25.01.2015 Views

Managing Synthetic CDO Tranches using Base Correlations

Managing Synthetic CDO Tranches using Base Correlations

Managing Synthetic CDO Tranches using Base Correlations

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Gaussian Copula Model (con’t)<br />

<br />

<br />

Standard Model Assumptions: One-factor Gaussian copula model<br />

F<br />

i<br />

( t)<br />

= Pr[ τ<br />

i<br />

< t]<br />

⇔ Φ(<br />

Zi<br />

) = F(<br />

ti<br />

)<br />

Two name example: condition on the market factor<br />

Z<br />

i<br />

= ρ Z + 1− ρε<br />

i<br />

X<br />

1<br />

⎧1<br />

= ⎨<br />

⎩0<br />

prob p ( z)<br />

1<br />

prob (1 − p ( z))<br />

1<br />

X<br />

2<br />

⎧1<br />

= ⎨<br />

⎩0<br />

prob p<br />

2<br />

( z)<br />

prob (1 − p<br />

2<br />

( z))<br />

Loss Distribution<br />

⎧0<br />

⎪<br />

l1<br />

L = ⎨<br />

⎪l2<br />

⎪<br />

⎩l1<br />

+ l<br />

2<br />

(1 − p ( z))(1<br />

− p<br />

p ( z)(1<br />

− p<br />

1<br />

2<br />

p ( z)<br />

p<br />

1<br />

1<br />

2<br />

2<br />

1<br />

( z)<br />

2<br />

( z))<br />

p ( z)(1<br />

− p ( z))<br />

( z))<br />

Tranche Pricing<br />

Derived from portfolio loss distribution<br />

⎧0<br />

L < a<br />

⎪<br />

L T<br />

= ⎨L<br />

− a a < L < b<br />

⎪<br />

⎩b<br />

− a b < L<br />

<br />

Many names …<br />

Use FFT (fast Fourier transforms) or recursive method (Andersen, Sidenius, Basu (2003)) to<br />

compute probabilities<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!