomeness” is def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as free<br />

from decompositi<strong>on</strong>, bacteria <str<strong>on</strong>g>of</str<strong>on</strong>g> public health significance or substances toxic or<br />

aesthetically <str<strong>on</strong>g>of</str<strong>on</strong>g>fensive to man. Wholesomeness has two comp<strong>on</strong>ents. First, meat should be<br />

safe to eat. This means the meat must be free from parasites, microbiological pathogens<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> hazardous chemicals (Heitzman, 1996).<br />

Sec<strong>on</strong>d, people want meat to be beneficial to their health <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals,<br />

vitam<str<strong>on</strong>g>in</str<strong>on</strong>g>s, high value prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> possibly essential fatty acids, such as eicosapentaenoic<br />

(EPA) <str<strong>on</strong>g>and</str<strong>on</strong>g> docosahexaenoic (DHA) acids to their diet (McCance <str<strong>on</strong>g>and</str<strong>on</strong>g> Widdows<strong>on</strong>, 1997).<br />

9.3 Compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutriti<strong>on</strong>al aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat<br />

Over the past few years, meat producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> market have underg<strong>on</strong>e several negative<br />

events that have impaired the image <str<strong>on</strong>g>of</str<strong>on</strong>g> this essential food product from the c<strong>on</strong>sumer’s<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>po<str<strong>on</strong>g>in</str<strong>on</strong>g>t (Toldrá <str<strong>on</strong>g>and</str<strong>on</strong>g> Reig, 2011). Generally, the image <str<strong>on</strong>g>of</str<strong>on</strong>g> meat <str<strong>on</strong>g>and</str<strong>on</strong>g> meat products is<br />

79


elatively negative due to their c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> fat <str<strong>on</strong>g>and</str<strong>on</strong>g> saturated fatty acids, most prevalent<br />

diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> Western societies like cardiovascular diseases <str<strong>on</strong>g>and</str<strong>on</strong>g> diabetes mellitus (Micha et<br />

al., 2010) <str<strong>on</strong>g>and</str<strong>on</strong>g> cancer (Cross et al., 2010; Fergus<strong>on</strong>, 2010; Santarelli et al., 2010). In fact,<br />

epidemiological data suggests a relati<strong>on</strong>ship between meat c<strong>on</strong>sumpti<strong>on</strong> or dietary heme<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong> cancer (Cross et al., 2010; Bastide et al., 2010). Reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> meat<br />

c<strong>on</strong>sumpti<strong>on</strong> has been accentuated by a series <str<strong>on</strong>g>of</str<strong>on</strong>g> sc<str<strong>on</strong>g>and</str<strong>on</strong>g>als <str<strong>on</strong>g>and</str<strong>on</strong>g> animal health problems<br />

which have hit livestock producti<strong>on</strong>, such as BSE, diox<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> meat <str<strong>on</strong>g>and</str<strong>on</strong>g> avian <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenza.<br />

With<str<strong>on</strong>g>in</str<strong>on</strong>g> this c<strong>on</strong>text, the poultry meat has ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed its identity <str<strong>on</strong>g>and</str<strong>on</strong>g> a higher value<br />

compared to other species for several reas<strong>on</strong>s. Indeed, worldwide poultry meat producti<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> have <str<strong>on</strong>g>in</str<strong>on</strong>g>creased rapidly <str<strong>on</strong>g>and</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g> many parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the world, per capita<br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat will c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue to grow (Cavani et al., 2009). Poultry meat<br />

represents more than 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> global meat producti<strong>on</strong>, the most comm<strong>on</strong> sources <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry<br />

meat are chickens <str<strong>on</strong>g>and</str<strong>on</strong>g> turckey (87% <str<strong>on</strong>g>and</str<strong>on</strong>g> 7% <str<strong>on</strong>g>of</str<strong>on</strong>g> total poultry producti<strong>on</strong>, respectively).<br />

Relatively low <str<strong>on</strong>g>and</str<strong>on</strong>g> competitive prices compared to other meats, the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> cultural or<br />

religious obstacles, <str<strong>on</strong>g>and</str<strong>on</strong>g> dietary <str<strong>on</strong>g>and</str<strong>on</strong>g> nutriti<strong>on</strong>al properties are the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> factors expla<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

poultry meat’s attractiveness (Valcesch<str<strong>on</strong>g>in</str<strong>on</strong>g>i, 2006). The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> meat <str<strong>on</strong>g>in</str<strong>on</strong>g> general <str<strong>on</strong>g>and</str<strong>on</strong>g> hence<br />

poultry meat is an extremely complex noti<strong>on</strong> that can be assessed from different po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

view. From the st<str<strong>on</strong>g>and</str<strong>on</strong>g>po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sumer <str<strong>on</strong>g>in</str<strong>on</strong>g>terests <str<strong>on</strong>g>and</str<strong>on</strong>g> the slaughter <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry, broilers should<br />

have not <strong>on</strong>ly high slaughter yields <str<strong>on</strong>g>and</str<strong>on</strong>g> desirable carcass c<strong>on</strong>formati<strong>on</strong> scores but also<br />

good aesthetic, sensory <str<strong>on</strong>g>and</str<strong>on</strong>g> nutriti<strong>on</strong>al characteristics. Nutriti<strong>on</strong>ally speak<str<strong>on</strong>g>in</str<strong>on</strong>g>g, the ma<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

quality features <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat are chemical compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> muscles to fat <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

carcass. The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> meat c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a carcass muscle, fat, b<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>nective tissue,<br />

as well as cartilage <str<strong>on</strong>g>and</str<strong>on</strong>g> ligaments. The less b<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> cartilage <str<strong>on</strong>g>and</str<strong>on</strong>g> more muscle <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

adipose tissue <str<strong>on</strong>g>in</str<strong>on</strong>g> the carcass determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the higher categorical <str<strong>on</strong>g>and</str<strong>on</strong>g> nutriti<strong>on</strong>al value <str<strong>on</strong>g>of</str<strong>on</strong>g> meat.<br />

C<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle tissue <str<strong>on</strong>g>of</str<strong>on</strong>g> the carcass varies between 40-70%. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler<br />

crosses muscle tissue proporti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the pectoral muscle is from 94 to 98% <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the leg<br />

from 92 to 97%. The most valuable is the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass flesh <str<strong>on</strong>g>and</str<strong>on</strong>g> b<strong>on</strong>es 4-4.5:1. The<br />

muscle is approximately 75% water (although different cuts may have more or less water)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 20-25% prote<str<strong>on</strong>g>in</str<strong>on</strong>g> with the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 5% represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fat (1.2-2.5%),<br />

carbohydrate <str<strong>on</strong>g>and</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals (Maiorano et al., 2012). The nutrient compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken is<br />

a resp<strong>on</strong>se to the diet it c<strong>on</strong>sumes particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> the early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> life. As a broiler<br />

chicken grows the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its carcass changes (J<strong>on</strong>es, 1986) <str<strong>on</strong>g>and</str<strong>on</strong>g> fat deposits<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease. The <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular fat also palys an important role <str<strong>on</strong>g>in</str<strong>on</strong>g> the quality (flavor <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

juic<str<strong>on</strong>g>in</str<strong>on</strong>g>ess) <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken meat (Chizzol<str<strong>on</strong>g>in</str<strong>on</strong>g>i et al., 1999). Regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g the fat compositi<strong>on</strong>, based<br />

<strong>on</strong> a s<str<strong>on</strong>g>in</str<strong>on</strong>g>lge value for a 100g lean fillet serve, lean chicken breast has relatively higher<br />

proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ounsaturated fatty acids (>20% compared to beef <str<strong>on</strong>g>and</str<strong>on</strong>g> tuna). <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

polyunsaturated fatty acids (>30% compared to beef, lamb <str<strong>on</strong>g>and</str<strong>on</strong>g> pork) (Rule et al., 2002;<br />

Probst, 2009). Fat is very important from a sensory aspect s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce it is a source <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

aromatic substances affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the meat taste. Intramuscular fat <str<strong>on</strong>g>in</str<strong>on</strong>g>creases energy value,<br />

improves the taste, but too much body fat <str<strong>on</strong>g>in</str<strong>on</strong>g>hibits gastric acid secreti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> complicates<br />

prote<str<strong>on</strong>g>in</str<strong>on</strong>g> digestibility (Jukna et al., 2007). C<strong>on</strong>sumers prefer lean meat with reduced c<strong>on</strong>tent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fat. However, overmuch low <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular fat c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> worse taste qualities <str<strong>on</strong>g>of</str<strong>on</strong>g> meat<br />

(Valsta et al., 2005; Jukna et. al., 2010). Intramuscular fat is the most variable part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

meat. Its coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> is several times higher than other meat characteristics.<br />

80


Meat is an important source <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> B1, niac<str<strong>on</strong>g>in</str<strong>on</strong>g>, B2, B6 <str<strong>on</strong>g>and</str<strong>on</strong>g> B12 <str<strong>on</strong>g>and</str<strong>on</strong>g> vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> A.<br />

It is also a major source for phosphorus, ir<strong>on</strong>, copper, z<str<strong>on</strong>g>in</str<strong>on</strong>g>c, <str<strong>on</strong>g>and</str<strong>on</strong>g> selenium. When all animal<br />

products are <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded whole <str<strong>on</strong>g>in</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> supply for humans, red meat <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry make up<br />

<strong>on</strong>e sixth <str<strong>on</strong>g>of</str<strong>on</strong>g> all prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong>.<br />

The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> meat is muscle tissue. Prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s are the most valuable part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

muscle, which accounts for about 80 percent muscle tissue materials. Prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

the nutriti<strong>on</strong>al value <str<strong>on</strong>g>of</str<strong>on</strong>g> meat, they <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the technological processes <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

physical - chemical parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> meat. In fact, prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s are the major comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> dry<br />

matter <str<strong>on</strong>g>of</str<strong>on</strong>g> meat, <str<strong>on</strong>g>and</str<strong>on</strong>g> their c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> muscles is variable between 18 <str<strong>on</strong>g>and</str<strong>on</strong>g> 22% <str<strong>on</strong>g>and</str<strong>on</strong>g> depends<br />

<strong>on</strong> the functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular tissue. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Sime<strong>on</strong><str<strong>on</strong>g>ovo</str<strong>on</strong>g>vá (1999) breast muscles<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> approximately 22% prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s, while <str<strong>on</strong>g>in</str<strong>on</strong>g> thigh muscles, which c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> more fat,<br />

approximately 17.20% <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s was found.<br />

Poultry meat well fit the current c<strong>on</strong>sumer dem<str<strong>on</strong>g>and</str<strong>on</strong>g> for a low-fat meat (3-8%), low sodium<br />

(0.09%) <str<strong>on</strong>g>and</str<strong>on</strong>g> cholesterol levels (Suchý et al., 2002) with a low energetic value (519–741<br />

kJ/100 g). It should also menti<strong>on</strong>ed that the changes <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>sumer’s lifestyle <str<strong>on</strong>g>in</str<strong>on</strong>g> developed<br />

countries have led to a meat market more <str<strong>on</strong>g>and</str<strong>on</strong>g> more addressed towards easy-h<str<strong>on</strong>g>and</str<strong>on</strong>g>led <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

processed products (“c<strong>on</strong>venience food”). This trend has been exploited s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce l<strong>on</strong>g time by<br />

the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry, which made str<strong>on</strong>g <str<strong>on</strong>g>in</str<strong>on</strong>g>vestments <str<strong>on</strong>g>in</str<strong>on</strong>g> the process<str<strong>on</strong>g>in</str<strong>on</strong>g>g area, by <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry <str<strong>on</strong>g>in</str<strong>on</strong>g> a large variety <str<strong>on</strong>g>of</str<strong>on</strong>g> processed ready meals (Cavani et al., 2009).<br />

Poultry meat may also be c<strong>on</strong>sidered as “functi<strong>on</strong>al foods”, which provide bioactive<br />

substances with favorable effects <strong>on</strong> human health, like c<strong>on</strong>jugated l<str<strong>on</strong>g>in</str<strong>on</strong>g>oleic acid (CLA),<br />

vitam<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals, <str<strong>on</strong>g>and</str<strong>on</strong>g> a balanced n-6 to n-3 polyunsaturated fatty acids (PUFA) ratio<br />

(Barroeta, 2006; Givens, 2009). There is c<strong>on</strong>siderable evidence to suggest that l<strong>on</strong>g-cha<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

n-3 fatty acids are important to certa<str<strong>on</strong>g>in</str<strong>on</strong>g> tissues such as the bra<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> ret<str<strong>on</strong>g>in</str<strong>on</strong>g>a <str<strong>on</strong>g>and</str<strong>on</strong>g> play a role <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the ma<str<strong>on</strong>g>in</str<strong>on</strong>g>tenance <str<strong>on</strong>g>of</str<strong>on</strong>g> human health by protect<str<strong>on</strong>g>in</str<strong>on</strong>g>g aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st metabolic diseases (Mori et al.,<br />

2000; Kris-Ethert<strong>on</strong> et al., 2002; Delarue et al., 2004; Perez-Matute et al., 2007).<br />

9.3.1 Factors affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g poultry meat quality<br />

The quality <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat are <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced by numerous factors such as<br />

genotype <str<strong>on</strong>g>of</str<strong>on</strong>g> birds (Genchev et al., 2005; Alkan et al., 2010), divergent selecti<strong>on</strong> (Maiorano<br />

et al., 2009, 2011), feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Gardzielewska et al., 2005), sex (Genchev et al., 2008), age<br />

(Tserveni-Gousi <str<strong>on</strong>g>and</str<strong>on</strong>g> Yannakopoulos, 1986), <str<strong>on</strong>g>and</str<strong>on</strong>g> stress (G<strong>on</strong>zález et al., 2007). Genotype,<br />

sex <str<strong>on</strong>g>and</str<strong>on</strong>g> age st<str<strong>on</strong>g>and</str<strong>on</strong>g> out am<strong>on</strong>g biological factors (Lewis et al., 1997; Bokkers <str<strong>on</strong>g>and</str<strong>on</strong>g> Koene,<br />

2003; Hellmeister et al., 2003). Meat quality is also affected by envir<strong>on</strong>mental factors,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g broiler nutriti<strong>on</strong> (diet compositi<strong>on</strong>, feed c<strong>on</strong>sumpti<strong>on</strong>, feed additives), broiler<br />

rear<str<strong>on</strong>g>in</str<strong>on</strong>g>g system, feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g management <str<strong>on</strong>g>and</str<strong>on</strong>g> stressful preslaughter c<strong>on</strong>diti<strong>on</strong>s favor<str<strong>on</strong>g>in</str<strong>on</strong>g>g meat<br />

defects (Holm <str<strong>on</strong>g>and</str<strong>on</strong>g> Fletcher, 1997; Owens <str<strong>on</strong>g>and</str<strong>on</strong>g> Sams, 2000).<br />

No study has been c<strong>on</strong>ducted <strong>on</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> between genotype <str<strong>on</strong>g>and</str<strong>on</strong>g> pre-slaughter stress<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> poultry. Significant effects <str<strong>on</strong>g>of</str<strong>on</strong>g> preslaughter c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> meat characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> some<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s with the genotype were observed <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> the study made by Debut et al.<br />

(2003). However, preslaughter c<strong>on</strong>diti<strong>on</strong>s had an effect <str<strong>on</strong>g>of</str<strong>on</strong>g> lower magnitude than genotype<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> were limited to thigh characteristics. These results suggest that thigh meat is more<br />

sensitive to envir<strong>on</strong>mental factors than breast meat. The difference <str<strong>on</strong>g>in</str<strong>on</strong>g> sensitivity have been<br />

previously suggested by the genetic study <str<strong>on</strong>g>of</str<strong>on</strong>g> Le Bihan-Duval et al. (2003) <strong>on</strong> turkey meat<br />

81


quality, <str<strong>on</strong>g>in</str<strong>on</strong>g> which envir<strong>on</strong>mental factors appeared most dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant for some thigh<br />

characteristics (pH <str<strong>on</strong>g>and</str<strong>on</strong>g> color) that showed extremely low heritable features. Surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>gly,<br />

breast meat characteristics were unmodified by heat stress <str<strong>on</strong>g>in</str<strong>on</strong>g> the present study, which was<br />

also reported by Petracci et al. (2001), suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g that the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> acute heat stress <strong>on</strong><br />

meat quality could vary accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> (durati<strong>on</strong> or <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity)<br />

but also accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the genotypes <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle used. Moreover, Debut et al. (2003) assert<br />

that <str<strong>on</strong>g>in</str<strong>on</strong>g> chickens as <str<strong>on</strong>g>in</str<strong>on</strong>g> pigs the postmortem pH decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e str<strong>on</strong>gly affects the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

meat, particularly by the str<strong>on</strong>g effect <str<strong>on</strong>g>of</str<strong>on</strong>g> ultimate pH <strong>on</strong> process<str<strong>on</strong>g>in</str<strong>on</strong>g>g yield.<br />

The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat is the category <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass which is<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by its nutriti<strong>on</strong>al status, tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to account the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> fat <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle tissue<br />

(Groom, 1990). The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> edible comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken are:<br />

- breasts (white meat <str<strong>on</strong>g>and</str<strong>on</strong>g> relatively dry);<br />

- legs: the “drumstick” which is the lower part <str<strong>on</strong>g>of</str<strong>on</strong>g> the leg <str<strong>on</strong>g>and</str<strong>on</strong>g> the meat is dark; the “thigh”,<br />

upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> the leg <str<strong>on</strong>g>and</str<strong>on</strong>g> the meat is dark;<br />

- w<str<strong>on</strong>g>in</str<strong>on</strong>g>g: the “drumette”, shaped like a small drumstick; “w<str<strong>on</strong>g>in</str<strong>on</strong>g>gette”;<br />

- giblets: neck, liver, heart <str<strong>on</strong>g>and</str<strong>on</strong>g> gizzard.<br />

So, as above reported, several are the factors that affect the overall quality <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat<br />

but other 3 extremely important traits <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence its quality: appearance, meat tenderness<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> flavor. (Fletcher, 2002). Appearance (e.g., color <str<strong>on</strong>g>of</str<strong>on</strong>g> sk<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> meat) is critical for both<br />

c<strong>on</strong>sumers’ <str<strong>on</strong>g>in</str<strong>on</strong>g>itial selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the product <str<strong>on</strong>g>and</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al product satisfacti<strong>on</strong>. Poultry is unique<br />

because it is sold with <str<strong>on</strong>g>and</str<strong>on</strong>g> without its sk<str<strong>on</strong>g>in</str<strong>on</strong>g>. In additi<strong>on</strong>, it is the <strong>on</strong>ly species known to have<br />

muscles that are dramatic extremes <str<strong>on</strong>g>in</str<strong>on</strong>g> color, white <str<strong>on</strong>g>and</str<strong>on</strong>g> dark meat (Qiao et al., 2002).<br />

Breast meat is expected to have a pale p<str<strong>on</strong>g>in</str<strong>on</strong>g>k color when it is raw, while thigh <str<strong>on</strong>g>and</str<strong>on</strong>g> leg meat<br />

are expected to be dark red when raw. There are times when poultry meat does not have<br />

the expected color <str<strong>on</strong>g>and</str<strong>on</strong>g> this has created some special problems for the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry. In<br />

additi<strong>on</strong>, raw meat color lightness, has a close relati<strong>on</strong>ship with various physical <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

chemical properties <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>alities <str<strong>on</strong>g>of</str<strong>on</strong>g> both raw <str<strong>on</strong>g>and</str<strong>on</strong>g> cooked poultry breast meat<br />

(reviewed <str<strong>on</strong>g>in</str<strong>on</strong>g> Zhuang <str<strong>on</strong>g>and</str<strong>on</strong>g> Savage, 2010). Poultry meat color is affected by factors such as<br />

age <str<strong>on</strong>g>of</str<strong>on</strong>g> animal, sex, stra<str<strong>on</strong>g>in</str<strong>on</strong>g> (exercise), diet, <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular fat, meat moisture c<strong>on</strong>tent, preslaughter<br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> process<str<strong>on</strong>g>in</str<strong>on</strong>g>g variables (reviewed <str<strong>on</strong>g>in</str<strong>on</strong>g> Petracci et al., 2004). Color <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

meat depends up<strong>on</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscle pigments myoglob<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> hemoglob<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

Myoglob<str<strong>on</strong>g>in</str<strong>on</strong>g> is a prote<str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>sible for the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> the red color. It doesn’t circulate <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the blood but is fixed <str<strong>on</strong>g>in</str<strong>on</strong>g> the tissue cells <str<strong>on</strong>g>and</str<strong>on</strong>g> is purplish<str<strong>on</strong>g>in</str<strong>on</strong>g> color. When it is mixed with<br />

oxygen, it becomes oxymyoglob<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> produces a bright red color. In additi<strong>on</strong>, the color <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

meat <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry can change as it is be<str<strong>on</strong>g>in</str<strong>on</strong>g>g stored at retail <str<strong>on</strong>g>and</str<strong>on</strong>g> at home. When safely stored<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the refrigerator or freezer, color changes are normal for fresh meat <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry.<br />

Meat tenderness is an important meat quality trait <str<strong>on</strong>g>and</str<strong>on</strong>g> the biological, structural <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

physiological mechanisms underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g meat tenderness have been extensively <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated<br />

(Dransfield <str<strong>on</strong>g>and</str<strong>on</strong>g> J<strong>on</strong>es, 1980; Koohmaraie, 1988; Tornberg, 1996; Harper, 1999).<br />

Intramuscular fat also <str<strong>on</strong>g>in</str<strong>on</strong>g>directly <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences meat tenderness (Tornberg, 1996; Harper,<br />

1999; Nishimura et al., 1999; Hocquette et al., 2010) as does the rate <str<strong>on</strong>g>and</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> postmortem<br />

energy metabolism (Thomps<strong>on</strong> et al., 2006). Essentially, meat tenderness is<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the amount <str<strong>on</strong>g>and</str<strong>on</strong>g> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>nective tissue (collagen morphology),<br />

sarcomere shorten<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g rigor development (sarcomere length, pH), <str<strong>on</strong>g>and</str<strong>on</strong>g> post-mortem<br />

82


proteolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrillar (fiber resisitance) <str<strong>on</strong>g>and</str<strong>on</strong>g> my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrillar-associated prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

(Koohmaraie <str<strong>on</strong>g>and</str<strong>on</strong>g> Gees<str<strong>on</strong>g>in</str<strong>on</strong>g>k, 2006). Each <str<strong>on</strong>g>of</str<strong>on</strong>g> these factors are generally n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>in</str<strong>on</strong>g> their<br />

effect <strong>on</strong> meat tenderness, with c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g debate over the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> each factor,<br />

depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the muscle, the species, the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the animal <str<strong>on</strong>g>and</str<strong>on</strong>g> the data available. Whether<br />

or not poultry meat is tender depends up<strong>on</strong> the rate <str<strong>on</strong>g>and</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> the chemical <str<strong>on</strong>g>and</str<strong>on</strong>g> physical<br />

changes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the muscle as it becomes meat. Raw chicken meat is generally very<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>t <str<strong>on</strong>g>and</str<strong>on</strong>g>, when cooked, it can even be cohesive. In additi<strong>on</strong>, the genetic progress has put<br />

more stress <strong>on</strong> the grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g bird <str<strong>on</strong>g>and</str<strong>on</strong>g> has resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> histological <str<strong>on</strong>g>and</str<strong>on</strong>g> biochemical<br />

modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscle tissue by impair<str<strong>on</strong>g>in</str<strong>on</strong>g>g some meat quality traits (reviewed <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Maiorano et al., 2012).<br />

Also the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> pH decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e plays an important role <strong>on</strong> post-mortem meat tenderizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

all stages <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong>; it varies am<strong>on</strong>g chicken genetic l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>and</str<strong>on</strong>g> between <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual birds<br />

(Gardzielewska et al., 1995). After death <str<strong>on</strong>g>of</str<strong>on</strong>g> the animal anaerobic metabolism reduces the<br />

pH from about 7.2 <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle to 5.8 <str<strong>on</strong>g>in</str<strong>on</strong>g> meat <str<strong>on</strong>g>and</str<strong>on</strong>g> stiffness develops (rigor mortis) (reviewed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Dransfield <str<strong>on</strong>g>and</str<strong>on</strong>g> Sosnicki, 1999). A fast pH decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e, when the carcass has a high<br />

temperature, <str<strong>on</strong>g>in</str<strong>on</strong>g>activates the calpa<str<strong>on</strong>g>in</str<strong>on</strong>g> system <str<strong>on</strong>g>and</str<strong>on</strong>g> reduce the process <str<strong>on</strong>g>of</str<strong>on</strong>g> postmortem<br />

tenderizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the meat will be tough. In additi<strong>on</strong>, with a rapid pH decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e the myos<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

will be more susceptible to denaturati<strong>on</strong>, as c<strong>on</strong>sequence the meat is characterized as pale<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> with low functi<strong>on</strong>al properties (lower water-hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity s<str<strong>on</strong>g>of</str<strong>on</strong>g>t <str<strong>on</strong>g>and</str<strong>on</strong>g> exudative)<br />

normally refers to the PSE-like c<strong>on</strong>diti<strong>on</strong> found <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry. (Van Laack et al., 2000).<br />

Flavor is an important quality attribute which relates to the organoleptic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

meat; it is another quality attribute that c<strong>on</strong>sumers use to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the acceptability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

poultry meat. Although percepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flavor is a complex phenomen<strong>on</strong>, odor is the most<br />

important s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle factor c<strong>on</strong>tribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the overall characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> flavor. A large number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> compounds have been identified <str<strong>on</strong>g>in</str<strong>on</strong>g> the volatile fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> red meats <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry. An<br />

overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the chemical c<strong>on</strong>stituents present <str<strong>on</strong>g>in</str<strong>on</strong>g> the volatiles <str<strong>on</strong>g>of</str<strong>on</strong>g> beef, pork, mutt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

chicken is presented accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to species <str<strong>on</strong>g>and</str<strong>on</strong>g> arranged by chemical class (hydrocarb<strong>on</strong>s,<br />

alcohols, acids, aldehydes, ket<strong>on</strong>es, sulfides, hetorocyclic compounds) (Shahidi et al.,<br />

1986).<br />

9.3.1.1 <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular c<strong>on</strong>nective tissue <strong>on</strong> meat toughness<br />

C<strong>on</strong>nective tissue, where collagen is the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g comp<strong>on</strong>ent plays a role <str<strong>on</strong>g>in</str<strong>on</strong>g> meat<br />

quality. Collagen form str<strong>on</strong>g fibrous structures l<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g muscle elements together,<br />

therefore it is hypothesized that the total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> this comp<strong>on</strong>ent determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es the meat<br />

texture. In fact, the morphology, compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular c<strong>on</strong>nective<br />

tissue (IMCT) vary tremendously between muscles, species, breeds <str<strong>on</strong>g>and</str<strong>on</strong>g> with animal age. It<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sically acknowledged the large <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> IMCT <strong>on</strong> meat toughness <str<strong>on</strong>g>in</str<strong>on</strong>g> age-old<br />

preferences <str<strong>on</strong>g>in</str<strong>on</strong>g> choos<str<strong>on</strong>g>in</str<strong>on</strong>g>g cuts <str<strong>on</strong>g>of</str<strong>on</strong>g> meat to purchase. Although <strong>on</strong>ly a small comp<strong>on</strong>ent (<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> mass fracti<strong>on</strong>), the disproporti<strong>on</strong>ately large <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> IMCT <strong>on</strong> meat toughness<br />

has resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> studies try<str<strong>on</strong>g>in</str<strong>on</strong>g>g to relate its amount, or various aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> its compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

distributi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle tissue, to variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> meat texture for more than three-quarters <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

century (Lehmann, 1907; Hamm<strong>on</strong>d, 1932; Carpenter et al., 1963; Marsh, 1977; Light et<br />

al., 1985; Brooks <str<strong>on</strong>g>and</str<strong>on</strong>g> Savell, 2004). Modern producti<strong>on</strong> practices for animal producti<strong>on</strong><br />

clearly aim to m<str<strong>on</strong>g>in</str<strong>on</strong>g>imize the variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> texture due to animal maturity, so that young<br />

83


animals <str<strong>on</strong>g>of</str<strong>on</strong>g> a narrow age range at slaughter <str<strong>on</strong>g>of</str<strong>on</strong>g> the same breed show variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the texture<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a meat from a given muscle that is <strong>on</strong>ly m<str<strong>on</strong>g>in</str<strong>on</strong>g>imally related to characteristics such as<br />

collagen c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> solubility. Given the large <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> IMCT <strong>on</strong> meat texture, even<br />

small manipulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> its expressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> turnover may have c<strong>on</strong>siderable potential for<br />

reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g unwanted variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> meat tenderness. (Purslow, 2005)<br />

Meat texture sensati<strong>on</strong> is dictated by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> several factors <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g the amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular fat, water hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity <str<strong>on</strong>g>and</str<strong>on</strong>g> actomyos<str<strong>on</strong>g>in</str<strong>on</strong>g> complex (Avery <str<strong>on</strong>g>and</str<strong>on</strong>g> Bailey,<br />

1995; Bosselmann et al., 1995). However, it is the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen, the major<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular c<strong>on</strong>nective tissue, which gives the toughness to mea <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different domestic animals <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g birds (Maiorano et al., 2011, 2012). It has been<br />

established that collagen covalent cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g mediated by lysyl oxidase enzyme changes<br />

with advanc<str<strong>on</strong>g>in</str<strong>on</strong>g>g age (Bailey <str<strong>on</strong>g>and</str<strong>on</strong>g> Shimokomaki, 1971; Rob<str<strong>on</strong>g>in</str<strong>on</strong>g>s el al., 1973). In fact, the<br />

immature collagen crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>k, hydroxylys<str<strong>on</strong>g>in</str<strong>on</strong>g>oket<strong>on</strong>orleuc<str<strong>on</strong>g>in</str<strong>on</strong>g>e (HLKNL) decreases its<br />

c<strong>on</strong>centrati<strong>on</strong> with ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the animal toughen<str<strong>on</strong>g>in</str<strong>on</strong>g>g the meat (Shimokomaki et al., 1972).<br />

The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> mature crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>k derived from two reducible HLKNL is pyrid<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e (PYR),<br />

which stabilizes the collagen molecule (Fujimoto, 1977; Eyre <str<strong>on</strong>g>and</str<strong>on</strong>g> Oguchi, 1980;<br />

McCormick, 1999). PYR has been shown to be related to meat texture (Nakano et al.,<br />

1991; Bosselman et al., 1995) <str<strong>on</strong>g>and</str<strong>on</strong>g> to bridge different types <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen (Shimokomaki et<br />

al., 1990) thus stabiliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g further the extracellular macromolecular organizati<strong>on</strong><br />

(Shimokomaki et al., 1990). Furthermore, the collagen molecule stabilizati<strong>on</strong> is measured<br />

by its <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>solubility (Rob<str<strong>on</strong>g>in</str<strong>on</strong>g>s et al., 1973; Young et al., 1994). Although, chicken is<br />

commercially slaughtered at the age that collagen normally does not c<strong>on</strong>stitute a texture<br />

problem; <str<strong>on</strong>g>in</str<strong>on</strong>g> additi<strong>on</strong>, knowledge <strong>on</strong> collagen crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular<br />

c<strong>on</strong>nective tissue is scarce. (Corò et al., 2003). PYR biosynthesis is c<strong>on</strong>siderable 40 to 50<br />

days after hatch. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> PYR with<str<strong>on</strong>g>in</str<strong>on</strong>g> the collagen fibers would create<br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s to slow down the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> de n<str<strong>on</strong>g>ovo</str<strong>on</strong>g> collagen synthesis. There<br />

is an <str<strong>on</strong>g>in</str<strong>on</strong>g>verse relati<strong>on</strong>ship between collagen solubility <str<strong>on</strong>g>and</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> PYR. These results<br />

supported the thesis that collagen crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g is an important factor for the mechanism for<br />

regulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> vivo catabolism (Krane, 1987). Up to 100 days after hatch, there<br />

was a noticeable <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> collagen synthesis. As PYR was synthesized <str<strong>on</strong>g>in</str<strong>on</strong>g>to collagen<br />

fibrils it imparted resistance to degradati<strong>on</strong> by collagenase as measured by the rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dim<str<strong>on</strong>g>in</str<strong>on</strong>g>uti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen solubility. While the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen synthesis became<br />

proporti<strong>on</strong>ally c<strong>on</strong>stant with ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry, PYR was c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ually formed (Figure 9.1)<br />

br<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g about the slowdown <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen turnover. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce there was no relative <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

collagen c<strong>on</strong>tent after 180 days posthatch, the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> texture seemed to be related to<br />

collagen crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Figure 9.1) <str<strong>on</strong>g>and</str<strong>on</strong>g> this fact was corroborated by dim<str<strong>on</strong>g>in</str<strong>on</strong>g>uti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen<br />

solubility (Figure 9.1). Furthermore, it seemed that the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks was<br />

related to growth rate <str<strong>on</strong>g>and</str<strong>on</strong>g> nutriti<strong>on</strong> status depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the poultry genetic l<str<strong>on</strong>g>in</str<strong>on</strong>g>e specificity<br />

(McCormick, 1994).<br />

84


Figure 9.1. Variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> breast meat (Pectoralis Major m.) shear value (-●-), pyrid<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e (pyr)<br />

c<strong>on</strong>tent (- - ▲ - -) <str<strong>on</strong>g>and</str<strong>on</strong>g> collagen solubility (---▀---) with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g hen age<br />

These data are averages with st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> bars from four separate experiments <str<strong>on</strong>g>in</str<strong>on</strong>g> triplicate for<br />

each experiment.<br />

In fact, compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g the results obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by Corò et al. (2003) with those reported by<br />

Velleman et al. (1996), there is at least five times more collagen <str<strong>on</strong>g>in</str<strong>on</strong>g> breast White Leghorn<br />

than Ross <str<strong>on</strong>g>and</str<strong>on</strong>g> PYR quantitative pattern was aga<str<strong>on</strong>g>in</str<strong>on</strong>g> ten times more c<strong>on</strong>centrated <str<strong>on</strong>g>in</str<strong>on</strong>g> White<br />

Leghorn <str<strong>on</strong>g>of</str<strong>on</strong>g> comparable age samples. It is known that White Leghorn chicken breast<br />

presented the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> over 1.0 mol PYR/mol collagen by 1 year <str<strong>on</strong>g>of</str<strong>on</strong>g> age, the<br />

highest value reported so far <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle (Velleman et al., 1996). This c<strong>on</strong>diti<strong>on</strong> can be<br />

expla<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the fact that White Leghorn hen is designed to be an egg producer <str<strong>on</strong>g>and</str<strong>on</strong>g> is not<br />

submitted to a high energy diet show<str<strong>on</strong>g>in</str<strong>on</strong>g>g a relatively slow-grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g process. C<strong>on</strong>versely, the<br />

meat producer Ross is submitted to a high plane energy diet <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently is a fast<br />

grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g bird with prote<str<strong>on</strong>g>in</str<strong>on</strong>g> accreti<strong>on</strong>. In fact, Schreurs et al. (1995) dem<strong>on</strong>strated that White<br />

Leghorn had higher proteolytic activities for calpa<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> catheps<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> comparis<strong>on</strong> to Ross.<br />

The reduced catabolism <str<strong>on</strong>g>in</str<strong>on</strong>g> fast grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g birds would dictate the pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g less<br />

collagen crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks formed thus lower shear values <str<strong>on</strong>g>in</str<strong>on</strong>g> breast meat. Therefore, the<br />

relati<strong>on</strong>ship between labile to <str<strong>on</strong>g>in</str<strong>on</strong>g>soluble collagen, for the fast grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g hen is favored<br />

although there was not necessarily a dim<str<strong>on</strong>g>in</str<strong>on</strong>g>uti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>soluble collagen (Ether<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, 1987).<br />

Corò et al. (2003) results are <str<strong>on</strong>g>in</str<strong>on</strong>g> agreement with other reports for other animals<br />

(McCormick, 1989), the rapid growth <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased collagen synthesis resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> more<br />

tender meat because less collagen crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g takes place.<br />

85


PART 2: AIM OF DISSERTATION<br />

In poultry farm<str<strong>on</strong>g>in</str<strong>on</strong>g>g, the gut microbiota has received <str<strong>on</strong>g>in</str<strong>on</strong>g>creased attenti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the past decade.<br />

Researches <strong>on</strong> poultry microbiota ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly focus <strong>on</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>imiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g food-borne illness <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

humans, improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g animal nutriti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the use <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics as growthpromoters.<br />

Antibiotics have <str<strong>on</strong>g>of</str<strong>on</strong>g>ten been used <str<strong>on</strong>g>in</str<strong>on</strong>g> animal breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g as growth promoters to improve feed<br />

efficiency <str<strong>on</strong>g>and</str<strong>on</strong>g> to c<strong>on</strong>trol the so-called “producti<strong>on</strong> related” bacterial <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>s e.g.<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>s associated with early wean<str<strong>on</strong>g>in</str<strong>on</strong>g>g, high animal densities, poor sanitary c<strong>on</strong>diti<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> frequent transportati<strong>on</strong>s. However, c<strong>on</strong>cerns about development <str<strong>on</strong>g>of</str<strong>on</strong>g> antimicrobial<br />

resistance <str<strong>on</strong>g>and</str<strong>on</strong>g> transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotic resistance genes from animal to human microbiota, led<br />

to withdrawal approval for antibiotics as growth promoters <str<strong>on</strong>g>in</str<strong>on</strong>g> the European Uni<strong>on</strong> s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce<br />

January 1 th , 2006. In the post-antibiotics era, probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s could represent a<br />

strategy to improve <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al health <str<strong>on</strong>g>and</str<strong>on</strong>g> growth <strong>performance</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens. Add<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>/or stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the beneficial bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> the digestive tract <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry is not a new<br />

c<strong>on</strong>cept. Studies carried <strong>on</strong> these bioactives, adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered <str<strong>on</strong>g>in</str<strong>on</strong>g> feed or water, show<br />

c<strong>on</strong>flict<str<strong>on</strong>g>in</str<strong>on</strong>g>g results due to the different envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s (experimental <str<strong>on</strong>g>and</str<strong>on</strong>g> field<br />

c<strong>on</strong>diti<strong>on</strong>s) <str<strong>on</strong>g>and</str<strong>on</strong>g> the way <str<strong>on</strong>g>of</str<strong>on</strong>g> use. In order to be effective, they have to be adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered to<br />

animal as early <str<strong>on</strong>g>in</str<strong>on</strong>g> life as possible <str<strong>on</strong>g>and</str<strong>on</strong>g> unc<strong>on</strong>trolled variables (i.e. water quality) have to be<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>imized. To elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate some <str<strong>on</strong>g>of</str<strong>on</strong>g> these factors that could <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the resp<strong>on</strong>ses to<br />

bioactives, the <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> technology <str<strong>on</strong>g>of</str<strong>on</strong>g> pre-/pro-biotics <str<strong>on</strong>g>and</str<strong>on</strong>g> their comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

(<str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s) has been used, an emergent <str<strong>on</strong>g>and</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al technique directly <str<strong>on</strong>g>in</str<strong>on</strong>g>to a chicken<br />

embryo dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g embryogenesis (Gulewicz <str<strong>on</strong>g>and</str<strong>on</strong>g> Bednarczyk, Polish patent Nb. 19772).<br />

Therefore, the aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this research was to evaluate the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> used al<strong>on</strong>e or <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with strictly selected <str<strong>on</strong>g>and</str<strong>on</strong>g> characterized probiotic bacteria (<str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s;<br />

Bardowski <str<strong>on</strong>g>and</str<strong>on</strong>g> Kozak, 1981; Boguslawska et al., 2009) <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrated <strong>performance</strong>,<br />

meat quality <str<strong>on</strong>g>and</str<strong>on</strong>g> hystopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g> breast muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens.<br />

86


PART 3: MATERIALS AND METHODS<br />

Chapter 10. Debitter<str<strong>on</strong>g>in</str<strong>on</strong>g>g process <str<strong>on</strong>g>of</str<strong>on</strong>g> alkaloid-rich lup<str<strong>on</strong>g>in</str<strong>on</strong>g> seeds<br />

10.1 RFOs isolati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> purificati<strong>on</strong> from seeds <str<strong>on</strong>g>of</str<strong>on</strong>g> lup<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Seeds <str<strong>on</strong>g>of</str<strong>on</strong>g> various species <str<strong>on</strong>g>of</str<strong>on</strong>g> lup<str<strong>on</strong>g>in</str<strong>on</strong>g>s have been used as food for over 3000 years around the<br />

Mediterranean (Gladst<strong>on</strong>es, 1998) <str<strong>on</strong>g>and</str<strong>on</strong>g> for as much as 6000 years <str<strong>on</strong>g>in</str<strong>on</strong>g> the Andean highl<str<strong>on</strong>g>and</str<strong>on</strong>g>s<br />

(Uauy et al., 1995; Bhardwaj <str<strong>on</strong>g>and</str<strong>on</strong>g> Hamama, 2012). People used to soak the seeds <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

runn<str<strong>on</strong>g>in</str<strong>on</strong>g>g water to remove most <str<strong>on</strong>g>of</str<strong>on</strong>g> the bitter <str<strong>on</strong>g>and</str<strong>on</strong>g> toxic alkaloids <str<strong>on</strong>g>and</str<strong>on</strong>g> then cook or roast the<br />

seeds tomake them edible (Hill, 1977). Unfortunately, this mode <str<strong>on</strong>g>of</str<strong>on</strong>g> debitter<str<strong>on</strong>g>in</str<strong>on</strong>g>g led to<br />

removal <str<strong>on</strong>g>of</str<strong>on</strong>g> the valuable biological compounds that were significant from an ec<strong>on</strong>omic<br />

po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>of</str<strong>on</strong>g> view. This important problem was resolved with a method described by Gulewicz<br />

(1988, 1991a, 1991b) <str<strong>on</strong>g>and</str<strong>on</strong>g> Gulewicz et al. (2000). A general scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> this process is<br />

presented <str<strong>on</strong>g>in</str<strong>on</strong>g> Figure 10.1. The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> products <str<strong>on</strong>g>of</str<strong>on</strong>g> this process are prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrate (PC),<br />

high dietary fiber product (HDFP), lup<str<strong>on</strong>g>in</str<strong>on</strong>g> extract (LE), <str<strong>on</strong>g>and</str<strong>on</strong>g> raff<str<strong>on</strong>g>in</str<strong>on</strong>g>ose family<br />

oligosaccharides.<br />

Figure 10.1. General scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> bitter lup<str<strong>on</strong>g>in</str<strong>on</strong>g> seeds process<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

87


10.1.1 Imbibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds.<br />

First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, lup<str<strong>on</strong>g>in</str<strong>on</strong>g> seeds (Lup<str<strong>on</strong>g>in</str<strong>on</strong>g>us luteus L. cv. Lord) are imbibed <str<strong>on</strong>g>in</str<strong>on</strong>g> a determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed volume <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

distilled water (required for full imbibiti<strong>on</strong>). The quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> water used <str<strong>on</strong>g>in</str<strong>on</strong>g> this step<br />

depends <strong>on</strong> seed species <str<strong>on</strong>g>and</str<strong>on</strong>g> ranges from 80 to 120 mL/100 g <str<strong>on</strong>g>of</str<strong>on</strong>g> legume seeds. The<br />

imbibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds was carried out at +4°C for 10-12 h. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g this process the vessel with<br />

seeds should be shaken from time to time.<br />

10.1.2 Extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs.<br />

The imbibed seeds were then extracted with 200 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> 50% ethanol (v/v) per 100 g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seeds at 40°C overnight. The water that was not absorbed by seeds was used for<br />

preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proper ethanol c<strong>on</strong>centrati<strong>on</strong> for extracti<strong>on</strong>. After extracti<strong>on</strong> the supernatant<br />

was decanted. The seeds were reextracted with fresh alcohol under the same c<strong>on</strong>diti<strong>on</strong>s.<br />

The supernatants from two cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong> were boiled under reflux for 10 m<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed together. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> lentil seeds extracti<strong>on</strong> the supernatants c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g any<br />

precipitate should be centrifuged before the next step.<br />

10.1.3 RFOs precipitati<strong>on</strong>.<br />

The clear supernatant was c<strong>on</strong>centrated <strong>on</strong> a rotary vacuum evaporator at 50 °C to the<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 mL, placed <str<strong>on</strong>g>in</str<strong>on</strong>g> glass separator <str<strong>on</strong>g>and</str<strong>on</strong>g> dropped <str<strong>on</strong>g>in</str<strong>on</strong>g>to 100% ethanol with<br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous stirr<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> water extract volume to volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 100% ethanol should<br />

be 1:10. The crude RFOs precipitate was separated from supernatant by centrifugati<strong>on</strong> at<br />

3000 rpm for 15 m<str<strong>on</strong>g>in</str<strong>on</strong>g>. The RFO precipitate was then placed <str<strong>on</strong>g>in</str<strong>on</strong>g>to a vacuum desiccator <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

order to remove <str<strong>on</strong>g>of</str<strong>on</strong>g> any ethanol residue.<br />

10.1.4 Purificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs <strong>on</strong> diatomaceous earth <str<strong>on</strong>g>and</str<strong>on</strong>g> charcoal.<br />

The crude RFOs extract was dissolved <str<strong>on</strong>g>in</str<strong>on</strong>g> distilled water (25 mL) <str<strong>on</strong>g>and</str<strong>on</strong>g> placed <strong>on</strong>to<br />

diatomaceous earth <str<strong>on</strong>g>and</str<strong>on</strong>g> charcoal (1:1 w/w) located <str<strong>on</strong>g>in</str<strong>on</strong>g> a s<str<strong>on</strong>g>in</str<strong>on</strong>g>tered glass funnel (pore size G4,<br />

7 cm x 5 cm i.d.) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>nected to a vacuum. The funnel was then washed with 200 mL <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

distilled water. The RFOs were eluted with 70% ethanol (500 mL). The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the eluate was checked by reacti<strong>on</strong> with naphthoresorc<str<strong>on</strong>g>in</str<strong>on</strong>g>ol. Afterward, RFO alcohol<br />

soluti<strong>on</strong>s were c<strong>on</strong>centrated to dryness <strong>on</strong> a rotary vacuum at 50 °C.<br />

10.1.5 Cati<strong>on</strong>-exchange chromatography.<br />

The purified RFOs (about 3 g) were dissolved <str<strong>on</strong>g>in</str<strong>on</strong>g> 10 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> distilled water <str<strong>on</strong>g>and</str<strong>on</strong>g> then applied<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to a Dowex 50WX8 column (12 x 1.5 cm i.d.) <str<strong>on</strong>g>and</str<strong>on</strong>g> washed with distilled water (50 mL)<br />

until oligosaccharides were not identified <str<strong>on</strong>g>in</str<strong>on</strong>g> the eluate. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs was<br />

m<strong>on</strong>itored <strong>on</strong> TLC by reacti<strong>on</strong> with naphthoresorc<str<strong>on</strong>g>in</str<strong>on</strong>g>ol. The acidic soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs (pH<br />

1.5) was adjusted to pH 7.0 us<str<strong>on</strong>g>in</str<strong>on</strong>g>g 4% freshly prepared Ca(OH) 2 . The soluti<strong>on</strong> was then<br />

boiled for 2 m<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> centrifuged. Supernatant c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a high purity <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs was than<br />

evaporated to dryness <strong>on</strong> a rotary vacuum evaporator at 50°C.<br />

88


10.1.6 Qualitative evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RFO compositi<strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g Th<str<strong>on</strong>g>in</str<strong>on</strong>g>-Layer Chromatography<br />

(TLC).<br />

Qualitative evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs at each particular stage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

purificati<strong>on</strong> was d<strong>on</strong>e by TLC accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Stahl (1969), <str<strong>on</strong>g>and</str<strong>on</strong>g> Dey (1990). For the<br />

separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs, 2-propanol-acetic acid-water (5:2:3 v/v) as mobile phase was used.<br />

The RFOs were visualized by naphthorezorc<str<strong>on</strong>g>in</str<strong>on</strong>g>ol. For qualitative <str<strong>on</strong>g>and</str<strong>on</strong>g> quantitative<br />

separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs, silica gel 60 F 254 TLC plates were used.<br />

10.1.7 Determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total soluble sugars <str<strong>on</strong>g>and</str<strong>on</strong>g> α-galactoside c<strong>on</strong>tent at particular<br />

stages <str<strong>on</strong>g>of</str<strong>on</strong>g> the procedure.<br />

To 0.4 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> an aqueous soluti<strong>on</strong> from each particular stage <str<strong>on</strong>g>of</str<strong>on</strong>g> purificati<strong>on</strong>, c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

2.0-15.0 µg <str<strong>on</strong>g>of</str<strong>on</strong>g> soluble sugars, 10µL <str<strong>on</strong>g>of</str<strong>on</strong>g> 80% phenol <str<strong>on</strong>g>in</str<strong>on</strong>g> water (w/w) <str<strong>on</strong>g>and</str<strong>on</strong>g> 1 mL <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>centrated H 2 SO 4 were added. After mix<str<strong>on</strong>g>in</str<strong>on</strong>g>g, the soluti<strong>on</strong> was kept at room temperature<br />

for 10 m<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> then cooled <str<strong>on</strong>g>in</str<strong>on</strong>g> a bath <str<strong>on</strong>g>of</str<strong>on</strong>g> cold water for 20 m<str<strong>on</strong>g>in</str<strong>on</strong>g>. The same procedure was<br />

also performed for the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards. Result<str<strong>on</strong>g>in</str<strong>on</strong>g>g absorbance obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a DU-62<br />

spectrophotometer (Beckman) at 485 nm was referred to the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard curve obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for<br />

glucose (Fry, 1994).<br />

10.1.8 HPLC analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs.<br />

The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> separati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RFOs from legume extracts was carried<br />

out by high <strong>performance</strong> liquid chromatography us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a refracti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>dex detector (HPLC-<br />

RI) (Frias et al., 1994). The analysis was performed <strong>on</strong> a HPLC chromatograph (Waters<br />

Associates, Milford, CT) equipped with a Waters model 510 pump, a Rheodyne model<br />

7000 sample <str<strong>on</strong>g>in</str<strong>on</strong>g>jector, a reflecti<strong>on</strong> type differential refractometr detector model R410<br />

(Waters). The chromatographic system was c<strong>on</strong>trolled by an computer with a Maxima<br />

HPLC system c<strong>on</strong>troller s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware (Waters). A pre-column (0.32 cm i.d. x 4.0 cm) packed<br />

with C18 Porasil B <str<strong>on</strong>g>and</str<strong>on</strong>g> a m-B<strong>on</strong>dapak/carbohydrate column (0.39 i.d. x 30 cm) (Waters)<br />

were employed. Acet<strong>on</strong>itrile-distilled water (75:25 v/v, HPLC grade) was used as the<br />

mobile phase at the flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.0 mL/m<str<strong>on</strong>g>in</str<strong>on</strong>g>. Solvents were filtered through a Millipore FH<br />

(0.45 μm) membrane <str<strong>on</strong>g>and</str<strong>on</strong>g> degassed under helium. Injecti<strong>on</strong> volumes were 100 μL.<br />

89


Chapter 11. Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> for the <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong><br />

11.1. Bacterial stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> growth c<strong>on</strong>diti<strong>on</strong>s.<br />

The stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s used were Lactococcus lactis ssp. cremoris tetracycl<str<strong>on</strong>g>in</str<strong>on</strong>g>e-resistant stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s (IBB<br />

SC1), <str<strong>on</strong>g>and</str<strong>on</strong>g> Lactococcus lactis ssp. lactis bacterioc<str<strong>on</strong>g>in</str<strong>on</strong>g>-typ<str<strong>on</strong>g>in</str<strong>on</strong>g>g stra<str<strong>on</strong>g>in</str<strong>on</strong>g> (IBB SL1) <str<strong>on</strong>g>and</str<strong>on</strong>g> they were<br />

provided by Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> Biophysics <str<strong>on</strong>g>in</str<strong>on</strong>g> Warsaw, Pol<str<strong>on</strong>g>and</str<strong>on</strong>g> (Collecti<strong>on</strong> IBB<br />

PAN).<br />

The stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s (Figure 11.1) were grown <strong>on</strong> GM17 agar medium.<br />

Figure 11.1. Lactococcus lactis viewed by microscope<br />

The typical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this medium is listed below:<br />

-5.0 g Pancreatic Digest <str<strong>on</strong>g>of</str<strong>on</strong>g> Case<str<strong>on</strong>g>in</str<strong>on</strong>g>;<br />

-5.0 g Soy Pept<strong>on</strong>e;<br />

-5.0 g Beef Extract;<br />

-2.5 g Yeast Extract;<br />

-0.5 g Ascorbic Acid;<br />

-0.25 g Magnesium Sulfate;<br />

-10.0 g Disodium-β-glycerophosphate;<br />

-11.0 g Agar .<br />

The medium preparati<strong>on</strong>:<br />

1. Heat with frequent agitati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> boil for 1 m<str<strong>on</strong>g>in</str<strong>on</strong>g>ute to completely dissolve;<br />

2. Autoclave at 121°C for 15 m<str<strong>on</strong>g>in</str<strong>on</strong>g>utes. Cool to 50°C;<br />

3. Add 50 ml filter sterilized 10% glucose soluti<strong>on</strong> obta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the GM17 agar medium.<br />

Lactococcus lactis ssp. lactis grown <strong>on</strong> GM17 agar medium for about 18h at 25-28°C<br />

under aerobic c<strong>on</strong>diti<strong>on</strong>s. Lactococcus lactis ssp. cremoris grown <strong>on</strong> GM17 agar medium<br />

supplemented with tetracycl<str<strong>on</strong>g>in</str<strong>on</strong>g>e, (the selecti<strong>on</strong> agent for grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g) at 10mg/ml<br />

c<strong>on</strong>centrati<strong>on</strong> for about 18h at 25-28°C under aerobic c<strong>on</strong>diti<strong>on</strong>s (Figure 11.2).<br />

90


Figure 11.2. Lactococcus lactis ssp. cremoris grown <strong>on</strong> GM17 plus tetracycl<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

The pure cultures <str<strong>on</strong>g>of</str<strong>on</strong>g> this two stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s were centrifuge at 7000xg for 1m<str<strong>on</strong>g>in</str<strong>on</strong>g>. The bacteria<br />

pellet was washed twice <str<strong>on</strong>g>and</str<strong>on</strong>g> resuspended <str<strong>on</strong>g>in</str<strong>on</strong>g> a <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> soluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> order to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> a f<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 5 cfu/ml. Then, 190ml <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> soluti<strong>on</strong> was mixed with 10ml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bacterial suspensi<strong>on</strong> (10 5 cfu/ml) to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> a f<str<strong>on</strong>g>in</str<strong>on</strong>g>al c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 3 bacteria/embryo<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> 0.2ml <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> soluti<strong>on</strong> for <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong>.<br />

11.2 Commercial <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s.<br />

The commercial symbiotic used was Duolac (producer Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>aktor) which c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> 100g:<br />

-Lactobacillus acidophilus: 10 9 cfu;<br />

-Streptococcus faecium: 10 9 cfu;<br />

-1g <str<strong>on</strong>g>of</str<strong>on</strong>g> lactose.<br />

1 g <str<strong>on</strong>g>of</str<strong>on</strong>g> Duolac was dissolved <str<strong>on</strong>g>in</str<strong>on</strong>g> 100 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> distilled water (10 7 cfu <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus + 10 7 cfu<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Streptococcus/100ml) to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 5 cfu <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus + 10 5 cfu <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Streptococcus/ml). A serial diluti<strong>on</strong> 10x were made:<br />

-10 ml Duolac + 90 ml distilled water: 10 4 cfu/ml for both stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s;<br />

-50 ml Duolac 10 4 cfu /ml + 150 ml distilled water: a c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.5 x 10 3 cfu/ml for<br />

both stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> order to reach a c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 3 cfu bacteria/embryo c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> 0.2ml<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> commercial <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> soluti<strong>on</strong> for <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong>.<br />

91


Chapter 12. Study design<br />

12.1 Birds<br />

Broiler chicken (Ross 308) hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g eggs (480) were <str<strong>on</strong>g>in</str<strong>on</strong>g>cubated <str<strong>on</strong>g>in</str<strong>on</strong>g> a commercial hatchery<br />

Drobex (Solec Kujawski, Pol<str<strong>on</strong>g>and</str<strong>on</strong>g>), a Petersime <str<strong>on</strong>g>in</str<strong>on</strong>g>cubator (visi<strong>on</strong> versi<strong>on</strong>, Petersime NV,<br />

Zulte, Belgium) (Figure 12.1)<br />

Figure 12.1. Broiler chicken (Ross 308) hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g eggs <str<strong>on</strong>g>and</str<strong>on</strong>g> Drobex Agro commercial hatchery<br />

On d 12 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong>, the eggs were r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to five experimental groups<br />

treated with different bioactives, adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g>. Prior to the <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong>, the eggs were<br />

c<str<strong>on</strong>g>and</str<strong>on</strong>g>led <str<strong>on</strong>g>and</str<strong>on</strong>g> those unfertilized or with dead embryos were discarded (Figure 12.2).<br />

Figure 12.2 Egg c<str<strong>on</strong>g>and</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

An aqueous soluti<strong>on</strong> at the equal volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2 ml was <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> manually <str<strong>on</strong>g>in</str<strong>on</strong>g>to the air<br />

chamber by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g self-refill<str<strong>on</strong>g>in</str<strong>on</strong>g>g syr<str<strong>on</strong>g>in</str<strong>on</strong>g>ges (Socorex, Ecublens, Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g>, Figure 12.3):<br />

The C group (c<strong>on</strong>trol) was <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> with physiological sal<str<strong>on</strong>g>in</str<strong>on</strong>g>e.<br />

The T1 group was <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> with a soluti<strong>on</strong> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 1.9 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> raff<str<strong>on</strong>g>in</str<strong>on</strong>g>ose family<br />

oligosaccharides/egg (RFOs).<br />

For the T2 <str<strong>on</strong>g>and</str<strong>on</strong>g> T3 groups, the <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> soluti<strong>on</strong>s c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> homemade <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s: 1.9<br />

mg <str<strong>on</strong>g>of</str<strong>on</strong>g> RFO enriched with different probiotic bacteria, specifically, 1,000 cfu <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

92


Lactococcus lactis ssp. lactis SL1 (group T2) <str<strong>on</strong>g>and</str<strong>on</strong>g> 1,000 cfu <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactococcus lactis ssp.<br />

cremoris IBB SC1 (group T3). (Patent P-339113).<br />

The T4 group was <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> with a commercially available <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> Duolac (Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>aktor,<br />

Skierniewice, Pol<str<strong>on</strong>g>and</str<strong>on</strong>g>), that c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed 500 cfu <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus acidophilus <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

500 cfu <str<strong>on</strong>g>of</str<strong>on</strong>g> Streptococcus faecium with additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lactose (0.001 mg/embryo).<br />

Figure 12.3. Five experimental soluti<strong>on</strong>s for <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong><br />

After <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong>, each hole was sealed with adhesive tape <str<strong>on</strong>g>and</str<strong>on</strong>g> the egg <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> was<br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued until hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Figure 12.4).<br />

Figure 12.4. In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong><br />

Am<strong>on</strong>g the hatched chickens (Figure 12.5), sixty males were r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly chosen (12 birds<br />

for each group) <str<strong>on</strong>g>and</str<strong>on</strong>g> reared accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the animal welfare recommendati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> European<br />

Uni<strong>on</strong> directive 86/609/EEC <str<strong>on</strong>g>in</str<strong>on</strong>g> an experimental poultry house that provided good<br />

husb<str<strong>on</strong>g>and</str<strong>on</strong>g>ry c<strong>on</strong>diti<strong>on</strong>s (e.g., stock<str<strong>on</strong>g>in</str<strong>on</strong>g>g density, litter, ventilati<strong>on</strong>).<br />

93


Figure 12.5. Hatched chickens<br />

The birds were grown to 42 d <str<strong>on</strong>g>of</str<strong>on</strong>g> age <str<strong>on</strong>g>in</str<strong>on</strong>g> collective cages (n = 3 birds <str<strong>on</strong>g>in</str<strong>on</strong>g> each 4 cages:<br />

replicati<strong>on</strong>s for experimental groups). The cages (30 x 40 x 35 cm; length x width x height)<br />

had wire floors <str<strong>on</strong>g>and</str<strong>on</strong>g> solid metal walls, a feeder space <str<strong>on</strong>g>of</str<strong>on</strong>g> 12.2 cm/bird, <str<strong>on</strong>g>and</str<strong>on</strong>g> 1 water nipple.<br />

The light<str<strong>on</strong>g>in</str<strong>on</strong>g>g program was 23L:1D (Figure 12.6).<br />

Figure 12.6. Birds <str<strong>on</strong>g>in</str<strong>on</strong>g> collective cages<br />

The c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens were the same <str<strong>on</strong>g>in</str<strong>on</strong>g> all groups. The<br />

broilers were fed ad libitum commercial diets (Table 12.1) accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to their age, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

water was provided ad libitum. Amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> feed <str<strong>on</strong>g>of</str<strong>on</strong>g>fered to each cage were recorded, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

uneaten feed <str<strong>on</strong>g>in</str<strong>on</strong>g> each cage was weighed daily (from 1 to 42 d). Cumulative feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

feed c<strong>on</strong>versi<strong>on</strong> ratio were calculated <strong>on</strong> a cage basis.<br />

94


Table 12.1. Compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutritive value <str<strong>on</strong>g>of</str<strong>on</strong>g> the diets<br />

Period<br />

Item (% unless noted) 1 to 14 d 15 to 42 d<br />

Comp<strong>on</strong>ent<br />

Wheat<br />

35.0<br />

Maize<br />

17.05<br />

Soybean meal 45%<br />

37.0<br />

Soybean oil<br />

5.7<br />

Calcium m<strong>on</strong>ophosphate<br />

1.3<br />

Limest<strong>on</strong>e<br />

0.6<br />

NaHCO 3<br />

0.1<br />

Lys<str<strong>on</strong>g>in</str<strong>on</strong>g>e 20%<br />

0.9<br />

Methi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>e 20%<br />

1.0<br />

NaCL<br />

0.35<br />

Vitam<str<strong>on</strong>g>in</str<strong>on</strong>g>-m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral premix 1 1.0<br />

40.0<br />

22.85<br />

27.8<br />

4.6<br />

1.3<br />

0.5<br />

-<br />

0.8<br />

0.8<br />

0.35<br />

1.0<br />

Calculated nutriti<strong>on</strong>al value<br />

ME (kcal/kg)<br />

N x 6,25<br />

Ca<br />

P available<br />

Na<br />

NaCL<br />

3,150<br />

23.0<br />

1.1<br />

0.47<br />

0.23<br />

0.50<br />

3,100<br />

1 Provided the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g per kilogram <str<strong>on</strong>g>of</str<strong>on</strong>g> diet: vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> A (ret<str<strong>on</strong>g>in</str<strong>on</strong>g>yl acetate), 13,000 IU; vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> D3<br />

(cholecalciferol), 4,000 IU; vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> E (DL-α-tocopheryl acetate), 80 IU; vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> K (menadi<strong>on</strong>e<br />

sodium bisulfite), 3 mg; rib<str<strong>on</strong>g>of</str<strong>on</strong>g>lav<str<strong>on</strong>g>in</str<strong>on</strong>g>, 6.0 mg; pantothenic acid, 6.0 mg; niac<str<strong>on</strong>g>in</str<strong>on</strong>g>, 20 mg; pyridox<str<strong>on</strong>g>in</str<strong>on</strong>g>e,<br />

2mg; folic acid, 0.5 mg; biot<str<strong>on</strong>g>in</str<strong>on</strong>g>, 0.10 mg; thiam<str<strong>on</strong>g>in</str<strong>on</strong>g>e, 2.5 mg; vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> B12, 20 μg; Mn, 120 mg; Zn, 90<br />

mg; Fe, 30 mg; Cu, 10 mg; I, 1.5 mg; Se, 0.2 mg; <str<strong>on</strong>g>and</str<strong>on</strong>g> ethoxyqu<str<strong>on</strong>g>in</str<strong>on</strong>g>, 100 mg.<br />

12.2 Slaughter surveys <str<strong>on</strong>g>and</str<strong>on</strong>g> analyses<br />

At 42 d <str<strong>on</strong>g>of</str<strong>on</strong>g> age, broilers (12 for each group), identified by numbered permanent w<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g>s, were weighed <str<strong>on</strong>g>in</str<strong>on</strong>g>dividually (after a fast<str<strong>on</strong>g>in</str<strong>on</strong>g>g period <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 h) <str<strong>on</strong>g>and</str<strong>on</strong>g> transported with<str<strong>on</strong>g>in</str<strong>on</strong>g> 1.0<br />

h (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g careful catch<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> load<str<strong>on</strong>g>in</str<strong>on</strong>g>g) to a commercial poultry slaughterhouse. After<br />

careful unload<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> hang<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> r<str<strong>on</strong>g>and</str<strong>on</strong>g>omized order, the birds were electrically stunned <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

slaughtered (accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the local Animal Research Ethics Committee at University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Technology <str<strong>on</strong>g>and</str<strong>on</strong>g> Life Sciences <str<strong>on</strong>g>in</str<strong>on</strong>g> Bydgoszcz), hot carcass weight was recorded, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

carcass yield percentage was calculated. At slaughter, pectoral muscle <str<strong>on</strong>g>and</str<strong>on</strong>g> abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al fat<br />

were removed from all carcasses (n = 60) <str<strong>on</strong>g>and</str<strong>on</strong>g> theirs percentages were calculated based <strong>on</strong><br />

hot carcass weight. In additi<strong>on</strong>, pectoral muscle pH was recorded at 45 m<str<strong>on</strong>g>in</str<strong>on</strong>g> (pH 45 ), 12 h<br />

(pH 12 ), <str<strong>on</strong>g>and</str<strong>on</strong>g> 24 h (pH 24 ) postmortem us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a portable HI 9625 pH meter (Hanna<br />

Instruments, Padova, Italy, Figure 12.7). Samples <str<strong>on</strong>g>of</str<strong>on</strong>g> the right pectoral muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> 40<br />

20.0<br />

1.2<br />

0.60<br />

0.23<br />

1.0<br />

95


animals, 8 birds from each experimental group, were taken <str<strong>on</strong>g>and</str<strong>on</strong>g> frozen <str<strong>on</strong>g>in</str<strong>on</strong>g> liquid nitrogen (-<br />

196ºC) for histological <str<strong>on</strong>g>and</str<strong>on</strong>g> histopathological analyses. The left pectoral muscle was<br />

vacuum packaged <str<strong>on</strong>g>and</str<strong>on</strong>g> stored frozen (- 40°C) until <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular collagen <str<strong>on</strong>g>and</str<strong>on</strong>g> cholesterol<br />

analyses.<br />

Figure 12.7. Positi<strong>on</strong>s for the determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pH, muscle structure <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Pectoralis superficialis muscle<br />

The image shows the ventral view <str<strong>on</strong>g>of</str<strong>on</strong>g> the PS muscle (From Werner et al., 2008)<br />

12.3 Histological <str<strong>on</strong>g>and</str<strong>on</strong>g> histopathological analyses<br />

The muscle samples were cut <str<strong>on</strong>g>in</str<strong>on</strong>g>to 10 μm cross-secti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a Leica cryostat. The samples<br />

were sta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with Hematoxyl<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Eos<str<strong>on</strong>g>in</str<strong>on</strong>g> accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the method <str<strong>on</strong>g>of</str<strong>on</strong>g> Dubowitz <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Brooke (1973) to measure the diameters <str<strong>on</strong>g>and</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fibers <str<strong>on</strong>g>and</str<strong>on</strong>g> to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> histopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the pectoral muscle. Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the InterVideo<br />

WINDVR program (Kworld Computer Co. Ltd., New Taipei, Taiwan), 12 images <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microscopic pictures were taken per sample, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnificati<strong>on</strong> 12.5 x 10. Afterwards, all<br />

muscle fibers were counted <str<strong>on</strong>g>and</str<strong>on</strong>g> their diameters were measured at the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a 1 mm 2<br />

cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pectoral muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> the chickens us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the computerized image analysis<br />

system MultiScanBase v. 14.02 (Computer Scann<str<strong>on</strong>g>in</str<strong>on</strong>g>g System Ltd., Warszawa, Pol<str<strong>on</strong>g>and</str<strong>on</strong>g>).<br />

Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> histopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle structure was evaluated <str<strong>on</strong>g>in</str<strong>on</strong>g> an area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2mm 2 cross-secti<strong>on</strong>. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> fiber size <str<strong>on</strong>g>and</str<strong>on</strong>g> shape, <str<strong>on</strong>g>and</str<strong>on</strong>g> degenerative changes <str<strong>on</strong>g>of</str<strong>on</strong>g> fibers<br />

were analyzed accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Dubowitz <str<strong>on</strong>g>and</str<strong>on</strong>g> Brooke (1973).<br />

12.4 Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle cholesterol<br />

The muscle cholesterol c<strong>on</strong>tent was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the method by Maraschiello et al.,<br />

(1996). 100mg <str<strong>on</strong>g>of</str<strong>on</strong>g> breast muscle with 2ml <str<strong>on</strong>g>of</str<strong>on</strong>g> methanolic KOH (0.5N) was heated <str<strong>on</strong>g>in</str<strong>on</strong>g> water<br />

bath at 80°C for 60m<str<strong>on</strong>g>in</str<strong>on</strong>g>. All analyses were carried out <str<strong>on</strong>g>in</str<strong>on</strong>g> duplicate. After cool<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

cholesterol was extracted <str<strong>on</strong>g>and</str<strong>on</strong>g> centrifuged (at 3000rpm for 10m<str<strong>on</strong>g>in</str<strong>on</strong>g>) twice with 2ml <str<strong>on</strong>g>of</str<strong>on</strong>g> NaCl<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 3ml <str<strong>on</strong>g>of</str<strong>on</strong>g> ether/hexane (1:1) (first extracti<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> with 3ml <str<strong>on</strong>g>of</str<strong>on</strong>g> ether/hexane (1:1) (sec<strong>on</strong>d<br />

96


extracti<strong>on</strong>). Then, the supernatants were evaporated to dryness <str<strong>on</strong>g>in</str<strong>on</strong>g> water bath at 30°C us<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Rotavapor, redissolved <str<strong>on</strong>g>in</str<strong>on</strong>g> 1ml <str<strong>on</strong>g>of</str<strong>on</strong>g> acet<strong>on</strong>itrile/isopropanol (1:1) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>to HPLC. A<br />

K<strong>on</strong>tr<strong>on</strong> HPLC (K<strong>on</strong>tr<strong>on</strong> Instruments, Milan, Italy) model 535, equipped with a C18<br />

reverse-phase column (250 x 4.6 mm x 5 μm; Hamilt<strong>on</strong> Company, Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g>), was used.<br />

The mobile phase was acet<strong>on</strong>itrile/2-propanol (55: 45 vol/vol) at a flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.2<br />

mL/m<str<strong>on</strong>g>in</str<strong>on</strong>g>. The detecti<strong>on</strong> wavelength was 210 nm, <str<strong>on</strong>g>and</str<strong>on</strong>g> retenti<strong>on</strong> time was 12.89 m<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

12.5 Collagen<br />

Approximately 100 g <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle (wet weight) was thawed at room temperature, trimmed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fat <str<strong>on</strong>g>and</str<strong>on</strong>g> epimysium, lyophilized for 48 h, weighed, <str<strong>on</strong>g>and</str<strong>on</strong>g> hydrolyzed <str<strong>on</strong>g>in</str<strong>on</strong>g> Duran tubes (Schott<br />

AG, Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>z, Germany) <str<strong>on</strong>g>in</str<strong>on</strong>g> 5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 6N HCl at 110°C for 18 to 20 h (Ether<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Sims,<br />

1981) for determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxyprol<str<strong>on</strong>g>in</str<strong>on</strong>g>e (Woessner, 1961) <str<strong>on</strong>g>and</str<strong>on</strong>g> crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g. All<br />

analyses were carried out <str<strong>on</strong>g>in</str<strong>on</strong>g> duplicate. The IMC c<strong>on</strong>centrati<strong>on</strong> was calculated, assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

that collagen weighed 7.25 times the measured hydroxyprol<str<strong>on</strong>g>in</str<strong>on</strong>g>e weight (Eastoe <str<strong>on</strong>g>and</str<strong>on</strong>g> Leach,<br />

1958) <str<strong>on</strong>g>and</str<strong>on</strong>g> expressed as μg hydroxyprol<str<strong>on</strong>g>in</str<strong>on</strong>g>e per milligram <str<strong>on</strong>g>of</str<strong>on</strong>g> lyophilized tissue.<br />

Hydroxylysylpyrid<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e (HLP) c<strong>on</strong>centrati<strong>on</strong>, the pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipal n<strong>on</strong>reducible crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>k <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

muscle collagen (McCormick, 1999), was c<strong>on</strong>centrated <str<strong>on</strong>g>and</str<strong>on</strong>g> separated from the bulk <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

other am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids by selective eluti<strong>on</strong> from a CF1 cellulose column (Sk<str<strong>on</strong>g>in</str<strong>on</strong>g>ner, 1982), us<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the HPLC procedure developed by Eyre et al. (1984). The HPLC was equipped with a<br />

K<strong>on</strong>tr<strong>on</strong> 450 MT2 (K<strong>on</strong>tr<strong>on</strong> Instruments, Milan, Italy) data system <str<strong>on</strong>g>and</str<strong>on</strong>g> with an Altex<br />

(Beckman Instruments, Fullert<strong>on</strong>, CA) Ultrasphere-ODS (C-18; small pore; 4.6 × 250 mm)<br />

column. Pyridoxam<str<strong>on</strong>g>in</str<strong>on</strong>g>e.2HCl (Sigma Chemical, St. Louis, MO) was added as an <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard to the eluent c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g HLP <str<strong>on</strong>g>and</str<strong>on</strong>g> analyzed by HPLC. Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HLP <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

tissue hydrolyzates was made by comparis<strong>on</strong> with a purified HLP st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>and</str<strong>on</strong>g> the known<br />

relati<strong>on</strong>ship between the eluti<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> HLP <str<strong>on</strong>g>and</str<strong>on</strong>g> pyridoxam<str<strong>on</strong>g>in</str<strong>on</strong>g>e (Eyre et al., 1984).<br />

Purified HLP st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard was rout<str<strong>on</strong>g>in</str<strong>on</strong>g>ely prepared from bov<str<strong>on</strong>g>in</str<strong>on</strong>g>e cartilage hydrolyzates us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

technique described by Eyre et al. (1984). The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HLP residues <str<strong>on</strong>g>in</str<strong>on</strong>g> samples<br />

was calculated based <strong>on</strong> the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen <str<strong>on</strong>g>in</str<strong>on</strong>g> each hydrolyzate <str<strong>on</strong>g>and</str<strong>on</strong>g> assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

that the molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen was 300,000 <str<strong>on</strong>g>and</str<strong>on</strong>g> the molar fluorescence yield <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pyridoxam<str<strong>on</strong>g>in</str<strong>on</strong>g>e was 3.1 times that <str<strong>on</strong>g>of</str<strong>on</strong>g> HLP (Eyre et al., 1984). The HLP was expressed as<br />

moles <str<strong>on</strong>g>of</str<strong>on</strong>g> HLP per mole <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen <str<strong>on</strong>g>and</str<strong>on</strong>g> also as microgram <str<strong>on</strong>g>of</str<strong>on</strong>g> HLP per milligram <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lyophilized tissue.<br />

12.6 Statistical analyses<br />

To verify significant differences <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to the treatments, the data were evaluated by<br />

us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>e-way ANOVA <str<strong>on</strong>g>and</str<strong>on</strong>g> means were separated by Scheffe’s battery <str<strong>on</strong>g>of</str<strong>on</strong>g> pairwise tests<br />

(SPSS Inc., 2010).<br />

97


PART 4: RESULTS AND DISCUSSION<br />

Chapter 13. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong><br />

slaughter <strong>performance</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens<br />

13.1 Slaughter traits, Feed C<strong>on</strong>versi<strong>on</strong> Ratio <str<strong>on</strong>g>and</str<strong>on</strong>g> pH <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrated <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <strong>on</strong> slaughter traits, feed<br />

c<strong>on</strong>versi<strong>on</strong> ratio, <str<strong>on</strong>g>and</str<strong>on</strong>g> pH <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens is showed <str<strong>on</strong>g>in</str<strong>on</strong>g> Table 13.1. Compared with the<br />

c<strong>on</strong>trol (C) group, the treatment groups (T1, T2, T3 <str<strong>on</strong>g>and</str<strong>on</strong>g> T4) had slightly higher f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body<br />

weight (BW), more evident <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> (T1) group (+ 4.54%), even if these differences<br />

were not statistically significant. Chickens from T1 group showed also a slightly higher<br />

carcass weight compared with others groups (P > 0.05). Carcass yield percentage was<br />

higher (+ 2.9%) <str<strong>on</strong>g>in</str<strong>on</strong>g> C group than <str<strong>on</strong>g>in</str<strong>on</strong>g> commercial <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> (T4) group (P < 0.05) while the<br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass yield <str<strong>on</strong>g>of</str<strong>on</strong>g> T1, T2 <str<strong>on</strong>g>and</str<strong>on</strong>g> T3 broilers was <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate between C <str<strong>on</strong>g>and</str<strong>on</strong>g> T4<br />

groups (P > 0.05). The poultry feed efficiency, traditi<strong>on</strong>ally measured as FCR (the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take to weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g>), was found to be similar (Table 10.1) am<strong>on</strong>g the groups C, T1<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> T2 (P > 0.05); however, FCR was higher <str<strong>on</strong>g>in</str<strong>on</strong>g> the homemade <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> (T3) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

commercial <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> (T4) groups compared with other groups (P < 0.05). In the study<br />

c<strong>on</strong>ducted under commercial c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> 1,381,212 broilers (M. Bednarczyk, pers<strong>on</strong>al<br />

communicati<strong>on</strong>), the <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> (RFOs) improved growth <strong>performance</strong>.<br />

The registered broilers survivability, f<str<strong>on</strong>g>in</str<strong>on</strong>g>al BW, <str<strong>on</strong>g>and</str<strong>on</strong>g> FCR were 4.7%, 2,304g, 1.87, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

4.2%, 2,325g, <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.86, <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trolled <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> groups (RFOs), respectively. In a recent<br />

study, Bednarczyk et al. (2011b) observed under field c<strong>on</strong>diti<strong>on</strong>s that the <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

RFOs (adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered by s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> growth promotant antibiotic (<str<strong>on</strong>g>in</str<strong>on</strong>g> water)<br />

had a similar <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> broiler <strong>performance</strong> (survivability, grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g period, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

European producti<strong>on</strong> efficiency factor); <str<strong>on</strong>g>in</str<strong>on</strong>g>stead, BW <str<strong>on</strong>g>and</str<strong>on</strong>g> FCR were significantly higher <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> group (RFOs) <str<strong>on</strong>g>in</str<strong>on</strong>g> comparis<strong>on</strong> with the c<strong>on</strong>trol. The lack <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sistency between<br />

broilers <strong>performance</strong> registered <str<strong>on</strong>g>in</str<strong>on</strong>g> an experimental farm or <str<strong>on</strong>g>in</str<strong>on</strong>g> field c<strong>on</strong>diti<strong>on</strong>s can be<br />

expla<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the study <str<strong>on</strong>g>of</str<strong>on</strong>g> Timmerman et al. (2006). Based <strong>on</strong> their 4 studies <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with 9 other studies published earlier, the authors suggested that the effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

probiotics becomes smaller when productivity rates <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers is higher.<br />

In the present study, the growth <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> FCR depend <strong>on</strong> the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> probiotic <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g>, similar to the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> bioactives adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

chickens feed (Falaki et al., 2011). Bozkurt et al. (2008) ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed that dietary antibiotic<br />

growth-promoter <str<strong>on</strong>g>and</str<strong>on</strong>g> mannano-oligosaccharides supplementati<strong>on</strong> additives resulted <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

higher body weight <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens at the level <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.1% (P < 0.05) respectively,<br />

at day 42. In a similar pattern, this advantage for additive programs <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> growth rate<br />

was susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed through f<str<strong>on</strong>g>in</str<strong>on</strong>g>isher period from 22-42 d. In additi<strong>on</strong>, the results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study<br />

also dem<strong>on</strong>strated that MOS, a n<strong>on</strong>-antibiotic additive, was equivalent to AGPs<br />

(avilamyc<str<strong>on</strong>g>in</str<strong>on</strong>g>) with respect to technical <strong>performance</strong> while giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g hopeful signs replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

for AGPs. Zhou et al. (2010) evaluated, also, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic via the basal diet <strong>on</strong><br />

growth <strong>performance</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Guangxi Yellow chickens. It was clear that the dietary<br />

adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic (Bacillus coagulans ZJU0616) had beneficial effects <strong>on</strong> both<br />

98


f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body weight <str<strong>on</strong>g>and</str<strong>on</strong>g> daily weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> chickens. Other authors also showed that<br />

supplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the adherent Lactobacillus cultures to chickens, either as a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle stra<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus acidophilus or as a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 Lactobacillus stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s, <str<strong>on</strong>g>in</str<strong>on</strong>g>creased<br />

significantly (P < 0.05) the BW <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers after 40 d <str<strong>on</strong>g>of</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g (J<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 2000) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

promoted the growth <strong>performance</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> birds (Noh, 1997; Zulkifli et al., 2000; Lan et al.,<br />

2003; Timmerman et al., 2006). On the c<strong>on</strong>trary, Kumprechtova et al. (2000) <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated<br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic, S. cerevisiae Sc47, <strong>on</strong> chicken broiler <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> showed that<br />

the bacteria stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s could not improve the live weight at 21 <str<strong>on</strong>g>and</str<strong>on</strong>g> 42 d <str<strong>on</strong>g>of</str<strong>on</strong>g> age. No positive<br />

effect <strong>on</strong> the growth <strong>performance</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chickens was even found <str<strong>on</strong>g>in</str<strong>on</strong>g> the study c<strong>on</strong>ducted by<br />

Priyankarage et al. (2003) <str<strong>on</strong>g>and</str<strong>on</strong>g> by Midilli et al. (2008), who ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed dietary pre- <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

pro-biotics supplementati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers did not cause any significant effect <strong>on</strong> carcass<br />

weight <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass yield. There are many reports that <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated the carcass weight<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased by <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g prote<str<strong>on</strong>g>in</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> diet. Hosse<str<strong>on</strong>g>in</str<strong>on</strong>g>i Mansoub (2010) ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the carcass weight could be probably because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> available prote<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> it was dem<strong>on</strong>strated that add<str<strong>on</strong>g>in</str<strong>on</strong>g>g bacteria to diet directly enhance the prote<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

availability (Nahansh<strong>on</strong> et al., 1993). Moreover, Falaki et al. (2011) reported that the use<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial probiotic (comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> live microorganisms<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g Lactobacillus acidophilus, Lactobacillus casei, Enterococcus faecium <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Bifidobacterium bifidum) <str<strong>on</strong>g>and</str<strong>on</strong>g> commercial <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the mannan-oligosaccharides family<br />

(obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by extracti<strong>on</strong> from the outer cell wall <str<strong>on</strong>g>of</str<strong>on</strong>g> the yeast Saccharomyces cerevisiae) can<br />

improve the carcass quality by improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients (especially fatty acids <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

glucose), the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> nitrogen stability <str<strong>on</strong>g>and</str<strong>on</strong>g> the reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> excreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fat <str<strong>on</strong>g>in</str<strong>on</strong>g> the feces<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> microbial urea (Willis et al., 2007). In additi<strong>on</strong>, the <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> dietary adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong><br />

reduces, also, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria, tox<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> their sec<strong>on</strong>dary products <str<strong>on</strong>g>in</str<strong>on</strong>g> the GI tract<br />

(Gunal et al., 2006).<br />

However, it is difficult to directly assess different studies us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> probiotics<br />

because the efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> these additives applicati<strong>on</strong> depended <strong>on</strong> many factors (Patters<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Burkholder, 2003). In general, these additives have proved most effective under<br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stress, possibly the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> unfavourable organisms, extremes <str<strong>on</strong>g>in</str<strong>on</strong>g> ambient<br />

temperature, diseases, crowd<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> poor management. In commercial broiler producti<strong>on</strong><br />

<strong>on</strong>e or more <str<strong>on</strong>g>of</str<strong>on</strong>g> these c<strong>on</strong>diti<strong>on</strong>s are <str<strong>on</strong>g>in</str<strong>on</strong>g>variably present. Further, possible causes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to probiotic <str<strong>on</strong>g>and</str<strong>on</strong>g>/or <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> supplementati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers could be<br />

differences between stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s, hybrids, age, sex, plane <str<strong>on</strong>g>of</str<strong>on</strong>g> nutriti<strong>on</strong>, nutrient compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the diet, microbial populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract, levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the diet, durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> supplementati<strong>on</strong> or other envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s.<br />

Moreover, Patters<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Burkholder (2003) suggested that the efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

probiotics is more effective when the animal is produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g well below its genetic potential.<br />

Improvements <str<strong>on</strong>g>in</str<strong>on</strong>g> feed efficiency were attributed to an encouraged growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the beneficial<br />

micro flora <str<strong>on</strong>g>in</str<strong>on</strong>g> the GIT <str<strong>on</strong>g>in</str<strong>on</strong>g>duced by dietary supplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> probiotic.<br />

Midilli et al. (2008) reported that <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers <str<strong>on</strong>g>of</str<strong>on</strong>g> 6 weeks <str<strong>on</strong>g>of</str<strong>on</strong>g> age, the additives led to<br />

significant changes (P


showed, also, that the use <str<strong>on</strong>g>of</str<strong>on</strong>g> the probiotic at a certa<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> (2.0 × 10 6 cfu·g −1 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

5.0 × 10 6 cfu·g −1 ) <str<strong>on</strong>g>in</str<strong>on</strong>g> the diet could significantly reduce FCR <str<strong>on</strong>g>of</str<strong>on</strong>g> Guangxi Yellow chickens<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> similar improvements <str<strong>on</strong>g>in</str<strong>on</strong>g> feed efficiency had been reported for poultry receiv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

probiotic Lactobacillus stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s (Mohan et al., 1996; Lan et al., 2003). Sahane (2001) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Pelicia et al. (2004) suggested that these improvements might be due to a better ileal<br />

digestibility <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients. In fact, Endens et al. (2003) reported that probiotics improved<br />

digesti<strong>on</strong> absorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> nutriti<strong>on</strong> accompany<str<strong>on</strong>g>in</str<strong>on</strong>g>g with a positive effect <strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e activity <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g digestive enzymes. Thus, <str<strong>on</strong>g>in</str<strong>on</strong>g> additi<strong>on</strong> to an antimicrobial<br />

activity, a significantly <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al amylase enzyme activity was observed by J<str<strong>on</strong>g>in</str<strong>on</strong>g> et<br />

al. (1997) when add<str<strong>on</strong>g>in</str<strong>on</strong>g>g L. acidophulus <str<strong>on</strong>g>and</str<strong>on</strong>g> a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacilli to the diets. Yeo <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Kim (1997) reported also that the improvement <str<strong>on</strong>g>in</str<strong>on</strong>g> feed efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> birds receiv<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

probiotic supplemented diets could be due to decreased urease activity <str<strong>on</strong>g>in</str<strong>on</strong>g> the GI tract <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

broiler chicks. In c<strong>on</strong>trast to these f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, the work <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> a new<br />

multibacterial species probiotic c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g Lactobacillus, Bifidobacterium, Enterococcus,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Pediococcus stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> male Cobb broilers had shown <str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>sistent results <str<strong>on</strong>g>in</str<strong>on</strong>g>stead<br />

(Mountzouris et al., 2007). In additi<strong>on</strong>, O’Dea et al. (2006) reported no effect <str<strong>on</strong>g>of</str<strong>on</strong>g> any <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

probiotic treatments used <strong>on</strong> FCR at any po<str<strong>on</strong>g>in</str<strong>on</strong>g>t dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the producti<strong>on</strong> period or <strong>on</strong> the<br />

overall FCR over the entire producti<strong>on</strong> period as well as others authors have not found<br />

differences <str<strong>on</strong>g>in</str<strong>on</strong>g> FCR between probiotic-treated birds <str<strong>on</strong>g>and</str<strong>on</strong>g> untreated c<strong>on</strong>trol birds (Watk<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Kratzer, 1983, 1984; Estrada et al., 2001; Huang et al., 2004). These vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g results<br />

may be due to differences <str<strong>on</strong>g>in</str<strong>on</strong>g> the bacterial stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s used <str<strong>on</strong>g>in</str<strong>on</strong>g> the above-menti<strong>on</strong>ed studies <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Because <str<strong>on</strong>g>in</str<strong>on</strong>g> most studies no <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> is provided as to<br />

whether the stra<str<strong>on</strong>g>in</str<strong>on</strong>g> used was isolated from poultry, it is not possible to assess whether it is<br />

host-specific <str<strong>on</strong>g>and</str<strong>on</strong>g> would be able to attach to the GIT epithelial cells (J<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 1998; Cox et<br />

al., 2001). In all <str<strong>on</strong>g>of</str<strong>on</strong>g> the menti<strong>on</strong>ed studies, no <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> as to the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the bacterial<br />

stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s used was provided by the manufacturers, so it was impossible to assess whether this<br />

may have played a role.<br />

The abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al fat percentage (Table 13.1), rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 1.2 to 2.4% (SEM = 0.20) was<br />

similar (P > 0.05) am<strong>on</strong>g the groups. F<strong>on</strong>tana et al. (1993) found similar value <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al fat pad weight (2.39%) <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass weight. Abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al fat pad weight is an<br />

objective <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass fatness <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers (Yalç<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 1999). Selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> meattype<br />

chickens has previously focused not <strong>on</strong>ly <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased growth <strong>performance</strong> but also<br />

<strong>on</strong> improved carcass quality. In particular, the emphasis has been <strong>on</strong> better body<br />

compositi<strong>on</strong>, with higher breast meat yield <str<strong>on</strong>g>and</str<strong>on</strong>g> lower abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al fat. This focus resp<strong>on</strong>ds<br />

to the c<strong>on</strong>sumer desire for healthier meat, <str<strong>on</strong>g>and</str<strong>on</strong>g> to the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the market through a<br />

ris<str<strong>on</strong>g>in</str<strong>on</strong>g>g dem<str<strong>on</strong>g>and</str<strong>on</strong>g> for porti<strong>on</strong>ed <str<strong>on</strong>g>and</str<strong>on</strong>g> processed products (Bart<strong>on</strong>, 1994). Karaoglu <str<strong>on</strong>g>and</str<strong>on</strong>g> Durdag<br />

(2005) ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed that the use <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler diets appeared to decrease<br />

subcutaneous <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>termuscular fat accumulati<strong>on</strong>, based <strong>on</strong> subjective visual assessment<br />

but it was unaffected by probiotic supplementati<strong>on</strong>. Moreover, by observ<str<strong>on</strong>g>in</str<strong>on</strong>g>g a reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the fat level <str<strong>on</strong>g>of</str<strong>on</strong>g> birds fed by <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>, it is suggested that this product can <str<strong>on</strong>g>in</str<strong>on</strong>g>terfere <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

accessibility to fat for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fat tissue <str<strong>on</strong>g>in</str<strong>on</strong>g> the birds (Falaki et al., 2011).<br />

Deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> fat <str<strong>on</strong>g>in</str<strong>on</strong>g> the abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al area <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers are c<strong>on</strong>sidered as waste <str<strong>on</strong>g>in</str<strong>on</strong>g> the poultry<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dustry. Not <strong>on</strong>ly does abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al fat represent a loss <str<strong>on</strong>g>in</str<strong>on</strong>g> the market, but it also represents<br />

an added expense dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> effluent produced when process<str<strong>on</strong>g>in</str<strong>on</strong>g>g broilers.<br />

100


Zhou et al. (2009) revealed that this type <str<strong>on</strong>g>of</str<strong>on</strong>g> waste could be reduced by reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fat<br />

c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> the abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al area <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers <str<strong>on</strong>g>in</str<strong>on</strong>g>duced by chitooligosaccarides supplementati<strong>on</strong>.<br />

Furthermore, the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al fat decreased (l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear, P < 0.05) as the<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> COS <str<strong>on</strong>g>in</str<strong>on</strong>g>creased from 0.2% to 0.4% <str<strong>on</strong>g>in</str<strong>on</strong>g> the basal diet <str<strong>on</strong>g>of</str<strong>on</strong>g> chickens. The<br />

important <str<strong>on</strong>g>in</str<strong>on</strong>g>hibiti<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> fat digesti<strong>on</strong> by chitosan from observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

ileal c<strong>on</strong>tents were due to the fact that it dissolved <str<strong>on</strong>g>in</str<strong>on</strong>g> the stomach <str<strong>on</strong>g>and</str<strong>on</strong>g> then changed to a<br />

gelled form, entrapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g fat <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e. This lipids-lower<str<strong>on</strong>g>in</str<strong>on</strong>g>g effect <str<strong>on</strong>g>of</str<strong>on</strong>g> chitosan was,<br />

even, documented <str<strong>on</strong>g>in</str<strong>on</strong>g> earlier studies (Kanauchi et al., 1995).<br />

The pectoral muscle percentage was slightly <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced by the treatments (Table 13.1). In<br />

fact, compared with C <str<strong>on</strong>g>and</str<strong>on</strong>g> T2 broilers, those <str<strong>on</strong>g>of</str<strong>on</strong>g> T1, T3 <str<strong>on</strong>g>and</str<strong>on</strong>g> T4 groups had slightly higher<br />

(P = 0.070) pectoral muscle percentage. Similarly, Pilarski et al. (2005) found a slight but<br />

not significant <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> different doses <str<strong>on</strong>g>of</str<strong>on</strong>g> fructooligosaccharides or α-galactoside<br />

(RFOs) <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <strong>on</strong> the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body, carcass, breast muscle, <str<strong>on</strong>g>and</str<strong>on</strong>g> leg weight, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong><br />

abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al fat ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Hubbard broilers. C<strong>on</strong>versely, studies c<strong>on</strong>ducted by several authors<br />

(Tako et al., 2004; Tako et al., 2005; Smirnov et al., 2006) have shown that the<br />

adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g soluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g dextr<str<strong>on</strong>g>in</str<strong>on</strong>g> (as a source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carbohydrates), <str<strong>on</strong>g>in</str<strong>on</strong>g>creased hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g weights by 5% over c<strong>on</strong>trols <str<strong>on</strong>g>and</str<strong>on</strong>g> elevates relative<br />

breast muscle size <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers (calculated as % <str<strong>on</strong>g>of</str<strong>on</strong>g> body weight) by 6%. In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g is<br />

expected to yield several advantages, am<strong>on</strong>g them reduced post-hatch mortality <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

morbidity, greater efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> feed-nutrient utilisati<strong>on</strong> at an early age, reduced <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> developmental skeletal disorders, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased muscle development <str<strong>on</strong>g>and</str<strong>on</strong>g> breast meat<br />

yield (Noy <str<strong>on</strong>g>and</str<strong>on</strong>g> Uni, 2010).<br />

Table 13.1. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> slaughter traits, FCR <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

broiler chickens<br />

GROUP 1<br />

Item C T1 T2 T3 T4<br />

N 12 12 12 12 12<br />

SEM<br />

P<br />

value<br />

F<str<strong>on</strong>g>in</str<strong>on</strong>g>al BW (g) 2708.4 2837.1 2717.7 2799.3 2784.5 26.34 0.491<br />

Carcass weight (g) 1993.0 2048.2 1977.1 2010.1 1965.9 19.79 0.726<br />

Carcass yield (%) 73.6 a 72.2 ab 72.7 ab 71.8 ab 70.7 b 0.31 0.043<br />

FCR 2 1.54 b 1.55 b 1.53 b 1.64 a 1.67 a 0.01 0.001<br />

Abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al fat (%) 1.4 1.5 2.4 1.3 1.2 0.20 0.351<br />

Pectoral muscle (%) 24.6 28.3 24.7 26.2 27.0 0.48 0.070<br />

a–c Means with<str<strong>on</strong>g>in</str<strong>on</strong>g> a row lack<str<strong>on</strong>g>in</str<strong>on</strong>g>g a comm<strong>on</strong> superscript differ (P < 0.05).<br />

1 C = c<strong>on</strong>trol group; T1 = <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> group; T2 = <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> group (<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> + 1000 cfu <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactococcus lactis<br />

ssp. lactis SL1); T3 = <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> group (<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> + 1000 cfu <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactococcus lactis ssp. cremoris IBB SC1);<br />

T4 = commercial <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> group (Lactococcus acidophilus + Streptococcus faecium).<br />

2 FCR = feed c<strong>on</strong>versi<strong>on</strong> ratio (cumulative feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take/weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g>); cage was used as the experimental unit.<br />

101


The pH 45 differed significantly (P = 0.003) am<strong>on</strong>g groups (Figure 13.1) while the<br />

parameters pH 12 <str<strong>on</strong>g>and</str<strong>on</strong>g> pH 24 were found to be similar (P > 0.05) am<strong>on</strong>g groups. Pelicano et<br />

al. (2005) registered similar breast meat pH values rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 5.74 to 5.82,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dependently by the <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> diet supplementati<strong>on</strong>. The ultimate pH values<br />

observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the present study (rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 5.82 to 5.87) varied with<str<strong>on</strong>g>in</str<strong>on</strong>g> the pH range<br />

accepted for commercial meats. It is well known that the ultimate pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscle is an<br />

important c<strong>on</strong>tribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g factor to meat quality expressed as tenderness, colour, <str<strong>on</strong>g>and</str<strong>on</strong>g> storage<br />

life (van Laack et al., 2000).<br />

Figure 13.1. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> symbiotic adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> pH decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler<br />

chickens<br />

pH 45<br />

pH 12<br />

pH 24<br />

C<strong>on</strong>trol<br />

value<br />

T1 value T2 value T3 value T4 value<br />

102


Chapter 14. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong><br />

pectoral muscle qualitative traits <str<strong>on</strong>g>and</str<strong>on</strong>g> cholesterol c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler<br />

chickens<br />

14.1 Fibre histological characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular collagen properties<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> fibre histological<br />

characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> collagen properties <str<strong>on</strong>g>in</str<strong>on</strong>g> the pectoral muscle is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> Table 10.2.<br />

The radial muscle fiber size was estimated by measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the distance across the narrowest<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> the fiber pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile pass<str<strong>on</strong>g>in</str<strong>on</strong>g>g through the centroid (Figure 14.1), def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as the m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum<br />

fiber diameter (Dubowitz <str<strong>on</strong>g>and</str<strong>on</strong>g> Brooke, 1973; Cumm<str<strong>on</strong>g>in</str<strong>on</strong>g>g et al., 1994). A greater diameter <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

muscle fibres was found <str<strong>on</strong>g>in</str<strong>on</strong>g> the experimental groups (T1, T2, T3 <str<strong>on</strong>g>and</str<strong>on</strong>g> T4) <str<strong>on</strong>g>of</str<strong>on</strong>g> chickens<br />

compared with the c<strong>on</strong>trol group (Table 14.1); however, the differences were not<br />

statistically significant, possibly due to significant variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> body weight with<str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

experimental groups.<br />

Figure 14.1. Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> radial muscle fibre<br />

a. b. c.<br />

a. Visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g by microscope; b. Computerized analysis system MultiScanBase v.14.02; c. The<br />

black l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates the m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum fiber diameter.<br />

In c<strong>on</strong>trast, differences (P = 0.045) <str<strong>on</strong>g>in</str<strong>on</strong>g> the total number <str<strong>on</strong>g>of</str<strong>on</strong>g> fibres (Figure 14.2) <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1 mm 2<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pectoral muscle were more evident between c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> homemade<br />

<str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> (T3) group (P < 0.05), while no significant differences were found am<strong>on</strong>g T1, T2<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> T4 groups (Table 14.1).<br />

Figure 14.2. Way <str<strong>on</strong>g>of</str<strong>on</strong>g> count<str<strong>on</strong>g>in</str<strong>on</strong>g>g the number <str<strong>on</strong>g>of</str<strong>on</strong>g> fibres<br />

a. b. c.<br />

a. Visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g by microscope; b. Computerized analysis system MultiScanBase v.14.02; c. The<br />

black po<str<strong>on</strong>g>in</str<strong>on</strong>g>t is used to count the number <str<strong>on</strong>g>of</str<strong>on</strong>g> fibres.<br />

The size <str<strong>on</strong>g>and</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fibres are two factors that affect muscle growth<br />

potential <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality (Ryu <str<strong>on</strong>g>and</str<strong>on</strong>g> Kim, 2005; Rehfeldt <str<strong>on</strong>g>and</str<strong>on</strong>g> Kuhn, 2006). The TNF <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the cross-secti<strong>on</strong>al area <str<strong>on</strong>g>of</str<strong>on</strong>g> fibres are <str<strong>on</strong>g>in</str<strong>on</strong>g>versely correlated with each other (Lee et al., 2010),<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> they are positively correlated with muscle mass (H<str<strong>on</strong>g>and</str<strong>on</strong>g>el <str<strong>on</strong>g>and</str<strong>on</strong>g> Stickl<str<strong>on</strong>g>and</str<strong>on</strong>g>, 1988; Dwyer et<br />

103


al., 1993; Henckel et al., 1997; Larzul et al., 1997; Fiedler et al., 1999; Rehfeldt et al.,<br />

2000). In the present study, the c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> the homemade <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> (T2) groups with the<br />

highest number <str<strong>on</strong>g>of</str<strong>on</strong>g> the muscle fibres (285.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 255.0 number/mm 2 , respectively) showed<br />

the lowest pectoral muscle percentage (24.4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 24.7%, respectively). On <strong>on</strong>e h<str<strong>on</strong>g>and</str<strong>on</strong>g>, it can<br />

be assumed that the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> or <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s has a positive impact <strong>on</strong> muscle<br />

weight. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, it probably leads to even greater c<strong>on</strong>gesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> already<br />

hypertrophic fibres. In fact, Macrae et al. (2007) have proposed that dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the postnatal<br />

period, avian muscle growth occurs <strong>on</strong>ly by hypertrophy (<str<strong>on</strong>g>in</str<strong>on</strong>g>creased radial growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

muscle fibres) <str<strong>on</strong>g>and</str<strong>on</strong>g> not by hyperplasia (<str<strong>on</strong>g>in</str<strong>on</strong>g>creased muscle fibre number), with fibre number<br />

becom<str<strong>on</strong>g>in</str<strong>on</strong>g>g fixed before or shortly after hatch. In studies that Lisowski et al. (2003) carried<br />

out <strong>on</strong> meat type chickens, a beneficial effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the RFO <strong>on</strong> breast muscle weight <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong><br />

carcass percentage was observed. The <str<strong>on</strong>g>in</str<strong>on</strong>g>creased body weights <str<strong>on</strong>g>of</str<strong>on</strong>g> modern broilers are due<br />

to <str<strong>on</strong>g>in</str<strong>on</strong>g>creased muscle yield, particularly <str<strong>on</strong>g>of</str<strong>on</strong>g> the Pectoralis major breast muscle, which <str<strong>on</strong>g>in</str<strong>on</strong>g> turn<br />

may be related to <str<strong>on</strong>g>in</str<strong>on</strong>g>creased muscle fibre sizes. The genetic selecti<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> fact, has led to a<br />

gross overdevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> the broiler breast muscle Pectoralis major resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> a larger<br />

muscle fiber number set <str<strong>on</strong>g>and</str<strong>on</strong>g> greater post-hatch growth potential (Rèmign<strong>on</strong> et al., 1995);<br />

this may have as a c<strong>on</strong>sequence an <str<strong>on</strong>g>in</str<strong>on</strong>g>creased susceptibility to sp<strong>on</strong>taneous myopathy<br />

caused by radial fiber growth outstripp<str<strong>on</strong>g>in</str<strong>on</strong>g>g the support systems <str<strong>on</strong>g>and</str<strong>on</strong>g> large fibers splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic stress (muscle damage; Mah<strong>on</strong>, 1999; Mitchell, 1999; Kranen et al.,<br />

2000; MacRae et al., 2006). Additi<strong>on</strong>ally, this may have <str<strong>on</strong>g>in</str<strong>on</strong>g>duced detrimental effects <strong>on</strong><br />

meat quality attributes (Santé et al., 1991; Le Bihan-Duval et al., 1999; S<str<strong>on</strong>g>and</str<strong>on</strong>g>ercock et al.,<br />

2001). Both commercial broilers <str<strong>on</strong>g>and</str<strong>on</strong>g> turkeys have larger diameter muscle fibres compared<br />

to their traditi<strong>on</strong>al or unselected counterparts at the same age (Mills, 2001). There may be a<br />

threshold fibre size, above which fibre metabolism is compromised due to the large<br />

diffusi<strong>on</strong> distances for oxygen, metabolites <str<strong>on</strong>g>and</str<strong>on</strong>g> waste products (Mah<strong>on</strong>, 1999). The<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased oxygen diffusi<strong>on</strong> distances <str<strong>on</strong>g>of</str<strong>on</strong>g> large fibres may reduce oxidative capacity, alter<br />

mitoch<strong>on</strong>drial distributi<strong>on</strong>s with<str<strong>on</strong>g>in</str<strong>on</strong>g> the fibre <str<strong>on</strong>g>and</str<strong>on</strong>g> may result from a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> larger<br />

fibre size <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>adequate development <str<strong>on</strong>g>of</str<strong>on</strong>g> the support<str<strong>on</strong>g>in</str<strong>on</strong>g>g capillary supply. In fact,<br />

accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Elm<str<strong>on</strong>g>in</str<strong>on</strong>g>owska-Wenda et al. (2004), accelerated growth <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal muscle <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

different species <str<strong>on</strong>g>of</str<strong>on</strong>g> birds is associated with reduced oxidative capacity. This is most <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

the case <str<strong>on</strong>g>in</str<strong>on</strong>g> the pectoral muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens, <str<strong>on</strong>g>and</str<strong>on</strong>g> it c<strong>on</strong>firms the high proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glycolytic fibres (white) that functi<strong>on</strong> through the anaerobic metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> glycogen.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> had a partial <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> IMC<br />

properties (Table 14.1). In general, the IMC c<strong>on</strong>centrati<strong>on</strong> was notably reduced by the<br />

treatments (P = 0.001). In particular, the IMC c<strong>on</strong>centrati<strong>on</strong> was higher (P < 0.05) <str<strong>on</strong>g>in</str<strong>on</strong>g> meat<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol chickens than for treated groups <str<strong>on</strong>g>and</str<strong>on</strong>g> a lower value was found <str<strong>on</strong>g>in</str<strong>on</strong>g> the meat <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

commercial <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> (T4) group. The IMC c<strong>on</strong>tent found <str<strong>on</strong>g>in</str<strong>on</strong>g> the T4 group differed (P <<br />

0.05) from that <str<strong>on</strong>g>of</str<strong>on</strong>g> chickens <str<strong>on</strong>g>of</str<strong>on</strong>g> the homemade <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> (T3) group. Muscle HLP<br />

c<strong>on</strong>centrati<strong>on</strong> (μg/mg) <str<strong>on</strong>g>and</str<strong>on</strong>g> collagen maturati<strong>on</strong> (mol <str<strong>on</strong>g>of</str<strong>on</strong>g> HLP/mol <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen) did not<br />

differ (P > 0.05) am<strong>on</strong>g experimental groups.<br />

104


Table 14.1. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> pectoral muscle qualitative<br />

traits <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens<br />

GROUP B<br />

Item A C T1 T2 T3 T4<br />

P<br />

value<br />

n. 12 12 12 12 12<br />

SEM<br />

Fiber diameter<br />

(μm) 45.9 50.5 51.2 51.6 50.8 0.85 0.200<br />

Fiber density<br />

(num./mm 2 ) 285.1b 239.6ab 255.0ab 225.6a 249.2ab 6.91 0.045<br />

IMC<br />

(μg/mg C ) 25.27a 19.39bc 20.49c 21.06c 18.87b 2.67 0.001<br />

HLP<br />

(mol/mol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

collagen)<br />

0.065 0.079 0.076 0.075 0.085 0.003 0.400<br />

HLP<br />

(μg/mg C ) 2.33 2.20 2.23 2.21 2.35 0.10 0.984<br />

Cholesterol<br />

71.60 78.12 74.21 70.45 72.56 1.30 0.389<br />

(mg/100g)<br />

a–c Means with<str<strong>on</strong>g>in</str<strong>on</strong>g> a row lack<str<strong>on</strong>g>in</str<strong>on</strong>g>g a comm<strong>on</strong> superscript differ (P < 0.05).<br />

A Fiber density <str<strong>on</strong>g>and</str<strong>on</strong>g> fiber diameter = 8 animals for each group; fiber diameter = 200 fibers; IMC =<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular collagen; HLP = hydroxylysylpyrid<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e.<br />

B C = c<strong>on</strong>trol group; T1 = <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> group; T2 = <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> group (<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> + 1,000 cfu <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactococcus lactis<br />

ssp. lactis SL1); T3 = <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> group (<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> + 1,000 cfu <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactococcus lactis ssp. cremoris IBB SC1);<br />

T4 = commercial <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> group (Lactococcus acidophilus + Streptococcus faecium).<br />

C <str<strong>on</strong>g>of</str<strong>on</strong>g> lyophilized muscular tissue.<br />

Velleman et al. (1996) found a similar collagen c<strong>on</strong>tent (25%) <str<strong>on</strong>g>in</str<strong>on</strong>g> the pectoral muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> 6<br />

weeks White Leghorn chickens but more crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ked (almost 0.5 mol <str<strong>on</strong>g>of</str<strong>on</strong>g> HLP/mol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

collagen). This marked difference <str<strong>on</strong>g>in</str<strong>on</strong>g> collagen maturity could be due ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly to the modern<br />

chicken stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> are probably a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic selecti<strong>on</strong> for desirable meat<br />

characteristics such as lean breast meat <str<strong>on</strong>g>in</str<strong>on</strong>g> commercial broilers, which are usually<br />

slaughtered at very early slaughter age (Petracci <str<strong>on</strong>g>and</str<strong>on</strong>g> Cavani, 2012). In fast-grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g birds,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> fact, collagen looks like immature, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> low heat stability; c<strong>on</strong>sequently, poultry<br />

meat is tender, but may turn fragile, even mushy (Puolanne <str<strong>on</strong>g>and</str<strong>on</strong>g> Voutila, 2009). This poor<br />

cohesiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> meat due to immaturity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular c<strong>on</strong>nective tissue <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to<br />

the age represent a newer emerg<str<strong>on</strong>g>in</str<strong>on</strong>g>g quality issue <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry (Petracci <str<strong>on</strong>g>and</str<strong>on</strong>g> Cavani, 2012).<br />

Modern poultry is, <str<strong>on</strong>g>in</str<strong>on</strong>g> fact, not tough, but the problem is <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly the opposite. Voutila<br />

et al. (2009) <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated that currently there are two emerg<str<strong>on</strong>g>in</str<strong>on</strong>g>g types <str<strong>on</strong>g>of</str<strong>on</strong>g> defect <str<strong>on</strong>g>in</str<strong>on</strong>g> commercial<br />

poultry meat: (1) cooked chicken breast meat is generally fragmented (s<str<strong>on</strong>g>of</str<strong>on</strong>g>t); <str<strong>on</strong>g>and</str<strong>on</strong>g> (2) raw<br />

broiler breast meat is so loose <str<strong>on</strong>g>in</str<strong>on</strong>g> structure (dis<str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated) that it is possible to pull the<br />

muscle fiber bundles away with the f<str<strong>on</strong>g>in</str<strong>on</strong>g>gers. The dis<str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cooked broiler meat has,<br />

105


even, been reported by Swatl<str<strong>on</strong>g>and</str<strong>on</strong>g> (1990). The mushy structure <str<strong>on</strong>g>of</str<strong>on</strong>g> cooked chicken breast<br />

meat can be perceived so that the need to chew before swallow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the piece <str<strong>on</strong>g>of</str<strong>on</strong>g> meat is<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal (Voutila, 2009).<br />

The strength <str<strong>on</strong>g>of</str<strong>on</strong>g> IMCT is based <strong>on</strong> collagen fibrils <str<strong>on</strong>g>and</str<strong>on</strong>g> there are cross-bridges between the<br />

collagen molecule units <str<strong>on</strong>g>and</str<strong>on</strong>g> also between the collagen molecules. These cross-bridges<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the physical strength <str<strong>on</strong>g>and</str<strong>on</strong>g> heat stability <str<strong>on</strong>g>of</str<strong>on</strong>g> IMCT. The number <str<strong>on</strong>g>and</str<strong>on</strong>g> stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cross-bridges <str<strong>on</strong>g>in</str<strong>on</strong>g>crease with age determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a reduced tenderness. Additi<strong>on</strong>ally, the<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen is related both to muscle growth <str<strong>on</strong>g>and</str<strong>on</strong>g> fibre diameter (Das et al., 2010)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> fast-grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g chickens selected for meat producti<strong>on</strong> the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular<br />

collagen <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle does not keep pace with muscle fibre radial growth <str<strong>on</strong>g>and</str<strong>on</strong>g> the fibres<br />

outgrow the support<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>nective tissue, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to muscle damage (Swatl<str<strong>on</strong>g>and</str<strong>on</strong>g>, 1990;<br />

Kranen et al., 2000). In agreement with Das et al. (2010), the broiler chickens <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

present study with a slightly greater pectoral muscle, <str<strong>on</strong>g>in</str<strong>on</strong>g> which the fibre diameter was<br />

slightly higher, had a lower amount <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen. McCormick (1999) suggested that mature<br />

crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks <str<strong>on</strong>g>and</str<strong>on</strong>g> collagen c<strong>on</strong>centrati<strong>on</strong> have an additive effect <strong>on</strong> the toughen<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> meat.<br />

Maiorano et al. (2001) give a tenderness <str<strong>on</strong>g>in</str<strong>on</strong>g>dex, which is the amount <str<strong>on</strong>g>in</str<strong>on</strong>g> HLP crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks per<br />

gram <str<strong>on</strong>g>of</str<strong>on</strong>g> lyophilized muscular tissue <str<strong>on</strong>g>in</str<strong>on</strong>g> different muscles <str<strong>on</strong>g>in</str<strong>on</strong>g> goat meat. In agreement with<br />

the suggesti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> McCormick (1999) <str<strong>on</strong>g>and</str<strong>on</strong>g> Maiorano et al. (2001), the results <str<strong>on</strong>g>of</str<strong>on</strong>g> HLP<br />

crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks c<strong>on</strong>centrati<strong>on</strong> (μg/mg) <str<strong>on</strong>g>of</str<strong>on</strong>g> the present study <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that meat produced from all<br />

birds could be similar <str<strong>on</strong>g>in</str<strong>on</strong>g> background toughness.<br />

14.2 Cholesterol c<strong>on</strong>tent<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> muscle cholesterol c<strong>on</strong>tent is<br />

presented <str<strong>on</strong>g>in</str<strong>on</strong>g> Table 10.2. The breast muscle cholesterol c<strong>on</strong>tent, rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 70.45 to<br />

78.12 mg/100g (SEM = 1.30), was found to be similar am<strong>on</strong>g experimental groups (P ><br />

0.05). These f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs are <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trast with those obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by Pilarski et al. (2005) <str<strong>on</strong>g>in</str<strong>on</strong>g> Hybro<br />

G broiler breeder eggs, who reported that the fructooligosaccharides (FOS) caused a<br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> breast muscle cholesterol <str<strong>on</strong>g>in</str<strong>on</strong>g> comparis<strong>on</strong> with the c<strong>on</strong>trol group. Moreover, the<br />

cholesterol values found <str<strong>on</strong>g>in</str<strong>on</strong>g> the present study are higher than those reported by Pilarski et<br />

al. (2005) <str<strong>on</strong>g>in</str<strong>on</strong>g> breast muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> 42-d-old broiler chickens (rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 49.3 to 54.7<br />

mg/100g). On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, Salma et al. (2007) observed higher cholesterol values (93.6<br />

mg/100g <str<strong>on</strong>g>of</str<strong>on</strong>g> meat) <str<strong>on</strong>g>in</str<strong>on</strong>g> Pectoralis major <str<strong>on</strong>g>of</str<strong>on</strong>g> 56-d-old male Chunky broilers than those<br />

obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the present study. The knowledge about cholesterol c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> foods is<br />

important, especially <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry meat, because c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this food is currently<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g based <strong>on</strong> the recommendati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> healthy nutriti<strong>on</strong>. There has been grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terest over recent years <str<strong>on</strong>g>in</str<strong>on</strong>g> the modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cholesterol c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> fatty acid<br />

compositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry products (Sacks, 2002). It is widely acknowledged that there is an<br />

urgent need to return to a balanced fatty acid diet by decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>take <str<strong>on</strong>g>of</str<strong>on</strong>g> cholesterol <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

saturated fatty acid (SFA) (Evans et al., 2002). In recent years, <str<strong>on</strong>g>in</str<strong>on</strong>g> fact, research has been<br />

focused to reduce fat, cholesterol, <str<strong>on</strong>g>and</str<strong>on</strong>g> SFA c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat by dietary<br />

supplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> garlic (K<strong>on</strong>jufca et al., 1997), copper (Pesti <str<strong>on</strong>g>and</str<strong>on</strong>g> Bakalli, 1996), α-<br />

tocopherol acetate (Ashgar et al., 1989), <str<strong>on</strong>g>and</str<strong>on</strong>g> n-3 fatty acid (Ayerza et al., 2002). Meat<br />

cholesterol c<strong>on</strong>centrati<strong>on</strong> is usually associated with total fat c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the tissue, which is<br />

more abundant <str<strong>on</strong>g>in</str<strong>on</strong>g> thigh than <str<strong>on</strong>g>in</str<strong>on</strong>g> breast muscle. Several reports <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated that dietary<br />

106


supplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria such as Lactobacillus cultures (J<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 1998) reduced serum<br />

cholesterol <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers. Additi<strong>on</strong>ally, observati<strong>on</strong>s made by Salma et al. (2007) reveal that<br />

cholesterol c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> thigh <str<strong>on</strong>g>and</str<strong>on</strong>g> breast muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> the broilers has a positive<br />

correlati<strong>on</strong> with the change <str<strong>on</strong>g>of</str<strong>on</strong>g> the cholesterol c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> serum. In fact, these authors found<br />

that not <strong>on</strong>ly the serum cholesterol <str<strong>on</strong>g>and</str<strong>on</strong>g> triglyceride, but also the meat cholesterol <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

triglyceride c<strong>on</strong>centrati<strong>on</strong>s were reduced by supplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic bacteria to the<br />

broiler diet. For that, Salma et al. (2007) ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

diet may be feasible to reduce cholesterol c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> improve the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> UFA<br />

(unsaturated fatty acid) to SFA <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler meat. The modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fatty acid<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat by dietary means is relatively easy, but the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cholesterol c<strong>on</strong>centrati<strong>on</strong> is more difficult (Skřivan et al., 2000). In fact, cholesterol<br />

c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> chicken meat can be altered by vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diet, age, <str<strong>on</strong>g>and</str<strong>on</strong>g> gender<br />

(Wang et al., 2005), as well as the use <str<strong>on</strong>g>of</str<strong>on</strong>g> different methodologies for cholesterol<br />

quantificati<strong>on</strong> or for sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Bragagnolo <str<strong>on</strong>g>and</str<strong>on</strong>g> Rodriguez-Amaya, 2002).<br />

107


Chapter 15. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong><br />

histopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g> pectoral muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens<br />

15.1 Histopatological changes evaluati<strong>on</strong><br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> histopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the pectoral muscle is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> Table 15.1. No statistically significant differences (P ><br />

0.05) am<strong>on</strong>g groups were found for any <str<strong>on</strong>g>of</str<strong>on</strong>g> the pathologies analysed. The most<br />

histopathological changes were observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the homemade <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> T2 <str<strong>on</strong>g>and</str<strong>on</strong>g> the least <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

commercial <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> T4 group (overall means: C = 4.12%, T1 = 6.37%, T2 = 6.80%, T3 =<br />

5.22%, T4 = 3.59%; SEM = 0.44).<br />

Table. 15.1. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> histopathological changes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> pectoral muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens<br />

GROUP B<br />

Item A C T1 T2 T3 T4<br />

P value<br />

SEM<br />

n. 12 12 12 12 12<br />

Muscle fiber size<br />

- small diameter<br />

- giant<br />

2.71<br />

0.08<br />

3.91<br />

0.42<br />

4.80<br />

0.39<br />

3.82<br />

0.13<br />

2.43<br />

0.23<br />

0.31<br />

0.05<br />

0.133<br />

0.156<br />

Muscle fiber shape 0.65 0.30 0.14 0.13 0.10 0.08 0.116<br />

Splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> fibers 0.56 1.55 1.40 1.04 0.78 0.13 0.095<br />

Necrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> fibers 0.12 0.19 0.07 0.11 0.04 0.04 0.802<br />

Total changes 4.12 6.37 6.80 5.22 3.59 0.44 0.076<br />

A Small fiber diameter (reduced by more than 50 % compared to the average <str<strong>on</strong>g>of</str<strong>on</strong>g> normal fiber diameter);<br />

Muscle fibers shape = triangular, trapezoid, round <str<strong>on</strong>g>and</str<strong>on</strong>g> other.<br />

B C = c<strong>on</strong>trol group; T1 = <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> group; T2 = <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> group (<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> + 1000 CFU <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactococcus<br />

lactis subsp. lactis SL1); T3 = <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> group (<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> + 1000 CFU <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactococcus lactis subsp.<br />

cremoris IBB SC1); T4 = commercial <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> group (Lactococcus acidophilus + Streptococcus<br />

faecium).<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>correct size fibres were classified as small-diameters fibres .They ranged<br />

from 2.71 to 4.80% (SEM = 0.31) <str<strong>on</strong>g>of</str<strong>on</strong>g> the total number <str<strong>on</strong>g>of</str<strong>on</strong>g> fibres. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the shape <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fibres were less evident than the histopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g> all groups (rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 0.10<br />

to 0.65%; SEM = 0.08). The splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Figure 15.1) <str<strong>on</strong>g>of</str<strong>on</strong>g> fibres was the sec<strong>on</strong>d most comm<strong>on</strong><br />

histopathological change. Splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g may c<strong>on</strong>sist <strong>on</strong>ly <str<strong>on</strong>g>of</str<strong>on</strong>g> a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle central or lateral fissure; it<br />

may lead to the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two or more apparently separate fibres <str<strong>on</strong>g>of</str<strong>on</strong>g> identical<br />

histochemical type, each surrounded by a layer <str<strong>on</strong>g>of</str<strong>on</strong>g> basement membrane (Schwartz et al.,<br />

1976). Splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g affects type 1 fibres more comm<strong>on</strong>ly than type 2 fibres (Schwartz et al.,<br />

1976). In serial secti<strong>on</strong>s, these separate fibres may enlarge to atta<str<strong>on</strong>g>in</str<strong>on</strong>g> a cross-secti<strong>on</strong>al<br />

diameter similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> normal muscle fibres; others may fuse with each other, or <str<strong>on</strong>g>in</str<strong>on</strong>g>sert<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to adjacent <str<strong>on</strong>g>in</str<strong>on</strong>g>terstitial c<strong>on</strong>nective tissue (Swash <str<strong>on</strong>g>and</str<strong>on</strong>g> Schwartz, 1977).<br />

108


Figure 15.1. Splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> fibers<br />

Splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g (arrows) affects several adjacent hypertrophied type I fibres. There is a<br />

necrotic fibre nearby (N).<br />

In the present study, splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g occurred most frequently <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> (T1) group, <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

least <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>trol group (overall means: C = 0.56%, T1 = 1.55%, T2 = 1.40%, T3 =<br />

1.04%, T4 = 0.78%; SEM = 0.13). Split fibres may be an adaptive resp<strong>on</strong>se to the<br />

metabolic stress associated with the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased diffusi<strong>on</strong> distances for oxygen, metabolites<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> waste products <str<strong>on</strong>g>in</str<strong>on</strong>g> larger fibres (Macrae et al., 2006).<br />

The necrotic lesi<strong>on</strong>s (Table 15.1) were observed <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual cases <str<strong>on</strong>g>and</str<strong>on</strong>g> affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dividual muscle fibres. Their <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence ranged from 0.04% (T4 group) to 0.19% (T1<br />

group; SEM = 0.04). No lymphocyte <str<strong>on</strong>g>in</str<strong>on</strong>g>filtrati<strong>on</strong> was found which leads to <str<strong>on</strong>g>in</str<strong>on</strong>g>flammati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g chicken pectoral muscle cells. The study <str<strong>on</strong>g>of</str<strong>on</strong>g> Elm<str<strong>on</strong>g>in</str<strong>on</strong>g>owska-Wenda et al.<br />

(2004) <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated that histopathological changes are most extensive <str<strong>on</strong>g>in</str<strong>on</strong>g> birds with a fast<br />

growth rate <str<strong>on</strong>g>and</str<strong>on</strong>g> high meat<str<strong>on</strong>g>in</str<strong>on</strong>g>ess. Hov<str<strong>on</strong>g>in</str<strong>on</strong>g>g-Bol<str<strong>on</strong>g>in</str<strong>on</strong>g>k et al. (2000) showed that many cases <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

myopathy <str<strong>on</strong>g>in</str<strong>on</strong>g> modern l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>of</str<strong>on</strong>g> chickens <str<strong>on</strong>g>and</str<strong>on</strong>g> turkeys with fast growth are caused by<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>adequate blood supply to the pectoral muscle. The <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle<br />

fibres, to which transportati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen by capillaries is limited, may cause muscle cell<br />

hypoxia <str<strong>on</strong>g>and</str<strong>on</strong>g> necrosis (Mah<strong>on</strong>, 1999). Extensive histological studies <str<strong>on</strong>g>in</str<strong>on</strong>g> male commercial<br />

turkeys have shown that plasma activities <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>tracellular enzyme marker creat<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

k<str<strong>on</strong>g>in</str<strong>on</strong>g>ase <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> structural muscle abnormalities <str<strong>on</strong>g>in</str<strong>on</strong>g>crease with age (Mah<strong>on</strong> et<br />

al., 1995; Mills et al., 1998). Plasma creat<str<strong>on</strong>g>in</str<strong>on</strong>g>e k<str<strong>on</strong>g>in</str<strong>on</strong>g>ase activities have been shown to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

with age <str<strong>on</strong>g>in</str<strong>on</strong>g> chickens, with commercial broilers show<str<strong>on</strong>g>in</str<strong>on</strong>g>g greater activity values than their<br />

genetic predecessors (Mitchell <str<strong>on</strong>g>and</str<strong>on</strong>g> S<str<strong>on</strong>g>and</str<strong>on</strong>g>ercock, 1994). The <strong>on</strong>ly histological study <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

literature that has compared broiler <str<strong>on</strong>g>and</str<strong>on</strong>g> layer muscle pathology dem<strong>on</strong>strated a more<br />

frequent occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> structural muscle abnormalities <str<strong>on</strong>g>in</str<strong>on</strong>g> muscles <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers compared to<br />

layers, but no alterati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence with age (Soike <str<strong>on</strong>g>and</str<strong>on</strong>g> Bergmann, 1998). At the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sexual maturity, a dramatic fall <str<strong>on</strong>g>in</str<strong>on</strong>g> plasma creat<str<strong>on</strong>g>in</str<strong>on</strong>g>e k<str<strong>on</strong>g>in</str<strong>on</strong>g>ase activity occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> female broilers<br />

(Mitchell <str<strong>on</strong>g>and</str<strong>on</strong>g> S<str<strong>on</strong>g>and</str<strong>on</strong>g>ercock, 1996). However, it is not known whether this is accompanied<br />

by a reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> myopathology. Macrae et al. (2006) ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed the type<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> abnormal feature observed appeared to be related to both the type <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle <str<strong>on</strong>g>and</str<strong>on</strong>g> the age<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the bird. Features that were observed <str<strong>on</strong>g>in</str<strong>on</strong>g> most secti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded “t<str<strong>on</strong>g>in</str<strong>on</strong>g>y” fibers (510 mm<br />

diameter), fiber size variati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> fiber splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The abnormal features described <str<strong>on</strong>g>in</str<strong>on</strong>g>clude<br />

fibers that were necrotic (irreversible cell death <str<strong>on</strong>g>in</str<strong>on</strong>g>duced by structural damage), basophilic<br />

(regenerative fibers) or hyal<str<strong>on</strong>g>in</str<strong>on</strong>g>e (segmental hyperc<strong>on</strong>tracti<strong>on</strong> stimulated by excessive<br />

109


<str<strong>on</strong>g>in</str<strong>on</strong>g>tracellular calcium), <str<strong>on</strong>g>and</str<strong>on</strong>g> fibers with NADH negative cores or NADH rich rims<br />

(<str<strong>on</strong>g>in</str<strong>on</strong>g>dicative <str<strong>on</strong>g>of</str<strong>on</strong>g> either altered mitoch<strong>on</strong>drial distributi<strong>on</strong> or mitoch<strong>on</strong>drial dysfuncti<strong>on</strong>).<br />

In the light <str<strong>on</strong>g>of</str<strong>on</strong>g> the results obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the present study, the greater thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle<br />

fibres (not significant; Table 14.1) <str<strong>on</strong>g>and</str<strong>on</strong>g> the lower fibre density (statistically significant;<br />

Table 14.1), observed <str<strong>on</strong>g>in</str<strong>on</strong>g> treated birds <str<strong>on</strong>g>in</str<strong>on</strong>g> comparis<strong>on</strong> with those <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trol group, are<br />

not associated with histopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the pectoral muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers.<br />

110


PART 5: CONCLUSION<br />

In poultry farm<str<strong>on</strong>g>in</str<strong>on</strong>g>g, the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota <str<strong>on</strong>g>and</str<strong>on</strong>g> the “gut health” are topical subjects,<br />

especially s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the use <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics used usually as growth promoters (aux<str<strong>on</strong>g>in</str<strong>on</strong>g>ic) has been<br />

banned by the EU (January, 2006), <str<strong>on</strong>g>in</str<strong>on</strong>g> order to avoid the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotic-resistance <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

ensure the health <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>sumer.<br />

Nevertheless, these antibiotics exerted an important role <str<strong>on</strong>g>in</str<strong>on</strong>g> modulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the bacterial flora,<br />

check<str<strong>on</strong>g>in</str<strong>on</strong>g>g subcl<str<strong>on</strong>g>in</str<strong>on</strong>g>ical <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> enteric diseases.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> their prohibiti<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> enteric diseases is found <str<strong>on</strong>g>in</str<strong>on</strong>g> farms<br />

which provide a significant ec<strong>on</strong>omic damage <str<strong>on</strong>g>in</str<strong>on</strong>g> the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry: loss <str<strong>on</strong>g>of</str<strong>on</strong>g> productivity<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased mortality. In the post-antibiotics era, probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s are proposed<br />

as a soluti<strong>on</strong> to the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al problems <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry <str<strong>on</strong>g>and</str<strong>on</strong>g> to decrease the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> food-borne<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> humans.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this research was to evaluate the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> used al<strong>on</strong>e or <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with strictly selected <str<strong>on</strong>g>and</str<strong>on</strong>g> characterized probiotic bacteria (<str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s) <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g><br />

adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrated <strong>on</strong> growth, meat quality, <str<strong>on</strong>g>and</str<strong>on</strong>g> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> histopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

pectoral muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens.<br />

In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> (<strong>on</strong> the 12 th day <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong>) had little<br />

effect <strong>on</strong> most <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated traits, depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the k<str<strong>on</strong>g>in</str<strong>on</strong>g>d <str<strong>on</strong>g>of</str<strong>on</strong>g> bioactives adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered.<br />

The comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s (<str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> applicati<strong>on</strong>s) displayed a<br />

different effect than <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual preparati<strong>on</strong>s but it does not simply result <str<strong>on</strong>g>in</str<strong>on</strong>g> additive or<br />

synergistic effects. The commercial <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> treatment, T4 (Lactobacillus acidophilus <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Streptococcus faecium) reduced carcass yield percentage <str<strong>on</strong>g>and</str<strong>on</strong>g>, as observed even for T3<br />

group (RFO enriched with <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactococcus lactis ssp. cremoris IBB SC1), showed the<br />

higher FCR value <str<strong>on</strong>g>in</str<strong>on</strong>g> comparis<strong>on</strong> with other groups.<br />

The abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al fat, the ultimate pH <str<strong>on</strong>g>and</str<strong>on</strong>g> the cholesterol c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the pectoral muscle were<br />

not affected by <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong>.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> had a partial <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> IMC<br />

properties. In general, the IMC c<strong>on</strong>centrati<strong>on</strong> was notably reduced by the treatments <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

broiler chickens <str<strong>on</strong>g>of</str<strong>on</strong>g> treated groups, which showed both slightly large pectoral muscle <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fiber diameter, had lower amount <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen.<br />

The <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s applicati<strong>on</strong>s had a low effect <strong>on</strong> histopathological<br />

changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the pectoral muscle, which did not affect the deteriorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> meat quality<br />

obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from these birds. The f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the histopathological evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pectoral<br />

muscle were not associated with the fiber diameter <str<strong>on</strong>g>and</str<strong>on</strong>g> the fiber density.<br />

In the light <str<strong>on</strong>g>of</str<strong>on</strong>g> the present results, it is believed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s<br />

adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> has a low impact under experimental c<strong>on</strong>diti<strong>on</strong>s. The envir<strong>on</strong>mental <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

stress status <str<strong>on</strong>g>of</str<strong>on</strong>g> the animals c<strong>on</strong>sidered as the experimental sett<str<strong>on</strong>g>in</str<strong>on</strong>g>g are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten too far from the<br />

farm c<strong>on</strong>diti<strong>on</strong>s. However, probiotics, <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s for use <str<strong>on</strong>g>in</str<strong>on</strong>g> the poultry<br />

111


<str<strong>on</strong>g>in</str<strong>on</strong>g>dustry could replace the antibiotic growth promoters as a n<strong>on</strong>-antimicrobial enhancer<br />

additive.<br />

Nevertheless, further research is needed to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease knowledge regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> both experimental <str<strong>on</strong>g>and</str<strong>on</strong>g> field c<strong>on</strong>diti<strong>on</strong>s. Additi<strong>on</strong>ally, future applicati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> field trials<br />

are necessary (i) to look for new comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> order to select the right probiotic,<br />

<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> or <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>, apply<str<strong>on</strong>g>in</str<strong>on</strong>g>g the knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> GIT health normal microbiota<br />

compositi<strong>on</strong>; (ii) to produce st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard safe compositi<strong>on</strong>s at a high functi<strong>on</strong>al level, open<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the opportunity <str<strong>on</strong>g>of</str<strong>on</strong>g> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>in</str<strong>on</strong>g> technical scale, <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> technology.<br />

112


References<br />

Aarestrup S.M. 2002. Veter<str<strong>on</strong>g>in</str<strong>on</strong>g>ary drug use <str<strong>on</strong>g>in</str<strong>on</strong>g> farm animal producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the antibiotic<br />

resistance problem. In: Food safety assurance <str<strong>on</strong>g>and</str<strong>on</strong>g> veter<str<strong>on</strong>g>in</str<strong>on</strong>g>ary public health, vol 1, Food<br />

safety assurance <str<strong>on</strong>g>in</str<strong>on</strong>g> the pre-harvest phase, edited by Smulders, F.J.M., Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s J.D.<br />

Wagen<str<strong>on</strong>g>in</str<strong>on</strong>g>gen Academic Publishers, 153-170.<br />

Aberle E.D., Stewart T.S. 1983. Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> fiber types <str<strong>on</strong>g>and</str<strong>on</strong>g> apparent fiber number <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

skeletal muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler <str<strong>on</strong>g>and</str<strong>on</strong>g> layer type chickens. Growth 47, 135–144.<br />

Ahmad I. 2006. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <strong>on</strong> broilers <strong>performance</strong>. Int. J. Poultry Sci. 5, 593–<br />

597.<br />

Ahmad J., Sharma J.M. 1992. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a modified-live virus vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>e adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ovo</str<strong>on</strong>g> to protect chickens aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st Newcastle disease. Am. J. Vet. Res. 53, 1999-2004.<br />

Akkerman R., Farahani P., Grunow M. 2010. Quality, safety <str<strong>on</strong>g>and</str<strong>on</strong>g> susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ability <str<strong>on</strong>g>in</str<strong>on</strong>g> food<br />

distributi<strong>on</strong>: a review <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative operati<strong>on</strong>s management approaches <str<strong>on</strong>g>and</str<strong>on</strong>g> challenges.<br />

OR Spectrum, 32, 863-904.<br />

Aksu M.I., Karaoğlu M., Esenbuga N., Kaya M., Macit M., Ockerman H.W. 2005. <str<strong>on</strong>g>Effect</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a dietary probiotic <strong>on</strong> some quality characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> raw broiler drumsticks <str<strong>on</strong>g>and</str<strong>on</strong>g> breast<br />

meat. J. Muscle Foods 16, 306–317.<br />

Al-Murrani W.K. 1982. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ject<str<strong>on</strong>g>in</str<strong>on</strong>g>g am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids <str<strong>on</strong>g>in</str<strong>on</strong>g>to the egg <strong>on</strong> embry<strong>on</strong>ic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

subsequent growth <str<strong>on</strong>g>in</str<strong>on</strong>g> the domestic fowl. Br Poultry Sci. 23, 171-174.<br />

Al-Nasser A., Al-Khalaifa H., Al-Saffar A., Khalil F., Albahouh M., Ragheb G., Al-<br />

Haddad A., Mashaly M. 2007. Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken tax<strong>on</strong>omy <str<strong>on</strong>g>and</str<strong>on</strong>g> domesticati<strong>on</strong>. World<br />

Poultry Sci. J. 63, 285–300.<br />

Alkan S., Karabağ K., Galic A., Karsli T., Balciocioğlu M.S. 2010. Determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> body<br />

weight <str<strong>on</strong>g>and</str<strong>on</strong>g> some carcass traits <str<strong>on</strong>g>in</str<strong>on</strong>g> Japanese quails (Coturnix coturnix jap<strong>on</strong>ica) <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>es. Kafkas Univ. Vet. Fak. 16, 277–280.<br />

Amit-Romach E., Sklan D., Uni Z. 2004. Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> the chicken <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e us<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

16S ribosomal DNA primers. Poultry Sci. 83, 1093-1098.<br />

Ammerman E.G., Quarles P.V., Tw<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g J.R. 1988. Broiler resp<strong>on</strong>se to the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dietary fructooligosaccharides. Poultry Sci. 67, 34-41.<br />

113


Anders<strong>on</strong> A.D., Nels<strong>on</strong> M., Baker N.L., Rossiter S., Angulo F.J. 2005. Public health<br />

c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> antimicrobial agents <str<strong>on</strong>g>in</str<strong>on</strong>g> agriculture. In: Food safety assurance <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

veter<str<strong>on</strong>g>in</str<strong>on</strong>g>ary public health, vol 3, Risk management strategies: m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> surveillance,<br />

edited by Smulders, F.J.M., Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s J.D. Wagen<str<strong>on</strong>g>in</str<strong>on</strong>g>gen Academic Publishers, 173-184.<br />

Andoh A., Fujiyama Y. 2006. Therapeutic approaches target<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>flammatory bowel disease. World J. Gastroentero. 12, 4452–4460.<br />

Andrem<strong>on</strong>t A. 2000. C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotic therapy to the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al ecosystem. Ann.<br />

Fr. Anesth. 19, 395–402.<br />

Anjum M.I., Khan A.G., Azim A., Afzal M. 2005. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary supplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

multi-stra<str<strong>on</strong>g>in</str<strong>on</strong>g> probiotic <strong>on</strong> broiler growth <strong>performance</strong>. Pak. Vet. J. 25(1), 25-29.<br />

Annis<strong>on</strong> E.F., Hill K.J., Kennworthy R. 1968. Volatile fatty acids <str<strong>on</strong>g>in</str<strong>on</strong>g> the digestive tract <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the fowl. Brit. J. Nutr. 22, 207–216.<br />

Apajalahti J., Kettunen A. 2006. Microbes <str<strong>on</strong>g>of</str<strong>on</strong>g> the chicken gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract. In: Avian<br />

Gut Functi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Health <str<strong>on</strong>g>and</str<strong>on</strong>g> Disease, edited by G.C. Perry, CAB Internati<strong>on</strong>al, chapter 8,<br />

124-137.<br />

Apajalahti J., Kettunen A., Graham H. 2004. Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

microbial communities, with special reference to the chicken. World Poultry Sci. J. 60,<br />

223-232.<br />

Apajalahti J.H., Kettunen A., Bedford M.R., Holben W.E. 2001. Percent G+C pr<str<strong>on</strong>g>of</str<strong>on</strong>g>il<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

accurately reveals diet-related differences <str<strong>on</strong>g>in</str<strong>on</strong>g> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbial community <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

broiler chickens. Appl. Envir<strong>on</strong>. Microb. 67, 5656-5667.<br />

Apajalahti J.H.A., Sarkilahti L.K., Maki B.R., Hekk<str<strong>on</strong>g>in</str<strong>on</strong>g>en J.P., Nurm<str<strong>on</strong>g>in</str<strong>on</strong>g>en P.H., Holben W.E.<br />

1998. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>ive recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial DNA <str<strong>on</strong>g>and</str<strong>on</strong>g> percent-guan<str<strong>on</strong>g>in</str<strong>on</strong>g>e-plus-cytos<str<strong>on</strong>g>in</str<strong>on</strong>g>e-based<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> community structure <str<strong>on</strong>g>in</str<strong>on</strong>g> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens. Appl.<br />

Envir<strong>on</strong>. Microb. 64, 4084-4088.<br />

Ashgar A., L<str<strong>on</strong>g>in</str<strong>on</strong>g> C.F., Gray J.I., Buckley D.J., Booren A.M., Crackel R., Flegal C.J. 1989.<br />

Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidized dietary oil <str<strong>on</strong>g>and</str<strong>on</strong>g> antioxidant supplementati<strong>on</strong> <strong>on</strong> membrane bound<br />

lipid stability <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler meat. Br. Poultry Sci. 18, 59–68.<br />

114


Avery N.C., Bailey A.J. 1995. An efficient method for the isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular<br />

collagen. Meat Sci. 41, 97-100.<br />

Avigad G., Dey P.M. 1997. Carbohydrates metabolism: Storage carbohydrates. In: Plant<br />

Biochemistry. Dey P. M, Harborne, J.B. eds. Academics Press, San Diego, CA, 143-204.<br />

Awad W.A, Ghareeb K., Abdel-Raheem S., Böhm J. 2009. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

probiotic <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> <strong>on</strong> growth <strong>performance</strong>, organ weights, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

histomorphology <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens. Poultry Sci. 88, 49-55.<br />

Awad W.A., Ghareeb K., Böhm J. 2008. Intest<str<strong>on</strong>g>in</str<strong>on</strong>g>al structure <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler<br />

chickens <strong>on</strong> diets supplemented with a <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g Enterococcus faecium <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

oligosaccharides. Int. J. Mol.Sci. 9, 2205-2216.<br />

Ayerza R., Coats W., Lauria M. 2002. Chia seed (Salvia hispanica L.) as an [omega]-3<br />

fatty acid source for broilers: Influence <strong>on</strong> fatty acid compositi<strong>on</strong>, cholesterol <str<strong>on</strong>g>and</str<strong>on</strong>g> fat<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> white <str<strong>on</strong>g>and</str<strong>on</strong>g> dark meats, growth <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> sensory characteristics. Poultry<br />

Sci. 81, 826–837.<br />

Backhed F, Ley R.E., S<strong>on</strong>nenburg J.L., Peters<strong>on</strong> D.A., Gord<strong>on</strong> J.I. 2005. Host-bacterial<br />

mutualism <str<strong>on</strong>g>in</str<strong>on</strong>g> the human <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Science, 307, 1915-1920.<br />

Bailey A.J. 1972. The basis <str<strong>on</strong>g>of</str<strong>on</strong>g> meat texture. J. Sci. Food Agr. 23, 995.<br />

Bailey A.J, Light N.D. 1989. C<strong>on</strong>nective tissue <str<strong>on</strong>g>in</str<strong>on</strong>g> meat <str<strong>on</strong>g>and</str<strong>on</strong>g> meat products. Elsevier<br />

Applied Science Publisher 13, 79-90, UK.<br />

Bailey A.J., Shimokomaki M. 1971. Age related changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the reducible cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

collagen. FEBS Lett. 16, 86-88.<br />

Bailey J.S., Blackenship L.C., Cox N.A. 1991. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fructooligosaccharides <strong>on</strong><br />

Salm<strong>on</strong>ella col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the chicken <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Poultry Sci. 70, 2433-2438.<br />

Balaban M., Hill J. 1971. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> thyrox<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature manipulati<strong>on</strong>s up<strong>on</strong> the<br />

hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> chick embryos (Gallus domesticus). Dev. Psychobiol. 4, 17-35.<br />

Barbut B. 2009. Pale, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t, <str<strong>on</strong>g>and</str<strong>on</strong>g> exudative poultry meat-Review<str<strong>on</strong>g>in</str<strong>on</strong>g>g ways to manage at the<br />

process<str<strong>on</strong>g>in</str<strong>on</strong>g>g plant. Poultry Sci. 88, 1506-1512.<br />

115


Barbut B., Sosnicki A.A., L<strong>on</strong>ergan S.M., Knapp T., Ciobanu D.C., Gatcliffe L.J., Huff-<br />

L<strong>on</strong>ergan E., Wils<strong>on</strong> E.W. 2008. Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the pale, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t <str<strong>on</strong>g>and</str<strong>on</strong>g> exudative (PSE)<br />

problem <str<strong>on</strong>g>in</str<strong>on</strong>g> pork <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry meat. Meat Sci. 79, 46–63.<br />

Bardowski J., Kozak W. 1981. Prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary attempts at bacterioc<str<strong>on</strong>g>in</str<strong>on</strong>g> typ<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> lactic<br />

streptococci. Acta Microbiol. Pol. 30, 227-230.<br />

Barroeta A.C. 2006. Nutritive value <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat: Relati<strong>on</strong>ship between vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> E <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

PUFA. Worlds Poultry Sci. J. 63, 277–284.<br />

Bart<strong>on</strong> N.F. 1994. Breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g meat type poultry for the future targets for selecti<strong>on</strong>, limits to<br />

<strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> market requirements for chicken. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 9th European<br />

Poultry C<strong>on</strong>ference, Glasgow, U.K., 33–38.<br />

Bastide N.M., Pierre F.H.F., Corpet D.E. 2010. Heme ir<strong>on</strong> from meat <str<strong>on</strong>g>and</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> colorectal<br />

cancer: a meta-analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> a review <str<strong>on</strong>g>of</str<strong>on</strong>g> themechanisms <str<strong>on</strong>g>in</str<strong>on</strong>g>volved. Cancer Prev Res. 4,<br />

177–184.<br />

Baurhoo B., Goldflus F., Zhao X. 2009. Purified cell wall <str<strong>on</strong>g>of</str<strong>on</strong>g> Saccharomyces cerevisiae<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases protecti<strong>on</strong> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al pathogens <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens. Int. J. Poultry Sci., 8,<br />

133-137.<br />

Baurhoo B., Letellier A., Zhao X., Ruiz-Feria C.A. 2007. Cecal populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> lactobacilli<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> bifidobacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> Escherichia coli after <str<strong>on</strong>g>in</str<strong>on</strong>g> vivo Escherichia coli challenge <str<strong>on</strong>g>in</str<strong>on</strong>g> birds fed<br />

diets with purified lign<str<strong>on</strong>g>in</str<strong>on</strong>g> or mannanoligo-saccharides. Poultry Sci. 86, 2509-2516.<br />

Beachey E.H. 1980. Bacterial adherence Receptors <str<strong>on</strong>g>and</str<strong>on</strong>g> Recogniti<strong>on</strong>. L<strong>on</strong>d<strong>on</strong>. Chapman<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Hall.<br />

Beachey E.H. 1981. Bacterial adherence: adhes<str<strong>on</strong>g>in</str<strong>on</strong>g>-receptor <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s mediat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

attachment <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria to mucosal surfaces. J. Infect. Dis. 143(3), 325-345.<br />

Bechtel P.J. 1986. Muscle development <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tractile prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s. In: Muscle as Food.<br />

Bechtel, P.J. (Ed.), Academic Press, Orl<str<strong>on</strong>g>and</str<strong>on</strong>g>o, 2–31.<br />

Becker T. 2000. C<strong>on</strong>sumer percepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh meat quality: A framework for analysis.<br />

Brit. Food J. 102, 158−176.<br />

116


Bednarczyk M., Gulewicz K., Maiorano G., Kasperczyk K., Urbanowski M. 2009. In <str<strong>on</strong>g>ovo</str<strong>on</strong>g><br />

<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary results. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the ASPA 18th C<strong>on</strong>gress,<br />

Palermo, Ital. J. Anim. Sci. 8(2).<br />

Bednarczyk M., Rutkowski A., Sławińska A., Siwek M., Brzezińska J., Kasperczyk K.,<br />

Sawicka D., Bardowski J., Żylińska J., Urbanowski M., Maiorano G., Cianciullo D. 2011a.<br />

Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> chicken broiler <strong>performance</strong>.<br />

Poultry Sci. (submitted)<br />

Bednarczyk M., Urbanowski M., Gulewicz,P., Kasperczyk K., Maiorano G.,<br />

Szwaczkowski T. 2011b. Field <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro study <strong>on</strong> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> raff<str<strong>on</strong>g>in</str<strong>on</strong>g>ose family<br />

oligosaccharides <str<strong>on</strong>g>in</str<strong>on</strong>g> chickens. B. Vet I. Pulawy, 55, 465-469.<br />

Bellisle F., Diplock A.T., Hornstra A.T. 1998. Functi<strong>on</strong>al food science <str<strong>on</strong>g>in</str<strong>on</strong>g> Europe. Brit. J.<br />

Nutr. 80, 3-4.<br />

Bengmark S. 2001. Pre-pro-<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s. Curr. Op<str<strong>on</strong>g>in</str<strong>on</strong>g>. Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>. Nutr. 4(6), 571-579.<br />

Bernet M.F., Brassart D., Neeser J.R., Serv<str<strong>on</strong>g>in</str<strong>on</strong>g> A.L. 1993. Adhesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human<br />

bifidobacterial stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s to cultured human <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al epithelial cells <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>hibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

enteropathogen-cell <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s. Appl. Envir<strong>on</strong>. Microbiol. 59(12), 4121-4128.<br />

Bhardwaj H.L., Hamama A.A. 2012. Cultivar <str<strong>on</strong>g>and</str<strong>on</strong>g> grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g locati<strong>on</strong> effects <strong>on</strong> white lup<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

immature green seeds. J. .Agr. Sci. 4(2), 135-138.<br />

Bianchi M., Petracci M., Franch<str<strong>on</strong>g>in</str<strong>on</strong>g>i A., Cavani C. 2006. The occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> deep pectoral<br />

myopathy <str<strong>on</strong>g>in</str<strong>on</strong>g> roaster chickens. Poultry Sci. 85(10), 1843–1846.<br />

Biavati B., Mattarelli P. 2006. The family Bifidobacteriaceae. In: The Prokaryotes:<br />

Archaea. Bacteria: Firmicutes, Act<str<strong>on</strong>g>in</str<strong>on</strong>g>omycetes. Ed. Dwork<str<strong>on</strong>g>in</str<strong>on</strong>g> M., Hansen P.A., Lessel, E.S.<br />

vol. 3, 322-382, Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger-Verlag, New York.<br />

Biggs P., Pars<strong>on</strong>s C.M. 2008. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Grobiotic-P <strong>on</strong> growth <strong>performance</strong>, nutrient<br />

digestibilities, <str<strong>on</strong>g>and</str<strong>on</strong>g> cecal microbial populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> young chicks. Poultry Sci. 87, 1796-<br />

1803.<br />

Biggs P., Pars<strong>on</strong>s C.M., Fahey G.C. 2007. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> several oligosaccharides <strong>on</strong><br />

growth <strong>performance</strong>, nutrient digestibilities, <str<strong>on</strong>g>and</str<strong>on</strong>g> cecal microbial populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> young<br />

chicks. Poultry Sci. 86, 2327-2336.<br />

117


Bilgili S.F., Hess J.B. 2002. Green muscle disease <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Worlds Poultry<br />

Sci. J. 18, 42–43.<br />

Bilgili S.F., Hess J.B., Lien R.J., Downs K.M. 2000. Deep pectoral myopathy <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler<br />

chickens. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the XXI World’s Poultry C<strong>on</strong>gress, M<strong>on</strong>treal, Canada,<br />

World’s Poultry Science Associati<strong>on</strong>.<br />

B<str<strong>on</strong>g>in</str<strong>on</strong>g>d<strong>on</strong> B.M., J<strong>on</strong>es N.M. 2001. Cattle supply, producti<strong>on</strong> systems <str<strong>on</strong>g>and</str<strong>on</strong>g> markets for<br />

Australian beef. Aust. J. Exp. Agr. 41, 861–877.<br />

Birren R.F. 1963. Color <str<strong>on</strong>g>and</str<strong>on</strong>g> human appetite. Food Technol. 17, 553.<br />

Bjerrum L., Engberg R.M., Leser T.D., Jensen B.B., F<str<strong>on</strong>g>in</str<strong>on</strong>g>ster K., Pedersen K. 2006.<br />

Microbial community compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ileum <str<strong>on</strong>g>and</str<strong>on</strong>g> cecum <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens as revealed<br />

by molecular <str<strong>on</strong>g>and</str<strong>on</strong>g> culture based techniques. Poultry Sci. 85, 1151-1164.<br />

Bogosavljević-Bošković S., Mitrović S., Radović V., Dosković V. 2007. The age <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

hous<str<strong>on</strong>g>in</str<strong>on</strong>g>g system effects <strong>on</strong> the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers. Biotech. Anim. Husb<str<strong>on</strong>g>and</str<strong>on</strong>g>ry, Vol 23, 5-6,<br />

519 – 525.<br />

Boguslawska J., Zycka-Krzes<str<strong>on</strong>g>in</str<strong>on</strong>g>ska J., Wilcks A., Bardowski J. 2009. Intra- <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terspecies c<strong>on</strong>jugal transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> Tn916-like elements from Lactococcus lactis <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> vivo. Appl. Envir<strong>on</strong>. Microbiol. 75, 6352-6360.<br />

Bokkers E.A.M., Koene P. 2003. Behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> fast- <str<strong>on</strong>g>and</str<strong>on</strong>g> slow grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g broilers to 12 weeks<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> age <str<strong>on</strong>g>and</str<strong>on</strong>g> the physical c<strong>on</strong>sequences. Appl. Anim. Behav. Sci. 81, 59-72.<br />

Boleman S.J., Boleman S.L., Miller R.K., Taylor J.F., Cross H.R., Wheeler T.L.,<br />

Koohmaraie M., Shackelford S.D., Miller M.F., West R.L., Johns<strong>on</strong> D.D., Savell J.W.<br />

1997. C<strong>on</strong>sumer evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> beef known categories <str<strong>on</strong>g>of</str<strong>on</strong>g> tenderness. J. Anim. Sci. 7, 1521–<br />

1524.<br />

Bomba A., Nemcova R., Mudr<strong>on</strong>ova D., Guba P. 2002. The possibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> potentiat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics. Trends Food Sci. Tech. 13, 121-126.<br />

Bosselmann A., Moller C., Ste<str<strong>on</strong>g>in</str<strong>on</strong>g>hardt H., Kirchgessner M., Schwarz F.J. 1995.<br />

Pyrid<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks <str<strong>on</strong>g>in</str<strong>on</strong>g> bov<str<strong>on</strong>g>in</str<strong>on</strong>g>e muscle collagen. J. Food Sci. 60, 953-958.<br />

118


Bott<str<strong>on</strong>g>in</str<strong>on</strong>g>elli R., Betto R., Schiaff<str<strong>on</strong>g>in</str<strong>on</strong>g>o S., Reggiani C. 1994. Unloaded shorten<str<strong>on</strong>g>in</str<strong>on</strong>g>g velocity <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

myos<str<strong>on</strong>g>in</str<strong>on</strong>g> heavy cha<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> alkali light cha<str<strong>on</strong>g>in</str<strong>on</strong>g> is<str<strong>on</strong>g>of</str<strong>on</strong>g>orm compositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> rat skeletal muscle<br />

fibres. J. Physiol. 478, 341–349.<br />

Bott<str<strong>on</strong>g>in</str<strong>on</strong>g>elli R., Reggiani C. 2000. Human skeletal muscle fibres: molecular <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>al<br />

diversity. Prog. Biophys. Mol. Biol. 73, 195–262.<br />

Bozkurt M., Küçükyilmaz K., Çatli A.U., Ç<str<strong>on</strong>g>in</str<strong>on</strong>g>ar M.. 2008. Growth Performance <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Slaughter Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Broiler Chickens Fed with Antibiotic, Mannan<br />

Oligosaccharide <str<strong>on</strong>g>and</str<strong>on</strong>g> Dextran Oligosaccharide Supplemented Diets. Int. J. Poultry Sci.<br />

7(10), 969-977.<br />

Bozkurt M., Küçükyılmaz K., Çatli A.U., Çınar M. 2009. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle or comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

dietary supplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s, organic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> probiotics <strong>on</strong> <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

slaughter characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers. S. Afr. J. Anim. Sci. 39(3), 197-205.<br />

Bragagnolo N., Rodriguez-Amaya D.B. 2002. Simultaneous determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total lipid,<br />

cholesterol <str<strong>on</strong>g>and</str<strong>on</strong>g> fatty acids <str<strong>on</strong>g>in</str<strong>on</strong>g> meat <str<strong>on</strong>g>and</str<strong>on</strong>g> backfat <str<strong>on</strong>g>of</str<strong>on</strong>g> suckl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> adult pigs. Food Chem. 79,<br />

255-260.<br />

Brisb<str<strong>on</strong>g>in</str<strong>on</strong>g> J.T., G<strong>on</strong>g J., Sharif S. 2008a. Interacti<strong>on</strong>s between commensal bacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

gut-associated immune system <str<strong>on</strong>g>of</str<strong>on</strong>g> the chicken. Anim. Health Res. Rev. 9(1), 101-110.<br />

Brisb<str<strong>on</strong>g>in</str<strong>on</strong>g> J.T., Zhou H., G<strong>on</strong>g J., Sabour P., Akbari M.R., Haghighi H.R., Yu H., Clarke A.,<br />

Sars<strong>on</strong> A.J., Sharif S. 2008b. Gene expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>il<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken lymphoid cells after<br />

treatment with Lactobacillus acidophilus cellular comp<strong>on</strong>ents. Dev. Comp. Immunol.<br />

32(5), 563-574.<br />

Brooks J.C., Savell J.W. 2004. Perimysium thickness as an <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> beef tenderness.<br />

Meat Sci. 67, 329–334.<br />

Brunso K., Scholderer J., Grunert K.G. 2004. Clos<str<strong>on</strong>g>in</str<strong>on</strong>g>g the gap between values <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

behavior: a means-end theory <str<strong>on</strong>g>of</str<strong>on</strong>g> lifestyle. J. Bus. Res. 57, 665-670.<br />

Burgat V. 1999. Residues <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs <str<strong>on</strong>g>of</str<strong>on</strong>g> veter<str<strong>on</strong>g>in</str<strong>on</strong>g>ary use <str<strong>on</strong>g>in</str<strong>on</strong>g> food. Rev. Prat. 41, 985–990.<br />

Campbell J.M., Fahy G.C., Wolf B.W. 1997. Selected <str<strong>on</strong>g>in</str<strong>on</strong>g>digestible oligosaccharides affect<br />

large bowel mass <str<strong>on</strong>g>and</str<strong>on</strong>g> fecal short-cha<str<strong>on</strong>g>in</str<strong>on</strong>g> fatty acids, pH <str<strong>on</strong>g>and</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>in</str<strong>on</strong>g> rats. J Nutr.<br />

127(1), 130–136.<br />

119


C<str<strong>on</strong>g>and</str<strong>on</strong>g>ek-Potokar M., Zlender B., Lefaucheur L., B<strong>on</strong>neau M. 1998. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> age <str<strong>on</strong>g>and</str<strong>on</strong>g>/or<br />

weight at slaughter <strong>on</strong> L<strong>on</strong>gissimus dorsi muscle: biochemical traits <str<strong>on</strong>g>and</str<strong>on</strong>g> sensory quality <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

pigs. Meat Sci. 48, 287–300.<br />

Careghi C., T<strong>on</strong>a K., Onagbesan O., Buyse J., Decuypere E., Bruggeman V. 2005. The<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the spread <str<strong>on</strong>g>of</str<strong>on</strong>g> hatch <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> with delayed feed access after hatch <strong>on</strong><br />

broiler <strong>performance</strong> until seven days <str<strong>on</strong>g>of</str<strong>on</strong>g> age. Poultry Sci. 84, 1314-1320.<br />

Carpenter Z.L., Kauffman R.G., Bray R.W., Briskey E.J., Weckel K.G. 1963. Factors<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g quality <str<strong>on</strong>g>in</str<strong>on</strong>g> pork A. Histological observati<strong>on</strong>s. J. Food Sci. 28, 467–471.<br />

Casewell M., Friis C., Marco E., McMull<str<strong>on</strong>g>in</str<strong>on</strong>g> P., Phillips I. 2003. The European ban <strong>on</strong><br />

growth promot<str<strong>on</strong>g>in</str<strong>on</strong>g>g antibiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> emerg<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>sequences for humans <str<strong>on</strong>g>and</str<strong>on</strong>g> animals health.<br />

J. Antimicrob. Chemoth. 52, 159-161.<br />

Castan<strong>on</strong> J.I.R. 2007. History <str<strong>on</strong>g>of</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotic growth promoters <str<strong>on</strong>g>in</str<strong>on</strong>g> European poultry<br />

feeds. Poultry Sci. 86, 2466-2471.<br />

Casula G., Cutt<str<strong>on</strong>g>in</str<strong>on</strong>g>g S.M. 2002. Bacillus probiotics: Spore germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract. Appl. Envir<strong>on</strong>. Microbiol. 68, 2344–2352.<br />

Cavani C., Petracci M., Troc<str<strong>on</strong>g>in</str<strong>on</strong>g>o A., Xiccato G. 2009. Advances <str<strong>on</strong>g>in</str<strong>on</strong>g> research <strong>on</strong> poultry <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

rabbit meat quality. Ital. J. Anim. Sci. 8, 741–750.<br />

Chaveerach P., Lipman L.J.A., Vanknapen F. 2004. Antag<strong>on</strong>istic activities <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

bacteria <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro growth <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Campylobacter jejuni/coli. Int. J. .Food<br />

Microbiol. 90, 43-50.<br />

Chizzol<str<strong>on</strong>g>in</str<strong>on</strong>g>i R., Zanardi E., Dorig<strong>on</strong>i V., Ghid<str<strong>on</strong>g>in</str<strong>on</strong>g>i S. 1999. Calorific value <str<strong>on</strong>g>and</str<strong>on</strong>g> cholesterol<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> normal <str<strong>on</strong>g>and</str<strong>on</strong>g> low-fat meat <str<strong>on</strong>g>and</str<strong>on</strong>g> meat products. Trends Food Sci. Tech.10, 119-128.<br />

Choi K.H., Namkung H., Paik I.K. 1994. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary fructooligosaccharides <strong>on</strong> the<br />

suspensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Salm<strong>on</strong>ella typhimurium <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chicken. Kor.J.<br />

Anim. Sci. 36, 271-284.<br />

Christ B., Br<str<strong>on</strong>g>and</str<strong>on</strong>g>-Saberi B. 2002. Limb muscle development. Int. J. Dev. Biol. 46, 905–914.<br />

Christensen V.L., D<strong>on</strong>alds<strong>on</strong> W.E., McMurtry J.P. 1996. Physiological differences <str<strong>on</strong>g>in</str<strong>on</strong>g> late<br />

embryos from turkey breeders at different ages. Poultry Sci. 75, 172-178.<br />

120


Christensen V.L., Grimes J.L., D<strong>on</strong>alds<strong>on</strong> W.E., Lerner S. 2000. Paternal <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences <strong>on</strong><br />

turkey embry<strong>on</strong>ic growth <str<strong>on</strong>g>in</str<strong>on</strong>g> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> egg weight <str<strong>on</strong>g>and</str<strong>on</strong>g> eggshell<br />

c<strong>on</strong>ductance. Poultry Sci. 79, 1810-1816.<br />

Clydesdale F.A. 1997. proposal for the establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific criteria for health claims<br />

for functi<strong>on</strong>al foods. Nutr. Rev. 55, 413-22.<br />

Coles B.A., Croom W.J., Brake J., Daniel L.R., Christensen V.L., Phelps C.P., Gore A.,<br />

Taylor I.L. 1999. In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> peptide YY adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> improves growth <str<strong>on</strong>g>and</str<strong>on</strong>g> feed c<strong>on</strong>versi<strong>on</strong><br />

ratios <str<strong>on</strong>g>in</str<strong>on</strong>g> week-old broiler chicks. Poultry Sci. 78, 1320-1322.<br />

Collier C.T., van der Klis J.D., Deplancke B., Anders<strong>on</strong> D.B., Gask<str<strong>on</strong>g>in</str<strong>on</strong>g>s H.R. 2003. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tylos<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> bacterial mucolysis, Clostridium perfr<str<strong>on</strong>g>in</str<strong>on</strong>g>gens col<strong>on</strong>izati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

barrier functi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a chick model <str<strong>on</strong>g>of</str<strong>on</strong>g> necrotic enteritis. Antimicrob. Agents Chemother.<br />

47(10), 3311-7.<br />

Coll<str<strong>on</strong>g>in</str<strong>on</strong>g> A., Berri C., Tesseraud S., Rod<strong>on</strong> F.E., Skiba-Cassy S., Crochet S., Duclos M.J.,<br />

Rideau N., T<strong>on</strong>a K., Buyse J., Bruggeman V., Decuypere E., Picard M., Yahav S. 2007.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal manipulati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g early <str<strong>on</strong>g>and</str<strong>on</strong>g> late embryogenesis <strong>on</strong> thermo-tolerance<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> breast muscle characteristics <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens. Poultry Sci. 86, 795-800.<br />

Coll<str<strong>on</strong>g>in</str<strong>on</strong>g>s M.D., Gibs<strong>on</strong> G.R. 1999. Probiotics, <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s: Approaches for<br />

modulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the microbial ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> the gut. Am. J. Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>. Nutr. 69, 1052S-1057S.<br />

Coró F.A.G., Youssef E.Y., Shimokomaki M. 2003. Age related changes <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry breast<br />

meat collagen pyrid<str<strong>on</strong>g>in</str<strong>on</strong>g>olme <str<strong>on</strong>g>and</str<strong>on</strong>g> texture. J. Food Biochem. 26, 533-541.<br />

Corrier D.E., H<str<strong>on</strong>g>in</str<strong>on</strong>g>t<strong>on</strong> A., Zipr<str<strong>on</strong>g>in</str<strong>on</strong>g> R.L. 1990. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary lactose <strong>on</strong> Salm<strong>on</strong>ella<br />

col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> market – age broiler chickens. Avian Dis. 34, 668-676.<br />

Cout<str<strong>on</strong>g>in</str<strong>on</strong>g>ho L.L., Morris J., Marks H.L., Buhr R.J., Ivarie R. 1993. Delayed somite formati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a quail l<str<strong>on</strong>g>in</str<strong>on</strong>g>e exhibit<str<strong>on</strong>g>in</str<strong>on</strong>g>g my<str<strong>on</strong>g>of</str<strong>on</strong>g>iber hyperplasia is accompanied by delayed expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

myogenic regulatory factors <str<strong>on</strong>g>and</str<strong>on</strong>g> myos<str<strong>on</strong>g>in</str<strong>on</strong>g> heavy cha<str<strong>on</strong>g>in</str<strong>on</strong>g>. Development 117, 563–569.<br />

Cox E.A., Sastry S.K., Huttenlocher A. 2001. Integr<str<strong>on</strong>g>in</str<strong>on</strong>g>-mediated adhesi<strong>on</strong> regulates cell<br />

polarity <str<strong>on</strong>g>and</str<strong>on</strong>g> membrane protrusi<strong>on</strong> through the Rho family <str<strong>on</strong>g>of</str<strong>on</strong>g> GTPases. Mol. Biol. Cell. 12,<br />

265-277.<br />

121


Craig R.W., Padr<strong>on</strong> R. 2003. Molecular structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the sarcomere. In: Myology. Engel<br />

A.G., Franz<str<strong>on</strong>g>in</str<strong>on</strong>g>i-Armstr<strong>on</strong>g C. (eds.), McGraw-Hill, New York, 129–166.<br />

Crist<str<strong>on</strong>g>of</str<strong>on</strong>g>aro E., Mottli F., Whurmann J.J. 1974. Involvement <str<strong>on</strong>g>of</str<strong>on</strong>g> raff<str<strong>on</strong>g>in</str<strong>on</strong>g>ose family <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oligosaccharides <str<strong>on</strong>g>in</str<strong>on</strong>g> flatulence. In: Sugars <str<strong>on</strong>g>in</str<strong>on</strong>g> Nutriti<strong>on</strong>. Sepple H.L., McNutt K.W. eds.,<br />

New York, Academic Press, 313-363. Damerow, G. 1995. A Guide to Rais<str<strong>on</strong>g>in</str<strong>on</strong>g>g Chickens.<br />

Storey Books.<br />

Cross A.J., Ferrucci L.M., Risch A., Graubard B.I., Ward M.H., Park Y., Hollenbeck A.R.,<br />

Schatzk<str<strong>on</strong>g>in</str<strong>on</strong>g> A., S<str<strong>on</strong>g>in</str<strong>on</strong>g>ha R. 2010. A large prospective study <str<strong>on</strong>g>of</str<strong>on</strong>g> meat c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

colorectal cancer risk: an <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potential mechanisms underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g this<br />

associati<strong>on</strong>. Cancer Res. 15, 2406–2414.<br />

Cumm<str<strong>on</strong>g>in</str<strong>on</strong>g>g W.J.K., Fulthorpe J., Hudgs<strong>on</strong> P., Mah<strong>on</strong> M. 1994. Colour atlas <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle<br />

pathology, 1-202 (L<strong>on</strong>d<strong>on</strong>, Mosby-Wolfe).<br />

Daeschel M.A. 1989. Antimicrobial substances from lactic acid bacteria for use as food<br />

preservatives. Food Technol. 43, 164-167.<br />

Dahiya, J.P., Wilkie D.C., van Kessel A.G., Drew M.D. 2006. Potential strategies for<br />

c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g necrotic enteritis <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens <str<strong>on</strong>g>in</str<strong>on</strong>g> post-antibiotic era. Anim. Feed Sci.<br />

Technol. 129, 60-88.<br />

Dalloul R.A., Lillehoj H.S., Shellem T.A., Doerr J.A. 2003. Enhanced mucosal immunity<br />

aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st Eimeria acervul<str<strong>on</strong>g>in</str<strong>on</strong>g>a <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers fed a Lactobacillus-based probiotic. Poultry Sci. 82,<br />

62–66.<br />

Damerow G. 1995. A Guide to Rais<str<strong>on</strong>g>in</str<strong>on</strong>g>g Chickens. Storey Books.<br />

Das C., Roy B.C., Oshima I., Miyachi H., Nishimura S., Iwamoto H., Tabata S. 2010.<br />

Collagen c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> the Pectoralis muscle <str<strong>on</strong>g>in</str<strong>on</strong>g> male chicks <str<strong>on</strong>g>and</str<strong>on</strong>g> broilers<br />

reared under various nutriti<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>s. Anim. Sci. J. 81, 252-263.<br />

Davis C., Reeves C.R. 2002. High value opportunities from the chicken egg. In: Book high<br />

value opportunities from the chicken egg. Edited by Rural <str<strong>on</strong>g>in</str<strong>on</strong>g>dustries research <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

development corporati<strong>on</strong>, City, 69.<br />

Davis G.S., Anders<strong>on</strong> K.E. 2002. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g the direct-fed microbial, Primalac,<br />

<strong>on</strong> growth parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> egg producti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle comb White Leghorn hens. Poultry Sci.<br />

81, 755-759.<br />

122


de Lange C.F.M., Pluske J., G<strong>on</strong>g J., Nyachoti C.M. 2010. Strategic use <str<strong>on</strong>g>of</str<strong>on</strong>g> feed <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> feed additives to stimulate gut health <str<strong>on</strong>g>and</str<strong>on</strong>g> development <str<strong>on</strong>g>in</str<strong>on</strong>g> young pigs. Livest. Sci. 134,<br />

124-134.<br />

de Ruyter P.G.G.A., Kuipers O.P., de Vos W.M. 1996. C<strong>on</strong>trolled gene expressi<strong>on</strong> systems<br />

for Lactococcus lactis with the food-grade <str<strong>on</strong>g>in</str<strong>on</strong>g>ducer nis<str<strong>on</strong>g>in</str<strong>on</strong>g>. Appl. Envir<strong>on</strong>. Microbiol. 62,<br />

3662–3667.<br />

Debut M., Berri C., Baéza E., Sellier N., Arnould C., Guémené D., Jehl N., Boutten B.,<br />

Jego Y., Beaum<strong>on</strong>t C., Le Bihan-Duval E. 2003. Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken technological meat<br />

quality <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to genotype <str<strong>on</strong>g>and</str<strong>on</strong>g> pre-slaughter stress c<strong>on</strong>diti<strong>on</strong>s. Poultry Sci. 82, 1829–<br />

1838.<br />

Decuypere E., Kuhn E.R., Clijmans B., Nouwen E.J., Michels H. 1982. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> block<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

T4-m<strong>on</strong>odeiod<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <strong>on</strong> hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> chickens. Poultry Sci. 61, 1194-1201.<br />

Deem<str<strong>on</strong>g>in</str<strong>on</strong>g>g D.C. 2005, Yolk sac, body dimensi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> hatchl<str<strong>on</strong>g>in</str<strong>on</strong>g>g quality <str<strong>on</strong>g>of</str<strong>on</strong>g> duckl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, chicks<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> poults. Brit. Poultry Sci. 46, 560-564.<br />

Delarue J., LeFoll C., Corporeau C., Lucas D. 2004. N-3 l<strong>on</strong>g cha<str<strong>on</strong>g>in</str<strong>on</strong>g> polyunsaturated fatty<br />

acids: a nutriti<strong>on</strong>al tool to prevent <str<strong>on</strong>g>in</str<strong>on</strong>g>sul<str<strong>on</strong>g>in</str<strong>on</strong>g> resistance associated to type 2 diabetes <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

obesity Reprod. Nutr. Dev. 44, 289–299.<br />

Delves-Brought<strong>on</strong> J., Blackburn P., Evans R.J., Hugenholtz J. 1996. Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

bacterioc<str<strong>on</strong>g>in</str<strong>on</strong>g> nis<str<strong>on</strong>g>in</str<strong>on</strong>g>. Ant. Van Leeuw. 69, 193–202.<br />

Dey P.M. 1980. Biochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> α-D-galactosidic l<str<strong>on</strong>g>in</str<strong>on</strong>g>kages. Adv. Carbohydr. Chem.<br />

37:,285-335.<br />

Dey P.M. 1990. Oligosaccharides. In: Methods <str<strong>on</strong>g>in</str<strong>on</strong>g> plant biochemistry, ed. Academic Press:<br />

New York, vol. 2, 189-218.<br />

Dick<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong> E.M., Stevens J.O., Helfer D.H. 1968. A degenerative myopathy <str<strong>on</strong>g>in</str<strong>on</strong>g> turkeys. In:<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> 17th Western Poultry Disease C<strong>on</strong>ference, Davis, CA, USA, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

California, 6.<br />

Dilworth B.C., Day E.J. 1978. Lactobacillus cultures <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler diets. Poultry Sci. 57, 1101.<br />

123


Doeschate R.A.H.M., Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>e H. 2006. History <str<strong>on</strong>g>and</str<strong>on</strong>g> current use <str<strong>on</strong>g>of</str<strong>on</strong>g> feed additives <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

European Uni<strong>on</strong>: legislative <str<strong>on</strong>g>and</str<strong>on</strong>g> practical aspects. Avian Gut Functi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Health <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Disease, edited by G.C. Perry, CAB Internati<strong>on</strong>al, chapter 1, 3-12.<br />

D<strong>on</strong>alds<strong>on</strong> W.E. 1995. Carbohydrate, hatchery stressors affect poult survival. In:<br />

Feedstaffs 67(14), 16-17.<br />

D<strong>on</strong>alds<strong>on</strong> W.E., Christensen V.L. 1991. Dietary carbohydrate level <str<strong>on</strong>g>and</str<strong>on</strong>g> glucose<br />

metabolism <str<strong>on</strong>g>in</str<strong>on</strong>g> turkey poults. Comp. Biochem. Physiol. A 98, 347-350.<br />

D<strong>on</strong>alds<strong>on</strong> W.E., Christensen V.L., Krueger K.K. 1991. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stressors <strong>on</strong> blood<br />

glucose <str<strong>on</strong>g>and</str<strong>on</strong>g> hepatic glycogen c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> turkey poults. Comp. Biochem. Physiol. A.<br />

100, 945-947.<br />

D<strong>on</strong>als<strong>on</strong> L.M., McReynolds J.L., Kim W.K., Chalova V.I., Woodward C.L., Kubena L.F.,<br />

Nisbet D.J, Ricke S.C. 2008. The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> a fructooligosaccharide <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

with alfalfa molt diets <strong>on</strong> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract fermentati<strong>on</strong>, Salm<strong>on</strong>ella enteritidis<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al shedd<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> lay<str<strong>on</strong>g>in</str<strong>on</strong>g>g hens. Poultry Sci. 87, 1253–1262.<br />

D<strong>on</strong>ohue D.C., Salm<str<strong>on</strong>g>in</str<strong>on</strong>g>en S., Marteau P. 1998. Safety <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic bacteria. In: Lactic acid<br />

bacteria. Microbiology <str<strong>on</strong>g>and</str<strong>on</strong>g> Functi<strong>on</strong>al Aspects,. Ed. Salm<str<strong>on</strong>g>in</str<strong>on</strong>g>en S. <str<strong>on</strong>g>and</str<strong>on</strong>g> v<strong>on</strong> Wright A.<br />

Marcel Dekker, Inc., New York, NY, 369-384.<br />

Drachman D.B., Murphy S.R.,.Nigam M., Hills J.R. 1967. Myopathic changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

chr<strong>on</strong>ically denervated muscle. Arch Neurol. 16(1), 14-24.<br />

Dransfield E., 1994. Modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g post-mortem tenderizati<strong>on</strong> –V: <str<strong>on</strong>g>in</str<strong>on</strong>g>activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calpa<str<strong>on</strong>g>in</str<strong>on</strong>g>s.<br />

Meat Sci. 37, 391–409.<br />

Dransfield E., J<strong>on</strong>es R.C.D. 1980. Tenderis<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> M. L<strong>on</strong>gissimus dorsi <str<strong>on</strong>g>of</str<strong>on</strong>g> beef veal rabbit<br />

lamb <str<strong>on</strong>g>and</str<strong>on</strong>g> pork. Meat Sci. 5, 139−147.<br />

Dransfield E., Sosnicki A.A. 1999. Relati<strong>on</strong>ship between muscle growth <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry meat<br />

quality. Poultry Sci. 78, 743–746.<br />

Drew M.D., Van Kessel A.G., Maenz D.D. 2003. Absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> methi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> 2-<br />

hydroxy-4-methylthiobutoanic acid <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> germ-free chickens. Poultry Sci.<br />

82, 1149–1153.<br />

124


Dubowitz V., Brooke M.H. 1973. Histological <str<strong>on</strong>g>and</str<strong>on</strong>g> histochemical sta<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> reacti<strong>on</strong>. In:<br />

Muscle Biopsy: a modern approach. W.B. Saunders, ed. Academic Press Ltd., L<strong>on</strong>d<strong>on</strong>,<br />

Uk, 20-33.<br />

Duncan I.J.H., Hock<str<strong>on</strong>g>in</str<strong>on</strong>g>g P.M., Seawright E. 1990. Sexual behaviour <str<strong>on</strong>g>and</str<strong>on</strong>g> fertility <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler<br />

breeder domestic fowl. Appl. Anim. Behav. Sci. 26, 201–213.<br />

Dunn<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> E.A., Siegel P.B. 1996. L<strong>on</strong>g-term divergent selecti<strong>on</strong> for eight-week body<br />

weight <str<strong>on</strong>g>in</str<strong>on</strong>g> White Plymouth Rock chickens. Poultry Sci. 75, 1168-1179.<br />

Duts<strong>on</strong> T.R., Lawrie R.A. 1974. Release <str<strong>on</strong>g>of</str<strong>on</strong>g> lysosomal enzymes dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g post mortem<br />

c<strong>on</strong>diti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> their relati<strong>on</strong>ship to tenderness. J. Food Tecnol. 9, 43.<br />

Dwyer C.M., Fletcher J.M., Stickl<str<strong>on</strong>g>and</str<strong>on</strong>g> N.C. 1993. Muscle cellularity <str<strong>on</strong>g>and</str<strong>on</strong>g> postnatal growth<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the pig. J. Anim. Sci. 71 , 3339−3343.<br />

Eastoe J.E., Leach A.A. 1958. A survey <str<strong>on</strong>g>of</str<strong>on</strong>g> recent work <strong>on</strong> the am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vertebrate collagen <str<strong>on</strong>g>and</str<strong>on</strong>g> gelat<str<strong>on</strong>g>in</str<strong>on</strong>g>. In: Recent Advances <str<strong>on</strong>g>in</str<strong>on</strong>g> Gelat<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Glue Research. G.<br />

Sta<str<strong>on</strong>g>in</str<strong>on</strong>g>sby, ed. Pergam<strong>on</strong> Press, New York, NY, 173-178.<br />

Edens F.W., Parkhurst C.R., Cassa I.A., Dobrogosz W.J. 1997. Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciples <str<strong>on</strong>g>of</str<strong>on</strong>g> ex <str<strong>on</strong>g>ovo</str<strong>on</strong>g><br />

competitive exclusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus reuteri. Poultry Sci. 76,<br />

179–196.<br />

Eggen E., Hocquette J.F. 2003. Genomic approaches to ec<strong>on</strong>omic trait loci <str<strong>on</strong>g>and</str<strong>on</strong>g> tissue<br />

expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>il<str<strong>on</strong>g>in</str<strong>on</strong>g>g; applicati<strong>on</strong> to muscle biochemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> beef quality. Meat Sci. 66, 1–<br />

9.<br />

Eggen K.H., Malmstrøm A., Kolset S. 1994. Decor<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> a large dermatan sulfate<br />

proteoglycan <str<strong>on</strong>g>in</str<strong>on</strong>g> bov<str<strong>on</strong>g>in</str<strong>on</strong>g>e striated muscle. Biochim. Biophys. Acta 1204, 287-297.<br />

Elfick D. 2012. A Brief History Of Broiler Selecti<strong>on</strong>: How Chicken Became A Global<br />

Food Phenomen<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> 50 Years. Aviagen Internati<strong>on</strong>al. Retrieved July 1, 2012.<br />

Elm<str<strong>on</strong>g>in</str<strong>on</strong>g>owska-Wenda G., Ros<str<strong>on</strong>g>in</str<strong>on</strong>g>ski A., Baeza E. 2004. Histopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Pectoralis muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> L<str<strong>on</strong>g>and</str<strong>on</strong>g>aise geese kept <str<strong>on</strong>g>in</str<strong>on</strong>g> different feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g system. Zesz. Nauk. AR <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Wroclaw. Zootechnika L. 488, 97-102.<br />

Endens F. 2003. An alternative for antibiotic use <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry: probiotics. Rev. Bras. Cienc.<br />

Avic. 5, 44-51.<br />

125


Endo T., Nakano M. 1999. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> a probiotic <strong>on</strong> productivity, meat comp<strong>on</strong>ents lipid<br />

metabolism, caecal flora <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolites <str<strong>on</strong>g>and</str<strong>on</strong>g> rais<str<strong>on</strong>g>in</str<strong>on</strong>g>g envir<strong>on</strong>ment <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler producti<strong>on</strong>.<br />

Anim. Sci. J. 70, 207–218.<br />

Ent<str<strong>on</strong>g>in</str<strong>on</strong>g>g H., Kruip T.A., Verstegen M.W., van der Aar P.J. 2007. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> low density<br />

diets <strong>on</strong> broiler breeder <strong>performance</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the lay<str<strong>on</strong>g>in</str<strong>on</strong>g>g period <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> embry<strong>on</strong>ic<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> their <str<strong>on</strong>g>of</str<strong>on</strong>g>fspr<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Poultry Sci. 86, 850-856.<br />

Ergun A., Yalc<str<strong>on</strong>g>in</str<strong>on</strong>g> S., Sacakli P. 2000. The usage <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic <str<strong>on</strong>g>and</str<strong>on</strong>g> z<str<strong>on</strong>g>in</str<strong>on</strong>g>c bacitrac<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler<br />

rati<strong>on</strong>s. Ankara Univ. Vet. Fak. 47, 271-280.<br />

Erikss<strong>on</strong> J., Lars<strong>on</strong> G., Gunnarss<strong>on</strong> U., Bed'hom B., Tixier-Boichard M., Strömstedt L.,<br />

Wright D., Jungerius A., Vereijken A., R<str<strong>on</strong>g>and</str<strong>on</strong>g>i E., Jensen P., Anderss<strong>on</strong> L. 2008.<br />

Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Yellow Sk<str<strong>on</strong>g>in</str<strong>on</strong>g> Gene Reveals a Hybrid Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Domestic Chicken.<br />

Plos Genet. 4(2).<br />

Esko J.D., Kimata K., L<str<strong>on</strong>g>in</str<strong>on</strong>g>dahl U. 2009. Proteoglycans <str<strong>on</strong>g>and</str<strong>on</strong>g> sulfated glycosam<str<strong>on</strong>g>in</str<strong>on</strong>g>oglycans I:<br />

Varki A, Cumm<str<strong>on</strong>g>in</str<strong>on</strong>g>gs RD, Esko JD Essentials <str<strong>on</strong>g>of</str<strong>on</strong>g> Glycobiology. 2nd editi<strong>on</strong>. Cold Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Harbor (NY); USA.<br />

Estrada A., Wilkie D.C., Drew M. 2001. Adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B. bifidum to chicken broilers<br />

reduces the number <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass c<strong>on</strong>demnati<strong>on</strong> for cellulites at the abattoir. J. Appl. Poultry<br />

Res. 10, 329-334.<br />

Ether<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> D.J. 1987. Collagen <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality: effects <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> growth rate.<br />

Adv. Meat Res. 4, 351-360.<br />

Ether<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> D. J., Sims T.J. 1981. Detecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen. J. Sci. Food Agric.<br />

32, 539–546.<br />

European Food Safety Authority (EFSA). 2005a. Op<str<strong>on</strong>g>in</str<strong>on</strong>g>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the scientific committee <strong>on</strong> a<br />

request from EFSA related to a generic approach to the safety assessment by EFSA <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microorganisms used <str<strong>on</strong>g>in</str<strong>on</strong>g> food/feed <str<strong>on</strong>g>and</str<strong>on</strong>g> the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> food/feed additives. EFSA Journal<br />

226, 1-12.<br />

European Food Safety Authority (EFSA). 2005b. Op<str<strong>on</strong>g>in</str<strong>on</strong>g>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Scientific Panel <strong>on</strong><br />

Additives <str<strong>on</strong>g>and</str<strong>on</strong>g> Products or Substances used <str<strong>on</strong>g>in</str<strong>on</strong>g> Animal Feed <strong>on</strong> the updat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the criteria<br />

used <str<strong>on</strong>g>in</str<strong>on</strong>g> the assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria for resistance to antibiotics <str<strong>on</strong>g>of</str<strong>on</strong>g> human or veter<str<strong>on</strong>g>in</str<strong>on</strong>g>ary<br />

importance. EFSA Journal 223, 1-12.<br />

126


European Food Safety Authority (EFSA). 2006. Zo<strong>on</strong>oses <str<strong>on</strong>g>in</str<strong>on</strong>g> the European Uni<strong>on</strong>.<br />

European Food Safety Authority, Parma, Italy. ISBN 1092-9199-044-2.<br />

European Food Safety Authority (EFSA). 2007. Introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Qualified Presumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Safety (QPS) approach for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> selected microorganisms referred to EFSA<br />

Op<str<strong>on</strong>g>in</str<strong>on</strong>g>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Scientific Committee (Questi<strong>on</strong> No EFSA-Q-2005-293) Adopted <strong>on</strong> 19<br />

November 2007. EFSA Journal 587, 1-16.<br />

European Food Safety Authority (EFSA). 2010. Scientific Op<str<strong>on</strong>g>in</str<strong>on</strong>g>i<strong>on</strong> <strong>on</strong> Quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the risk posed by broiler meat to human campylobacteriosis <str<strong>on</strong>g>in</str<strong>on</strong>g> the EU. EFSA Journal, 8(1),<br />

1437.<br />

Eurostat, 2012. http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/.<br />

Evans M., Roberts A., Rees A. 2002. The future directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cholesterol-lower<str<strong>on</strong>g>in</str<strong>on</strong>g>g therapy.<br />

Curr. Op<str<strong>on</strong>g>in</str<strong>on</strong>g>. Lipidol. 13, 663–669.<br />

Eyre D.R., Koob T.J., Van Ness K.P. 1984. Quantitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxypyrid<str<strong>on</strong>g>in</str<strong>on</strong>g>ium crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> collagen by high-<strong>performance</strong> liquid chromatography. Anal. Biochem. 137, 380–388.<br />

Eyre D.R., Oguchi H. 1980. The hydroxypyrid<str<strong>on</strong>g>in</str<strong>on</strong>g>ium crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal collagens: their<br />

measurement, properties <str<strong>on</strong>g>and</str<strong>on</strong>g> a proposed pathway <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong>. Biochem. Biophys. Res.<br />

Commun. 92, 403-410.<br />

Falaki M., Shams Shargh M., Dastar B., Zerehdaran S.. 2011. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> different levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

probiotic <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <strong>on</strong> <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens. J.<br />

Anim. Vet. Adv. 10(3), 378-384.<br />

FAO/WHO (2002). Jo<str<strong>on</strong>g>in</str<strong>on</strong>g>t FAO/WHO (Food <str<strong>on</strong>g>and</str<strong>on</strong>g> Agriculture Organizati<strong>on</strong>/World Health<br />

Organizati<strong>on</strong>). Work<str<strong>on</strong>g>in</str<strong>on</strong>g>g group report <strong>on</strong> draft<str<strong>on</strong>g>in</str<strong>on</strong>g>g guidel<str<strong>on</strong>g>in</str<strong>on</strong>g>es for the evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> food. L<strong>on</strong>d<strong>on</strong>, Ontario, Canada. Guidel<str<strong>on</strong>g>in</str<strong>on</strong>g>es for the evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> food. Jo<str<strong>on</strong>g>in</str<strong>on</strong>g>t<br />

work<str<strong>on</strong>g>in</str<strong>on</strong>g>g group report <strong>on</strong> draft<str<strong>on</strong>g>in</str<strong>on</strong>g>g. L<strong>on</strong>d<strong>on</strong>, Ontario 2002, 1-11.<br />

Faostat, 2012, Food <str<strong>on</strong>g>and</str<strong>on</strong>g> Agriculture Organizati<strong>on</strong> Corporate Statistical Database.<br />

http://faostat.fao.org/site/291/default.aspx<br />

Fasenko G.M. 2007. Egg storage <str<strong>on</strong>g>and</str<strong>on</strong>g> the embryo. Poultry Sci. 86, 1020-1024.<br />

127


Fergus<strong>on</strong> D.M., Bruce H.L., Thomps<strong>on</strong> J.M., Egan A.F:, Perry D., Shorthose W.R. 2001.<br />

Factors affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g beef palatability-farm gate to chilled carcass. Aust. J. Exp.Agr.41, 879-<br />

891.<br />

Fergus<strong>on</strong> L.R. 2010. Meat <str<strong>on</strong>g>and</str<strong>on</strong>g> cancer. Meat Sci. 84, 308–313.<br />

Ferket P.R., Uni Z., Tako E., Foye O.T., Oliveira J.E. 2005. In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g nutriti<strong>on</strong>:<br />

impact <strong>on</strong> gene expressi<strong>on</strong>, gut development, <str<strong>on</strong>g>and</str<strong>on</strong>g> growth <strong>performance</strong>. In: The Annual<br />

Nutriti<strong>on</strong> C<strong>on</strong>ference. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Arkansas. Rogers, AR, 160-172.<br />

Fiedler I., Ender K., Wicke M., Maak S., v<strong>on</strong> Lengerken G., Meyer W. 1999. Structural<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>al characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fibres <str<strong>on</strong>g>in</str<strong>on</strong>g> pigs with different malignant<br />

hyperthermia susceptibility (MHS) <str<strong>on</strong>g>and</str<strong>on</strong>g> different meat quality. Meat Science 53, 9−15.<br />

Fletcher D.L. 1999a. Broiler breast meat color variati<strong>on</strong>, pH, <str<strong>on</strong>g>and</str<strong>on</strong>g> texture. Poultry Sci. 78,<br />

1323–1327.<br />

Fletcher D.L. 2002. Poultry meat quality. Worlds Poultry Sci. J. 58, 131-145.<br />

Flor<str<strong>on</strong>g>in</str<strong>on</strong>g>i J.R., Ewt<strong>on</strong> D.Z., Coolican S.A. 1996. Growth horm<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>sul<str<strong>on</strong>g>in</str<strong>on</strong>g>-like growth<br />

factor system <str<strong>on</strong>g>in</str<strong>on</strong>g> myogenesis. Endocr. Rev. 17, 481–517.<br />

F<strong>on</strong>tana E.A., Weaver W.D., Watk<str<strong>on</strong>g>in</str<strong>on</strong>g>s B.A., Denbow D.M. 1993. Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lipogenic <str<strong>on</strong>g>and</str<strong>on</strong>g> lipolytic activity, muscle tissue compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> DNA <str<strong>on</strong>g>and</str<strong>on</strong>g> RNA levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

broilers eat<str<strong>on</strong>g>in</str<strong>on</strong>g>g ad libitum or severely restricted at an early age. Poultry Sci. 72, 684-690.<br />

Fooks L.J., Gibs<strong>on</strong> G.R. 2002. In vitro <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s <strong>on</strong> selected human <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al pathogens. FEMS Microbiol. Ecol. 39, 67-75.<br />

Fowler S.P., Campi<strong>on</strong> D.R., Marks H.L., Reagen J.O. 1980. An analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal muscle<br />

resp<strong>on</strong>se to selecti<strong>on</strong> for rapid growth <str<strong>on</strong>g>in</str<strong>on</strong>g> Japanese Quail (Coturnix coturnix jap<strong>on</strong>ica).<br />

Growth, 44, 235–252.<br />

Foye O.T. 2005. The biochemical <str<strong>on</strong>g>and</str<strong>on</strong>g> molecular effects <str<strong>on</strong>g>of</str<strong>on</strong>g> amni<strong>on</strong>ic nutrient<br />

adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong>, “<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g” <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al development <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> carbohydrate<br />

metabolism <str<strong>on</strong>g>in</str<strong>on</strong>g> turkey embryos <str<strong>on</strong>g>and</str<strong>on</strong>g> poults. North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a State University. Raleigh, NC.<br />

Foye O.T., Uni Z., Ferket P.R. 2006. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g egg white prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, betahydroxy-beta-methylbutyrate,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> carbohydrates <strong>on</strong> glycogen status <str<strong>on</strong>g>and</str<strong>on</strong>g> ne<strong>on</strong>atal growth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> turkeys. Poultry Sci. 85, 1185-1192.<br />

128


Francis Suh J.K., Matthew H.W. 2000 Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chitosan-based polysaccharide<br />

biomaterials <str<strong>on</strong>g>in</str<strong>on</strong>g> cartilage tissue eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g, a review. Biomaterials. 21(24), 2589–2598.<br />

Frank D.N., St Am<str<strong>on</strong>g>and</str<strong>on</strong>g> A.L., Feldman R.A., Boedeker E.C., Harpaz N., Pace N.R. 2007.<br />

Molecular-phylogenetic characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial community imbalances <str<strong>on</strong>g>in</str<strong>on</strong>g> human<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>flammatory bowel diseases. Proc Natl Acad Sci USA. 104(34): 13780–13785.<br />

Freter R. 1992. Factors affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the microecology <str<strong>on</strong>g>of</str<strong>on</strong>g> the gut. In: Fuller R, ed. Probiotics,<br />

the scientific basis. L<strong>on</strong>d<strong>on</strong>: Chapman & Hall, 111-144.<br />

Frisby J., Raftery D., Kerry J., Diam<strong>on</strong>d D. 2005. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> an aut<strong>on</strong>omous,<br />

wireless pH <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature sens<str<strong>on</strong>g>in</str<strong>on</strong>g>g system for m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g pig meat quality. Meat Sci. 70,<br />

329-336.<br />

Fr<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g G.W. 1995. Color <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat. Poultry Avian Biol. Rev. 6, 83–93.<br />

Fr<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g G.W., Babji A.S., Mather F.B. 1978. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> preslaughter temperature,<br />

stress, struggle <str<strong>on</strong>g>and</str<strong>on</strong>g> anesthetizati<strong>on</strong> <strong>on</strong> color <str<strong>on</strong>g>and</str<strong>on</strong>g> textural characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> turkey muscle.<br />

Poultry Sci. 57, 630–633.<br />

Fry S.C. 1994. Chemical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the primary cell wall. In: Plant Cell<br />

Biology. A Practical Approach; Harris N., Oparka K.J., eds. Oxford University Press:<br />

Oxford, New York, Tokyo.<br />

Fujimoto D. 1977. Isolati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fluorescent material <str<strong>on</strong>g>in</str<strong>on</strong>g> bov<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

achilles tend<strong>on</strong> collagen. Biochem. Biophys. Res. Commun. 76, 1124-1129.<br />

Fuller R. 1973. Ecological studies <strong>on</strong> the Lactobacillus flora associated with the crop<br />

epithelium <str<strong>on</strong>g>of</str<strong>on</strong>g> the fowl. J. Appl. Bacteriol. 36, 131-139.<br />

Fuller R. 1989. Probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> man <str<strong>on</strong>g>and</str<strong>on</strong>g> animals. J. Appl. Bacteriol. 66, 365-378.<br />

Fuller R. 1997. Probiotics 2. Applicati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Practical aspects. Published by Chapman <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Hall L<strong>on</strong>d<strong>on</strong>.<br />

Fuller R. 2000. The Chicken Gut Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>and</str<strong>on</strong>g> Probiotic Supplements. J. Poul. Sci. 38,<br />

189-196.<br />

Fumihito A., Miyake T., Sumi S., Takada M., Ohno S., K<strong>on</strong>do N. 1994. One subspecies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

domestic breed. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, 91 (26), 12505–12509.<br />

129


Gabriel I., Lessire M., Mallet S., Guillot J.F. 2006. Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>of</str<strong>on</strong>g> the digestive tract:<br />

critical factors <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequences for poultry. World Poult. Sci. Ass. 62, 499-511.<br />

Gaggìa F., Mattarelli P., Biavati B. 2010. Probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> animal feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g for<br />

safe foods producti<strong>on</strong>. Int. J. Food Microbiol. 141(1), S15-28.<br />

Gallup B., Dubowitz V. 1973. Failure <str<strong>on</strong>g>of</str<strong>on</strong>g> “dystrophic” neur<strong>on</strong>es to support functi<strong>on</strong>al<br />

regenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> normal or dystrophic muscle <str<strong>on</strong>g>in</str<strong>on</strong>g> culture. Nature 243, 287- 289.<br />

Gardzielewska J., Kortz J., Jakubowska M. 1995. Post mortem k<str<strong>on</strong>g>in</str<strong>on</strong>g>etics <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle pH fall<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to stra<str<strong>on</strong>g>in</str<strong>on</strong>g> crosses <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken broilers. In: XII European Symposium <strong>on</strong> the<br />

Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Poultry Meat, Zaragoza, Spa<str<strong>on</strong>g>in</str<strong>on</strong>g>, 37–39.<br />

Gardzielewska J., Jakubowska M., Tarasewicz Z., Szczerbińska D., Ligocki M. 2005. Meat<br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler quail fed <strong>on</strong> feeds with different prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent. Electr<strong>on</strong>. J. Pol. Agric.<br />

Univ. Accessed Feb. 2012. http://www.ejpau.media.pl/volume8/issue1/art-13.html.<br />

Gareau M.G., W<str<strong>on</strong>g>in</str<strong>on</strong>g>e E., Sherman P.M. 2009. Early life stress <str<strong>on</strong>g>in</str<strong>on</strong>g>duces both acute <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

chr<strong>on</strong>ic col<strong>on</strong>ic barrier dysfuncti<strong>on</strong>. Neoreviews, 10, 191-197.<br />

Garrigus W.P. 2007. Poultry Farm<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Encyclopædia Britannica.<br />

Genchev A.G., Mihaylova G., Ribarski S., Pavlov A., Kabakchiev M. 2008. Meat quality<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Japanese quails. Trakia J. Sci. 6, 72–82.<br />

Genchev A.G., Ribarski S.S., Afanasjev G.D., Bloh<str<strong>on</strong>g>in</str<strong>on</strong>g> G.I. 2005. Fatten<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacities <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

meat quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Japanese quails <str<strong>on</strong>g>of</str<strong>on</strong>g> Fara<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> White English breeds. Cent. Eur. J. Agric. 6,<br />

495–500.<br />

George J. C., Berger A.J. 1966. Avian mycology. Academic Press, New York.<br />

Gibs<strong>on</strong> G.R. 1998. Dietary modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the human gut micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s. Brit.<br />

J. Nutr. 80, 209-212.<br />

Gibs<strong>on</strong> G.R., Fuller R. 2000. Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> vivo research approaches directed<br />

toward identify<str<strong>on</strong>g>in</str<strong>on</strong>g>g probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s for human use. J. Nutr. 130, 391-395.<br />

Gibs<strong>on</strong> G.R., Roberfroid M.B. 1995. Dietary modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the human col<strong>on</strong>ic microbiota:<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>troduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s. J. Nutr. 125, 1401-1412.<br />

130


Gibs<strong>on</strong> G.R., Willis C.L., Vanloo J. 1994. N<strong>on</strong> digestible oligosaccharides <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

bifidobacteria for health. Inter. Sugar 96, 381-387.<br />

Gil De Los Santos J.R., Storch O.B., Gil-Turnes C. 2005. Bacillus cereus var. toyoii <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Saccharomyces boulardii <str<strong>on</strong>g>in</str<strong>on</strong>g>creased feed efficiency <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers <str<strong>on</strong>g>in</str<strong>on</strong>g>fected with Salm<strong>on</strong>ella<br />

enteritidis. Brit. Poult. Sci. 46, 494–497.<br />

Gill C. 2001. Safe <str<strong>on</strong>g>and</str<strong>on</strong>g> susta<str<strong>on</strong>g>in</str<strong>on</strong>g>able feed <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients. Feed Int. 22, 40-45.<br />

Gill H.S. 2003. Probiotics to enhance anti-<str<strong>on</strong>g>in</str<strong>on</strong>g>fective defences <str<strong>on</strong>g>in</str<strong>on</strong>g> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract.<br />

Best Pract. Res. Cl. Ga. 17, 755-773.<br />

Gillil<str<strong>on</strong>g>and</str<strong>on</strong>g> S.E., Nels<strong>on</strong> C.R., Maxwell C. 1985. Assimilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cholesterol by<br />

Lactobacillus acidophilus. Appl. Envir<strong>on</strong>. Microbiol. 49, 377 381.<br />

Gillil<str<strong>on</strong>g>and</str<strong>on</strong>g> S.E., Speck M.L. 1977. Enumerati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> identity <str<strong>on</strong>g>of</str<strong>on</strong>g> lactobacilli <str<strong>on</strong>g>in</str<strong>on</strong>g> dietary<br />

products. J. Food Prot. 40, 760-762.<br />

Givens D.I. 2009. Animal nutriti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> lipids <str<strong>on</strong>g>in</str<strong>on</strong>g> animal products <str<strong>on</strong>g>and</str<strong>on</strong>g> their c<strong>on</strong>tributi<strong>on</strong> to<br />

human <str<strong>on</strong>g>in</str<strong>on</strong>g>take <str<strong>on</strong>g>and</str<strong>on</strong>g> health. Nutrients 1, 71–82.<br />

Gladst<strong>on</strong>es JS. 1998. Distributi<strong>on</strong>, orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, tax<strong>on</strong>omy,history <str<strong>on</strong>g>and</str<strong>on</strong>g> importance. In: Lup<str<strong>on</strong>g>in</str<strong>on</strong>g>s as<br />

Crop Plants: Biology, Producti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> Utilizati<strong>on</strong>. J.S. Gladst<strong>on</strong>es, C.A. Atk<str<strong>on</strong>g>in</str<strong>on</strong>g>s, Hambl<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

J. editors. CAB Internati<strong>on</strong>al, Wall<str<strong>on</strong>g>in</str<strong>on</strong>g>gford, UK, 1-39.<br />

Glitsch K. 2000. C<strong>on</strong>sumer percepti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> freshmeat quality: cross-nati<strong>on</strong>al comparis<strong>on</strong>.<br />

British Food Journal 102, 177−194.<br />

Goldberg A.L., Akopian T.N., Kisselev A.F., Lee D.L., Rohrwild M. 1997. New <str<strong>on</strong>g>in</str<strong>on</strong>g>sights<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to mechanisms <str<strong>on</strong>g>and</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the proteasome <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tracellular prote<str<strong>on</strong>g>in</str<strong>on</strong>g> degradati<strong>on</strong>.<br />

Biol. Chem. 378, 131–140.<br />

Goll D.E., Thomps<strong>on</strong> V.F., Taylor R.G., Christiansen J.A. 1992. Role <str<strong>on</strong>g>of</str<strong>on</strong>g> the calpa<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

system <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle growth. Biochimie, 74(3), 225-237.<br />

G<strong>on</strong>g J., Forster R.J., Yu H., Chambers J.R., Sabour P.M., Wheatcr<str<strong>on</strong>g>of</str<strong>on</strong>g>t R., Chen S. 2002.<br />

Diversity <str<strong>on</strong>g>and</str<strong>on</strong>g> phylogenetic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> the mucosa <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken ceca <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

comparis<strong>on</strong> with bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> the cecal lumen. FEM Microbiol. Lett. 208, 1-7.<br />

131


G<strong>on</strong>g J., Si W., Forster R.J., Huang R., Yu H., Y<str<strong>on</strong>g>in</str<strong>on</strong>g> Y., Yang C., Han Y. 2007. 16S rRNA<br />

genebased analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> mucosa-associated bacterial community <str<strong>on</strong>g>and</str<strong>on</strong>g> phylogeny <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

chicken gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tracts: from crops to ceca. FEM Microbiol. Ecol. 59, 147-157.<br />

G<strong>on</strong>zález, V.A., Rojas G.E., Aguilera A.E., Flores-Pe<str<strong>on</strong>g>in</str<strong>on</strong>g>ado S.C., Lemus-Flores C., Olmos-<br />

Hernández A., Becerril-Herrera M., Card<strong>on</strong>a-Leija A., Al<strong>on</strong>so-Spilsbury M., Ramírez-<br />

Necoechea R., Mota-Rojas D. 2007. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat stress dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g transport <str<strong>on</strong>g>and</str<strong>on</strong>g> rest before<br />

slaughter, <strong>on</strong> the metabolic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, blood gases <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality <str<strong>on</strong>g>of</str<strong>on</strong>g> quail. Int. J. Poultry<br />

Sci. 6, 397–402.<br />

Goosney D.L., Gruenheid S., F<str<strong>on</strong>g>in</str<strong>on</strong>g>aly B.B. 2000. Gut feel<str<strong>on</strong>g>in</str<strong>on</strong>g>gs: Enteropathogenic E.coli<br />

(EPEC) <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s with the host. Ann. Rev. Cell Dev. Biol. 16, 173–189.<br />

Gore A.B., Qureshi M.A. 1997. Enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> humoral <str<strong>on</strong>g>and</str<strong>on</strong>g> cellular immunity by<br />

vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> E after embry<strong>on</strong>ic exposure. Poultry Sci. 76, 984–991.<br />

Górecki R.J., Piotrowicz-Cieoelak A., Lahuta L.B., Obendorf R.L. 1997. Soluble<br />

carbohydrates <str<strong>on</strong>g>in</str<strong>on</strong>g> desiccati<strong>on</strong> tolerance <str<strong>on</strong>g>of</str<strong>on</strong>g> yellow lup<str<strong>on</strong>g>in</str<strong>on</strong>g> seeds dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g maturati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

germ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. Seed Sci. Res. 7, 107-115.<br />

Groom G.M. 1990. Factors affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g poultry meat quality. CIHEAM Opti<strong>on</strong>s<br />

Méditerranéennes Sér. A 7, 205-210.<br />

Gulewicz K. 1988. Studies <strong>on</strong> utilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> other compounds from bitter lup<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

seeds. Habilitati<strong>on</strong> Theses Gulewicz K., Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Poznañ.<br />

Gulewicz K. 1991a. Polish patent No 152748. Mode <str<strong>on</strong>g>of</str<strong>on</strong>g> debitter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> lup<str<strong>on</strong>g>in</str<strong>on</strong>g> seeds.<br />

Gulewicz K. 1991b. Polish patent No153195. Mode <str<strong>on</strong>g>of</str<strong>on</strong>g> debitter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> lup<str<strong>on</strong>g>in</str<strong>on</strong>g> seeds.<br />

Gulewicz K., Bednarczyk M. Sposób stymulacji korzystnego pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilu bakteryjnego<br />

wylęż<strong>on</strong>ych piskląt. Polish patent Nb. 197726.<br />

Gulewicz P., Ciesiolka D., Frías J., Vidal-Valverde C., Frejnagel S., Trojanowska K.,<br />

Gulewicz K. 2000. Simple method <str<strong>on</strong>g>of</str<strong>on</strong>g> isolati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> purificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> α-galactosides from<br />

legumes. J. Agric. Food Chem. 48, 3120–3123.<br />

Gulewicz P., Szymaniec S., Bubak B., Frias J., Vidal-Valverde C.J., Trojanowska K.,<br />

Gulewicz K. 2002. Biological activity <str<strong>on</strong>g>of</str<strong>on</strong>g> -galactosides from Lup<str<strong>on</strong>g>in</str<strong>on</strong>g>us an-gustifolius L. <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Pisum sativm L. seeds. J. Agric. Food Chem. 50, 384-389.<br />

132


Gunal M., Yayli G., Kaya O., Karahan N., Sulak O. 2006. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotic growth<br />

promoter, probiotic or organic acid supplementati<strong>on</strong> <strong>on</strong> <strong>performance</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> tissue <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler. Int. J. Poult. Sci. 5, 149-155.<br />

Gusils C., G<strong>on</strong>zales S.N., Oliver G. 1999. Some probiotic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken<br />

lactobacilli. Can. J. Microbiol. 45, 981–987.<br />

Halevy O., Geyra A., Barak M., Uni Z., Sklan D. 2000. Early posthatch starvati<strong>on</strong><br />

decreases satellite cell proliferati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> skeletal muscle growth <str<strong>on</strong>g>in</str<strong>on</strong>g> chicks. J. Nutr. 130,<br />

858-864.<br />

Hammerstedt R.H. 1999. Symposium summary <str<strong>on</strong>g>and</str<strong>on</strong>g> challenges for the future. Poult. Sci.<br />

78, 459-466.<br />

Hammes W.P., Hertel C. 2007. The Genera Lactobacillus <str<strong>on</strong>g>and</str<strong>on</strong>g> Carnobacterium. In: The<br />

Prokaryotes: Archaea. Bacteria: Firmicutes, Act<str<strong>on</strong>g>in</str<strong>on</strong>g>omycetes. Ed. Dwork<str<strong>on</strong>g>in</str<strong>on</strong>g> M., Hansen<br />

P.A., Lessel E.F. Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger-Verlag, New York.<br />

Hamm<strong>on</strong>d J. 1932. Growth <str<strong>on</strong>g>and</str<strong>on</strong>g> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> mutt<strong>on</strong> qualities <str<strong>on</strong>g>in</str<strong>on</strong>g> the sheep.<br />

Biological m<strong>on</strong>ographs <str<strong>on</strong>g>and</str<strong>on</strong>g> manuals (vol. X). L<strong>on</strong>d<strong>on</strong>: Oliver <str<strong>on</strong>g>and</str<strong>on</strong>g> Boyd.<br />

H<str<strong>on</strong>g>and</str<strong>on</strong>g>el S.E., Stickl<str<strong>on</strong>g>and</str<strong>on</strong>g> N.C. 1988. Catch-up growth <str<strong>on</strong>g>in</str<strong>on</strong>g> pigs - A relati<strong>on</strong>ship with muscle<br />

cellularity. Anim. Prod. 47, 291−295.<br />

Hanke O.A., Sk<str<strong>on</strong>g>in</str<strong>on</strong>g>ner J., Florea J.H. 1972. American poultry history 1823-1973 American<br />

Poultry.<br />

Hardiman J. 2007. How 90 years <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g has shaped today’s <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry. Poultry<br />

Internati<strong>on</strong>al. Retrieved July 1, 2012.<br />

Hargis P.S., Pardue S.L., Lee A.M., S<str<strong>on</strong>g>and</str<strong>on</strong>g>el G.W. 1989. In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> growth horm<strong>on</strong>e alters<br />

growth <str<strong>on</strong>g>and</str<strong>on</strong>g> adipose tissue development <str<strong>on</strong>g>of</str<strong>on</strong>g> chickens. Growth Dev Ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g 53, 93-99.<br />

Harper G.S. 1999. Trends <str<strong>on</strong>g>in</str<strong>on</strong>g> skeletal muscle biology <str<strong>on</strong>g>and</str<strong>on</strong>g> the underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> toughness <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

beef. Aust. J. Agr. Res. 50, 1105−1129.<br />

Harper J.A., Bernier P.E., Thomps<strong>on</strong>-Cowley L.L. 1983. Early expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hereditary<br />

deep pectoral myopathy <str<strong>on</strong>g>in</str<strong>on</strong>g> turkeys due to forced w<str<strong>on</strong>g>in</str<strong>on</strong>g>g exercise. Poultry Sci. 62, 2303–<br />

2308.<br />

133


Havenaar R., Spanhaak S. 1994. Probiotics from an immunological po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>of</str<strong>on</strong>g> view. Curr.<br />

Op<str<strong>on</strong>g>in</str<strong>on</strong>g>. Biotechnol. 5, 320-325.<br />

Havenste<str<strong>on</strong>g>in</str<strong>on</strong>g> G.B., Ferket P.R., Qureshi M.A. 2003. Growth, livability, <str<strong>on</strong>g>and</str<strong>on</strong>g> feed c<strong>on</strong>versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 1957 versus 2001 broilers when fed representative 1957 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001 broiler diets. Poult.<br />

Sci. 82, 1500-1508.<br />

HC 2006. Health Canada. Evidence for safety <str<strong>on</strong>g>and</str<strong>on</strong>g> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>ished natural health<br />

products. Ottawa (ON): Natural Health Products Directorate, Health Canada. (Available<br />

from: http://www.hc-sc.gc.ca/dhp-mps/prodnatur/legislati<strong>on</strong>/docs/efe-paie_e.html).<br />

Heitzman R. J. 1996. Residues <str<strong>on</strong>g>in</str<strong>on</strong>g> Meat. In: Meat Quality <str<strong>on</strong>g>and</str<strong>on</strong>g> Meat Packag<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Taylor,<br />

S.A., Raimundo A., Sever<str<strong>on</strong>g>in</str<strong>on</strong>g>i M., Smulders F.J.M. (eds), ECCEAMST, Utrecht, 155-167.<br />

Hellmeister F., Machadomenten J.F., Neves Da Silva M.A., Coelho A.A.D., Sav<str<strong>on</strong>g>in</str<strong>on</strong>g>o V.J.M.<br />

2003. Efeito de Genótipo e do Sistema de Criacâo sobre o Desempenho de frangos Tipo<br />

Caipira. R. Bras. Zootec. 32(6), 1883-1889.<br />

Henckel P., Oksbjerg N., Erl<str<strong>on</strong>g>and</str<strong>on</strong>g>sen E., Bart<strong>on</strong>-Gade P., Bejerholm C. 1997. Histo-<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

biochemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the L<strong>on</strong>gissimus dorsi muscle <str<strong>on</strong>g>in</str<strong>on</strong>g> pigs <str<strong>on</strong>g>and</str<strong>on</strong>g> their relati<strong>on</strong>ships<br />

to <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality. Meat Sci. 47, 311−321.<br />

Henry M.H., Burke W.H. 1999. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> testoster<strong>on</strong>e or<br />

anti<str<strong>on</strong>g>and</str<strong>on</strong>g>rogen <strong>on</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> chick embryos <str<strong>on</strong>g>and</str<strong>on</strong>g> embry<strong>on</strong>ic muscle characteristics. Poultry<br />

Sci. 78, 1006-1013.<br />

Hertrampf J.W. 2001. Alternative antibacterial <strong>performance</strong> promoters. Poultry Int. 40, 50-<br />

52.<br />

Hidaka H., Eida T., Takizawa T., Tokunaga T., Tash<str<strong>on</strong>g>in</str<strong>on</strong>g>o Y. 1986. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fructooligosaccharides <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al flora <str<strong>on</strong>g>and</str<strong>on</strong>g> human health. Bifidobacteria Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora 5,<br />

37-50.<br />

Higg<str<strong>on</strong>g>in</str<strong>on</strong>g>s J.P., Higg<str<strong>on</strong>g>in</str<strong>on</strong>g>s S.E., Vicente J.L., Wolfenden A.D., Tellez G., Hargis B.M. 2007.<br />

Temporal effects <str<strong>on</strong>g>of</str<strong>on</strong>g> lactic acid bacteria probiotic culture <strong>on</strong> Salm<strong>on</strong>ella <str<strong>on</strong>g>in</str<strong>on</strong>g> ne<strong>on</strong>atal<br />

broilers. Poultry Sci. 86, 1662-1666.<br />

134


Higg<str<strong>on</strong>g>in</str<strong>on</strong>g>s S.E., Higg<str<strong>on</strong>g>in</str<strong>on</strong>g>s J.P., Wolfenden A.D., Henders<strong>on</strong> S.N., Torres-Rodriguez A., Tellez<br />

G., Hargis B. 2008. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Lactobacillus-based probiotic culture for the reducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Salm<strong>on</strong>ella enteritidis <str<strong>on</strong>g>in</str<strong>on</strong>g> ne<strong>on</strong>atal broiler chicks. Poultry Sci. 87, 27-31.<br />

Hill G.D. 1977. The compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutritive values <str<strong>on</strong>g>of</str<strong>on</strong>g> lup<str<strong>on</strong>g>in</str<strong>on</strong>g> seeds. Nutr. Abstr. Rev. B.<br />

47, 511-519.<br />

H<str<strong>on</strong>g>in</str<strong>on</strong>g>tz C.S., Coyle E.F., Kaiser K.K., Chi M.M., Lowry O.H. 1984. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle<br />

fiber typ<str<strong>on</strong>g>in</str<strong>on</strong>g>g by quantitative enzyme assays <str<strong>on</strong>g>and</str<strong>on</strong>g> bymyos<str<strong>on</strong>g>in</str<strong>on</strong>g> ATPase sta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g. J. Histochem.<br />

Cyotochem. 32, 655–660.<br />

Hocquette J.F., G<strong>on</strong>dret F., Baéza E., Médale F., Jurie C., Pethick D.W. 2010.<br />

Intramuscular fat c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> meat-produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g animals: Development genetic <str<strong>on</strong>g>and</str<strong>on</strong>g> nutriti<strong>on</strong>al<br />

c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> putative markers. Animal 4(2), 303−319.<br />

H<str<strong>on</strong>g>of</str<strong>on</strong>g>acre C.L., Beacorn I.T., Collett S., Mathis G. 2003. Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g competitive exclusi<strong>on</strong>,<br />

mannanoligosaccharide <str<strong>on</strong>g>and</str<strong>on</strong>g> other <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al products to c<strong>on</strong>trol necrotic enteritis. J. Appl.<br />

Poultry Res. 12, 60-64.<br />

Hollung K., Veiseth E., Jia X., Færgestad E.M., Hildrum K.I. 2007. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

proteomics to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the molecular mechanisms beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d meat quality. Meat Sci. 77,<br />

97–104.<br />

Holm C.G.P., Fletcher D.L. 1997. Ante mortem hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> broiler breast<br />

meat quality. J. Appl. Poultry Res. 6, 180–184.<br />

Hooper L.V., Midtvedt T., Gord<strong>on</strong> J.I. 2002. How host-microbial <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s shape the<br />

nutrient envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> the mammalian <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Annu. Rev. Nutr. 22, 283-307.<br />

Hooper L.V., W<strong>on</strong>g M.H., Thel<str<strong>on</strong>g>in</str<strong>on</strong>g> A., Hanss<strong>on</strong> L., Falk P.G., Gord<strong>on</strong> J.I. 2001. Molecular<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> commensal host-microbial relati<strong>on</strong>ships <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Science, 291, 881–884.<br />

Horbowicz M., Obendorfr. L. 1994. Seed desiccati<strong>on</strong> tolerance <str<strong>on</strong>g>and</str<strong>on</strong>g> storability: dependence<br />

<strong>on</strong> flatulence-produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g oligosaccharides <str<strong>on</strong>g>and</str<strong>on</strong>g> cyclitols-review <str<strong>on</strong>g>and</str<strong>on</strong>g> survey. Seed Sci. Res. 4,<br />

385-405.<br />

Horrox N. 2006. Incubati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> chick h<str<strong>on</strong>g>and</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>g-where next In: Int. Hatchery Practice<br />

20(8), 13-15.<br />

135


Hosse<str<strong>on</strong>g>in</str<strong>on</strong>g>i Mansoub N. 2010. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic bacteria utilizati<strong>on</strong> <strong>on</strong> serum cholesterol<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> triglycrides c<strong>on</strong>tents <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>performance</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens. Global Vet. 5(3), 184-186.<br />

Hov<str<strong>on</strong>g>in</str<strong>on</strong>g>g-Bol<str<strong>on</strong>g>in</str<strong>on</strong>g>k A.H., Kranen R.W., Kl<strong>on</strong>t R.E., Gerristen C.L.M., de Greef K.H. 2000.<br />

Fibre area <str<strong>on</strong>g>and</str<strong>on</strong>g> capillary supply <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler breast muscle <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to productivity <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

ascites. Meat Sci. 56, 397-402.<br />

Huang M.K., Choi Y.J., Houde R., Lee J.W., Lee B., Zhao X. 2004. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> lactobacilli<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> an acidophilic fungus <strong>on</strong> the producti<strong>on</strong> <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> immune resp<strong>on</strong>ses <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler<br />

chickens. Poultry Sci. 83, 788–795.<br />

Hulet R.M. 2007. Manag<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong>: where are we <str<strong>on</strong>g>and</str<strong>on</strong>g> why Poultry Sci. 86, 1017-<br />

1019.<br />

Humphrey T. 2006. Are happy chickens safer chickens Poultry welfare <str<strong>on</strong>g>and</str<strong>on</strong>g> disease<br />

susceptibility. Brit. Poult. Sci. 47, 379-391.<br />

Humphrey T., O'Brien S., Madsen M. 2007. Campylobacters as zo<strong>on</strong>otic pathogens: a food<br />

producti<strong>on</strong> perspective. Int. J. Food Microbiol. 117, 237-257.<br />

Hyr<strong>on</strong>imus B., Marrec C.L., Sassi A.H., Deschamps A. 2000. Acid <str<strong>on</strong>g>and</str<strong>on</strong>g> bile tolerance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spore-form<str<strong>on</strong>g>in</str<strong>on</strong>g>g lactic acid bacteria. Int. J. Food Microbiol. 61, 193–197.<br />

Iozzo R.V. 1998. Matrix proteoglycans: From Molecular Design to Cellular Functi<strong>on</strong>.<br />

Annu. Rev.Biochem. 67, 602-652.<br />

Iqbal S.H., Nasim G., Niaz M. 1987. VA mycorrhiza as a deterrent to mixed pathogenic<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong> caused by Rhizoct<strong>on</strong>ia solani <str<strong>on</strong>g>and</str<strong>on</strong>g> Fusarium m<strong>on</strong>iliforme <str<strong>on</strong>g>in</str<strong>on</strong>g> Brassica oleraceae.<br />

Biologia 33(2), 201-207.<br />

Jeurissen S. H., Lewis F., van der Klis J. D., Mroz Z., Rebel J. M., ter Huurne A. A. 2002.<br />

Parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> techniques to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al health <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry as c<strong>on</strong>stituted by<br />

immunity, <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrity, <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>ality. Curr.Issues Intest. Microbiol. 3, 1–14.<br />

Jochemsen P., Jeurissen S.H. 2002. The localizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> soluble<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> particulate substances <str<strong>on</strong>g>in</str<strong>on</strong>g> the chicken. Poultry Sci. 81, 1811–1817.<br />

John T.M., George J.C., Moran E.T. Jr. 1987. Pre- <str<strong>on</strong>g>and</str<strong>on</strong>g> post-hatch ultrastructural <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

metabolic changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> turkey embryos from antibiotic <str<strong>on</strong>g>and</str<strong>on</strong>g> glucose<br />

treated eggs. Cytobios 49, 197-210.<br />

136


J<str<strong>on</strong>g>in</str<strong>on</strong>g> L.Z., Ho Y.W., Abdullah N., Jalalud<str<strong>on</strong>g>in</str<strong>on</strong>g> S. 1997. Probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry: Modes <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>.<br />

Worlds Poult. Sci. J. 53, 351–368.<br />

J<str<strong>on</strong>g>in</str<strong>on</strong>g> L.Z., Ho Y.W., Abdullah N., Jalalud<str<strong>on</strong>g>in</str<strong>on</strong>g> S. 1998. Growth <strong>performance</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

microbial populati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> serum cholesterol <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers fed diets c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g Lactobacillus<br />

cultures. Poultry Sci. 77, 1259-1265.<br />

J<str<strong>on</strong>g>in</str<strong>on</strong>g> L.Z., Ho Y.W., Abdulla N., Jalalud<str<strong>on</strong>g>in</str<strong>on</strong>g> S. 2000. Digestive <str<strong>on</strong>g>and</str<strong>on</strong>g> bacterial enzyme activities<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> broilers fed diets supplemented with Lactobacillus cultures. Poultry Sci. 79, 886–891.<br />

Johnst<strong>on</strong> P.A., Liu H., O'C<strong>on</strong>nell T., Phelps P., Bl<str<strong>on</strong>g>and</str<strong>on</strong>g> M., Tyczkowski J., Kemper A.,<br />

Hard<str<strong>on</strong>g>in</str<strong>on</strong>g>g T., Avakian A., Haddad E., Whitfill C., Gildersleeve R., Ricks C.A. 1997.<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> technology. Poultry Sci. 76, 165-178.<br />

J<strong>on</strong>g W<strong>on</strong> Y. 1996. Fructooligosaccharides – occurrence, preparati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong>.<br />

Enzyme Microbial Tech.19, 107-117.<br />

J<strong>on</strong>es R.L. 1986. Nutriti<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences <strong>on</strong> carcass compositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the broiler chicken.<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nutriti<strong>on</strong> society 45, 27-32.<br />

Jordan F.T.W., Pattis<strong>on</strong> M. 1998. Deep pectoral myopathy <str<strong>on</strong>g>of</str<strong>on</strong>g> turkeys <str<strong>on</strong>g>and</str<strong>on</strong>g> chickens.<br />

Poultry Dis. Saunders Elsevier: L<strong>on</strong>d<strong>on</strong>, UK, 398–399.<br />

Joseph N.S., Moran E.T. Jr. 2005. Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs, embryos, <str<strong>on</strong>g>and</str<strong>on</strong>g> chicks form<br />

broiler breeder hens selected for growth or meat yield. J. Appl. Poultry Res. 14, 275-280.<br />

Judge M., Aberle A., Forrest J., Hedrick H., Merkel R. 1989. Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciples <str<strong>on</strong>g>of</str<strong>on</strong>g> meat science<br />

(2nd editi<strong>on</strong>). Kendall/Hunt publish<str<strong>on</strong>g>in</str<strong>on</strong>g>g company.<br />

Jukna Č., Jukna V., Pečiulaitienė N., Kerzienė S. 2010: Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> English Large White<br />

breed <strong>on</strong> fatten<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> meat characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Lithuanian White pigs. Vet.<br />

Med. Zoot. 51(73), 17-22.<br />

Jukna V., Jukna Č., Pečiulaitienė N. 2007: Genetic factors <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> pork quality. Vet.<br />

Med. Zoot. Vol. 40(62), 35−38.<br />

Jung S.J., Houde R., Baurhoo B., Zhao X., Lee B.H. 2008. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> galactooligosaccharides<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a Bifidobacteria lactis-based probiotic stra<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> the growth<br />

<strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> fecal micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens. Poultry Sci. 87, 1694-1699.<br />

137


Jurie C., Picard B., Geay Y. 1999. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the metabolic <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tractile characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> muscle <str<strong>on</strong>g>in</str<strong>on</strong>g> male cattle between 10 <str<strong>on</strong>g>and</str<strong>on</strong>g> 16 m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> age. Histochem. J. 31, 117–122.<br />

Juskiewicz J., Jankowski J., Zdunczyk Z., Mikulski D. 2006. Performance <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> turkeys fed diets with different c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fructooligosaccharides. Poultry Sci. 85, 886-891.<br />

Kabir S.M.L. 2009. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry. Int. J. Mol. Sci. 10,<br />

3531-3546.<br />

Kabir S.M.L., Rahman M.M., Rahman M.B., Rahman M.M., Ahmed S.U. 2004. The<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <strong>on</strong> growth <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> immune resp<strong>on</strong>se <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers. Int. J.<br />

Poultry Sci. 3, 361–364.<br />

Kadam M.M., Bhanja S.K., M<str<strong>on</strong>g>and</str<strong>on</strong>g>al A.B., Thakur R., Vasan P., Bhattacharyya A., Tyagi<br />

J.S. 2008. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> thre<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>e supplementati<strong>on</strong> <strong>on</strong> early growth, immunological<br />

resp<strong>on</strong>ses <str<strong>on</strong>g>and</str<strong>on</strong>g> digestive enzyme activities <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens. Br. Poultry Sci. 49, 736–741.<br />

Kadler K.E., Holmes D.F., Trotter J.A., Chapman J.A 1996. Collagen fibril formati<strong>on</strong>.<br />

Biochem 316, 1-11.<br />

Kalavathy R., Abdullah N., Jalalud<str<strong>on</strong>g>in</str<strong>on</strong>g> S., Ho Y.W. 2003. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus cultures<br />

<strong>on</strong> growth <strong>performance</strong>, abdom<str<strong>on</strong>g>in</str<strong>on</strong>g>al fat depositi<strong>on</strong>, serum lipids <str<strong>on</strong>g>and</str<strong>on</strong>g> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> organs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

broiler chickens. Brit. Poult. Sci 44, 139-144.<br />

Kanauchi O., Deuchi K., Imasato Y., Shizukuishi M., Kobayashi E. 1995. Mechanism for<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>hibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fat digesti<strong>on</strong> by chitosan <str<strong>on</strong>g>and</str<strong>on</strong>g> for the synergistic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> ascorbate. Biosci.<br />

Biotechnol. Biochem. 59(5), 786-90.<br />

Karaoglu M., Aksu M.I., Esenbuga N., Kaya M., Macit M., Durdag H. 2004. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dietary probiotic <strong>on</strong> the pH <str<strong>on</strong>g>and</str<strong>on</strong>g> colour characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses, breast fillets <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

drumsticks <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers. Anim. Sci. 78, 253–259.<br />

Karaoglu M., Durdag H. 2005. The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary probiotic (Saccharomyes<br />

cerevisiae) supplementati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> different slaughter age <strong>on</strong> the <strong>performance</strong>, slaughter <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

carcass properties <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers. Int. J. Poultry Sci. 4, 309–316.<br />

Keirs R.W., Peebles E.D., Gerard P. D. 2007. Relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> late embryo loss <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

anomalies <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler <str<strong>on</strong>g>of</str<strong>on</strong>g>fspr<str<strong>on</strong>g>in</str<strong>on</strong>g>g. J. Appl. Poult. Res. 16:62-69.<br />

138


Keirs R.W., Peebles E.D.,. Hubbard S.A, Whitmarsh S.K. 2002. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> supportative<br />

gluc<strong>on</strong>eogenic substrates <strong>on</strong> early <strong>performance</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers under adequate brood<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

c<strong>on</strong>diti<strong>on</strong>s. J. Appl. Poult. Res. 11, 367-372.<br />

Keralapurath M.M., Corzo A., Pulikanti R., Zhai W., Peebles E.D. 2010a. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l-carnit<str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>on</strong> hatchability <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequent broiler <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> slaughter<br />

yield. Poultry Sci. 89, 1497–1501.<br />

Keralapurath M.M., Keirs R.W., Corzo A., Bennett L.W., Pulikanti R., Peebles E.D.<br />

2010b. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l-carnit<str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>on</strong> subsequent broiler chick tissue nutrient<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles. Poultry Sci. 89, 335–341.<br />

Khani, M.M., Hosse<str<strong>on</strong>g>in</str<strong>on</strong>g>i S.M., Farhangfar H. 2008. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> supplemented Lactobacillus<br />

acidophilus <str<strong>on</strong>g>and</str<strong>on</strong>g> Lactobacillus casei diet or water <strong>on</strong> broilers <strong>performance</strong>. 1st<br />

Mediterranean Summit <str<strong>on</strong>g>of</str<strong>on</strong>g> WPSA. Thessal<strong>on</strong>iki. Book <str<strong>on</strong>g>of</str<strong>on</strong>g> Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 740-744.<br />

Kim G.B., Seo Y.M., Kim C.H., Paik I.K. 2011. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g><br />

supplementati<strong>on</strong> <strong>on</strong> the <strong>performance</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora, <str<strong>on</strong>g>and</str<strong>on</strong>g> immune resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

broilers. Poultry Sci. 90, 75-82.<br />

Kim Y.S., Bobbili N.K., Lee Y.K., J<str<strong>on</strong>g>in</str<strong>on</strong>g> H.J., Dunn M.A. 2007. Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a polycl<strong>on</strong>al<br />

anti-myostat<str<strong>on</strong>g>in</str<strong>on</strong>g> antibody <str<strong>on</strong>g>and</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the antibody <strong>on</strong><br />

posthatch broiler growth <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle mass. Poultry Sci. 86, 1196–1205.<br />

Kim Y.S., Bobbili N.K., Paek K.S., J<str<strong>on</strong>g>in</str<strong>on</strong>g> H.J. 2006. Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a m<strong>on</strong>ocl<strong>on</strong>al antimyostat<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

antibody <str<strong>on</strong>g>and</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the antibody <strong>on</strong> posthatch<br />

broiler growth <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle mass. Poultry Sci. 85, 1062–1071.<br />

Kiple K.H., Ornelas K.C. 2000. Poultry. In: The Cambridge world History <str<strong>on</strong>g>of</str<strong>on</strong>g> Food <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Nutriti<strong>on</strong>. Cambridge University Press, 1, 496-499.<br />

Klaenhammer T.R. 1988. Bacterioc<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> lactic acid bacteria. Biochemie 70, 337-349.<br />

Klaenhammer T.R. 1993. Genetics <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterioc<str<strong>on</strong>g>in</str<strong>on</strong>g>s produced by lactic acid bacteria. FEMS<br />

Microbiol. Rev. 12, 39-86.<br />

Klas<str<strong>on</strong>g>in</str<strong>on</strong>g>g K.C. 2005. Poultry nutriti<strong>on</strong>: a comparative approach. J. Appl. Poultry Res. 14,<br />

426-436.<br />

139


Kleessen B., Elsayed N.A.A.E., Loehren U., Schoedl W., Krueger M. 2003. Jerusalem<br />

artichokes stimulate growth <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens <str<strong>on</strong>g>and</str<strong>on</strong>g> protect them aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st endotox<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

potential cecal pathogens. J. Food Protect.11, 2171-2175.<br />

Kl<strong>on</strong>t R.E., Brocks L., Eikelenboom G. 1998. Muscle fibre type <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality. Meat<br />

Sci. 49, 219–229.<br />

Klosowska D.B., Ros<str<strong>on</strong>g>in</str<strong>on</strong>g>ski A., Elm<str<strong>on</strong>g>in</str<strong>on</strong>g>owska-Wenda G. 1993. Microstructural<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the Pectoralis muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> white Italian geese. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the XI<br />

European Symposium <strong>on</strong> the Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Poultry Meat. Tours, France, vol 1, 144–148.<br />

Knarreborg A., Sim<strong>on</strong> M.A., Engberg R.M., Jensen B.B., Tannock G.W. 2002. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dietary fat source <str<strong>on</strong>g>and</str<strong>on</strong>g> subtherapeutic levels <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotic <strong>on</strong> the bacterial community <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

ileum <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens at various ages. Appl. Envir<strong>on</strong>. Microb. 68, 5918-5924.<br />

Kocamis H., Yeni Y.N., Brown C.U., Kenney P.B., Kirkpatrick-Keller D.C., Killefer J.<br />

2000. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>sul<str<strong>on</strong>g>in</str<strong>on</strong>g>-like growth factor-I <strong>on</strong> compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken b<strong>on</strong>e. Poultry Sci. 79, 1345-1350.<br />

Kocamis H., Yeni Y.N., Kirkpatrick-Keller D.C., Killefer J. 1999. Postnatal growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

broilers <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken growth horm<strong>on</strong>e. Poultry Sci. 78,<br />

1219-1226.<br />

Kocher A. 2005. AGP alternatives-part IV. Poultry producti<strong>on</strong> without AGPs-Challenges<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> soluti<strong>on</strong>s. World Poultry J. 21, 32-33.<br />

Koenen M.E., Kramer J., van der Hulst R., Heres L., Jeurissen S.H.M., Boersma W. J. A.<br />

2004. Immunomodulati<strong>on</strong> by probiotic lactobacilli <str<strong>on</strong>g>in</str<strong>on</strong>g> layer <str<strong>on</strong>g>and</str<strong>on</strong>g> meat-type chickens. Br.<br />

Poultry Sci. 45, 355–366.<br />

K<strong>on</strong>jufca V.H., Pesti G.M., Bakalli R.I. 1997. Modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cholesterol levels <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers<br />

meat by dietary garlic <str<strong>on</strong>g>and</str<strong>on</strong>g> copper. Poultry Sci. 76, 1264–1271.<br />

Koohmaraie M. 1988. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> endogenous proteases <str<strong>on</strong>g>in</str<strong>on</strong>g> meat tenderness. Reciprocal<br />

Meat C<strong>on</strong>f. Proc. 41, 89−100.<br />

Koohmaraie M., Gees<str<strong>on</strong>g>in</str<strong>on</strong>g>k G.H. 2006. C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> post mortem muscle biochemistry to<br />

the delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sistent meat quality with particular focus <strong>on</strong> the calpa<str<strong>on</strong>g>in</str<strong>on</strong>g> system. Meat<br />

Sci. 74, 34−43.<br />

140


Krane S.M. 1987. Turnover <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen. Adv. Meat Res. 4, 325-331.<br />

Kranen R.W., Lambooy E., Veerkamp C.H., Kuppevelt T.H., Veerkamp J.H. 2000.<br />

Histological characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hemorrhages <str<strong>on</strong>g>in</str<strong>on</strong>g> muscles <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens. Poultry Sci.<br />

79, 110–116.<br />

Kris-Ethert<strong>on</strong> P.M., Harris W.S., Appel L.J. 2002. Fish c<strong>on</strong>sumpti<strong>on</strong>, fish oil, omega 3<br />

fatty acids, <str<strong>on</strong>g>and</str<strong>on</strong>g> cardiovascular disease. Circulati<strong>on</strong> 106, 2747–2757.<br />

Kruchten T. 2002. U.S Broiler Industry Structure. Nati<strong>on</strong>al Agricultural Statistics Service<br />

(NASS), Agricultural Statistics Board, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture. Retrieved June 23,<br />

2012.<br />

Kumprechtova D., Zobac P., Kumprecht I. 2000. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Saccharomyces cerevisiae<br />

Sc47 <strong>on</strong> chicken broiler <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen output. Czech. J. Anim. Sci. 45, 169-<br />

177.<br />

Kurtoglu V., Kurtoglu F., Seker E., Coskun B., Balevi T., Polat E.S. 2004. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

probiotic supplementati<strong>on</strong> <strong>on</strong> lay<str<strong>on</strong>g>in</str<strong>on</strong>g>g hen diets <strong>on</strong> yield <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> serum <str<strong>on</strong>g>and</str<strong>on</strong>g> egg<br />

yolk cholesterol. Food Addit. C<strong>on</strong>tam. 21, 817-823.<br />

Kuipers O.P., de Ruyter P.G.G.A., Kleerbezem M., de Vos W.M. 1997. C<strong>on</strong>trolled<br />

overproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s by lactic acid bacteria. Trends Biotechnol. 15. 135–140.<br />

La Ragi<strong>on</strong>e R.M., Narbad A., Gass<strong>on</strong> M.J., Woodward M.J. 2004. In vivo characterizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus johns<strong>on</strong>ii FI9785 for use as a def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed competitive exclusi<strong>on</strong> agent aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st<br />

bacterial pathogens <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry. Lett. Appl. Microbiol. 38(3), 197-205.<br />

La Ragi<strong>on</strong>e R.M., Woodward M.J. 2003. Competitive exclusi<strong>on</strong> by Bacillus subtilis spores<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Salm<strong>on</strong>ella enterica serotype enteritidis <str<strong>on</strong>g>and</str<strong>on</strong>g> Clostridium perfr<str<strong>on</strong>g>in</str<strong>on</strong>g>gens <str<strong>on</strong>g>in</str<strong>on</strong>g> young chickens.<br />

Vet. Microbiol. 94, 245-256.<br />

Lambert G.P. 2009. Stress-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al barrier dysfuncti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>flammatory effects. J. Anim. Sci. 87, E101–E108.<br />

Lan P.T., B<str<strong>on</strong>g>in</str<strong>on</strong>g>h T.L., Benno Y. 2003. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> two probiotics Lactobacillus stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> fecal lactobacilli <str<strong>on</strong>g>and</str<strong>on</strong>g> weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> chicken. J. Gen. Appl. Microbiol. 49 (1),<br />

29-36.<br />

141


Larss<strong>on</strong> S., Johans<strong>on</strong> L.A., Svenn<str<strong>on</strong>g>in</str<strong>on</strong>g>gss<strong>on</strong> M. 1993. Soluble sugars <str<strong>on</strong>g>and</str<strong>on</strong>g> membrane lipids <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter wheats (Triticum aestivum L.) dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g cold acclimati<strong>on</strong>. Europ. J. Agr<strong>on</strong>omy 1, 85-<br />

90.<br />

Larzul C., Lefaucheur L., Ecolan P., Gogue J., Talmant A., Sellier P., Le Roy P., M<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> G.<br />

1997. Phenotypic <str<strong>on</strong>g>and</str<strong>on</strong>g> genetic parameters for L<strong>on</strong>gissimus muscle fiber characteristics <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

relati<strong>on</strong> to growth, carcass, <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality traits <str<strong>on</strong>g>in</str<strong>on</strong>g> Large White pigs. J. Anim. Sci. 75,<br />

3126−3137.<br />

Le Bihan-Duval E., Berri C., Baéza E., Santé V., Astruc T., Rèmign<strong>on</strong> H., Le Pottier G.,<br />

Bentley J., Beaum<strong>on</strong>t C., Fern<str<strong>on</strong>g>and</str<strong>on</strong>g>ez X. 2003. Genetic parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> meat technological<br />

quality <str<strong>on</strong>g>in</str<strong>on</strong>g> a pure commercial l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g> turkey. Gen. Sel. Evol. 35, 623-635.<br />

Le Bihan-Duval E., Millet N., Rémign<strong>on</strong> H. 1999. Broiler meat quality: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> selecti<strong>on</strong><br />

for <str<strong>on</strong>g>in</str<strong>on</strong>g>creased carcass quality <str<strong>on</strong>g>and</str<strong>on</strong>g> estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic parameters. Poultry Sci. 78, 822–826.<br />

Lee S.H., Joo S.T., Ryu Y.C. 2010. Skeletal muscle fiber type <str<strong>on</strong>g>and</str<strong>on</strong>g> my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrillar prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

relati<strong>on</strong> to meat quality. Meat Sci. 86, 166–170.<br />

Lefaucheur L. 2010. A sec<strong>on</strong>d look <str<strong>on</strong>g>in</str<strong>on</strong>g>to fibre typ<str<strong>on</strong>g>in</str<strong>on</strong>g>g-relati<strong>on</strong> to meat quality. Meat Sci. 84,<br />

257–270.<br />

Lehmann K.B. 1907. Studien u¨ber die Za¨higkeit des Fleisches und ihre Ursachen. Archiv<br />

fur Hygiene 63, 134–179.<br />

Lewis D.P., Perry C.G., Farmer J.L., Patters<strong>on</strong> S.L.R. 1997. Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> two genotypes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chicken to the diets <str<strong>on</strong>g>and</str<strong>on</strong>g> stock<str<strong>on</strong>g>in</str<strong>on</strong>g>g densities typical <str<strong>on</strong>g>of</str<strong>on</strong>g> UK <str<strong>on</strong>g>and</str<strong>on</strong>g> “Label Rouge” producti<strong>on</strong><br />

systems: 1. Performance behavior <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass compositi<strong>on</strong>. Meat Sci. 45, 501-516.<br />

Li X., Liu L.Q., Xu C.L. 2008. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> supplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fructo-oligosaccharide <str<strong>on</strong>g>and</str<strong>on</strong>g>/or<br />

Bacillus subtilis to diets <strong>on</strong> <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers. Archiv für<br />

Tierzucht 51, 64-70.<br />

Light N.D., Champi<strong>on</strong> A.E., Voyle C., Bailey A.J. 1985. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> epimysial, perimysial<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> endomysial collagen <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g texture <str<strong>on</strong>g>of</str<strong>on</strong>g> six bov<str<strong>on</strong>g>in</str<strong>on</strong>g>e muscles. Meat Sci. 13, 137–<br />

149.<br />

142


L<str<strong>on</strong>g>in</str<strong>on</strong>g>e E.J., Bailey S.J., Cox N.A., Stern N.J., Tompk<str<strong>on</strong>g>in</str<strong>on</strong>g>s T. 1998. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> yeastsupplemented<br />

feed <strong>on</strong> Salm<strong>on</strong>ella <str<strong>on</strong>g>and</str<strong>on</strong>g> Campylobacter populati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers. Poultry Sci.<br />

77, 405–410.<br />

Lisowski M., Lew<str<strong>on</strong>g>and</str<strong>on</strong>g>owska M., Bednarczyk M., Gulewicz P., Gulewicz K. 2003.<br />

Prebiotic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> pea α-galactoside preparati<strong>on</strong> applied to chicken per os. Bull. Pol.<br />

Acad. Sci. Earth Sci. 51, 101-109.<br />

Liu Y.P., Wu G.S., Yao Y.G., Miao Y.W., Luikart G., Baig M., Beja-Pereira A., D<str<strong>on</strong>g>in</str<strong>on</strong>g>g Z.L.<br />

2006. Multiple maternal orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> chickens: Out <str<strong>on</strong>g>of</str<strong>on</strong>g> the Asian jungles. Mol. Phylogenet.<br />

Evol. 38 (1), 12–19.<br />

Lobo P. 2006. M<str<strong>on</strong>g>in</str<strong>on</strong>g>d the gap. In Poultry Magaz<str<strong>on</strong>g>in</str<strong>on</strong>g>e. October-November, p.56.<br />

Lu J., Idris U., Harm<strong>on</strong> B., H<str<strong>on</strong>g>of</str<strong>on</strong>g>acre C., Maurer J.J., Lee M.D. 2003. Diversity <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al bacterial community <str<strong>on</strong>g>of</str<strong>on</strong>g> the matur<str<strong>on</strong>g>in</str<strong>on</strong>g>g broiler chicken. Appl.<br />

Envir<strong>on</strong>. Microb. 69, 6816-6824.<br />

Macfarlane S., Macfarlane G.T. 2004. Bacterial diversity <str<strong>on</strong>g>in</str<strong>on</strong>g> the human gut. Adv. Appl.<br />

Microbiol. 54, 261-289.<br />

Macrae V.E, Mah<strong>on</strong> M., Gilp<str<strong>on</strong>g>in</str<strong>on</strong>g> S., S<str<strong>on</strong>g>and</str<strong>on</strong>g>ercock D.A., Mitchell M.A. 2006. Skeletal muscle<br />

fiber growth <str<strong>on</strong>g>and</str<strong>on</strong>g> growth associated myopathy <str<strong>on</strong>g>in</str<strong>on</strong>g> the domestic chicken (Gallus domesticus).<br />

Br. Poult. Sci. 47:, –272.<br />

Macrae V.E, Mah<strong>on</strong> M., Gilp<str<strong>on</strong>g>in</str<strong>on</strong>g> S., S<str<strong>on</strong>g>and</str<strong>on</strong>g>ercock D.A., Mitchell M.A. 2007. Skeletal muscle<br />

fibre growth <str<strong>on</strong>g>and</str<strong>on</strong>g> growth associated myopathy <str<strong>on</strong>g>in</str<strong>on</strong>g> the domestic chicken (Gallus domesticus).<br />

Br. Poultry Sci. 4(3), 264—272.<br />

Mahajan P., Sahoo J., P<str<strong>on</strong>g>and</str<strong>on</strong>g>a P.C. 2000. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic (Lacto-Sacc) feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

seas<strong>on</strong> <strong>on</strong> poultry meat quality. Indian J. Poultry Sci. 35, 297–301.<br />

Mah<strong>on</strong> M., Ford T., Gilp<str<strong>on</strong>g>in</str<strong>on</strong>g> S., Nixey C., French N.A. 1995. Does your Christmas d<str<strong>on</strong>g>in</str<strong>on</strong>g>ner<br />

(Meleagris gallopavo) show muscle pathology Neuropathology <str<strong>on</strong>g>and</str<strong>on</strong>g> Applied<br />

Neurobiology 21, 163.<br />

Mah<strong>on</strong> M. 1999. Muscle abnormalities—Morphological aspects. In: Poultry Meat Science.<br />

Poultry Science Symposium Series. R. I. Richards<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Mead G. C., ed. CAB<br />

Internati<strong>on</strong>al, Ox<strong>on</strong>, UK, 19–64.<br />

143


Maiorano G., Elm<str<strong>on</strong>g>in</str<strong>on</strong>g>owska-Wenda G., Mika A., Rutkowski A., Bednarczyk M. 2009.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> selecti<strong>on</strong> for yolk cholesterol <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality <str<strong>on</strong>g>in</str<strong>on</strong>g> Japanese quail<br />

(Coturnix coturnix jap<strong>on</strong>ica). Ital. J. Anim. Sci. 8, 457–466.<br />

Maiorano G., Filetti F., Salvatori G., Gambacorta M., Bellitti A., Oriani G. 2001. Growth,<br />

slaughter <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tra-muscular collagen characteristics <str<strong>on</strong>g>in</str<strong>on</strong>g> Garganica kids. Small Rum<str<strong>on</strong>g>in</str<strong>on</strong>g>. Res.<br />

39, 289-294.<br />

Maiorano G., Knaga S., Witkowski A., Cianciullo D., Bednarczyk M. 2011. Cholesterol<br />

c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular collagen properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Pectoralis superficialis muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> quail<br />

from different genetic groups. Poultry Sci. 90, 1620–1626.<br />

Maiorano G., Sobolewska A., Cianciullo D., Walasik K., Elm<str<strong>on</strong>g>in</str<strong>on</strong>g>owska-Wenda G.,<br />

Sławińska A., Tavaniello S., Żylińska J., Bardowski J., Bednarczyk M. 2012. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> meat quality <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens. Poultry<br />

Sci. 91, 2963-2969.<br />

Maraschiello C., Diaz I., Garcia Regueiro J.A. 1996. Determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cholesterol <str<strong>on</strong>g>in</str<strong>on</strong>g> fat<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> pig by HPLC <str<strong>on</strong>g>and</str<strong>on</strong>g> capillary gas chromatography with solvent vent<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong>. J. High Resolut. Chromatogr. 19, 165-168.<br />

Marsh B.B. 1977. The basis <str<strong>on</strong>g>of</str<strong>on</strong>g> tenderness <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle foods. The basis <str<strong>on</strong>g>of</str<strong>on</strong>g> quality <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle<br />

foods. J. Food Sci. 42, 295–297.<br />

Martínez-Villaluenga C., Frías J., Gulewicz K., Vidal-Valverde C. 2004. An improved<br />

method to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> pure α-galactosides from lup<str<strong>on</strong>g>in</str<strong>on</strong>g> seeds. J. Agric. Food Chem. 52, 6920–<br />

6922.<br />

Mátéová S., Sály J., Tučková M., Kosčová J., Nemcová R., Gaálová M., Baranová D.<br />

2008. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics, <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> herb oil <strong>on</strong> <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolic<br />

parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens. Med. Weter. 64(3), 294-297.<br />

Matsushita S., Yamashita J., Iwasawa T., Tomita T., Ikeda M.. 2006. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g><br />

exposure to imazalil <str<strong>on</strong>g>and</str<strong>on</strong>g> atraz<str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>on</strong> sexual differentiati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> chick g<strong>on</strong>ads. Poultry Sci. 85,<br />

1641-1647.<br />

Matteuzzi D., Crociani F., Zani G., Trovatelli L.D. 1971. Bifidobacterium suis n. sp.: A<br />

new species <str<strong>on</strong>g>of</str<strong>on</strong>g> the genus Bifidobacterium isolated from pig feces. Z. Allg. Mikrobiol.<br />

11(5), 387-395.<br />

144


Mazmanian S.K., Round J.L., Kasper D. 2008. A microbial symbiosis factor prevents<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>flammatory disease. Nature, 453, 620-625.<br />

McBa<str<strong>on</strong>g>in</str<strong>on</strong>g>, A.J., Macfarlane, G.T., 2001. Modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genotoxic enzyme activities by n<strong>on</strong>digestible<br />

oligosaccharide metabolism <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> vitro human gut bacterial ecosystems. J. Med.<br />

Microbiol. 50(9), 833-842.<br />

McCance R.A., Widdows<strong>on</strong> E.M. 1997. In: The Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Foods, 5th edn. McCance<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Widdows<strong>on</strong>’s: By B. Holl<str<strong>on</strong>g>and</str<strong>on</strong>g>, A.A. Welch, I.D. Unw<str<strong>on</strong>g>in</str<strong>on</strong>g>, D.H. Buss, Paul A.A. <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Southgate D.A.T. The Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> the M<str<strong>on</strong>g>in</str<strong>on</strong>g>istry <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture,<br />

Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Food Cambridge, UK.<br />

McCormick R.J. 1989. The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> nutriti<strong>on</strong> <strong>on</strong> collagen metabolism <str<strong>on</strong>g>and</str<strong>on</strong>g> stability.<br />

Proc. Annual Reciprocal Meat C<strong>on</strong>ference 42, 137-148.<br />

McCormick R.J. 1994. The flexibility <str<strong>on</strong>g>of</str<strong>on</strong>g> the collagen compartment <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle. Meat Sci.<br />

36, 79-91.<br />

McCormick R.J. 1999. Extracellular modificati<strong>on</strong>s to muscle collagen: implicati<strong>on</strong>s for<br />

meat quality. Poultry Sci. 78, 785-791.<br />

McKee S.R, Bauermeister L., Morey A., Moran E., S<str<strong>on</strong>g>in</str<strong>on</strong>g>gh M., Owens C. 2010. Occurrence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> white strip<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler breast fillets <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to broiler size. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

XIII European Poultry C<strong>on</strong>ference [CD-ROMs], Tours, France, French Branch <str<strong>on</strong>g>of</str<strong>on</strong>g> World’s<br />

Poultry Science Associati<strong>on</strong>.<br />

McKee S.R., Sams A.R. 1997. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al heat stress <strong>on</strong> rigor Development <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> Pale, Exudative Turkey Meat. Poultry Sci. 76, 1616–1620.<br />

McReynolds J.L., Caldwell D.Y., Barnhart E.T., Deloach J.R., McElroy A.P., Moore<br />

R.W., Hargis B.M., Caldwell D.J. 2000. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> or day-<str<strong>on</strong>g>of</str<strong>on</strong>g>-hatch subcutaneous<br />

antibiotic adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> competitive exclusi<strong>on</strong> culture (PREEMPT) establishment <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

ne<strong>on</strong>atal chickens. Poultry Sci. 79, 1524-1530.<br />

Meat <str<strong>on</strong>g>and</str<strong>on</strong>g> Livestock Commissi<strong>on</strong>. 1991. A bluepr<str<strong>on</strong>g>in</str<strong>on</strong>g>t for improved c<strong>on</strong>sistent quality beef.<br />

Milt<strong>on</strong> Keynes: Meat <str<strong>on</strong>g>and</str<strong>on</strong>g> Livestock Commissi<strong>on</strong>.<br />

Mellor S. 2000. Nutraceuticals-alternatives to antibiotics. World Poultry Sci. J. 21, 12-15.<br />

145


Micha R., Wallace S.K., Mozaffarian D. 2010. Red <str<strong>on</strong>g>and</str<strong>on</strong>g> processed meat c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

risk <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cident cor<strong>on</strong>ary heart disease, stroke <str<strong>on</strong>g>and</str<strong>on</strong>g> diabetes mellitus. A systematic review<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> meta-analysis. Circulati<strong>on</strong>. 121, 2271–2283.<br />

Midilli M., Alp M., Kocabağlı N., Muğlal Ö.H., Turan N., Yılmaz H., Çakır S. 2008.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary probiotic <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> supplementati<strong>on</strong> <strong>on</strong> growth <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

serum IgG c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers. S. African J. Anim. Sci.38(1), 21-27.<br />

Mills L.J. 2001. Skeletal muscle characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial <str<strong>on</strong>g>and</str<strong>on</strong>g> traditi<strong>on</strong>al stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

turkey. PhD Thesis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Manchester, Manchester, UK.<br />

Mills L.J., Mah<strong>on</strong> M., Mitchell M.A. 1998. Breast muscle growth <str<strong>on</strong>g>and</str<strong>on</strong>g> fibre damage <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

selected <str<strong>on</strong>g>and</str<strong>on</strong>g> unselected stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> turkey. Poultry Sci. 77, 285.<br />

Mitchell M.A. 1999. Muscle abnormalities—Pathophysiological mechanisms. In: Poultry<br />

Meat Science. Poultry Science Symposium Series. R. I. Richards<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Mead G.C., ed.<br />

CAB Internati<strong>on</strong>al, Ox<strong>on</strong>, UK, 65-98.<br />

Mitchell M.A., S<str<strong>on</strong>g>and</str<strong>on</strong>g>ercock D.A. 1994. Age dependent changes <str<strong>on</strong>g>in</str<strong>on</strong>g> plasma creat<str<strong>on</strong>g>in</str<strong>on</strong>g>e k<str<strong>on</strong>g>in</str<strong>on</strong>g>ase<br />

activity <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs 9th European C<strong>on</strong>ference, Glasgow, Volume<br />

I: Plenary Papers, C<strong>on</strong>tributed Papers, 266-267 (Andover, UK Branch <str<strong>on</strong>g>of</str<strong>on</strong>g> the World’s<br />

Poultry Science Associati<strong>on</strong>).<br />

Mitchell, M.A. & S<str<strong>on</strong>g>and</str<strong>on</strong>g>ercock, D.A. 1996. An oestrogen-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced ameliorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> growth<br />

associated myopathy <str<strong>on</strong>g>in</str<strong>on</strong>g> female broiler chickens Poultry Science, 75 (Suppl. 1): 20.<br />

Mitsuoka T., Hidaka H., Eida T. 1987. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fructo-oligosacharides <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora. Nahrung 31, 426-436.<br />

Mohan B., Kadirvel R., Natarajan A., Bhaskaran M. 1996. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic<br />

supplementati<strong>on</strong> <strong>on</strong> growth, nitrogen utilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> serum cholesterol <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers. Br.<br />

Poult. Sci. 37, 395-401.<br />

Mohnl M., Acosta Arag<strong>on</strong> Y., Acosta Ojeda A., Rodriguez Sanchez B. Paste<str<strong>on</strong>g>in</str<strong>on</strong>g>er S. 2007.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> feed additive <str<strong>on</strong>g>in</str<strong>on</strong>g> comparis<strong>on</strong> to antibiotic growth promoter <strong>on</strong><br />

<strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> health status <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers. Poultry Sci. 86(S1), 217.<br />

146


Møller P.W., Field P.A., Duts<strong>on</strong> T.R., L<str<strong>on</strong>g>and</str<strong>on</strong>g>mann W.A., Carpenter Z.L. 1976. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

high temperature c<strong>on</strong>diti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> subcellular distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> lysosomal<br />

enzymes.. J. Food Sci. 41, 216-217.<br />

Mol<strong>on</strong>ey A.P., Mo<strong>on</strong>ey M.T., Kerry J.P., Troy D.J. 2001. Produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g tender <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

falvoursome beef with enhanced nutriti<strong>on</strong>al characteristics. Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nutriti<strong>on</strong> Society<br />

60, 221-229.<br />

M<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> G., Larzul C., Le Roy P., Culioli J., Mourot J., Rousset-Akrim S., Talmant A.,<br />

Touraille C., Sellier P. 1999. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Halothane genotype <str<strong>on</strong>g>and</str<strong>on</strong>g> slaughter weight <strong>on</strong><br />

texture <str<strong>on</strong>g>of</str<strong>on</strong>g> pork. J. Anim. Sci. 77, 408-415.<br />

Moore D., Ferket P., Mozdziak P. 2005. Early post-hatch fast<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>duces satellite cell<br />

selfrenewal. Comp. Biochem. Phys. D. A 142, 331-339.<br />

Moran E.T. 2007. Nutriti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g embryo <str<strong>on</strong>g>and</str<strong>on</strong>g> hatchl<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Poultry Sci. 86, 1043-<br />

1049.<br />

Mori T. A., Burke V., Puddey I.B.,. Watts G.F, O’Neal D.N., Best J.D., Beil<str<strong>on</strong>g>in</str<strong>on</strong>g> L.J. 2000.<br />

Purified eicosapentaenoic <str<strong>on</strong>g>and</str<strong>on</strong>g> docosahexaenoic acids have differential effects <strong>on</strong> serum<br />

lipids <str<strong>on</strong>g>and</str<strong>on</strong>g> lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s, LDL particle size, glucose, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>sul<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> mildly hyperlipidemic<br />

men. Am. J. Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>. Nutr. 71, 1085–1094.<br />

Morris T. 1980. Poultry can crow at NCSU: a history <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry at North Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a State<br />

University, 1881-1976. NCSU, Raleigh, NC.<br />

Moss F.P. 1968. The relati<strong>on</strong>ship between the dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the fibers <str<strong>on</strong>g>and</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nuclei dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g normal growth <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal muscle <str<strong>on</strong>g>in</str<strong>on</strong>g> the domestic fowl. Am. J. Anat. 122,<br />

555–564.<br />

Mountzouris K.C., Tsirtsikos P., Kalamara E., Nitsh S., Schatzmayr G., Fegeros K. 2007.<br />

Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> a probiotic c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g Lactobacillus, Bifidobacterium,<br />

Enterococcus, <str<strong>on</strong>g>and</str<strong>on</strong>g> Pediococcus stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> promot<str<strong>on</strong>g>in</str<strong>on</strong>g>g broiler <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> modulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

cecal micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolic activities. Poultry Sci. 86, 309-317.<br />

Moyle J.R., Yoho D.E., Harper R.S., Bramwell R.K. 2010. Mat<str<strong>on</strong>g>in</str<strong>on</strong>g>g behavior <str<strong>on</strong>g>in</str<strong>on</strong>g> commercial<br />

broiler breeders: Female effects. J. Appl. Poultry Res. 19, 24–29. doi: 10.3382/japr.2009-<br />

00061.<br />

147


Mozdziak P.E., Walsh T., McCoy D.W. 2002. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> early post-hatch nutriti<strong>on</strong> <strong>on</strong><br />

satellite cell mitotic activity. Poultry Sci. 81, 1703–1708.<br />

Murphy W.J., Lark<str<strong>on</strong>g>in</str<strong>on</strong>g> D.M., van der W<str<strong>on</strong>g>in</str<strong>on</strong>g>d A.E., Bourque G., Tesler G., Auvil L., Beever<br />

J.E., Chowdhary B.P., Galibert F., Gatzke L., Hitte C., Meyers S.N., Milan D., Ostr<str<strong>on</strong>g>and</str<strong>on</strong>g>er<br />

E.A., Pape G., Parker H.G., Raudsepp T., Rogatcheva M.B., Schook L.B., Skow L.C.,<br />

Welge M., Womack J.E., O'brien S.J., Pevzner P.A., Lew<str<strong>on</strong>g>in</str<strong>on</strong>g> H.A. 2009. Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mammalian chromosome evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred from multispecies comparative maps. Science<br />

309, 613-618.<br />

Nahansh<strong>on</strong> S.N., Nakaue H.S., Mirosh L.W. 1993. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> direct-fed microbials <strong>on</strong><br />

nutrient retenti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> S<str<strong>on</strong>g>in</str<strong>on</strong>g>gle Comb White Leghorn pullets. Poultry Sci.<br />

72(2), 87.<br />

Nakano T., Thomps<strong>on</strong> J.R., Aherne F.X. 1991. C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>k pyrid<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> porc<str<strong>on</strong>g>in</str<strong>on</strong>g>e skeletal muscle epimysium. Can. J. Inst. Food Sci. Technol. 18, 100-102.<br />

Nemeth P.M., Lowry O.H. 1984. Myoglob<str<strong>on</strong>g>in</str<strong>on</strong>g> levels <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual human skeletal muscle<br />

fibers <str<strong>on</strong>g>of</str<strong>on</strong>g> different types. J. Histochem. Cyotochem. 32, 1211–1216.<br />

Nestor K.E., Noble D.O. 1995. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> selecti<strong>on</strong> for <str<strong>on</strong>g>in</str<strong>on</strong>g>creased egg producti<strong>on</strong>, body<br />

weight, <str<strong>on</strong>g>and</str<strong>on</strong>g> shank width <str<strong>on</strong>g>of</str<strong>on</strong>g> turkeys <strong>on</strong> egg compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> the egg<br />

traits to hatchability. Poultry Sci. 74, 427-433.<br />

Niewold T.A. 2007. The n<strong>on</strong>antibiotic anti-<str<strong>on</strong>g>in</str<strong>on</strong>g>flammatory effect <str<strong>on</strong>g>of</str<strong>on</strong>g> antimicrobial growth<br />

promoters, the real mode <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> A hypothesis. Poult. Sci. 86, 605-609.<br />

Nisbet D. 2002. Def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed competitive exclusi<strong>on</strong> cultures <str<strong>on</strong>g>in</str<strong>on</strong>g> the preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

enteropathogens col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry <str<strong>on</strong>g>and</str<strong>on</strong>g> sw<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Ant<strong>on</strong>ie van Leeuwenhoek 81, 481-486.<br />

Nishimura T. 2010. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular c<strong>on</strong>nectic tissue <str<strong>on</strong>g>in</str<strong>on</strong>g> meat texture. J. Anim.Sci.<br />

81, 21-27.<br />

Nishimura T., Hattori A., Takahashi K. 1999. Structural changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular<br />

c<strong>on</strong>nective tissue dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the fatten<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Japanese black cattle: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> marbl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> beef<br />

tenderizati<strong>on</strong>. J. Anim.Sci.77, 93−104.<br />

Noh S.H. 1997. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics, enzyme, yeast, probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> β-ag<strong>on</strong>ist <strong>on</strong> the growth<br />

<strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient availability <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers. Korean. Anim. Sci. 36, 630–638.<br />

148


Noy Y., Sklan D. 1998a. Metabolism resp<strong>on</strong>ses to early nutriti<strong>on</strong>. J. Appl. Poultry Res. 7,<br />

437-451.<br />

Noy Y., Sklan D. 1998b. Yolk utilisati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the newly hatched poult. Br. Poultry Sci. 39,<br />

446-451.<br />

Noy Y., Sklan D. 1999a. Energy utilizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> newly hatched chicks. Poultry Sci. 78, 1750-<br />

1756.<br />

Noy Y., Sklan D. 1999b. Different Types <str<strong>on</strong>g>of</str<strong>on</strong>g> Early Feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> Performance. In: Chicks<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Poults. J. Appl. Poult. Res. 8, 16-24.<br />

Noy Y., Sklan D. 2001. Yolk <str<strong>on</strong>g>and</str<strong>on</strong>g> exogenous feed utilizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the post-hatch chick.<br />

Poultry Sci. 80, 1490-1495.<br />

Noy Y., Uni Z. 2010. Early nutriti<strong>on</strong>al strategies. Worlds Poultry Sci. J. 66(04), 639 ­ 646.<br />

Nurmi E., Rantala M. 1973. New aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Salm<strong>on</strong>ella <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler producti<strong>on</strong>.<br />

Nature 241, 210-211.<br />

O‘Dea E.E., Fasenko G.M., Allis<strong>on</strong> G.E., Korver D.R., Tannock G.W., Guan L.L. 2006.<br />

Investigat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial probiotic <strong>on</strong> broiler chick quality <str<strong>on</strong>g>and</str<strong>on</strong>g> producti<strong>on</strong><br />

efficiency. Poultry Sci. 85, 1855-1863.<br />

O’Flaherty S., Klaenhammer T.R. 2010. The role <str<strong>on</strong>g>and</str<strong>on</strong>g> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

gut, <str<strong>on</strong>g>and</str<strong>on</strong>g> the communicati<strong>on</strong> between gut micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>and</str<strong>on</strong>g> gut/host. Int. Dairy J. 20, 262–<br />

268.<br />

O’Hara A.M., Shanahan F. 2006. The gut flora as a forgotten organ. EMBO 7(7), 688-693.<br />

O’Hara A.M., Shanahan F. 2007. Gut microbiota: m<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g for therapeutic potential. Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

Gastroenterol. H. 5, 274-284.<br />

Oberhelman R.A., Gilman R.H., Sheen. 1999. A placebo-c<strong>on</strong>trolled trial <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus<br />

GG to prevent diarrhea <str<strong>on</strong>g>in</str<strong>on</strong>g> undernourished Peruvian children. J. Pediat. 134, 15-20.<br />

Offer G. 1991. Modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pale, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t <str<strong>on</strong>g>and</str<strong>on</strong>g> exudative meats: effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chill<str<strong>on</strong>g>in</str<strong>on</strong>g>g regime <str<strong>on</strong>g>and</str<strong>on</strong>g> rate <str<strong>on</strong>g>and</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> glycolysis. Meat Sci. 30, 157–184.<br />

Ohta Y., Kidd M. T. 2001. Optimum site for <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler breeder<br />

eggs. Poultry Sci. 80, 1425-1429.<br />

149


Ohta, Y., Kidd M.T., Ishibashi T. 2001. Embryo growth <str<strong>on</strong>g>and</str<strong>on</strong>g> am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid c<strong>on</strong>centrati<strong>on</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler breeder eggs, embryos, <str<strong>on</strong>g>and</str<strong>on</strong>g> chicks after <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> am<str<strong>on</strong>g>in</str<strong>on</strong>g>o<br />

acids. Poultry Sci. 80, 1430-1436.<br />

Ohta Y., Tsushima N., Koide K., Kidd M.K., Ishibashi T. 1999. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler breeder eggs <strong>on</strong> embry<strong>on</strong>ic growth <str<strong>on</strong>g>and</str<strong>on</strong>g> hatchability <str<strong>on</strong>g>of</str<strong>on</strong>g> chicks. Poultry<br />

Sci. 78, 1493–1498.<br />

Ouweh<str<strong>on</strong>g>and</str<strong>on</strong>g> A.C., Kirjava<str<strong>on</strong>g>in</str<strong>on</strong>g>en P.V., Grönlund M.M., Isolauri E., Salm<str<strong>on</strong>g>in</str<strong>on</strong>g>en S.J. 1999.<br />

Adhesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic micro-organisms to <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al mucus. Int. Dairy J. 9, 623-630.<br />

Owens C.M., Alvarado C.Z., Sams A.R. 2009. Research developments <str<strong>on</strong>g>in</str<strong>on</strong>g> pale, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

exudative turkey meat <str<strong>on</strong>g>in</str<strong>on</strong>g> North America. Poultry Sci. 88, 1506–1512.<br />

Owens C.M., Sams A.R. 2000. The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> <strong>on</strong> turkey meat quality.<br />

Poultry Sci. 79, 1204–1207.<br />

Ow<str<strong>on</strong>g>in</str<strong>on</strong>g>gs W.J., Reynolds D.L., Hasiak R.J., Ferket P.R. 1990. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> a dietary<br />

supplementati<strong>on</strong> with Streptococcus faecium M-74 <strong>on</strong> broiler body weight, feed<br />

c<strong>on</strong>versi<strong>on</strong>, carcass characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbial col<strong>on</strong>izati<strong>on</strong>. Poultry Sci. 69,<br />

1257–1264.<br />

Ozawa S., Mitsuhashi T., Mitsumoto M., Matsumoto S., Itoh N., Itagaki K., Kohno Y.,<br />

Dohgo T., 2000. The characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fiber types <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>on</strong>gissimus thoracis muscle<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> their <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences <strong>on</strong> the quantity <str<strong>on</strong>g>and</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> meat from Japanese Black steers. Meat<br />

Sci. 54, 65–70.<br />

Ozkan S., Plavnik I., Yahav S. 2006. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> early feed restricti<strong>on</strong> <strong>on</strong> <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

ascites development <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens subsequently raised at low ambient temperature. J.<br />

Appl. Poultry Res. 15, 9-19.<br />

P<str<strong>on</strong>g>and</str<strong>on</strong>g>a A.K., Rama Rao S.S., Raju M.V.L.N., Sharma S.S. 2008. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic<br />

(Lactobacillus sporogenes) feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> egg producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> quality, yolk cholesterol <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

humoral immune resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> white leghorn layer breeders. J. Sci. Food Agr. 88, 43-47.<br />

P<str<strong>on</strong>g>and</str<strong>on</strong>g>a A.K., Reddy M.R., Praharaj N.K. 2001. Dietary supplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic <strong>on</strong><br />

growth, serum cholesterol <str<strong>on</strong>g>and</str<strong>on</strong>g> gut micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers. Indian J. Anim. Sci. 71, 488-490.<br />

150


P<str<strong>on</strong>g>and</str<strong>on</strong>g>a A.K., Reddy M.R., Ramarao S.V., Praharaj N.K. 2003. Producti<strong>on</strong> <strong>performance</strong>,<br />

serum/yolk cholesterol <str<strong>on</strong>g>and</str<strong>on</strong>g> immune competence <str<strong>on</strong>g>of</str<strong>on</strong>g> white leghorn layers as <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence by<br />

dietary supplementati<strong>on</strong> with probiotic. Trop. Anim. Health Pro. 32(2), 85-94.<br />

P<str<strong>on</strong>g>and</str<strong>on</strong>g>a A.K., Reddy M.R., Rao S.V.R., Raju M.V.L.N, Praharaj N.K. 2000. Growth,<br />

carcass characteristics, immunocompetence <str<strong>on</strong>g>and</str<strong>on</strong>g> resp<strong>on</strong>se to Escherichia coli <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers<br />

fed diets with various levels <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic. Arch. Geflugelkd. 64, 152-156.<br />

Pascual M., Hugas M., Badiola J.I., M<strong>on</strong>fort J.M., Garriga M. 1999. Lactobacillus<br />

salivarius CTC2197 prevents Salm<strong>on</strong>ella Enteritidis col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> chickens. Appl.<br />

Envir<strong>on</strong>. Microbiol. 65, 4981–4986.<br />

Patters<strong>on</strong> J.A., Burkholder K.M. 2003. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry<br />

producti<strong>on</strong>. Poultry Sci. 82, 627-631.<br />

Pedrosa A.A. 2009. Which came first: the egg or its microbiota. Poultry Informed Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

109, 1-5.<br />

Pedrosa A.A., Chaves L.S., Lopes K.L.A., Le<str<strong>on</strong>g>and</str<strong>on</strong>g>ro N.S.M., Café M.B., Str<str<strong>on</strong>g>in</str<strong>on</strong>g>gh<str<strong>on</strong>g>in</str<strong>on</strong>g>i J.H.<br />

2006. Nutrient <str<strong>on</strong>g>in</str<strong>on</strong>g>oculati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> eggs from heavy breeders. R. Bras. Zoot. 5, 2018–2026.<br />

Peebles E.D., Berry W.D., Keirs R.W., Bennett L.W., Gerard P.D. 2006. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> gluc<strong>on</strong>eogenic supplementati<strong>on</strong> <strong>on</strong> the <strong>performance</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers from young<br />

breeders. Poultry Sci. 85, 371-376.<br />

Pelicano E.R.L., Souza P.A, Souza H.B.A., Oba A., Boiago M.M., Zeola N.M.B.L.,<br />

Scatol<str<strong>on</strong>g>in</str<strong>on</strong>g>i A.M., Bertanha V.A., Lima T.M.A. 2005. Carcass <str<strong>on</strong>g>and</str<strong>on</strong>g> cut yields <str<strong>on</strong>g>and</str<strong>on</strong>g> meat<br />

qualitative traits <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers fed diets c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s. Brazilian J.<br />

Poult. Sci. 7, 169-175.<br />

Pelicia K., Mendes A.A., Saldanha E.S., Piazzolante C., Takahashi S., 2004. Probiotic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> utilizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for free-range broiler chickens. Br. J. Poult. Sci. 92, 99-104.<br />

Perez-Matute P., Perez-Echarri N., Mart<str<strong>on</strong>g>in</str<strong>on</strong>g>ez J.A., Marti A., Moreno-Aliaga M.J. 2007.<br />

Eicosapentaenoic acid acti<strong>on</strong>s <strong>on</strong> adiposity <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>sul<str<strong>on</strong>g>in</str<strong>on</strong>g> resistance <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> high-fatfed<br />

rats: Role <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis, adip<strong>on</strong>ect<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> tumour necrosis factor-alpha. Br. J. Nutr. 97,<br />

389–398.<br />

Perr<str<strong>on</strong>g>in</str<strong>on</strong>g>s C. 2003. The Firefly Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> Birds. Buffalo, N.Y., Firefly Books, Ltd.<br />

151


Pesti G.M., Bakalli R.I. 1996. Studies <strong>on</strong> the feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> cupric sulfate pentahydrate <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

cupric citrate to broiler chickens. Poultry Sci. 75, 1086–1091.<br />

Peter J.B., Barnard R.J., Edgert<strong>on</strong> V.R., Gillespie C.A., Stempel K.E. 1972. Metabolic<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g> three fiber types <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal muscle <str<strong>on</strong>g>in</str<strong>on</strong>g> gu<str<strong>on</strong>g>in</str<strong>on</strong>g>ea pig <str<strong>on</strong>g>and</str<strong>on</strong>g> rabbit. Biochemistry 11,<br />

2627–2633.<br />

Peterbauer T., Richter A. 2001. Biochemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> physiology <str<strong>on</strong>g>of</str<strong>on</strong>g> raff<str<strong>on</strong>g>in</str<strong>on</strong>g>ose family<br />

oligosaccharides <str<strong>on</strong>g>and</str<strong>on</strong>g> galactosyl cyclitols <str<strong>on</strong>g>in</str<strong>on</strong>g> seeds. Seed Sci. Res. 11, 185-197.<br />

Petracci M., Betti M., Bianchi M., Cavani C. 2004. Color variati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

broiler breast meat dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> Italy. Poultry Sci. 83, 2086-2092.<br />

Petracci M., Bianchi M., Cavani C. 2009. The European perspective <strong>on</strong> pale, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t,<br />

exudative c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry. Poultry Sci. 88, 1518–1523.<br />

Petracci, M., Bianchi, M., Cavani, C. 2010. Preslaughter h<str<strong>on</strong>g>and</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> slaughter<str<strong>on</strong>g>in</str<strong>on</strong>g>g factors<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>fluenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g poultry product quality. Worlds Poultry Sci. J. 66, 17-26.<br />

Petracci M., Cavani C. 2012. Muscle growth <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry meat quality issues. Nutrients, 4,<br />

1-12.<br />

Petracci M., Fletcher D.L., Northcutt J.K. 2001. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g temperature <strong>on</strong> live<br />

shr<str<strong>on</strong>g>in</str<strong>on</strong>g>k, process<str<strong>on</strong>g>in</str<strong>on</strong>g>g yield, <str<strong>on</strong>g>and</str<strong>on</strong>g> breast meat quality <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens. Poultry Sci. 80, 670–<br />

675.<br />

Pette D., Star<strong>on</strong> R.S. 2001. Transiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fiber phenotypic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles. Histochem.<br />

Cell Biol. 115, 359–372.<br />

Pilarski R., Bednarczyk M., Lisowski M., Rutkowski A., Bernacki Z., Wardenska M.,<br />

Gulewicz K. 2005. Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> alpha-galactosides <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

embryogenesis <strong>on</strong> selected chicken traits. Folia boil. 53, 13-20.<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>chasov J., Noy Y. 1993. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> post-hatch hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g time <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequent early<br />

<strong>performance</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chicks <str<strong>on</strong>g>and</str<strong>on</strong>g> turkey poults. Br. Poultry Sci. 34, 111-120.<br />

Plail R. 2006. The <str<strong>on</strong>g>in</str<strong>on</strong>g>novative power <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics. Poult. Int. 45, 34-36.<br />

Pochap<str<strong>on</strong>g>in</str<strong>on</strong>g> M.B., Oltikar A., Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ge-Smith R., Schreiber C. 1998. A prospective r<str<strong>on</strong>g>and</str<strong>on</strong>g>omized<br />

placebo-c<strong>on</strong>trolled trial <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus GG <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard antibiotics for<br />

the treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> Clostridium difficile <str<strong>on</strong>g>in</str<strong>on</strong>g>fecti<strong>on</strong>. Am. J.Gastroenterol. 93, 1697.<br />

152


Potturi, P.V., Patters<strong>on</strong> J.A., Applegate T.J.. 2005. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> delayed placement <strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al characteristics <str<strong>on</strong>g>in</str<strong>on</strong>g> turkey poults. Poultry Sci. 84, 816-824.<br />

Prentis P.F., Penney R.K., Goldsp<str<strong>on</strong>g>in</str<strong>on</strong>g>k G. 1984. Possible use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator muscle <str<strong>on</strong>g>in</str<strong>on</strong>g> future<br />

breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g experiments <str<strong>on</strong>g>in</str<strong>on</strong>g> domestic fowl. Br. Poultry Sci. 11, 2627–2633.<br />

Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ce K.R., Lewis J., Wyatt G.M., Fenwick G.T. 1988. Flatulence-causes, relati<strong>on</strong> to diet<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> remedies. Nahrung 32, 609-662.<br />

Priyankarage N., Silva S.S.P., Gunaratne S.P., Kothalawala H., Palliyaguru M.W.C.D.,<br />

Gunawardana G.A. 2003. Efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> their effects <strong>on</strong> <strong>performance</strong>, carcass<br />

characteristics, <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>and</str<strong>on</strong>g> Salm<strong>on</strong>ella <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers. Br. Poultry Sci.<br />

44, S26-S27.<br />

Probst Y. 2009. Nutrient compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken meat. RIRDC Publicati<strong>on</strong> 8/210.<br />

Prowrie K., 2001. Specializati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> complementarity <str<strong>on</strong>g>in</str<strong>on</strong>g> microbial molecule recogniti<strong>on</strong><br />

by human myeloid <str<strong>on</strong>g>and</str<strong>on</strong>g> plasmacytoid dendritic cells. Eur. J. Immunol. 31, 3388-3393.<br />

Puolanne E., Voutila L. 2009. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>nective tissue <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry meat quality. In:<br />

Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> XVIII European Symposium <strong>on</strong> the Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Poultry Meat <str<strong>on</strong>g>and</str<strong>on</strong>g> XIII<br />

European Symposium <strong>on</strong> the Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Eggs <str<strong>on</strong>g>and</str<strong>on</strong>g> Egg Products, Turku, F<str<strong>on</strong>g>in</str<strong>on</strong>g>l<str<strong>on</strong>g>and</str<strong>on</strong>g>. F<str<strong>on</strong>g>in</str<strong>on</strong>g>nish<br />

Branch <str<strong>on</strong>g>of</str<strong>on</strong>g> World’s Poultry Science Associati<strong>on</strong>, 26.<br />

Purslow P.P. 2002. The structure <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>al significance <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

c<strong>on</strong>nective tissue with<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle. Comp. Biochem. Physiol. A,133, 947-966.<br />

Purslow P.P. 2005. Intramuscular c<strong>on</strong>nective tissue <str<strong>on</strong>g>and</str<strong>on</strong>g> its role <str<strong>on</strong>g>in</str<strong>on</strong>g> meat quality. Meat Sci.<br />

70, 435–447.<br />

Purslow P.P., Trotter J.A 1994. The morphology <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

endomysium <str<strong>on</strong>g>in</str<strong>on</strong>g> series-fibred muscle; variati<strong>on</strong> with muscle length. J. Muscle Res. Cell M.<br />

15, 299-304.<br />

Qiao M., Fletcher D.L., Northcutt J.K., Smith D.P. 2002. The relati<strong>on</strong>ship between raw<br />

broiler breast meat color <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong>. Poultry Sci. 81, 422-427.<br />

Qiao M., Fletcher D.L., Smith D.P., Northcutt J.K. 2001. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler breast meat<br />

color <strong>on</strong> pH, moisture, water-hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity, <str<strong>on</strong>g>and</str<strong>on</strong>g> emulsificati<strong>on</strong> capacity. Poultry Sci.<br />

80, 676–680.<br />

153


Rada V., Rychly I. 1995. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus salivarius adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> coliforms<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> enterococci <str<strong>on</strong>g>in</str<strong>on</strong>g> the crop <str<strong>on</strong>g>and</str<strong>on</strong>g> ceca <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken broilers. Vet. Med. (Praha) 40, 311–315.<br />

Reeds J., Hay S.M., Dorwood M., Palmer R.M. 1986. Stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle growth by<br />

clenbuterol: Lack <str<strong>on</strong>g>of</str<strong>on</strong>g> effect <strong>on</strong> muscle prote<str<strong>on</strong>g>in</str<strong>on</strong>g> synthesis. Br. J. Nutr. 56, 249–258.<br />

Rehfeldt C., Fiedler I., Dietl G., Ender K. 2000. Myogenesis <str<strong>on</strong>g>and</str<strong>on</strong>g> postnatal skeletal muscle<br />

cell growth as <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced by selecti<strong>on</strong>. Livest. Prod. Sci. 66, 177−188.<br />

Rehfeldt C., Kuhn G. 2006. C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> birth weight for postnatal growth<br />

<strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass quality <str<strong>on</strong>g>in</str<strong>on</strong>g> pigs as related tomyogenesis. J. Anim. Sci. 84, 113–<br />

123.<br />

Reiser J.M., McCormick R.J., Rucker R.B. 1992. The enzymatic <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>enzymatic<br />

crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen <str<strong>on</strong>g>and</str<strong>on</strong>g> elast<str<strong>on</strong>g>in</str<strong>on</strong>g>. FASEB J. 6, 2439-2449.<br />

Rémign<strong>on</strong> H., Gardahaut M.F., Marche G., Ricard F.H. 1995. Selecti<strong>on</strong> for rapid growth<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases the number <str<strong>on</strong>g>and</str<strong>on</strong>g> the size <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle-fibers without chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g their typ<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

chickens. J. Muscle Res. Cell M. 16, 95–102.<br />

Revolledo L., Ferreira C.S.A., Ferreira A.J.P. 2009. Preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Salm<strong>on</strong>ella typhimurium<br />

col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> organ <str<strong>on</strong>g>in</str<strong>on</strong>g>vasi<strong>on</strong> by comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> treatment <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chicks. Poultry Sci.<br />

88, 734-743.<br />

Ribeiro H., V<str<strong>on</strong>g>and</str<strong>on</strong>g>erho<str<strong>on</strong>g>of</str<strong>on</strong>g> J.A. 1998. Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diarrheal illness follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus plantarum 299v <str<strong>on</strong>g>in</str<strong>on</strong>g> a daycare facility. J. Pediat. Gastroenterol. Nutr. 26,<br />

561.<br />

Richards J. D., G<strong>on</strong>g J., de Lange C.F.M. 2005. The gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiota <str<strong>on</strong>g>and</str<strong>on</strong>g> its role<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> m<strong>on</strong>ogastric nutriti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> health with an emphasis <strong>on</strong> pigs: Current underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

possible modulati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> new technologiesfor ecological studies. Can. J. Anim. Sci. 85,<br />

421–435.<br />

Richards<strong>on</strong> R.I. 1995. Poultry meat for further process<str<strong>on</strong>g>in</str<strong>on</strong>g>g. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the XII<br />

European Symposium <strong>on</strong> the Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Poultry Meat. Zaragoza,Spa<str<strong>on</strong>g>in</str<strong>on</strong>g>, 351–361.<br />

Richards<strong>on</strong> J.A., Burgener J., W<str<strong>on</strong>g>in</str<strong>on</strong>g>terfield R.W., Dhill<strong>on</strong> A.S. 1980. Deep pectoral<br />

myopathy <str<strong>on</strong>g>in</str<strong>on</strong>g> seven-week-old broiler chickens. Avian Dis. 24, 1054–1059.<br />

154


Roberfroid M.B. 1996. Functi<strong>on</strong>al effects <str<strong>on</strong>g>of</str<strong>on</strong>g> food comp<strong>on</strong>ents <str<strong>on</strong>g>and</str<strong>on</strong>g> the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

system:chicory fructooligosaccharides. Butr. Rev. 54, S38-42.<br />

Roberfroid, M.B. 2000. Prebiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> probiotics: are they functi<strong>on</strong>al foods Am. J. Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

Nutr. 71(Suppl.), 1682-1687.<br />

Roberts V. 1998. Poultry for any<strong>on</strong>e. Whittet Books, Suffolk, IP.<br />

Rob<str<strong>on</strong>g>in</str<strong>on</strong>g>s S.P., Shimokomaki M., Bailey A.J. 1973. The chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> the collagen crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>ks.<br />

Age related changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the reducible comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tact collagen fibres. Biochem.<br />

J. 131, 771-780.<br />

Roe M.T., Pillai S.D. 2003. M<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> identify<str<strong>on</strong>g>in</str<strong>on</strong>g>g antibiotic resistance mechanism <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

bacteria. Poult. Sci. 82, 622–626.<br />

Rolfe R.D. 2000. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic cultures <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al health. J.<br />

Nutr. 130, S396-S402.<br />

Roman<str<strong>on</strong>g>of</str<strong>on</strong>g>f A.L. 1960. The avian embryo: Structural <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>al development.<br />

Macmillan Publisher, (New York) xvi-1305.<br />

Roman<str<strong>on</strong>g>of</str<strong>on</strong>g>f A.L. 1967. Biochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> the avian embryo; a quantitative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> prenatal<br />

development. Interscience Publishers, New York.<br />

Rowe R.W.D. 1981. Morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> perimysial <str<strong>on</strong>g>and</str<strong>on</strong>g> endomysial c<strong>on</strong>nective tissue <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

skeletal muscle. Tissue Cell, 13, 681-690.<br />

Rowińska-Marcińska K, Hausmanowa-Petrusewicz I, Zalewska E. 1998. Shape irregularity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> motor unit potentials <str<strong>on</strong>g>in</str<strong>on</strong>g> some neuromuscular disorders. Muscle Nerve, 21(9), 1181-<br />

1187.<br />

Rule D.C., Brought<strong>on</strong> K.S., Shellito S.M., Maiorano G. 2002. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fatty<br />

acid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>and</str<strong>on</strong>g> cholesterol c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> bis<strong>on</strong>, beef cattle, elk <str<strong>on</strong>g>and</str<strong>on</strong>g> chicken. J. Anim.<br />

Sci. 80, 1202-1211.<br />

Ruusunen M., Puolanne E. 1997. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> histochemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> different pig<br />

breeds. Meat Sci. 45, 119−125.<br />

Ryu Y.C., Choi Y.M., Lee S.H., Sh<str<strong>on</strong>g>in</str<strong>on</strong>g> H.G., Choe J.H., Kim J.M., H<strong>on</strong>g K.C., Kim B.C.<br />

2008. Compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g the histochemical characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality traits <str<strong>on</strong>g>of</str<strong>on</strong>g> different pig<br />

breeds. Meat Sci. 80, 363–369.<br />

155


Ryu Y.C., Kim B.C. 2005. The relati<strong>on</strong>ship between muscle fiber characteristics,<br />

postmortem metabolic rate, <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality <str<strong>on</strong>g>of</str<strong>on</strong>g> pig L<strong>on</strong>gissimus dorsi muscle. Meat Sci.<br />

71, 351–357.<br />

Ryu Y.C., Kim B.C. 2006. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> histochemical characteristics <str<strong>on</strong>g>in</str<strong>on</strong>g> various pork<br />

groups categorized by postmortem metabolic rate <str<strong>on</strong>g>and</str<strong>on</strong>g> pork quality. J. Anim. Sci. 84, 894–<br />

901.<br />

Sacks F.M. 2002. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> high-density lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g> (HDL) cholesterol <str<strong>on</strong>g>in</str<strong>on</strong>g> the preventi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> cor<strong>on</strong>ary heart disease. Am. J. Cardiol. 15, 139–143.<br />

Sahane M.S. 2001. Mannanoligosaccharides <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry nutriti<strong>on</strong>: Mechanism <str<strong>on</strong>g>and</str<strong>on</strong>g> benefits.<br />

Proc. Alltech’s 17th Annual Symp. Eds. Ly<strong>on</strong>s T.P., Jacques K.A., Nott<str<strong>on</strong>g>in</str<strong>on</strong>g>gham University<br />

Press. 65-77.<br />

Sa<str<strong>on</strong>g>in</str<strong>on</strong>g>i H.S., Gladst<strong>on</strong>es J.S. 1986. Variability <str<strong>on</strong>g>in</str<strong>on</strong>g> the total <str<strong>on</strong>g>and</str<strong>on</strong>g> comp<strong>on</strong>ent galactosyl sucrose<br />

oligosaccharides <str<strong>on</strong>g>of</str<strong>on</strong>g> Lup<str<strong>on</strong>g>in</str<strong>on</strong>g>us species. Aust. J. Agric. Res. 37, 157-166.<br />

Salanitro J.P., Fairchilds I.G., Zgornicki Y.D. 1974. Isolati<strong>on</strong>, culture characteristics, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anaerobic bacteria from the chicken cecum. Appl. Microbiol. 27, 678-687.<br />

Salma U., Miah A.G., Maki T., Nishimura M., Tsujii H. 2007. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary<br />

Rhodobacter capsulatus <strong>on</strong> cholesterol c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> fatty acid compositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler<br />

meat. Poultry Sci. 86, 1920-1926.<br />

Salm<str<strong>on</strong>g>in</str<strong>on</strong>g>en S., Isolauri E., Salm<str<strong>on</strong>g>in</str<strong>on</strong>g>en E. 1996. Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ical uses <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics for stabiliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

gut mucosal barrier: successful stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> future challenges. Ant<strong>on</strong>. Leeuw. 70, 347-358.<br />

Salzman N.H., Ghosh D., Huttner K.M., Paters<strong>on</strong> Y., Bev<str<strong>on</strong>g>in</str<strong>on</strong>g>s C.L. 2003. Protecti<strong>on</strong><br />

aga<str<strong>on</strong>g>in</str<strong>on</strong>g>stenteric salm<strong>on</strong>ellosis <str<strong>on</strong>g>in</str<strong>on</strong>g> transgenic mice express<str<strong>on</strong>g>in</str<strong>on</strong>g>g a human <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al defens<str<strong>on</strong>g>in</str<strong>on</strong>g>.<br />

Nature, 422, 522-526.<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>ercock D.A., Hunter R.R., Mitchell M.A., Hock<str<strong>on</strong>g>in</str<strong>on</strong>g>g P.M. 2006. Thermoregulatory<br />

capacity <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle membrane <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrity are compromised <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers compared with layers<br />

at the same age or body weight. Br. Poultry Sci. 47, 322–329.<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>ercock D.A., Hunter R.R., Nute G.R., Mitchell M.A., Hock<str<strong>on</strong>g>in</str<strong>on</strong>g>g P.M. 2001. Acute heat<br />

stress-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced alterati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> blood acid-base status <str<strong>on</strong>g>and</str<strong>on</strong>g> skeletal muscle membrane <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrity<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens at two ages: implicati<strong>on</strong>s for meat quality. Poultry Sci. 80, 418–425.<br />

156


Sans<strong>on</strong>etti P. J. 2001. Rupture, <str<strong>on</strong>g>in</str<strong>on</strong>g>vasi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>flammatory destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

barrier by Shigella, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g sense <str<strong>on</strong>g>of</str<strong>on</strong>g> prokaryote-eucaryote cross-talks. FEM Microbiol.<br />

Rev. 25, 3–14.<br />

Santarelli R.L., Vendeuvre J.-L., Naud N., Taché S., Guéraud F., Viau M., Genot C.,<br />

Corpet D.E., Pierre F.H.F. 2010. Meat process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> col<strong>on</strong> carc<str<strong>on</strong>g>in</str<strong>on</strong>g>ogenesis: cooked nitritetreated<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> oxidized high-heme cured meat promotes muc<str<strong>on</strong>g>in</str<strong>on</strong>g>-depleted foci <str<strong>on</strong>g>in</str<strong>on</strong>g> rats. Cancer<br />

Prev. Res. 3, 852–864.<br />

Santé V., Bielicki G., Renerre M., Lacourt A. 1991. Post mortem evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Pectoralis superficialis muscle from two turkey breeds: Relati<strong>on</strong>ship between pH <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

colour changes. In: Proc. 37th Int. C<strong>on</strong>gr. Meat Sci. Technol., Kulmbach, Germany.<br />

Wagen<str<strong>on</strong>g>in</str<strong>on</strong>g>gen Acad. Publ., the Netherl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, 465–468.<br />

Santé V., Sosnicki A.A., Greaser M.I., Pietrzak M., Pospiech E., Ouali A. 1995. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

turkey breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> producti<strong>on</strong> <strong>on</strong> breast meat quality. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the XII<br />

European Symposium <strong>on</strong> the Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Poultry Meat. Zaragoza, Spa<str<strong>on</strong>g>in</str<strong>on</strong>g>, 151–156.<br />

Savage D.C. 1972. Associati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> physiological <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>digenous<br />

microorganisms <str<strong>on</strong>g>and</str<strong>on</strong>g> gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al epithelia. Am. J. Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>. Nutr. 25, 1372-1379.<br />

SCAN 2000. Report <str<strong>on</strong>g>of</str<strong>on</strong>g> the scientific committee <strong>on</strong> animal nutriti<strong>on</strong> <strong>on</strong> the assessment<br />

under directive 87/153/EEC <str<strong>on</strong>g>of</str<strong>on</strong>g> the efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganism used as feed additives.<br />

Scientific Committee <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Nutriti<strong>on</strong>, Brussels, Belgium.<br />

Scanes C.G., Brant G., Ensim<str<strong>on</strong>g>in</str<strong>on</strong>g>ger M.E. 2004. Poultry Biology. Poultry Sci. 6, 22-39.<br />

Scantlebury-Mann<str<strong>on</strong>g>in</str<strong>on</strong>g>g T., Gibs<strong>on</strong>, G.R. 2004. Prebiotics. Best Pract. Res. Cl. Ga. 18, 287-<br />

298.<br />

Schaal T., Cherian G. 2007. A survey <str<strong>on</strong>g>of</str<strong>on</strong>g> the hatchability <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler <str<strong>on</strong>g>and</str<strong>on</strong>g> Turkey eggs <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

United States from 1985 through 2005. Poultry Sci. 86, 598-600.<br />

Schwartz M.S., Sargeant M.K., Swash M. 1976. L<strong>on</strong>gitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al fibre splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> neurogenic<br />

muscular disorders: its relati<strong>on</strong> to the pathogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> myopathic change. Bra<str<strong>on</strong>g>in</str<strong>on</strong>g>, 99, 617-<br />

636.<br />

157


Schiaff<str<strong>on</strong>g>in</str<strong>on</strong>g>o S., Gorza L., Sartore S., Sagg<str<strong>on</strong>g>in</str<strong>on</strong>g> L., Aus<strong>on</strong>i S., Vianello M., Gundersen K.,<br />

Lomo T. 1989. Threemyos<str<strong>on</strong>g>in</str<strong>on</strong>g> heavy cha<str<strong>on</strong>g>in</str<strong>on</strong>g> is<str<strong>on</strong>g>of</str<strong>on</strong>g>orms <str<strong>on</strong>g>in</str<strong>on</strong>g> type 2 skeletal muscle fibers. J.<br />

Muscle Res. Cell M. 10, 197–205.<br />

Schiaff<str<strong>on</strong>g>in</str<strong>on</strong>g>o S., Reggiani C. 1996. Molecular diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> my<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrillar prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s: gene<br />

regulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>al significance. Physiol. Rev. 76, 371–423.<br />

Schneitz C. 2005. Competitive exclusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry-30 years <str<strong>on</strong>g>of</str<strong>on</strong>g> research. Food C<strong>on</strong>trol 16,<br />

657-667.<br />

Schreurs F.J.G., van der Heide D., Leenstra F.R., de Wit W. 1995. Endogenous proteolytic<br />

enzymes <str<strong>on</strong>g>in</str<strong>on</strong>g> chicken muscle. Differences am<strong>on</strong>g stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s with different growth rates <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

prote<str<strong>on</strong>g>in</str<strong>on</strong>g> efficiencies. Poultry Sci. 74, 523–537.<br />

Shahidi F., Rub<str<strong>on</strong>g>in</str<strong>on</strong>g> L.J., D’Souza L.A., Teranishi R., Buttery R.G. 1986. Meat flavor<br />

volatiles: a review <str<strong>on</strong>g>of</str<strong>on</strong>g> the compositi<strong>on</strong>, techniques <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis, <str<strong>on</strong>g>and</str<strong>on</strong>g> sensory evaluati<strong>on</strong>. Crit.<br />

Rev. Food Sci. 42, 141-243.<br />

Shane S. 2005. Antibiotic alternatives <str<strong>on</strong>g>in</str<strong>on</strong>g> turkey producti<strong>on</strong>. World Poultrt Sci. J. 19, 14-<br />

15.<br />

Sharma J.M. 1984. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>fectious bursal disease virus <strong>on</strong> protecti<strong>on</strong> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st Marek’s<br />

disease by turkey herpesvirus vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Avian Dis. 28, 629-640.<br />

Sharma J.M. 1985. Embryo vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with <str<strong>on</strong>g>in</str<strong>on</strong>g>fectious bursal disease virus al<strong>on</strong>e or <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with Marek’s sisease vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Avian Dis. 29, 1155-1169.<br />

Sharma J.M. 1994. Virus-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced immunosuppressi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> chickens. Poultry Sci. 73, 1082-<br />

1086.<br />

Sharma J.M., Burmester B.R. 1982. Resistance to Marek's disease at hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> chickens<br />

vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>ated as embryos with the turkey herpesvirus. Avian Dis. 26, 134-149.<br />

Sharma J.M., Burmester B.R. 1984. Disease c<strong>on</strong>trol <str<strong>on</strong>g>in</str<strong>on</strong>g> avian species by embry<strong>on</strong>al<br />

vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. U.S. Patent no. 4, 458,630.<br />

Shelt<strong>on</strong> T. 2006. Back to the future: a CEO's perspective <str<strong>on</strong>g>of</str<strong>on</strong>g> the broiler bus<str<strong>on</strong>g>in</str<strong>on</strong>g>ess. In:<br />

Poultry USA, 7(5), 28-31.<br />

Shoaf K., Mulvey G.L., Armstr<strong>on</strong>g G.D., Hutk<str<strong>on</strong>g>in</str<strong>on</strong>g>s R.W. 2006. Prebiotic<br />

galactooligosaccharides reduce adherence <str<strong>on</strong>g>of</str<strong>on</strong>g> enteropathogenic Escherichia coli to tissue<br />

culture cells. Infect Immun. 74(12), 6920–6928.<br />

158


Shimokomaki M., Elsden D.F., Bailey A.J. 1972. Meat tenderness: Age related changes <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

bov<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular collagen. J. Food Sci. 37, 892-896.<br />

Shimokomaki M., Wright D.W., Irw<str<strong>on</strong>g>in</str<strong>on</strong>g> M.H., Van Der Rest M., Mayne R. 1990. The<br />

Structure <str<strong>on</strong>g>and</str<strong>on</strong>g> Macromolecular Organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> type IX collagen <str<strong>on</strong>g>in</str<strong>on</strong>g> cartilage. Annals New<br />

York Acad. Sci. 580, 1-7.<br />

Siggers R.H., Thymann T., Siggers J.L., Schmidt M., Hansen A.K., Sangilda P.T. 2007.<br />

Bacterial col<strong>on</strong>izati<strong>on</strong> affects early organ <str<strong>on</strong>g>and</str<strong>on</strong>g> gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al growth <str<strong>on</strong>g>in</str<strong>on</strong>g> the ne<strong>on</strong>ate.<br />

Livest. Sci. 109, 14-18.<br />

Siller W.G. 1985. Deep pectoral myopathy: A penalty <str<strong>on</strong>g>of</str<strong>on</strong>g> success full selecti<strong>on</strong> for muscle<br />

growth. Poultry Sci. 64, 1591–1595.<br />

Silva E.N., Teixeira A.S., Bertech<str<strong>on</strong>g>in</str<strong>on</strong>g>i A.G., Ferreira C.L., Ventura B.G. 2000. Performance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens us<str<strong>on</strong>g>in</str<strong>on</strong>g>g diets with probiotics, antibiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> two diferent phosphorus<br />

sources. Cienc. Agrotec. 24 (Ed. Especial), 224-232.<br />

Sime<strong>on</strong><str<strong>on</strong>g>ovo</str<strong>on</strong>g>vá J. 1999. Technology <str<strong>on</strong>g>of</str<strong>on</strong>g> Poultry, Eggs <str<strong>on</strong>g>and</str<strong>on</strong>g> other M<str<strong>on</strong>g>in</str<strong>on</strong>g>or Animal Products.<br />

MZLU, Brno. 247.<br />

Sim<strong>on</strong> O., Jadamus A., Vahjen W. 2001. Probiotic feed additives—effectiveness <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

expected modes <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>. J. Anim. Feed Sci. 10, 51–67.<br />

Sims M.D., Daws<strong>on</strong> K.A., Newman K.E., Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g P., Hooge D.M. 2004. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary<br />

mannanoligosaccharide, bacitrac<str<strong>on</strong>g>in</str<strong>on</strong>g> methylene disalicylate, or both <strong>on</strong> the live <strong>performance</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al microbiology <str<strong>on</strong>g>of</str<strong>on</strong>g> turkeys. Poultry Sci. 83, 1148-1154.<br />

Sjostrom M., Squire J.M. 1977. F<str<strong>on</strong>g>in</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> A-b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> cryo-secti<strong>on</strong>s. The structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the A-b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> human skeletal muscle fibres from ultra-th<str<strong>on</strong>g>in</str<strong>on</strong>g> cryo-secti<strong>on</strong>s negatively<br />

sta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. J. Mol. Biol. 109, 49–68.<br />

Sk<str<strong>on</strong>g>in</str<strong>on</strong>g>ner S.J.M. 1982. Rapid method for the purificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the elast<str<strong>on</strong>g>in</str<strong>on</strong>g> cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks,<br />

desmos<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> isodesmos<str<strong>on</strong>g>in</str<strong>on</strong>g>e. J. Chromatogr. 229, 200-204.<br />

Skřivan M., Skrivanova V., Marounek M., Tumova E., Wolf J. 2000. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary<br />

fat source <str<strong>on</strong>g>and</str<strong>on</strong>g> copper supplementati<strong>on</strong> <strong>on</strong> broiler <strong>performance</strong>, fatty acid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> meat<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> depot fat, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> cholesterol c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> meat. Br. Poult. Sci. 41, 608–614.<br />

159


Smiricky-Tjardes M.R., Grieshop C.M., Flick<str<strong>on</strong>g>in</str<strong>on</strong>g>ger E.A., Bauer L.L., Fahey G.C., 2003.<br />

Dietary galactooligosaccharides affect ileal <str<strong>on</strong>g>and</str<strong>on</strong>g> total-tract nutrient digestibility, ileal <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fecal bacterial c<strong>on</strong>centrati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> ileal fermentative characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g pigs. J.<br />

Anim. Sci. 81, 2535-2545.<br />

Smirnov A., Tako E., Ferket P.R., Uni Z. 2006. Muc<str<strong>on</strong>g>in</str<strong>on</strong>g> gene expressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> muc<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the chicken <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al goblet cells are affected by <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrates.<br />

Poultry Sci. 85, 669-673.<br />

Smith E.Y. 1937. Produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g better poults at low costs: good breeds, good feed, proper care<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> eggs <str<strong>on</strong>g>and</str<strong>on</strong>g> modern <str<strong>on</strong>g>in</str<strong>on</strong>g>cubators are important factors. In: Turkey World 12(2), 16-18.<br />

Smith J.H. 1963. Relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> body size to muscle cell size <str<strong>on</strong>g>and</str<strong>on</strong>g> number <str<strong>on</strong>g>in</str<strong>on</strong>g> the chicken.<br />

Poultry Sci. 42, 283–290.<br />

Smith R. 2006a. Chicken needs 'more modest' expansi<strong>on</strong>. Feedstuffs 78(46), 20.<br />

Smith R. 2006b. Poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry must partner with researchers. Feedstuffs 78(32), 8.<br />

Smith T.W. 2007. Avian embryo: stages <str<strong>on</strong>g>of</str<strong>on</strong>g> embry<strong>on</strong>ic development <str<strong>on</strong>g>in</str<strong>on</strong>g> Book Avian<br />

embryo: stages <str<strong>on</strong>g>of</str<strong>on</strong>g> embry<strong>on</strong>ic development. Editor ed. Mississippi State University, City.<br />

Snoeyenbos G.H., We<str<strong>on</strong>g>in</str<strong>on</strong>g>ack O.M., Smyser C.F. 1978. Protect<str<strong>on</strong>g>in</str<strong>on</strong>g>g chicks <str<strong>on</strong>g>and</str<strong>on</strong>g> poults from<br />

salm<strong>on</strong>ellae by oral adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> “normal” gut micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora. Avian Dis. 22, 273–287.<br />

Soerjadi A.S., Rufner R., Snoeyenbos G.H., We<str<strong>on</strong>g>in</str<strong>on</strong>g>ack O.M. 1982. Adherence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

salm<strong>on</strong>ellae <str<strong>on</strong>g>and</str<strong>on</strong>g> native gut micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora to the gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al mucosa <str<strong>on</strong>g>of</str<strong>on</strong>g> chicks. Avian Dis.<br />

26, 576–584.<br />

Soike D., Bergmann V. 1998. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal muscle characteristics <str<strong>on</strong>g>in</str<strong>on</strong>g> chicken<br />

breed for meat or egg producti<strong>on</strong>. I. Histological <str<strong>on</strong>g>and</str<strong>on</strong>g> electr<strong>on</strong> microscope exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. J.<br />

Vet. Med. 45, 161–167.<br />

Solis de los Santos F., D<strong>on</strong>oghue A.M., Farnell M.B., Huff G.R., Huff W.E., D<strong>on</strong>oghue<br />

D.J. 2007. Gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al maturati<strong>on</strong> is accelerated <str<strong>on</strong>g>in</str<strong>on</strong>g> turkey poults supplemented with a<br />

mannan-oligosaccharide yeast extract (Alphamune). Poultry Sci. 86, 921-930.<br />

Sorum H., Sunde M. 2001. Resistence to antibiotics <str<strong>on</strong>g>in</str<strong>on</strong>g> the normal flora <str<strong>on</strong>g>of</str<strong>on</strong>g> animals. Vet.<br />

Res. 32, 227–241.<br />

160


Sosnicki AA.., Cassens R.G., Vim<str<strong>on</strong>g>in</str<strong>on</strong>g>i R.G., Greaser M.L. 1991. Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> capillaries<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> normal <str<strong>on</strong>g>and</str<strong>on</strong>g> ischemic turkey skeletal muscle. Poultry Sci. 70, 349-357.<br />

Sosnicki A.A., Wils<strong>on</strong> B.W. 1991. Pathology <str<strong>on</strong>g>of</str<strong>on</strong>g> turkey skeletal muscle: implicati<strong>on</strong>s for<br />

the poultry <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry. Food Struct. 10, 317–326.<br />

Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g P., Wenk C., Daws<strong>on</strong> K.A., Newman K.E. 2000. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary<br />

mannanoligosaccharides <strong>on</strong> cecal parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> the c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> enteric bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the ceca <str<strong>on</strong>g>of</str<strong>on</strong>g> Salm<strong>on</strong>ella -challenged broiler chicks. Poultry Sci. 79, 205–211.<br />

SPSS Inc. 2010. PC + Statistics. 18.0. SPSS Inc., Chicago, IL.<br />

St-Pierre N.R., Cobanov B., Schnitkey G. 2003. Ec<strong>on</strong>omic losses from heat stress by US<br />

livestock <str<strong>on</strong>g>in</str<strong>on</strong>g>dustries. J. Dairy Sci. 86, S E52–E77.<br />

Stahl E. 1969. Ed. Th<str<strong>on</strong>g>in</str<strong>on</strong>g> Layer Chromatography; Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger-Verlag: Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>, Heidelberg, New<br />

York, 1969.<br />

Stanczuk J., Zdunczyk Z., Juskiewicz J., Jankowski J. 2005. Indices <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> young<br />

turkeys to diets c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g mannanoligosaccharide or <str<strong>on</strong>g>in</str<strong>on</strong>g>ul<str<strong>on</strong>g>in</str<strong>on</strong>g>. Vet. Zootec. 31, 98-101.<br />

Stavric S., Kornegay E.T. 1995. Microbial probiotics for pigs <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry. In:<br />

Biotechnology <str<strong>on</strong>g>in</str<strong>on</strong>g> animal feeds <str<strong>on</strong>g>and</str<strong>on</strong>g> animal feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Edited by R. J. Wallace <str<strong>on</strong>g>and</str<strong>on</strong>g> A..<br />

Chess<strong>on</strong>, VCH, New York, 205-231.<br />

Stickl<str<strong>on</strong>g>and</str<strong>on</strong>g> N. C. 1995. Microstructural aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal muscle growth. In: 2nd<br />

Dummerdorf Muscle Workshop—Muscle Growth <str<strong>on</strong>g>and</str<strong>on</strong>g> Meat Quality. Rostock, Germany, 1–<br />

9.<br />

Stienen G.J., Kiers J.L., Bott<str<strong>on</strong>g>in</str<strong>on</strong>g>elli R., Reggiani C., 1996. My<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrillar ATPase activity <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

sk<str<strong>on</strong>g>in</str<strong>on</strong>g>ned human skeletal muscle fibres: fibre type <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature dependence. J. Physiol.<br />

493, 299–307.<br />

Stiles M.E., Hast<str<strong>on</strong>g>in</str<strong>on</strong>g>gs J.W. 1991. Bacterioc<str<strong>on</strong>g>in</str<strong>on</strong>g> producti<strong>on</strong> by lactic acid bacteria: potential<br />

for use <str<strong>on</strong>g>in</str<strong>on</strong>g> meat preservati<strong>on</strong>. Trends Food Sci. Tech. 2, 247-251.<br />

Strasburg G.M., Chiang W. Pale, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t, exudative turkey-The role <str<strong>on</strong>g>of</str<strong>on</strong>g> ryanod<str<strong>on</strong>g>in</str<strong>on</strong>g>e receptor<br />

variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> meat quality. Poultry Sci. 88, 1497-1505.<br />

Suchý P., Jelínek P., Straková E., Hucl J. 2002. Chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hybrid broiler chickens dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g prol<strong>on</strong>ged feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Czech J. Anim. Sci, 47(12), 511–518.<br />

161


Swash M., Schwartz M.S. 1997. Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al muscle fibre splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

neurogenic <str<strong>on</strong>g>and</str<strong>on</strong>g> myopathic disorders. J. Neurol. Neurosur. Ps. 40, 1152-1159.<br />

Swatl<str<strong>on</strong>g>and</str<strong>on</strong>g> H.J. 1984. Structure <str<strong>on</strong>g>and</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> meat animal. New Jersey: Englewood<br />

Cliffs, 272.<br />

Swatl<str<strong>on</strong>g>and</str<strong>on</strong>g> H.J. (1990) A note <strong>on</strong> the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>nective tissue b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g turkey muscle<br />

fibres together. Can. I. Food Sci. Tech. J. 23, 239–241.<br />

Tako E., Ferket P.R., Uni Z. 2004. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrates <str<strong>on</strong>g>and</str<strong>on</strong>g> betahydroxy-beta-methylbutyrate<br />

<strong>on</strong> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Poultry Sci. 83,<br />

2023-2028.<br />

Tako E., Ferket P.R., Uni Z. 2005. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> chicken <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al z<str<strong>on</strong>g>in</str<strong>on</strong>g>c exporter mRNA<br />

expressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> small <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al functi<strong>on</strong>ality follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>tra-amniotic z<str<strong>on</strong>g>in</str<strong>on</strong>g>cmethi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong>. J. Nutr. Biochem. 16, 339-346.<br />

Tarrant P.V. 1998. Some recent advanced <str<strong>on</strong>g>and</str<strong>on</strong>g> future priorities for the meat <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry. Meat<br />

Sci. 49, S1–S16.<br />

Tatum J.D., Belk K.E., George M.H., Smith C.C. 1999. Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quality<br />

management practices to reduce the <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> retail beef tenderness problems:<br />

Development <str<strong>on</strong>g>and</str<strong>on</strong>g> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a prototype quality system to produce tender beef. J. Anim.<br />

Sci. 77, 2112-2118.<br />

Tellez G., Petr<strong>on</strong>e V.M., Excorcia M., Morishita T.Y., Cobb C.W., Villasenor L. 2001.<br />

Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> avian-specific probiotics <str<strong>on</strong>g>and</str<strong>on</strong>g> Salm<strong>on</strong>ella enteritidis-, Salm<strong>on</strong>ella<br />

typhimurium-, <str<strong>on</strong>g>and</str<strong>on</strong>g> Salm<strong>on</strong>ella heidelberg-specific antibodies <strong>on</strong> cecal col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

organ <str<strong>on</strong>g>in</str<strong>on</strong>g>vasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Salm<strong>on</strong>ella enteritidis <str<strong>on</strong>g>in</str<strong>on</strong>g> broilers. J. Food Prot. 64, 287–291.<br />

Thitaram S.N., Chung C.H., Day D.F., H<str<strong>on</strong>g>in</str<strong>on</strong>g>t<strong>on</strong>,A., Bailey J.S., Siragusa G.R. 2005.<br />

Isomaltooligosaccharide <str<strong>on</strong>g>in</str<strong>on</strong>g>creases cecal Bifidobacterium populati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> young broiler<br />

chickens. Poultry Sci. 84, 998-1003.<br />

Thomas M., Langley B., Berry C., Sharma M., Kirk S., Bass J. 2000. Myostat<str<strong>on</strong>g>in</str<strong>on</strong>g>, a negative<br />

regulator <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle growth, functi<strong>on</strong>s by <str<strong>on</strong>g>in</str<strong>on</strong>g>hibit<str<strong>on</strong>g>in</str<strong>on</strong>g>g myoblast proliferati<strong>on</strong>. J. Biol. Chem.<br />

275, 40235–40243.<br />

162


Thomas W.E., Nilss<strong>on</strong> L.M., Forero M., Sokurenko E.V., Vogel V. 2004. Shear-dependent<br />

‘stick<str<strong>on</strong>g>and</str<strong>on</strong>g>-roll’ adhesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> type 1 fimbriated Escherichia coli. Mol. Microbiol. 53, 1545-<br />

1557.<br />

Thomps<strong>on</strong> J.M., Perry D., Daly B., Gardner G.E., Johnst<strong>on</strong> D.J., Pethick D.W. 2006.<br />

Genetic <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental effects <strong>on</strong> the muscle structure resp<strong>on</strong>se post-mortem. Meat<br />

Sci. 74, 59−65.<br />

Thoms<strong>on</strong> K.L., Applegate T.J. 2005. Nutrients, nutriti<strong>on</strong>al state <str<strong>on</strong>g>and</str<strong>on</strong>g> small <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al<br />

microbiota. In Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs: N. Carol<str<strong>on</strong>g>in</str<strong>on</strong>g>a Poultry Nutr. C<strong>on</strong>f. 23-37.<br />

Timmerman H.M., K<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g C.J., Mulder L., Rombouts F.M., Beynen A.C. 2004.<br />

M<strong>on</strong>ostra<str<strong>on</strong>g>in</str<strong>on</strong>g>, multistra<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> multispecies probiotics - a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>ality <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

efficacy. Int. J. Food. Microbiol. 96, 219–233.<br />

Timmerman H.M., Mulder L., Everts H., van Espen D.C., van der Wal E., Klaassen G.,<br />

Rouwers S.M., Hartem<str<strong>on</strong>g>in</str<strong>on</strong>g>k R., Rombouts F.M., Beynen A.C. 2005. Health <str<strong>on</strong>g>and</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

veal calves fed milk replacers with or without probiotics. J. Dairy Sci. 88, 2154-2165.<br />

Timmerman H.M., Veldman A., van den Elsen E., Rombouts F.M., Beynen A.C. 2006.<br />

Mortality <str<strong>on</strong>g>and</str<strong>on</strong>g> growth <strong>performance</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers given dr<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g water supplemented with<br />

chicken-specific probiotics. Poultry Sci. 85, 1383-1388.<br />

Toldrá F., Reig M. 2011. Innovati<strong>on</strong>s for healthier processed meats. Trends Food Sci.<br />

Technol. 22, 517–522.<br />

Tomomatsu H. 1994. Health effects <str<strong>on</strong>g>of</str<strong>on</strong>g> oligosaccharides. Food Technol. 48, 61-65.<br />

Tornberg E. 1996. Biophysical aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> meat tenderness. Meat Sci. 43, 175−191.<br />

Tortuero F. 1973. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the implantati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus acidophilus <str<strong>on</strong>g>in</str<strong>on</strong>g> chicks <strong>on</strong><br />

the growth, feed c<strong>on</strong>versi<strong>on</strong>, malabsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fats syndrome <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al flora. Poultry<br />

Sci. 52, 197–203.<br />

Tortuero F., Fern<str<strong>on</strong>g>and</str<strong>on</strong>g>ez E. 1995. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial culture <str<strong>on</strong>g>in</str<strong>on</strong>g> barley-based<br />

diets fed to lay<str<strong>on</strong>g>in</str<strong>on</strong>g>g hens. Anim. Feed Sci. Technol. 53, 255-265.<br />

Tserveni-Gousi A.S., Yannakopoulos A.L. 1986. Carcass characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Japanese quail<br />

at 42 days <str<strong>on</strong>g>of</str<strong>on</strong>g> age. Br. Poult. Sci. 27, 123–127.<br />

163


Uauy R., Gattas V., Yanez E. 1995. Sweet lup<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> human nutriti<strong>on</strong>. In: Word Review <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Nutriti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Dietetics Simopoulos A.M. ed. 77, 75-88.<br />

Uni Z., Ferket P.R. 2003. Enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> oviparous species by <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g><br />

feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g. U.S. Patent no. 6,592,878 B2.<br />

Uni Z., Ferket P.R. 2004. Methods for early nutriti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> their potential. Worlds Poultry<br />

Sci. J. 60, 101-111.<br />

Uni Z., Ferket P.R., Tako E. 2006. In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g: impact <strong>on</strong> gut development, energetic<br />

status, gene expressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth <strong>performance</strong>. In: The 29 th Technical Turkey<br />

C<strong>on</strong>ference. Turkey, 47-48.<br />

Uni Z., Ferket P.R., Tako E., Kedar O. 2005. In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g improves energy status <str<strong>on</strong>g>of</str<strong>on</strong>g> lateterm<br />

chicken embryos. Poultry Sci. 84, 764-770.<br />

Uni Z., Ganot S., Sklan D. 1998. Post-hatch development <str<strong>on</strong>g>of</str<strong>on</strong>g> mucosal functi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

broiler small <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>e. Poultry Sci. 77, 75-82.<br />

Valcesch<str<strong>on</strong>g>in</str<strong>on</strong>g>i E. 2006. Poultry meat trends <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sumer attitudes. In: Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

XII European Poultry C<strong>on</strong>ference [CD-ROMs]; Ver<strong>on</strong>a, Italy.<br />

Valsta L.M., Tapana<str<strong>on</strong>g>in</str<strong>on</strong>g>en H., Mannisto S. 2005. Meat fats <str<strong>on</strong>g>in</str<strong>on</strong>g> nutriti<strong>on</strong>. A rewiew. Meat Sci.<br />

70, 525-530.<br />

van der Wielen P.W.J.J., Keuzenkamp D.A., Lipman L.J.A., van Knapen F., Biesterveld S.<br />

2002. Spatial <str<strong>on</strong>g>and</str<strong>on</strong>g> temporal variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al bacterial community <str<strong>on</strong>g>in</str<strong>on</strong>g> commercially<br />

raised broiler chickens dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g growth. Microbial Ecol. 44, 286-293.<br />

van Immerseel F., De Buck J., Pasmans F., Huyghebaert G., Haesebrouck F., Ducatelle R.<br />

2004. Clostridium perfr<str<strong>on</strong>g>in</str<strong>on</strong>g>gens <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry: an emerg<str<strong>on</strong>g>in</str<strong>on</strong>g>g threat for animal <str<strong>on</strong>g>and</str<strong>on</strong>g> public health.<br />

Avian Pathol. 33, 537-549.<br />

Van Laack R.L.J.M., Liu C.H., Smith M.O., Loveday H.D. 2000. Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> pale,<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>t <str<strong>on</strong>g>and</str<strong>on</strong>g> exudative broiler breast meat. Poultry Sci. 79, 1057-1061.<br />

Van Loo J., Cumm<str<strong>on</strong>g>in</str<strong>on</strong>g>gs J., Delzenne N., Englyst H., Franck A., Hopk<str<strong>on</strong>g>in</str<strong>on</strong>g>s M., Kok N.,<br />

Macfarlane G., New-T<strong>on</strong> D., Quigley M., Roberfroid M., Vanvliet T., V<str<strong>on</strong>g>and</str<strong>on</strong>g>enheuvel E.<br />

1999. Functi<strong>on</strong>al food properties <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> digestible oligosaccharides: a c<strong>on</strong>sensus report<br />

from ENDO project (DGXII AIRII-CT94-1095). Brit. J. Nutr. 81, 121-132.<br />

164


V<str<strong>on</strong>g>and</str<strong>on</strong>g>eplas S., Dubois Dauph<str<strong>on</strong>g>in</str<strong>on</strong>g> R., Thiry C., Beckers Y., Well<str<strong>on</strong>g>in</str<strong>on</strong>g>g G.W., Th<strong>on</strong>art P.,<br />

Théwis A. 2009. Efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> a Lactobacillus plantarum-xylanase comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <strong>on</strong> growth<br />

<strong>performance</strong>s, micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora populati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient digestibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> broilers <str<strong>on</strong>g>in</str<strong>on</strong>g>fected with<br />

Salm<strong>on</strong>ella typhimurium. Poultry Sci. 88, 1643-1654.<br />

V<str<strong>on</strong>g>and</str<strong>on</strong>g>erho<str<strong>on</strong>g>of</str<strong>on</strong>g> J.A. 2001. Probiotics: future directi<strong>on</strong>s. Am. J. Cl<str<strong>on</strong>g>in</str<strong>on</strong>g>. Nutr. 73, 1152-1155.<br />

V<str<strong>on</strong>g>and</str<strong>on</strong>g>erho<str<strong>on</strong>g>of</str<strong>on</strong>g> J.A., Whitney D.B., Ant<strong>on</strong>s<strong>on</strong> D.L., Hanner T.L., Lupo J.V., Young R.J. 1999.<br />

Lactobacillus GG <str<strong>on</strong>g>in</str<strong>on</strong>g> the preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antibioticassociated diarrhea <str<strong>on</strong>g>in</str<strong>on</strong>g> children. J. Pediat.<br />

135, 564-568.<br />

Veldman, A., 1992. Probiotics. Tijdschr Diergeneeskd. 15; 117, 345-348.<br />

Velleman S.G. 2007. Muscle development <str<strong>on</strong>g>in</str<strong>on</strong>g> the embryo <str<strong>on</strong>g>and</str<strong>on</strong>g> hatchl<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Poultry Sci. 86,<br />

1050-1054.<br />

Velleman S.G., Mozdziak P.E. 2005. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> post-hatch feed deprivati<strong>on</strong> <strong>on</strong> heparan<br />

sulfate proteoglycan, syndecan-1, <str<strong>on</strong>g>and</str<strong>on</strong>g> glypican expressi<strong>on</strong>: implicati<strong>on</strong>s for muscle growth<br />

potential <str<strong>on</strong>g>in</str<strong>on</strong>g> chickens. Poultry Sci. 84, 601-606.<br />

Velleman S.G, Yeager J.D., Krider H., Carr<str<strong>on</strong>g>in</str<strong>on</strong>g>o D.A., Zimmerman S.D., McCormick, R.J.<br />

1996. The low avian score normal muscle weakness alters decor<str<strong>on</strong>g>in</str<strong>on</strong>g> expressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> collagen<br />

crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g C<strong>on</strong>nect. Tissue Res. 34(1), 33-9.<br />

Verstegen M.W.A., Lan Y., Tamm<str<strong>on</strong>g>in</str<strong>on</strong>g>ga S., Williams B.A. 2005. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> the commensal<br />

gut microbial community <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens. Worlds Poultry Sci. J. 61, 95–104.<br />

Vesterlund S., Vankerckhoven V., Saxel<str<strong>on</strong>g>in</str<strong>on</strong>g> M., Goossens H., Salm<str<strong>on</strong>g>in</str<strong>on</strong>g>en S., Ouweh<str<strong>on</strong>g>and</str<strong>on</strong>g>, A.C.<br />

2007. Safety assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s: presence <str<strong>on</strong>g>of</str<strong>on</strong>g> putative risk factors <str<strong>on</strong>g>in</str<strong>on</strong>g> faecal,<br />

blood <str<strong>on</strong>g>and</str<strong>on</strong>g> probiotic isolates. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Microbiology 116, 325-331.<br />

Vicente J., Wolfenden A., Torres-Rodriguez A., Higg<str<strong>on</strong>g>in</str<strong>on</strong>g>s S., Tellez G., Hargis B. 2007.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Lactobacillus species-based probiotic <str<strong>on</strong>g>and</str<strong>on</strong>g> dietary lactose <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <strong>on</strong> turkey<br />

poult <strong>performance</strong> with or without Salm<strong>on</strong>ella enteritidis challenge. J. Appl. Poultry Res.<br />

16, 361-364.<br />

Vila B., F<strong>on</strong>tgibell A., Badiola I., Esteve-Garcia E., Jiménez G., Castillo M., Brufau J.<br />

2009. Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Salm<strong>on</strong>ella enterica var. enteritidis col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vasi<strong>on</strong> by<br />

Bacillus cereus var. toyoi <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> poultry feeds. Poultry Sci. 88, 975-979.<br />

165


Villaluenga C.M., Wardeńska M., Pilarski R., Bednarczyk M., Gulewicz K. 2004.<br />

Utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the chicken embryo model for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> biological activity <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

oligosaccharides. Folia Biol. 52, 136-142.<br />

Visek W.J. 1978. The mode <str<strong>on</strong>g>of</str<strong>on</strong>g> growth promoti<strong>on</strong> by antibiotics. J. Anim. Sci. 46, 1447-<br />

1469.<br />

Voutila L. 2009. Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular c<strong>on</strong>nective tissue <str<strong>on</strong>g>in</str<strong>on</strong>g> pork <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry with<br />

reference to weaken<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> structure. Ph.D. Dissertati<strong>on</strong>, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Forestry <str<strong>on</strong>g>of</str<strong>on</strong>g> the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Hels<str<strong>on</strong>g>in</str<strong>on</strong>g>ki, Hels<str<strong>on</strong>g>in</str<strong>on</strong>g>ki, F<str<strong>on</strong>g>in</str<strong>on</strong>g>l<str<strong>on</strong>g>and</str<strong>on</strong>g>, 13–16.<br />

Voutila L., Perero J., Ruusunen M., Jouppila K., Puolanne E. 2009. Muscle fiber properties<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> thermal stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular c<strong>on</strong>nective tissue <str<strong>on</strong>g>in</str<strong>on</strong>g> porc<str<strong>on</strong>g>in</str<strong>on</strong>g>e M. semimembranosus. J.<br />

Sci. Food Agric. 89, 2527–2534.<br />

Wakefield D.K., Dransfield E., Down N., Taylor A.A. 1989. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> postmortem<br />

treatments <strong>on</strong> turkey <str<strong>on</strong>g>and</str<strong>on</strong>g> chicken meat texture. Int. J. Food Sci. Technol. 24, 81–92.<br />

Wakenell P.S., Sharma J.M. 1986. Chicken embry<strong>on</strong>al vacc<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with avian <str<strong>on</strong>g>in</str<strong>on</strong>g>fectious<br />

br<strong>on</strong>chitis virus. Am. J. Vet. Res. 47, 933-938.<br />

Waldroup A.L., Sk<str<strong>on</strong>g>in</str<strong>on</strong>g>ner J.T., Hierholzer R.E., Waldroup P.W. 1993. An evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fructooligosaccharides <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for broiler chicken <str<strong>on</strong>g>and</str<strong>on</strong>g> effects <strong>on</strong> Salm<strong>on</strong>ella c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses. Poultry Sci. 72, 643-650.<br />

Waldroup P.W., Fritts C.A., Fengl<str<strong>on</strong>g>and</str<strong>on</strong>g>, Y. 2003. Utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bio-Mos® mannan<br />

oligosaccharide <str<strong>on</strong>g>and</str<strong>on</strong>g> Bioplex® copper <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler diets. Int. J. Poult. Sci. 2, 44-52.<br />

Wang J.J., Pan T.M., Shieh M.J. 2005. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> red mold rice supplements <strong>on</strong> serum <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

meat cholesterol levels <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chicken. Appl. Microbiol. Biotechnol. 71, 812–818.<br />

Warris P.D. 2000. Meat Science, An Introductory Text, CABI Publish<str<strong>on</strong>g>in</str<strong>on</strong>g>g CAB<br />

Internati<strong>on</strong>al Wall<str<strong>on</strong>g>in</str<strong>on</strong>g>gford.<br />

Wassenaar T.M., Kle<str<strong>on</strong>g>in</str<strong>on</strong>g> G. 2008. Safety aspects <str<strong>on</strong>g>and</str<strong>on</strong>g> implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotic<br />

bacteria <str<strong>on</strong>g>in</str<strong>on</strong>g> food <str<strong>on</strong>g>and</str<strong>on</strong>g> food supplements. J. Food Protect. 71, 1734.<br />

Watk<str<strong>on</strong>g>in</str<strong>on</strong>g>s B.A., Kratzer F.H. 1983. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> oral dos<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Lactobacillus stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <strong>on</strong> gut<br />

col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> liver biot<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chicks. Poultry Sci., 62, 2088-2094.<br />

166


Weber F.H., Genteman K.C., LeMay M.A., Lewis D.O. Sr., Evans N.A. 2004.<br />

Immunizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chicks by <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>fective stages <str<strong>on</strong>g>of</str<strong>on</strong>g> Eimeria. Poultry<br />

Sci. 83, 392-399.<br />

Weeks C.A., Nicol C.J., Sherw<str<strong>on</strong>g>in</str<strong>on</strong>g> C.M., Kest<str<strong>on</strong>g>in</str<strong>on</strong>g> S.C. 1994. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

broiler chickens <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>door <str<strong>on</strong>g>and</str<strong>on</strong>g> free-range envir<strong>on</strong>ments. Anim. Welfare, 3, 179–192.<br />

West B., Zhou B.X. 1988. Did chickens go north New evidence for domesticati<strong>on</strong>. J.<br />

Archaeol. Sci. 14, 515–533.<br />

West<strong>on</strong> A.R.; Rogers R.W., PAS, Althen T.G. 2002. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen <str<strong>on</strong>g>in</str<strong>on</strong>g> meat<br />

tenderness. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Anim. Scient. 18 107-111.<br />

Williams C.J., Brake J. 2000. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> methods for c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Aspergillus<br />

fumigatus proliferati<strong>on</strong> <strong>on</strong> the air cell membrane <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> broiler eggs. Poultry<br />

Sci. 78, 1531-1535.<br />

Williams C.J., Murray D.L., Brake J.. 2000. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> a model to study Aspergillus<br />

fumigatus proliferati<strong>on</strong> <strong>on</strong> the air cell membrane <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>jected</str<strong>on</strong>g> broiler eggs. Poultry<br />

Sci. 79, 1536-1542.<br />

Willis W.L., Isikhuemhen O.S., Ibrahim S.A. 2007. Performance assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler<br />

chickens given mushroom extract al<strong>on</strong>e or <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with probiotics. Poultry Sci.<br />

86(9), 1856-60.<br />

Willis W.L., Reid L. 2008. Investigat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary probiotic feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g regimens<br />

<strong>on</strong> broiler chicken producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Campylobacter jejuni presence. Poultry Sci. 87, 606-<br />

611.<br />

W<str<strong>on</strong>g>in</str<strong>on</strong>g>ter A.R., Funk E.M. 1960. Poultry, science <str<strong>on</strong>g>and</str<strong>on</strong>g> practice. 5th ed. Lipp<str<strong>on</strong>g>in</str<strong>on</strong>g>cott Company,<br />

Chicago.<br />

Woessner J.F.Jr. 1961. The determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxyprol<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> tissue <str<strong>on</strong>g>and</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> samples<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g small proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this im<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid. Arch. Biochem. Biophys. 93, 440–447.<br />

W<strong>on</strong>g G.K., Liu B., Wang J., Zhang Y., Yang X., Zhang Z., Meng Q., Zhou J., Li D.,<br />

Zhang J., Ni P., Li S., Ran L., Li H., Zhang J., Li R., Li S., Zheng H., L<str<strong>on</strong>g>in</str<strong>on</strong>g> W., Li G., Wang<br />

X., Zhao W., Li J., Ye C., Dai M., Ruan J., Zhou Y., Li Y., He X., Zhang Y., Wang J.,<br />

Huang X., T<strong>on</strong>g W., Chen J., Ye J., Chen C., Wei N., Li G., D<strong>on</strong>g L., Lan F., Sun Y.,<br />

167


Zhang Z., Yang Z., Yu Y., Huang Y., He D., Xi Y., Wei D., Qi Q., Li W., Shi J., Wang M.,<br />

Xie F., Wang J., Zhang X., Wang P., Zhao Y., Li N., Yang N., D<strong>on</strong>g W., Hu S., Zeng C.,<br />

Zheng W., Hao B., Hillier L.W., Yang S.P., Warren W.C., Wils<strong>on</strong> R.K., Br<str<strong>on</strong>g>and</str<strong>on</strong>g>ström M.,<br />

Ellegren H., Crooijmans R.P., van der Poel J.J., Bovenhuis H., Groenen M.A., Ovcharenko<br />

I., Gord<strong>on</strong> L., Stubbs L., Lucas S., Glav<str<strong>on</strong>g>in</str<strong>on</strong>g>a T., Aerts A., Kaiser P., Rothwell L., Young<br />

J.R., Rogers S., Walker B.A., van Hateren A., Kaufman J., Bumstead N., Lam<strong>on</strong>t S.J.,<br />

Zhou H., Hock<str<strong>on</strong>g>in</str<strong>on</strong>g>g P.M., Morrice D., de K<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g D.J., Law A., Bartley N., Burt D.W., Hunt<br />

H., Cheng H.H., Gunnarss<strong>on</strong> U., Wahlberg P., Anderss<strong>on</strong> L., K<str<strong>on</strong>g>in</str<strong>on</strong>g>dlund E., Tammi M.T.,<br />

Anderss<strong>on</strong> B., Webber C., P<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>g C.P., Overt<strong>on</strong> I.M., Boardman P.E., Tang H., Hubbard<br />

S.J., Wils<strong>on</strong> S.A., Yu J., Wang J., Yang H. 2004. A genetic variati<strong>on</strong> map for chicken with<br />

2.8 milli<strong>on</strong> s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle-nucleotide polymorphisms. Internati<strong>on</strong>al Chicken Polymorphism Map<br />

C<strong>on</strong>sortium. Nature, 432(7018), 717-722.<br />

Wu Y., Cazorla O., Labeit D., Labeit S., Granzier H. 2000. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> tit<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> collagen<br />

underlie diastolic stiffness diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiac muscle. J. Mol. Cell. Cardiol. 32, 2151–<br />

2162.<br />

Wu T., S<strong>on</strong>g Z., Cai L., D<str<strong>on</strong>g>in</str<strong>on</strong>g>g X., Yu Q. 2005. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the dietary supplementati<strong>on</strong> with<br />

fructooligosaccharides <strong>on</strong> the excreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> phosphorus <str<strong>on</strong>g>in</str<strong>on</strong>g> Miichthys miiuy<br />

fries. J Zhejiang Univ Sci B. 6B(8), 798–802.<br />

Xi<strong>on</strong>g Y.L. 1994. My<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrillar prote<str<strong>on</strong>g>in</str<strong>on</strong>g> from different muscle fiber types: Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

biochemical <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>al properties <str<strong>on</strong>g>in</str<strong>on</strong>g> meat process<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Crit. Rev. Food Sci. Nutr. 34<br />

(3), 293-320<br />

Xu Z.R., Hu C.H., Xia M.S., Zhan X.A., Wang M.Q. 2003. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary<br />

fructooligosaccharide <strong>on</strong> digestive enzyme activities, <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>and</str<strong>on</strong>g> morphology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> male broilers. Poultry Sci. 82, 1030-1036.<br />

Yalç<str<strong>on</strong>g>in</str<strong>on</strong>g> S., Özkan S., Açikgöz Z., Özkan K. 1999. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary methi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>on</strong><br />

<strong>performance</strong>, carcass characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> breast meat compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heterozygous naked<br />

neck (Na/na+) birds under spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> summer c<strong>on</strong>diti<strong>on</strong>s. Br. Poult. Sci. 40, 688-694.<br />

Yang Y., Iji P.A., Choct M. 2009. Dietary modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gut micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler<br />

chickens: a review <str<strong>on</strong>g>of</str<strong>on</strong>g> the role <str<strong>on</strong>g>of</str<strong>on</strong>g> six k<str<strong>on</strong>g>in</str<strong>on</strong>g>ds <str<strong>on</strong>g>of</str<strong>on</strong>g> alternatives to <str<strong>on</strong>g>in</str<strong>on</strong>g>-feed antibiotics. Worlds<br />

Poultry Sci. J. 65, 97-114.<br />

168


Yeo J., Kim K. 1997. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g diets c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g an antibiotic, a probiotic, or Yucca<br />

extract <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al urease activity <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chicks. Poultry Sci. 76, 381–385.<br />

Young O.A, Bragg<str<strong>on</strong>g>in</str<strong>on</strong>g>s T.J., Barker G.J. 1994. Pyrid<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> ov<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular collagen.<br />

Meat Sci. 37, 297-303.<br />

Yusrizal X., Chen T.C. 2003a. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> add<str<strong>on</strong>g>in</str<strong>on</strong>g>g chicory fructans <str<strong>on</strong>g>in</str<strong>on</strong>g> feed <strong>on</strong> broiler growth<br />

<strong>performance</strong> serum cholesterol <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al length. Int. J. Poultry Sci. 2, 214-219.<br />

Yusrizal X., Chen T.C. 2003b. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> add<str<strong>on</strong>g>in</str<strong>on</strong>g>g chicory fructans <str<strong>on</strong>g>in</str<strong>on</strong>g> feed <strong>on</strong> fecal <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>and</str<strong>on</strong>g> excreta volatile amm<strong>on</strong>ia. Int. J Poultry Sci. 2, 188-194.<br />

Zeder M.A., Emshwiller E., Smith B.D, Bradley D.G. 2006. Document<str<strong>on</strong>g>in</str<strong>on</strong>g>g domesticati<strong>on</strong>:<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>tersecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genetics <str<strong>on</strong>g>and</str<strong>on</strong>g> archaeology. Trends Genet. 22 (3), 139–155.<br />

Zentek J., Marquart B., Pietrzak T.. 2002 Intest<str<strong>on</strong>g>in</str<strong>on</strong>g>al effects <str<strong>on</strong>g>of</str<strong>on</strong>g> mannanoligosaccharides,<br />

transgalactooligosacchaides, lactose <str<strong>on</strong>g>and</str<strong>on</strong>g> lactulose <str<strong>on</strong>g>in</str<strong>on</strong>g> dogs. J. Nutr. 132(6), 1682–1684.<br />

Zhai W., Neuman S., Latour M.A., Hester P.Y. 2008. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l-<br />

carnit<str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>on</strong> hatchability <str<strong>on</strong>g>of</str<strong>on</strong>g> White Leghorns. Poultry Sci. 87, 569–572.<br />

Zhan X.A., Wang M., Ren H., Zhao R.Q., Li J.X., Tan Z.L. 2007. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> early feed<br />

restricti<strong>on</strong> <strong>on</strong> metabolic programm<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> compensatory growth <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens.<br />

Poultry Sci. 86, 654-660.<br />

Zhou T.X., Chen Y.J., Yoo J.S., Huang Y., Lee J.H., Jang H.D., Sh<str<strong>on</strong>g>in</str<strong>on</strong>g> S.O., Kim H.J., Cho<br />

J.H., Kim I.H. 2009. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> chitooligosaccharide supplementati<strong>on</strong> <strong>on</strong> <strong>performance</strong>,<br />

blood characteristics, relative organ weight, <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality <str<strong>on</strong>g>in</str<strong>on</strong>g> broiler chickens. Poultry<br />

Sci. 88, 593–600.<br />

Zhou X., Wang Y., Gu Q., Li W. 2010. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary probiotic, Bacillus coagulans, <strong>on</strong><br />

growth <strong>performance</strong>, chemical compositi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Guangxi Yellow chicken.<br />

Poultry Sci. 89, 588–593.<br />

Zhu X.Y., Joerger, R.D. 2003. Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microbiota <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> mucus from<br />

cecae <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens as measured by fluorescence <str<strong>on</strong>g>in</str<strong>on</strong>g> situ hybridizati<strong>on</strong> with groupspecific,<br />

16S rRNAtargeted olig<strong>on</strong>ucleotide probes. Poultry Sci. 82, 1242-1249.<br />

Zhu X.Y., Zh<strong>on</strong>g T., P<str<strong>on</strong>g>and</str<strong>on</strong>g>aya Y., Joerger R.D. 2002. 16S rRNA-based analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microbiota from the caecum <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens. Appl. Envir<strong>on</strong>. Microbiol. 68, 124-137.<br />

169


Zhuang H., Savage E.M. 2010. Comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sensory descriptive flavor <str<strong>on</strong>g>and</str<strong>on</strong>g> texture<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g> cooked broiler breast fillets categorized by raw meat color lightness values.<br />

Poultry Sci. 89, 1049-1055.<br />

Zulkifli I., Abdullah N., Azr<str<strong>on</strong>g>in</str<strong>on</strong>g> N.M., Ho Y.W. 2000. Growth <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> immune<br />

resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> two commercial broiler stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s fed diets c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g Lactobacillus cultures <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

oxytetracycl<str<strong>on</strong>g>in</str<strong>on</strong>g>e under heat stress c<strong>on</strong>diti<strong>on</strong>s. Br. Poultry Sci. 41, 593–597.<br />

170


Index <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures<br />

Page<br />

Figure 1.1. Poultry meat producti<strong>on</strong> (2010) 13<br />

Figure 1.2. Stock <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry, share <str<strong>on</strong>g>of</str<strong>on</strong>g> world total (2010) 14<br />

Figure 1.3. Mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry (milli<strong>on</strong> heads, 2010) 15<br />

Figure 2.1. Draw<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> a midsagittal secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> egg 21<br />

Figure 2.2. Schematic representati<strong>on</strong> egg compartmentalizati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g 22<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong><br />

Figure 3.1. The digestive system <str<strong>on</strong>g>of</str<strong>on</strong>g> the chickens- general structure 24<br />

Figure 4.1 Bifidobacterium species found <str<strong>on</strong>g>in</str<strong>on</strong>g> animals 40<br />

Figure 4.2. Structures <str<strong>on</strong>g>of</str<strong>on</strong>g> sucrose <str<strong>on</strong>g>and</str<strong>on</strong>g> major RFOs (Avigad <str<strong>on</strong>g>and</str<strong>on</strong>g> Dey, 1997) 44<br />

Figure 6.1. Schematic representati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> 52<br />

Figure 7.1.a Diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle <str<strong>on</strong>g>and</str<strong>on</strong>g> associated c<strong>on</strong>nective 58<br />

tissues<br />

Figure 7.1b The fibrous microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> meat 59<br />

Figure 7.2. Collagen molecule 62<br />

Figure 7.3. Diagrammatic illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the molecular structure <str<strong>on</strong>g>of</str<strong>on</strong>g> collagen, 63<br />

tropocollagen <str<strong>on</strong>g>and</str<strong>on</strong>g> the am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid sequence. It shows the collagen fibril<br />

formati<strong>on</strong> (Jugde et al., 1989).<br />

Figure 7.4. The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the aldim<str<strong>on</strong>g>in</str<strong>on</strong>g>e b<strong>on</strong>d: A double b<strong>on</strong>d between<br />

64<br />

the am<str<strong>on</strong>g>in</str<strong>on</strong>g>o nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> the aldehyde carb<strong>on</strong> is formed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g crossl<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

The b<strong>on</strong>d is reducible at low pH <str<strong>on</strong>g>and</str<strong>on</strong>g> when heated (Bailey <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Light, 1989).<br />

Figure 7.5. Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> collagen dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g are shown 65<br />

Figure 7.6. Some ECM proteoglycans. The proteoglycans c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

65<br />

prote<str<strong>on</strong>g>in</str<strong>on</strong>g> core (brown) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e or more covalently attached<br />

glycosam<str<strong>on</strong>g>in</str<strong>on</strong>g>oglycan cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s (blue <str<strong>on</strong>g>and</str<strong>on</strong>g> yellow)(Esko et al. 2009)<br />

Figure 7.7.: Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular c<strong>on</strong>nective 67<br />

tissue dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g post mortem ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Figure 8.1. Deep pectoral myopathy (Bilgili et al., 2000) 74<br />

Figure 8.2. Pale, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t <str<strong>on</strong>g>and</str<strong>on</strong>g> exudative (PSE)-like broiler breast meat 75<br />

Figure 8.3. Broiler breast meat with poor cohesiveness 76<br />

Figure 8.4. Broiler breast meat with “white strip<str<strong>on</strong>g>in</str<strong>on</strong>g>g” defect 77<br />

Figure 9.1. Variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> breast meat (Pectoralis Major m.) shear value<br />

85<br />

(-●-), pyrid<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e (pyr) c<strong>on</strong>tent (- - ▲ - -) <str<strong>on</strong>g>and</str<strong>on</strong>g> collagen solubility<br />

(---▀---) with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g hen age<br />

Figure 10.1. General scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> bitter lup<str<strong>on</strong>g>in</str<strong>on</strong>g> seeds process<str<strong>on</strong>g>in</str<strong>on</strong>g>g 87<br />

Figure 11.1. Lactococcus lactis viewed by microscope 90<br />

Figure 11.2. Lactococcus lactis ssp. cremoris grown <strong>on</strong> GM17 plus<br />

tetracycl<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

91<br />

Figure 12.1. Broiler chicken (Ross 308) hatch<str<strong>on</strong>g>in</str<strong>on</strong>g>g eggs <str<strong>on</strong>g>and</str<strong>on</strong>g> Drobex Agro<br />

92<br />

commercial hatchery<br />

Figure 12.2 Egg c<str<strong>on</strong>g>and</str<strong>on</strong>g>l<str<strong>on</strong>g>in</str<strong>on</strong>g>g 92<br />

Figure 12.3. Five experimental soluti<strong>on</strong>s for <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> 93<br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued <strong>on</strong> next page<br />

171


Figure 12.4. In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> 93<br />

Figure 12.5. Hatched chickens 94<br />

Figure 12.6. Birds <str<strong>on</strong>g>in</str<strong>on</strong>g> collective cages 94<br />

Figure 12.7. Positi<strong>on</strong>s for the determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pH, muscle structure <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

96<br />

meat quality characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Pectoralis superficialis muscle<br />

Figure 13.1. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> symbiotic adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> pH 102<br />

decl<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens<br />

Figure 14.1. Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> radial muscle fibre 103<br />

Figure 14.2. Way <str<strong>on</strong>g>of</str<strong>on</strong>g> count<str<strong>on</strong>g>in</str<strong>on</strong>g>g the number <str<strong>on</strong>g>of</str<strong>on</strong>g> fibres 103<br />

Figure 15.1. Splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>of</str<strong>on</strong>g> fibers 109<br />

172


Index <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables<br />

Page<br />

Table 2.1. Approximate compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a 60g chicken egg 20<br />

Table 4.1. Expected characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> safety criteria <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics 33<br />

Table 4.2. List <str<strong>on</strong>g>of</str<strong>on</strong>g> probiotics applied or studied for applicati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> animal feed 34<br />

Table 4.3. Intest<str<strong>on</strong>g>in</str<strong>on</strong>g>al functi<strong>on</strong>s assigned to <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>s 41<br />

Table 6.1. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> research papers menti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 52<br />

substances<br />

Table 7.1. Proteolytic capacities <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to growth rate 1 60<br />

Table 7.2. Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> rigor mortis development <str<strong>on</strong>g>and</str<strong>on</strong>g> 61<br />

temperature <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry meat<br />

Table 8.1. Growth, fiber diameter, <str<strong>on</strong>g>and</str<strong>on</strong>g> fiber type <str<strong>on</strong>g>in</str<strong>on</strong>g> two stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken 1 70<br />

Table 12.1. Compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutritive value <str<strong>on</strong>g>of</str<strong>on</strong>g> the diets 95<br />

Table 13.1. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> 101<br />

slaughter traits, FCR <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens<br />

Table 14.1. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> pectoral<br />

muscle qualitative traits <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens<br />

Table. 15.1. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g>s adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong><br />

histopathological changes <str<strong>on</strong>g>in</str<strong>on</strong>g> pectoral muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens<br />

105<br />

108<br />

173


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Abbreviati<strong>on</strong>s<br />

Abbreviati<strong>on</strong>s<br />

PS<br />

RFOs<br />

FCR<br />

IMC<br />

US<br />

EU<br />

EFTA<br />

CIS<br />

BC<br />

AD<br />

GGP<br />

GP<br />

VLDL<br />

HDL<br />

GIT<br />

DNA<br />

G+C<br />

RNA<br />

IBD<br />

AGPs<br />

EFSA<br />

NE<br />

GRAS status<br />

QPS<br />

Ig<br />

LAB<br />

GALT<br />

CE<br />

OS<br />

NDOs<br />

FOS<br />

GOS<br />

TOS<br />

MOS<br />

SCFOS<br />

SCFA<br />

IMO<br />

IOF<br />

HMB<br />

ED<br />

ATP<br />

PSE<br />

ECM<br />

PGs<br />

Mean<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Pectoralis Superficialis<br />

Raff<str<strong>on</strong>g>in</str<strong>on</strong>g>ose Family Oligosaccharides<br />

Feed C<strong>on</strong>versi<strong>on</strong> Ratio<br />

Intramuscular collagen<br />

United States<br />

Europe Uni<strong>on</strong><br />

European Fair Trade Associati<strong>on</strong><br />

Comm<strong>on</strong>wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> Independent State<br />

before Christ<br />

after death<br />

great gr<str<strong>on</strong>g>and</str<strong>on</strong>g>parent generati<strong>on</strong><br />

gr<str<strong>on</strong>g>and</str<strong>on</strong>g>parent generati<strong>on</strong><br />

very low density lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

high density lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

gastro<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al tract<br />

deoxyrib<strong>on</strong>ucleic acid<br />

guan<str<strong>on</strong>g>in</str<strong>on</strong>g>e + cytos<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

rib<strong>on</strong>ucleic acid<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al bowel disease<br />

Antibiotics growth promoters<br />

European Food Safety Authority<br />

necrotic enteritis<br />

Generally Regarded As Safe status<br />

Qualified Presumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Safety<br />

immunoglobul<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Lactic acid bacteria<br />

Gut-Associated Lymphoid Tissue<br />

Competitive exclusi<strong>on</strong><br />

oligosaccharides<br />

n<strong>on</strong>-digestible oligosaccharides<br />

fructo-oligosaccharides<br />

galacto-oligosaccharides<br />

transgalacto-oligosaccharides<br />

mannano-oligosaccharides<br />

short-cha<str<strong>on</strong>g>in</str<strong>on</strong>g> fructooligosaccharide<br />

short cha<str<strong>on</strong>g>in</str<strong>on</strong>g> fatty acids<br />

isomaltooligosaccharide<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

β-hydroxy-β-methylbutyrate<br />

embry<strong>on</strong>ic day<br />

adenos<str<strong>on</strong>g>in</str<strong>on</strong>g>e triphosphate<br />

pale s<str<strong>on</strong>g>of</str<strong>on</strong>g>t exudative<br />

extracellular matrix<br />

proteoglycans<br />

c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued <strong>on</strong> next page<br />

174


TNF<br />

total number <str<strong>on</strong>g>of</str<strong>on</strong>g> fibers<br />

CSAF<br />

cross-secti<strong>on</strong>al area <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle fiber<br />

SR<br />

Sarcoplasmic Reticulum<br />

MFN<br />

muscle fiber number<br />

DPM<br />

Deep pectoral disease<br />

IMCT<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular c<strong>on</strong>nective tissue<br />

WHC<br />

water-hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity<br />

IMF<br />

Intramuscular fat<br />

EPA<br />

eicosapentaenoic<br />

DHA<br />

docosahexaenoic<br />

BSE<br />

Bov<str<strong>on</strong>g>in</str<strong>on</strong>g>e Sp<strong>on</strong>giform Encephalopathy<br />

CLA<br />

c<strong>on</strong>jugated l<str<strong>on</strong>g>in</str<strong>on</strong>g>oleic acid<br />

PUFA<br />

polyunsaturated fatty acids<br />

HLKNL<br />

hydroxylys<str<strong>on</strong>g>in</str<strong>on</strong>g>oket<strong>on</strong>orleuc<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

PYR<br />

pyrid<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

PC<br />

prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrate<br />

HDFP<br />

high dietary fiber product<br />

LE<br />

lup<str<strong>on</strong>g>in</str<strong>on</strong>g> extract<br />

HPLC<br />

high pressure liquid chromatography<br />

TLC<br />

th<str<strong>on</strong>g>in</str<strong>on</strong>g> layer chromatography<br />

FH<br />

hydrophobic<br />

GM17 glucose medium 17<br />

CF1<br />

fibrous cellulose<br />

cfu<br />

col<strong>on</strong>y-form<str<strong>on</strong>g>in</str<strong>on</strong>g>g unit<br />

HLP<br />

Hydroxylysylpyrid<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

BW<br />

body weight<br />

COS<br />

chitooligosaccarides<br />

SFA<br />

saturated fatty acid<br />

UFA<br />

unsaturated fatty acid<br />

NADH<br />

nicot<str<strong>on</strong>g>in</str<strong>on</strong>g>ammide aden<str<strong>on</strong>g>in</str<strong>on</strong>g>a d<str<strong>on</strong>g>in</str<strong>on</strong>g>ucleotide dehydrogenase<br />

175


LIST OF PUBLICATIONS<br />

Publicati<strong>on</strong> at C<strong>on</strong>ference/C<strong>on</strong>gress<br />

1. G. Maiorano, D. Cianciullo, A. Ciarlariello, A. Manchisi. 2009.“Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> rear<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

system <strong>on</strong> carcass traits <str<strong>on</strong>g>and</str<strong>on</strong>g> metacarpal b<strong>on</strong>es characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Italian Mer<str<strong>on</strong>g>in</str<strong>on</strong>g>o lambs”<br />

XVIII A S P A Nati<strong>on</strong>al C<strong>on</strong>gress, Palermo (Italy), 9 th -12 th June, 2009 p. 570;<br />

2. D. Cianciullo, A. Sławińska, G. Elm<str<strong>on</strong>g>in</str<strong>on</strong>g>owska-Wenda, M. Bednarczyk, G. Maiorano.<br />

2010. “In <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g>, probiotic <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong>s: effects <strong>on</strong> carcass traits<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality <str<strong>on</strong>g>in</str<strong>on</strong>g> Ross breed broilers”. Internati<strong>on</strong>al PhD Workshop <strong>on</strong> “Welfare,<br />

Biotechnology <str<strong>on</strong>g>and</str<strong>on</strong>g> Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Producti<strong>on</strong>” Ziel<strong>on</strong>ka (Pol<str<strong>on</strong>g>and</str<strong>on</strong>g>), 3 rd -7 th July,<br />

2010;<br />

2. G. Maiorano, S. Tavaniello, D. Cianciullo, M. Gambacorta. 2011.“<str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> slaughter<br />

weight <strong>on</strong> carcass traits <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Casertana pigs”. XIX ASPA Nati<strong>on</strong>al<br />

C<strong>on</strong>gress, Crem<strong>on</strong>a (Italy) 7 th –10 th June, 2011 (Poster);<br />

3. G. Maiorano, D. Cianciullo, S. Tavaniello, L. Morbid<str<strong>on</strong>g>in</str<strong>on</strong>g>i, A. Manchisi. 2011.“<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sex <strong>on</strong> meat quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Maremmano wild boar (Sus scr<str<strong>on</strong>g>of</str<strong>on</strong>g>a majori) x Duroc sow reared<br />

outdoors”. XIX ASPA Nati<strong>on</strong>al C<strong>on</strong>gress, Crem<strong>on</strong>a (Italy) 7 th –10 th Giugno, 2011;<br />

4. S. Tavaniello, D. Cianciullo, C. Abiuso, G. Maiorano. 2012. “<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> slaughter weight<br />

<strong>on</strong> carcass traits <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality <str<strong>on</strong>g>of</str<strong>on</strong>g> pigs reared outdoors”, VI Internati<strong>on</strong>al Scientific<br />

Symposium “Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific researches <str<strong>on</strong>g>in</str<strong>on</strong>g> pig producti<strong>on</strong> improvement <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

their <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> rural areas development”, Bydgoszcz–Torun, (Pol<str<strong>on</strong>g>and</str<strong>on</strong>g>), 20 th -22 th<br />

September 2012, p.219;<br />

5. D. Cianciullo, S. Tavaniello, M. Gambacorta, G. Iafelice, G. Maiorano. 2013.“<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

slaughter weight <strong>on</strong> carcass traits <str<strong>on</strong>g>and</str<strong>on</strong>g> meat quality <str<strong>on</strong>g>of</str<strong>on</strong>g> “Nero d’Asprom<strong>on</strong>te” pig reared<br />

outdoors” XX A S P A Nati<strong>on</strong>al C<strong>on</strong>gress, Bologna (Italy), 11 th -13 th June, 2013. (<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

press)<br />

Publicati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> Internati<strong>on</strong>al Journals with I.F.<br />

1. G. Maiorano, A. Ciarlariello, D. Cianciullo, S. Roychoudhury, A. Manchisi.<br />

2009.“<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> suckl<str<strong>on</strong>g>in</str<strong>on</strong>g>g management <strong>on</strong> productive <strong>performance</strong>, carcass traits <str<strong>on</strong>g>and</str<strong>on</strong>g> meat<br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Comisana lambs”. Meat Science, 83: 577-583;<br />

2. G. Maiorano, A. Ciarlariello, D. Cianciullo, A. Manchisi. 2009.“<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> suckl<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

management <strong>on</strong> productive <strong>performance</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass traits <str<strong>on</strong>g>of</str<strong>on</strong>g> Comisana lambs”. Italian<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Science vol. 8 (Suppl. 2), pp.510-512;<br />

3. G. Maiorano, S. Knaga, A. Witkowski, D. Cianciullo, M. Bednarczyk.<br />

2010.“Cholesterol c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tramuscular collagen properties <str<strong>on</strong>g>of</str<strong>on</strong>g> pectoralis superficialis<br />

muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> quail from different genetic groups.” Poultry Science, 90: 1620-1626;<br />

4. G. Maiorano, A. Sobolewska, D. Cianciullo, K. Walasik, G. Elm<str<strong>on</strong>g>in</str<strong>on</strong>g>owska-Wenda, A.<br />

Sławińska, S. Tavaniello, J. Zylińska, J. Bardowski, <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Bednarczyk. 2012. “Influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>ovo</str<strong>on</strong>g> <str<strong>on</strong>g>prebiotic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>synbiotic</str<strong>on</strong>g> adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrati<strong>on</strong> <strong>on</strong> meat quality <str<strong>on</strong>g>of</str<strong>on</strong>g> broiler chickens”.<br />

Poultry Science, 91:2963-2969.<br />

176

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!