25.01.2015 Views

Influence of Soil Geochemical and Physical Properties on the ...

Influence of Soil Geochemical and Physical Properties on the ...

Influence of Soil Geochemical and Physical Properties on the ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> <str<strong>on</strong>g>Geochemical</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Physical</str<strong>on</strong>g> <str<strong>on</strong>g>Properties</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Sorpti<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Chromium(III)<br />

M. A. Stewart, P. M. Jardine,* M. O. Barnett, T. L. Mehlhorn, L. K. Hyder, <str<strong>on</strong>g>and</str<strong>on</strong>g> L. D. McKay<br />

ABSTRACT<br />

tively charged soil surfaces, (ii) <strong>the</strong> ability to form complex<br />

There are numerous Cr(III)-c<strong>on</strong>taminated sites <strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

molecules with organics found in <strong>the</strong> soil, <str<strong>on</strong>g>and</str<strong>on</strong>g> (iii)<br />

Defense (DoD) <str<strong>on</strong>g>and</str<strong>on</strong>g> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy (DOE) l<str<strong>on</strong>g>and</str<strong>on</strong>g>s that are <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxides <str<strong>on</strong>g>and</str<strong>on</strong>g> hydroxides <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r insolawaiting<br />

possible clean up <str<strong>on</strong>g>and</str<strong>on</strong>g> closure. Ingesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminated soil uble minerals in soil (Fendorf <str<strong>on</strong>g>and</str<strong>on</strong>g> Zasoski, 1992; Losi<br />

by children is <strong>the</strong> risk driver that generally motivates <strong>the</strong> likelihood et al., 1994; Dragun, 1998).<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> site remediati<strong>on</strong>. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to develop a simple<br />

When assessing <strong>the</strong> risks posed by Cr(VI) <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr(III),<br />

statistical model based <strong>on</strong> comm<strong>on</strong> soil properties to estimate <strong>the</strong><br />

bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III)-c<strong>on</strong>taminated soil up<strong>on</strong> ingesti<strong>on</strong>. Thirtychildren<br />

(Paustenbach, 1989; Davis et al., 1990; Sheehan<br />

<strong>the</strong> exposure pathway <str<strong>on</strong>g>of</str<strong>on</strong>g> most c<strong>on</strong>cern is ingesti<strong>on</strong> by<br />

five unc<strong>on</strong>taminated soils from seven major soil orders, whose properet<br />

al., 1991; Skowr<strong>on</strong>ski et al., 2001). Chromium(VI) is<br />

ties were similar to numerous U.S. DoD c<strong>on</strong>taminated sites, were<br />

treated with Cr(III) <str<strong>on</strong>g>and</str<strong>on</strong>g> aged. Statistical analysis revealed that Cr(III) c<strong>on</strong>sidered <strong>the</strong> most harmful <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxidative states since<br />

sorpti<strong>on</strong> (e.g., adsorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> surface precipitati<strong>on</strong>) by <strong>the</strong> soils was it is both a mutagen <str<strong>on</strong>g>and</str<strong>on</strong>g> a carcinogen at low sub-ppm<br />

str<strong>on</strong>gly correlated with <strong>the</strong> clay c<strong>on</strong>tent, total inorganic C, pH, <str<strong>on</strong>g>and</str<strong>on</strong>g> levels (Levis <str<strong>on</strong>g>and</str<strong>on</strong>g> Bianchi, 1982). Although Cr(III) is<br />

<strong>the</strong> cati<strong>on</strong> exchange capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soils. <str<strong>on</strong>g>Soil</str<strong>on</strong>g>s with higher quantities<br />

generally c<strong>on</strong>sidered less harmful to human health than<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> clay, inorganic C (i.e., carb<strong>on</strong>ates), higher pH, <str<strong>on</strong>g>and</str<strong>on</strong>g> higher cati<strong>on</strong><br />

exchange capacity generally sequestered more Cr(III). The amount its oxidized counterpart, it may be <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern due to its<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III) bioaccessible from <strong>the</strong> treated soils was determined with potential to oxidize to Cr(VI) <str<strong>on</strong>g>and</str<strong>on</strong>g> its ability to accumu-<br />

a physiologically based extracti<strong>on</strong> test (PBET) that was designed to late to very high solid phase c<strong>on</strong>centrati<strong>on</strong>s in some soils<br />

simulate <strong>the</strong> digestive process <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stomach. The bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> (Fendorf et al., 1992). The bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

Cr(III) varied widely as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil type with most soils limiting c<strong>on</strong>taminants in soils has been relatively well studied<br />

bioaccessibility to 45 <str<strong>on</strong>g>and</str<strong>on</strong>g> 30% after 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 100 d soil–Cr aging,<br />

(Linz <str<strong>on</strong>g>and</str<strong>on</strong>g> Nakles, 1997); however, <strong>the</strong> bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

respectively. Statistical analysis showed <strong>the</strong> bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III)<br />

<strong>on</strong> soil was again related to <strong>the</strong> clay <str<strong>on</strong>g>and</str<strong>on</strong>g> total inorganic carb<strong>on</strong> (TIC) soil-bound metals such as Cr has received less attenti<strong>on</strong><br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soil. Bioaccessibility decreased as <strong>the</strong> soil TIC c<strong>on</strong>tent (Ruby et al., 1996; Rodriguez et al., 1999; Skowr<strong>on</strong>ski<br />

increased <str<strong>on</strong>g>and</str<strong>on</strong>g> as <strong>the</strong> clay c<strong>on</strong>tent decreased. The model yielded an et al., 2001; Stewart et al., 2003), where <strong>the</strong> bioaccessibil-<br />

equati<strong>on</strong> based <strong>on</strong> comm<strong>on</strong> soil properties that could be used to ity is defined as that amount <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminant that is<br />

predict <strong>the</strong> Cr(III) bioaccessibility in soils with a reas<strong>on</strong>able level soluble due to simulated in vitro gastric functi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>fidence.<br />

has <strong>the</strong> potential to cross <strong>the</strong> intestinal wall (Hamel et<br />

al., 1998). Typically, calculated health risks are inappropriately<br />

based <strong>on</strong> a reference dose derived from studies<br />

T<br />

he presence <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium (Cr) in <strong>the</strong> envir<strong>on</strong>ment<br />

that use soluble aqueous metal species. The ubiquitous<br />

is widespread due to its usage in many industrial<br />

metal-sequestering properties <str<strong>on</strong>g>of</str<strong>on</strong>g> soil may significantly<br />

processes. The metallurgic, tanning, <str<strong>on</strong>g>and</str<strong>on</strong>g> plating induslower<br />

<strong>the</strong> bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr up<strong>on</strong> digesti<strong>on</strong>, which,<br />

tries are just a few examples <str<strong>on</strong>g>of</str<strong>on</strong>g> very comm<strong>on</strong> applicain<br />

turn may influence <strong>the</strong> decisi<strong>on</strong> for remediati<strong>on</strong> at<br />

ti<strong>on</strong>s, large <str<strong>on</strong>g>and</str<strong>on</strong>g> small, which use Cr <strong>on</strong> a daily basis<br />

(Nriagu <str<strong>on</strong>g>and</str<strong>on</strong>g> Nieboer, 1988). Chromium itself is <strong>the</strong>rmolators<br />

c<strong>on</strong>cerning <strong>the</strong> bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr in soil may<br />

c<strong>on</strong>taminated sites. Thus, acti<strong>on</strong> levels set by state regudynamically<br />

stable in two oxidative states: cati<strong>on</strong>ic Cr<br />

with a valence <str<strong>on</strong>g>of</str<strong>on</strong>g> three, Cr(III), <str<strong>on</strong>g>and</str<strong>on</strong>g> ani<strong>on</strong>ic Cr with a need to c<strong>on</strong>sider specific soil properties instead <str<strong>on</strong>g>of</str<strong>on</strong>g> using<br />

valence <str<strong>on</strong>g>of</str<strong>on</strong>g> six, Cr(VI). Chromium(VI) is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>sid- generic guidelines (Proctor et al., 1997).<br />

ered to be mobile in <strong>the</strong> envir<strong>on</strong>ment while <strong>the</strong> more The intent <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to show that Cr(III) can<br />

envir<strong>on</strong>mentally stable Cr(III) is c<strong>on</strong>sidered less mobile be str<strong>on</strong>gly sequestered by soil, which in turn influences<br />

(Chung et al., 1994; Patters<strong>on</strong> et al., 1997). There are its bioaccessibility. We developed a simple statistical<br />

several factors that c<strong>on</strong>tribute to <strong>the</strong> decreased mobility model based <strong>on</strong> measured soil properties to estimate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III) in soil: (i) str<strong>on</strong>g adsorpti<strong>on</strong> <strong>on</strong>to <strong>the</strong> nega- <strong>the</strong> bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III)-c<strong>on</strong>taminated soils up<strong>on</strong><br />

ingesti<strong>on</strong>. We show that comm<strong>on</strong> soil properties, which<br />

M.A. Stewart, P.M. Jardine, T.L. Mehlhorn, <str<strong>on</strong>g>and</str<strong>on</strong>g> L.K. Hyder, Envir<strong>on</strong>. are easily obtainable from <strong>the</strong> Nati<strong>on</strong>al Resource C<strong>on</strong>-<br />

Sci. Div., Oak Ridge, TN 37831-6038; M.O. Barnett, Dep. <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil servati<strong>on</strong> Service (NRCS) database, can be used to as-<br />

Engineering, 208 Harbert Engineering Center, Auburn Univ., AL sess Cr(III) bioaccessibility at c<strong>on</strong>taminated sites.<br />

36849-5337; <str<strong>on</strong>g>and</str<strong>on</strong>g> L.D. McKay, Dep. <str<strong>on</strong>g>of</str<strong>on</strong>g> Geological Sciences, Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Tennessee, Knoxville, TN 37996-1410. This research was sp<strong>on</strong>sored<br />

by <strong>the</strong> U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Defense (DoD) Strategic Envir<strong>on</strong>mental<br />

Research <str<strong>on</strong>g>and</str<strong>on</strong>g> Development Program. Oak Ridge Nati<strong>on</strong>al Lab is Abbreviati<strong>on</strong>s: DoD, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Defense; DOE, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

managed by <strong>the</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tennessee– Battelle LLC, under c<strong>on</strong>- Energy; PBET, physiologically based extracti<strong>on</strong> test; NRCS, Nati<strong>on</strong>al<br />

tract DE– AC05– 00OR22725 with <strong>the</strong> U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy. Resource C<strong>on</strong>servati<strong>on</strong> Service; CEC, cati<strong>on</strong> exchange capacity; DDI,<br />

Received 7 Nov. 2001. *Corresp<strong>on</strong>ding author (jardinepm@ornl.gov). double dei<strong>on</strong>ized; TOC, total organic carb<strong>on</strong>; TIC, total inorganic<br />

carb<strong>on</strong>; VIF, Variance Inflati<strong>on</strong> Factor; XAS, x-ray adsorpti<strong>on</strong> spectroscopy.<br />

Published in J. Envir<strong>on</strong>. Qual. 32:129–137 (2003).<br />

129


130 J. ENVIRON. QUAL., VOL. 32, JANUARY–FEBRUARY 2003<br />

METHODS<br />

missing informati<strong>on</strong> to <strong>the</strong> NRCS database. In general, data<br />

<str<strong>on</strong>g>Soil</str<strong>on</strong>g> Type <str<strong>on</strong>g>and</str<strong>on</strong>g> Characterizati<strong>on</strong><br />

generated in our laboratory was in excellent agreement with<br />

<strong>the</strong> NRCS database. <str<strong>on</strong>g>Soil</str<strong>on</strong>g> pH was determined using double<br />

A database <str<strong>on</strong>g>of</str<strong>on</strong>g> metal-c<strong>on</strong>taminated Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Defense dei<strong>on</strong>ized (DDI) water <str<strong>on</strong>g>and</str<strong>on</strong>g> 5 mM CaCl 2 in a 2:1 soluti<strong>on</strong>/solid<br />

(DoD) sites was obtained from <strong>the</strong> U.S. Army Envir<strong>on</strong>mental ratio. The pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> clear supernatant was measured with a<br />

Center, Aberdeen Proving Ground, Maryl<str<strong>on</strong>g>and</str<strong>on</strong>g>. Twenty (20) microprocessor i<strong>on</strong>alyzer/901 (Ori<strong>on</strong> Research, Beverly, MA)<br />

DoD Army facilities throughout <strong>the</strong> USA were chosen for using a combinati<strong>on</strong> glass <str<strong>on</strong>g>and</str<strong>on</strong>g> Calomel electrode (Beckman,<br />

c<strong>on</strong>siderati<strong>on</strong> based <strong>on</strong> <strong>the</strong> high c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr in <strong>the</strong>ir Fullert<strong>on</strong>, CA). Extractable ir<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> manganese oxides were<br />

soils <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> possible need for remediati<strong>on</strong> (Table 1). Because determined with dithi<strong>on</strong>ite–citrate–bicarb<strong>on</strong>ate (DCB) using<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> difficulty in obtaining actual c<strong>on</strong>taminated soils from <strong>the</strong> methods <str<strong>on</strong>g>of</str<strong>on</strong>g> Mehra <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong> (1960). Total organic car-<br />

<strong>the</strong>se sites, unc<strong>on</strong>taminated soils whose properties were simiby<br />

b<strong>on</strong> (TOC) <str<strong>on</strong>g>and</str<strong>on</strong>g> total inorganic carb<strong>on</strong> (TIC) were measured<br />

lar to <strong>the</strong> c<strong>on</strong>taminated soils were acquired <str<strong>on</strong>g>and</str<strong>on</strong>g> treated with<br />

combusti<strong>on</strong> <strong>on</strong> a Perkin-Elmer 2400 Series II CHNS/O<br />

Cr(III). The soil series present at <strong>the</strong> DoD sites <str<strong>on</strong>g>of</str<strong>on</strong>g> interest analyzer. <str<strong>on</strong>g>Soil</str<strong>on</strong>g> TOC was determined <strong>on</strong> pretreated samples to<br />

were identified using <str<strong>on</strong>g>Soil</str<strong>on</strong>g> C<strong>on</strong>servati<strong>on</strong> Survey documents. remove TIC, which involved a near-boiling, 3 M HCl extrac-<br />

The USDA-NRCS database was <strong>the</strong>n utilized to locate ped<strong>on</strong> ti<strong>on</strong> method <strong>on</strong> agitated samples. <str<strong>on</strong>g>Soil</str<strong>on</strong>g> TIC was computed<br />

numbers associated with each soil series. The NRCS was c<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g><br />

from <strong>the</strong> difference between total soil C (no pretreatment)<br />

tacted <str<strong>on</strong>g>and</str<strong>on</strong>g> in most cases 200 g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> A-horiz<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> upper<br />

TOC.<br />

B-horiz<strong>on</strong> soil were obtained for each soil series (Table 1).<br />

Two additi<strong>on</strong>al soils were obtained from <strong>the</strong> Oak Ridge Reser- C<strong>on</strong>taminant Additi<strong>on</strong> to <str<strong>on</strong>g>Soil</str<strong>on</strong>g><br />

vati<strong>on</strong> in eastern Tennessee, which also had properties similar<br />

Ten grams <str<strong>on</strong>g>of</str<strong>on</strong>g> soil was placed in a 200-mL glass centrifuge<br />

to DoD sites in <strong>the</strong> sou<strong>the</strong>ast USA. Thirty-five soils were<br />

vessel al<strong>on</strong>g with 100 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 ppm Cr(III) as CrCl 3 ,pH<br />

acquired <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>se encompassed seven major soil orders<br />

4.0. The slurry was agitated <strong>on</strong> a reciprocal shaker for 2 d,<br />

(Table 1).<br />

centrifuged, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> supernatant decanted for analysis. This<br />

<str<strong>on</strong>g>Soil</str<strong>on</strong>g>s were disaggregated with gentle grinding using a mortar<br />

was repeated three more times. After <strong>the</strong> forth additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> pestle <str<strong>on</strong>g>and</str<strong>on</strong>g> sieved to provide a soil fracti<strong>on</strong> 250 m. It<br />

Cr, <strong>the</strong> soils were washed three times with DDI water <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

is this smaller size material that is more comm<strong>on</strong>ly ingested by<br />

allowed to air dry. Once <strong>the</strong> soils were dry, <strong>the</strong>y were gently<br />

children since it adheres more readily to <strong>the</strong> h<str<strong>on</strong>g>and</str<strong>on</strong>g> (Sheppard et<br />

crushed, homogenized, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n wetted with DDI water to<br />

al., 1995; Rodriguez et al., 1999). <str<strong>on</strong>g>Soil</str<strong>on</strong>g> properties were obtained<br />

achieve a 30% moisture c<strong>on</strong>tent. The soils were kept in a<br />

from (i) <strong>the</strong> NRCS database <str<strong>on</strong>g>and</str<strong>on</strong>g> (ii) repeated or additi<strong>on</strong>al<br />

c<strong>on</strong>tainer out <str<strong>on</strong>g>of</str<strong>on</strong>g> direct light <str<strong>on</strong>g>and</str<strong>on</strong>g> maintained at 30% water<br />

measurements in our laboratory. <str<strong>on</strong>g>Soil</str<strong>on</strong>g> properties included pH,<br />

c<strong>on</strong>tent in a moisture saturated envir<strong>on</strong>ment. <str<strong>on</strong>g>Soil</str<strong>on</strong>g>s were incucati<strong>on</strong><br />

exchange capacity (CEC), Fe- <str<strong>on</strong>g>and</str<strong>on</strong>g> Mn-oxide c<strong>on</strong>tent,<br />

bated in this manner for <strong>the</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> study (i.e., at<br />

particle size distributi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> total organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic C<br />

least 100 d).<br />

(Table 2). Repetitive or additi<strong>on</strong>al measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> soil pH,<br />

Fe- <str<strong>on</strong>g>and</str<strong>on</strong>g> Mn-oxide c<strong>on</strong>tent, <str<strong>on</strong>g>and</str<strong>on</strong>g> total organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic C<br />

<strong>on</strong> all soils were performed to verify <strong>the</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> provide Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Chromium <strong>on</strong> <str<strong>on</strong>g>Soil</str<strong>on</strong>g><br />

Total Cr <strong>on</strong> <strong>the</strong> soil was determined using a modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Table 1. U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Defense Army bases with <strong>the</strong>ir asso-<br />

EPA method 3052. The soil was digested in a CEM microwave,<br />

ciated soil series designati<strong>on</strong>s.<br />

model MDS-81D, with hydr<str<strong>on</strong>g>of</str<strong>on</strong>g>luoric <str<strong>on</strong>g>and</str<strong>on</strong>g> nitric acid. Boric acid<br />

Facility locati<strong>on</strong><br />

was added before sample analysis to facilitate <strong>the</strong> removal<br />

Army bases by soil order by state <str<strong>on</strong>g>Soil</str<strong>on</strong>g> series <str<strong>on</strong>g>of</str<strong>on</strong>g> hydr<str<strong>on</strong>g>of</str<strong>on</strong>g>luoric acid from soluti<strong>on</strong> through <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ultisol<br />

fluoroboric acid. <str<strong>on</strong>g>Soil</str<strong>on</strong>g>s from <strong>the</strong> Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Stan-<br />

Holst<strong>on</strong> AAP Tennessee Allen dards, with known c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> solid phase Cr, were also<br />

Fort Gillem Georgia Cecil analyzed with each block <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis. Samples were stored<br />

ORNL† Tennessee Minvale<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> analyzed for total Cr using inductively coupled plasma.<br />

Alfisol<br />

Seneca AD<br />

Indiana AAP<br />

New York<br />

Indiana<br />

Angola<br />

Crider In Vitro Bioaccessibility<br />

Bluegrass Facility Kentucky Lawrence<br />

Ft. Knox Kentucky Lenberg A physiologically based extracti<strong>on</strong> test (PBET) was adapted<br />

Lexingt<strong>on</strong> Facility—LBAD Kentucky Lenberg from Ruby et al. (1996, 1999; Ruby, pers<strong>on</strong>al communicati<strong>on</strong>,<br />

Inceptisol<br />

2000) to assess <strong>the</strong> in vitro bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III) from<br />

Letterkenny AD Pennsylvania Berks c<strong>on</strong>taminated soils in humans. The method is designed to<br />

ARDEC (Picatinny Arsenal) New Jersey Rockaway<br />

simulate <strong>the</strong> stomach digestive system in humans. The PBET<br />

Letterkenny Pennsylvania Weikert<br />

ORNL† Tennessee M<strong>on</strong>tevello method has been shown to agree with in vivo studies involving<br />

Spodosol<br />

Pb-c<strong>on</strong>taminated soils (Ruby et al., 1996) as well as As-c<strong>on</strong>-<br />

Stratford Army Engine Plant C<strong>on</strong>necticut Charlt<strong>on</strong> taminated soils (Rodriguez et al., 1999); however, limited data<br />

Mollisol<br />

is currently available in <strong>the</strong> literature that evaluates Cr bio-<br />

Kansas AAP Kansas Dennis availability in c<strong>on</strong>taminated soils using in vivo methods<br />

Lake City AAP Missouri Sibley (Witmer et al., 1989, 1991; Gargas et al., 1994), <str<strong>on</strong>g>and</str<strong>on</strong>g> this data<br />

Aridisol<br />

does not appear useful for cross-correlating with <strong>the</strong> results<br />

Ft. Wingate New Mexico Doakum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> current study. Never<strong>the</strong>less, <strong>the</strong> PBET method can<br />

Tolle Army Depot Utah Kzin<br />

Desert Chem. Depot Utah Kzin<br />

serve as a useful approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr bioavailability until in<br />

Dugway Utah Kzin<br />

vivo studies become available to validate <strong>the</strong> methods credibil-<br />

Hawthorne Nevada Oricto ity with regard to Cr.<br />

Pueblo Chem. Depot Colorado St<strong>on</strong>eham In <strong>the</strong> current study, triplicate 0.39 g moist samples (0.3 g<br />

Entisol<br />

dry wt) were placed in 50 mL polyethylene tubes to which<br />

Savanna Depot Activity Illinois Wakel<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

30 mL 0.4 M glycine at pH 1.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 37C was added. The<br />

† Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy sites at <strong>the</strong> Oak Ridge Nati<strong>on</strong>al Laboratory. slurries were quickly placed in a rotating water bath <str<strong>on</strong>g>of</str<strong>on</strong>g> 37C


STEWART ET AL.: BIOACCESSIBILITY OF CR(III) IN SOIL 131<br />

Table 2. Select soil chemical <str<strong>on</strong>g>and</str<strong>on</strong>g> physical properties.†<br />

TOC TIC Clay Silt Fe Mn CEC pH pH<br />

% g/kg cmol c /kg 5 mM CaCl 2 DDI<br />

Ultisol<br />

Allen A 1.55 0.56 8.7 29.5 6.95 0.31 7.7 4.59 5.05<br />

Allen Ba 0.19 0.09 14.9 28.4 18.96 0.10 1.3 4.30 4.74<br />

Cecil Ap 1.64 0.39 10.2 23.0 6.01 0.06 5.8 4.04 4.47<br />

Cecil Bt1 0.29 0.21 44.8 15.5 32.56 0.11 1.6 4.44 4.48<br />

Minvale Ap 1.89 0.99 6.1 59.0 7.71 1.51 6.0 6.01 6.61<br />

Minvale Bt1 0.10 0.07 23.6 44.2 19.55 0.16 4.0 4.30 5.17<br />

Alfisol<br />

Lawrence Apl 0.91 0.59 19.5 48.5 11.17 1.35 5.8 4.97 5.27<br />

Lawrence Btl 0.11 0.10 25.8 38.3 17.53 0.29 3.7 4.28 4.91<br />

Angola Ap 3.72 0.96 32.1 56.1 23.28 1.23 6.7 5.29 5.48<br />

Crider Ap 0.55 0.39 22.5 75.8 13.34 0.72 5.6 6.57 6.84<br />

Crider B2lt 0.21 0.13 30.9 67.2 13.38 0.30 5.4 5.27 5.63<br />

Lenberg A 3.41 1.01 49.1 44.5 12.94 1.37 7.9 5.92 6.06<br />

Lenberg Btl 0.36 0.25 64.7 29.5 15.69 0.12 5.5 4.35 4.77<br />

Inceptisol<br />

Berks A 2.72 1.01 15.7 46.6 13.18 0.15 9.1 3.65 3.91<br />

Rockaway A1 3.54 1.49 12.4 34.8 14.03 0.52 10.6 3.86 3.98<br />

Rockaway B2t 0.21 0.18 12.6 32.1 17.34 0.16 3.7 4.10 4.41<br />

Weikert Ap 3.97 2.37 24.4 56.2 21.41 6.47 13.3 4.44 4.70<br />

Weikert Be 2.01 1.15 23.9 54.3 28.98 5.42 8.0 4.28 4.65<br />

M<strong>on</strong>tevello A 3.55 0.62 6.0 69.0 10.68 1.42 8.0 6.91 7.18<br />

M<strong>on</strong>tevello B 0.42 0.26 19.0 42.2 22.07 0.17 14.0 4.23 4.87<br />

Spodosol<br />

Charlt<strong>on</strong> A2 2.30 0.40 2.9 28.7 1.33 0.00 11.7 3.15 3.57<br />

Mollisol<br />

Dennis Ap 1.32 0.89 15.9 66.1 15.11 0.60 8.7 5.82 6.08<br />

Dennis Ba 0.38 0.41 29.7 57.5 24.29 0.59 4.4 4.77 5.28<br />

Sibley A 1.06 0.49 23.5 69.7 8.23 0.67 7.1 6.36 6.66<br />

Sibley B1 0.72 0.52 26.9 68.0 9.11 0.59 6.8 6.36 6.76<br />

Aridisol<br />

Doakum Ab 0.28 0.08 10.8 24.8 4.74 0.19 6.9 6.94 7.42<br />

Doakum Bt 0.39 0.18 29.3 15.0 6.86 0.16 7.0 6.87 7.39<br />

Kzin A2 3.27 1.35 22.2 44.2 4.07 0.29 13.3 7.74 7.87<br />

Kzin Bk 3.40 1.88 27.0 38.5 3.26 0.18 10.0 7.80 7.88<br />

Oricto A2 0.09 0.94 10.2 34.7 2.92 0.34 13.7 8.72 9.60<br />

Oricto Bt 0.16 1.10 23.2 27.5 3.16 0.29 8.6 9.01 9.60<br />

St<strong>on</strong>eham A 1.45 0.71 16.2 41.4 3.40 0.26 10.1 6.43 6.83<br />

St<strong>on</strong>eham Bt1 0.66 0.32 21.4 23.2 2.20 0.20 7.8 6.80 7.15<br />

Entisol<br />

Wakel<str<strong>on</strong>g>and</str<strong>on</strong>g> Ap 0.92 0.00 23.8 64.7 8.82 0.71 6.1 5.86 6.09<br />

Wakel<str<strong>on</strong>g>and</str<strong>on</strong>g> Cg1 0.56 0.25 21.1 66.4 9.18 0.80 5.7 5.77 6.07<br />

† TOC, total organic carb<strong>on</strong>; TIC, total inorganic carb<strong>on</strong>; CEC, cati<strong>on</strong> exchange capacity; DDI, double dei<strong>on</strong>ized.<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> agitated at 30 2 rpm for 1 h. Supernatant was separated Chromium(VI) was measured using a modified s-diphenylcarbohydrazide<br />

from <strong>the</strong> solid via centrifugati<strong>on</strong>. The pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> supernatant<br />

colormetric method (Bartlett <str<strong>on</strong>g>and</str<strong>on</strong>g> James,<br />

was measured to ensure that <strong>the</strong> final pH was within 0.5 pH 1979) using a UV-VIS spectrophotometer at wavelength 540<br />

units <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> initial pH. This scenario held for all cases. Thus, m (HP model 8453, Palo Alto, CA). Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(VI) was<br />

bioaccessibility was calculated as:<br />

performed immediately <strong>on</strong> rapidly cooled PBET soluti<strong>on</strong>s to<br />

avoid possible reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(VI) to Cr(III) by glycine (Jar-<br />

% Bioaccessibility dine et al., 1999). Independent studies revealed that Cr(VI)<br />

reducti<strong>on</strong> by glycine at 37C <str<strong>on</strong>g>and</str<strong>on</strong>g> 1 h was insignificant. Total<br />

Cr was measured <strong>on</strong> a Perkin Elmer AAnalyst 800 atomic<br />

absorpti<strong>on</strong> spectrophotometer (Wellseley, PA). St<str<strong>on</strong>g>and</str<strong>on</strong>g>ards<br />

A multiple regressi<strong>on</strong> technique in <strong>the</strong> statistical s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware<br />

package SigmaStat 2.0 (J<str<strong>on</strong>g>and</str<strong>on</strong>g>el Scientific) was used to derive<br />

an expressi<strong>on</strong> that related Cr(III) sorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> bioaccessibility<br />

to comm<strong>on</strong> soil properties. The model was run using forward<br />

stepwise regressi<strong>on</strong> to determine <strong>the</strong> most salient soil proper-<br />

ties for calculating sorpti<strong>on</strong> or bioaccessibility. Multiple linear<br />

regressi<strong>on</strong> was <strong>the</strong>n employed to determine <strong>the</strong> linear equati<strong>on</strong><br />

to use when computing <strong>the</strong> Cr(III) sorpti<strong>on</strong> or bioaccessibility<br />

based <strong>on</strong> <strong>the</strong> important soil properties previously ascertained.<br />

The PBET pH <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5 simulates <strong>the</strong> most aggressive stomach<br />

digestive scenario, which is a c<strong>on</strong>diti<strong>on</strong> indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> human<br />

fasting. C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> higher pH, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> food intake,<br />

would most likely decrease Cr bioaccessability even more<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>oundly than <strong>the</strong> results presented in <strong>the</strong> current study,<br />

thus <str<strong>on</strong>g>of</str<strong>on</strong>g>fering a potential avenue for future research. Both<br />

Ruby et al. (1996) <str<strong>on</strong>g>and</str<strong>on</strong>g> Yang et al. (2002) found that soil Pb<br />

bioaccessibility was str<strong>on</strong>gly pH dependent with soluble Pb<br />

decreasing pr<str<strong>on</strong>g>of</str<strong>on</strong>g>oundly over a pH range <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5 to 4.0.<br />

Chromium Analysis<br />

The PBET supernatant, soil spiking soluti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> equilibrium<br />

soluti<strong>on</strong> were measured for Cr(VI) <str<strong>on</strong>g>and</str<strong>on</strong>g> total Cr (Cr T ).<br />

Cr in PBET supernatant (g/mL) <br />

<br />

30.0 mL 0.3 g dry soil<br />

Cr <strong>on</strong> soil surface (mg/kg) 100 were made using an atomic absorpti<strong>on</strong> Cr st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard (EM Industries,<br />

Hawthorne, NY). Chromium(III) was calculated as<br />

<strong>the</strong> difference between Cr T <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr(VI).<br />

Modeling


132 J. ENVIRON. QUAL., VOL. 32, JANUARY–FEBRUARY 2003<br />

RESULTS AND DISCUSSION<br />

soils can be explained by <strong>the</strong> differences in soil properties.<br />

Multiple linear regressi<strong>on</strong> showed that four soil<br />

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> <str<strong>on</strong>g>Properties</str<strong>on</strong>g><br />

properties were important in determining <strong>the</strong> amount<br />

<strong>on</strong> Chromium Sorpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cr adsorbed by <strong>the</strong> soils: pH, total inorganic carb<strong>on</strong><br />

Chromium sorpti<strong>on</strong> (i.e., adsorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> surface preity<br />

(TIC) c<strong>on</strong>tent, clay c<strong>on</strong>tent, <str<strong>on</strong>g>and</str<strong>on</strong>g> cati<strong>on</strong> exchange capaccipitati<strong>on</strong>)<br />

by <strong>the</strong> 35 soils varied markedly with values<br />

(CEC). The relati<strong>on</strong>ship describing Cr adsorpti<strong>on</strong> was:<br />

ranging from 736 mg/kg to 17 460 mg/kg (Table 3).<br />

Sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III) was independent <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong> type<br />

Cr(III) (mg/kg <strong>on</strong> soil) 12 666.3 <br />

where no distinct trend between A- <str<strong>on</strong>g>and</str<strong>on</strong>g> B-horiz<strong>on</strong>s was<br />

(113.8 % clay) (364.6 CEC) <br />

evident. The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soils adsorbed between<br />

approximately 3000 mg/kg to approximately 6000 mg/<br />

(1743.2 % TIC) (1916.7 soil pH)<br />

kg with four soils as high as approximately 18 000 mg/ Chromium(III) sorpti<strong>on</strong> by <strong>the</strong> soils was str<strong>on</strong>gly cor-<br />

kg. These four soils were all Aridisols <str<strong>on</strong>g>and</str<strong>on</strong>g> are noted related with <strong>the</strong>se soil properties (r 2 0.794) suggesting<br />

for <strong>the</strong>ir high soil pH <str<strong>on</strong>g>and</str<strong>on</strong>g> for <strong>the</strong>ir high TIC c<strong>on</strong>tent. that nearly 80% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variability in Cr(III) sorpti<strong>on</strong><br />

Observed Cr(III) loading levels <strong>on</strong> many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se differ- could be described by pH, TIC, clay, <str<strong>on</strong>g>and</str<strong>on</strong>g> CEC (Table 4).<br />

ent soil types were similar to those measured <strong>on</strong> actual Incorporating <strong>the</strong> o<strong>the</strong>r measured soil properties from<br />

c<strong>on</strong>taminated soils from <strong>the</strong> DoD sites. For example, Table 2 (e.g., Fe-oxide c<strong>on</strong>tent, TOC, etc.) did not imactual<br />

c<strong>on</strong>taminated Kzin soil (Xeric Torrior<strong>the</strong>nts) prove <strong>the</strong> model fit. In fact, TIC could have been re-<br />

from <strong>the</strong> Desert Chemical Depot c<strong>on</strong>tained 27 000 mg moved from <strong>the</strong> model if necessary, since <strong>the</strong> o<strong>the</strong>r three<br />

Cr/kg soil. Artificially c<strong>on</strong>taminated Kzin soils in this independent soil variables could describe approximately<br />

study c<strong>on</strong>tained approximately 18 000 mg Cr/kg soil. 77% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variability in Cr(III) sorpti<strong>on</strong>. The four-<br />

The large c<strong>on</strong>trast in Cr(III) sorpti<strong>on</strong> by <strong>the</strong> various parameter model above was statistically rigorous at <strong>the</strong><br />

95% c<strong>on</strong>fidence level since P values for <strong>the</strong> independent<br />

Table 3. Chromium(III) solid phase c<strong>on</strong>centrati<strong>on</strong>s <strong>on</strong> <strong>the</strong> varicluded<br />

that <strong>the</strong> independent variables, <strong>the</strong> soil proper-<br />

variables were all 0.05 (Table 4). Thus, it can be c<strong>on</strong>ous<br />

soils <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir corresp<strong>on</strong>ding bioaccessibility after 1 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

100 d aging. ties, significantly c<strong>on</strong>tribute to predicting <strong>the</strong> dependent<br />

1 day % 100 day % variable, Cr sorpti<strong>on</strong>. The Variance inflati<strong>on</strong> factor (VIF)<br />

C T <strong>on</strong> soil Cr(III) bioaccessible Cr(III) bioaccessible also suggested that collinearity between independent<br />

Ultisol<br />

mg/kg<br />

variables was not significant (Table 4). Values for VIF<br />

Allen A 940.32 16.37 8.13 that are 1.0 or slightly larger suggest that <strong>the</strong> variables<br />

Allen Ba 736.15 31.11 17.98<br />

do not show multicollinearity <str<strong>on</strong>g>and</str<strong>on</strong>g> that <strong>the</strong> parameter<br />

Cecil Ap 1 342.49 18.84 9.90<br />

Cecil Bt1 2 333.76 41.77 28.34 estimates are reliable. Collinearity becomes an issue<br />

Minvale Ap 2 261.67 15.88 8.55 when values <str<strong>on</strong>g>of</str<strong>on</strong>g> VIF exceed 4.0. This model also passed<br />

Minvale Bt1 1 294.09 54.65 35.52<br />

<strong>the</strong> Normality Test (indicating that <strong>the</strong> data was nor-<br />

Alfisol<br />

Lawrence Ap1 2 586.96 26.03 11.62 mally distributed) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> C<strong>on</strong>stant Variance Test (sug-<br />

Lawrence Bt1 2 359.18 41.48 28.10 gesting that <strong>the</strong> variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dependent variables<br />

Angola Ap 9 408.00 32.40 16.58 was c<strong>on</strong>stant). One <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> most important criteria <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

Crider Ap 3 719.38 33.90 22.88<br />

Crider B21t 4 247.30 50.30 32.35 successful model, however, is <strong>the</strong> true physical signifi-<br />

Lenberg A 8 169.92 30.27 20.28 cance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> model parameters. Our model suggests that<br />

Lenberg Bt1 7 254.84 50.89 41.63<br />

Cr(III) sorpti<strong>on</strong> is enhanced by higher soil pH, more<br />

Inceptisol<br />

TIC (i.e., carb<strong>on</strong>ates), more clay, <str<strong>on</strong>g>and</str<strong>on</strong>g> higher CEC. For<br />

Berks A 2 275.20 18.77 7.67<br />

Rockaway A1 2 482.08 11.62 6.46 a sparingly soluble cati<strong>on</strong>, such as Cr(III), <strong>the</strong>se soil<br />

Rockaway B2t 1 525.58 32.96 22.36 c<strong>on</strong>diti<strong>on</strong>s should enhance sequestrati<strong>on</strong> as <strong>the</strong> model<br />

Weikert Ap 5 561.77 12.21 5.62<br />

Weikert Be 3 229.97 19.73 10.35 suggests.<br />

M<strong>on</strong>tevello A 5 925.66 19.03 7.03 The pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soil affects <strong>the</strong> solubility <str<strong>on</strong>g>and</str<strong>on</strong>g> form<br />

M<strong>on</strong>tevello B 2 751.57 47.71 26.23<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore affects sorpti<strong>on</strong>. As <strong>the</strong> soil pH<br />

Spodosol<br />

increases, <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <strong>on</strong> <strong>the</strong> soil increases. At low<br />

Charlt<strong>on</strong> A2 1 721.95 27.65 21.26<br />

pH, Cr(III) is adsorbed or complexed <strong>on</strong> soil negative<br />

Mollisol<br />

charges; at higher soil pH values, 5.5, Cr precipitates<br />

Dennis Ap 3 577.05 19.43 13.67<br />

Dennis Ba 3 521.90 33.61 26.68<br />

Sibley A 4 436.16 29.78 20.50<br />

Sibley B1 4 689.17 36.36 25.37<br />

Table 4. Parameter estimates, st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard errors, <str<strong>on</strong>g>and</str<strong>on</strong>g> statistics obtained<br />

from a multiple linear regressi<strong>on</strong> analysis that related<br />

soil properties to Cr(III) sorpti<strong>on</strong>.†<br />

Aridisol<br />

Doakum Ab 2 507.82 31.19 16.60<br />

Doakum Bt 5 964.29 39.40 32.77<br />

Kzin A2 16 306.33 17.22 14.00<br />

Parameter Value SE P VIF<br />

Kzin Bk 12 452.82 24.03 19.81 Intercept 12 666.3 1 794.5 0.001 –<br />

Oricto A2 17 460.00 13.66 10.26 % Clay 113.8 30.4 0.001 1.119<br />

Oricto Bt 15 964.28 18.45 16.44 pH in DDI 1 916.7 250.7 0.001 1.079<br />

St<strong>on</strong>eham A 4 377.44 29.27 18.97 CEC, cmol c /kg 364.6 155.7 0.026 1.902<br />

St<strong>on</strong>eham Bt1 4 599.44 33.70 24.82 % TIC 1 743.2 850.1 0.049 1.670<br />

Entisol<br />

r 2 0.794 0.001<br />

Wakel<str<strong>on</strong>g>and</str<strong>on</strong>g> Ap 4 262.61 32.33 21.08<br />

Wakel<str<strong>on</strong>g>and</str<strong>on</strong>g> Cg1 3 802.32 37.68 24.79<br />

† DDI, double dei<strong>on</strong>ized; CEC, cati<strong>on</strong> exchange capacity; TIC, total inorganic<br />

carb<strong>on</strong>; VIF, Variance Inflati<strong>on</strong> Factor.


STEWART ET AL.: BIOACCESSIBILITY OF CR(III) IN SOIL 133<br />

as hydroxides covering <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soil (Bartlett to actual DoD-c<strong>on</strong>taminated soils. In general, <strong>the</strong> A-horiz<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Kimble, 1976). It was presumed by Bartlett <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

soils had <strong>the</strong> lowest percent bioaccessible values,<br />

Kimble (1976) <str<strong>on</strong>g>and</str<strong>on</strong>g> James <str<strong>on</strong>g>and</str<strong>on</strong>g> Bartlett (1983) that <strong>the</strong> even when <strong>the</strong>y adsorb more Cr(III) <strong>on</strong> <strong>the</strong> soil vs. <strong>the</strong><br />

Cr(III) precipitit c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> macromolecules with Cr B horiz<strong>on</strong>s (Table 3). Bioaccessibility did not appear to<br />

i<strong>on</strong>s in six coordinati<strong>on</strong> with water <str<strong>on</strong>g>and</str<strong>on</strong>g> hydroxy groups. be a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil order, suggesting that detailed soil<br />

Studies by Fendorf et al. (1994) <str<strong>on</strong>g>and</str<strong>on</strong>g> Fendorf <str<strong>on</strong>g>and</str<strong>on</strong>g> Sparks series data, as is used in <strong>the</strong> current study, was necessary<br />

(1994), using x-ray adsorpti<strong>on</strong> spectroscopy (XAS), for predictive purposes (Table 3, Fig. 1a–e). Chromium(VI)<br />

showed that with a low Cr(III) surface coverage <strong>the</strong><br />

was also measured in <strong>the</strong> PBET extractant to<br />

principle mechanism was adsorpti<strong>on</strong> with an inner-sphere m<strong>on</strong>itor for oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III) to Cr(VI). The proporm<strong>on</strong>odentate<br />

complex <strong>on</strong> <strong>the</strong> silica. With increased sur- ti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bioaccessible Cr that was Cr(VI) was always<br />

face coverage (20%), precipitati<strong>on</strong> likely occurred <str<strong>on</strong>g>and</str<strong>on</strong>g> 1%, suggesting that oxidati<strong>on</strong> reacti<strong>on</strong>s were minimal<br />

became <strong>the</strong> dominant sorpti<strong>on</strong> mechanism.<br />

or that any oxidati<strong>on</strong> products <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(VI) were tightly<br />

As with pH, TIC or carb<strong>on</strong>ate c<strong>on</strong>tent in soils en- held by <strong>the</strong> soil. These results are c<strong>on</strong>sistent with <strong>the</strong><br />

hanced Cr(III) sorpti<strong>on</strong>. The mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> increased data presented by Stewart et al. (2003), which showed<br />

sequestrati<strong>on</strong> is most likely a localized pH effect at <strong>the</strong> limited bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(VI) in several soils.<br />

carb<strong>on</strong>ate surface, which promotes <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> As dem<strong>on</strong>strated by Stewart et al. (2003), bioaccessi-<br />

Cr(OH) 3 species. The localized pH effect is <strong>the</strong> most bility values leveled <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>and</str<strong>on</strong>g> reached near equilibrium<br />

plausible scenario since <strong>the</strong>re was no correlati<strong>on</strong> be- after <strong>the</strong> first 50 to 100 d. Thus, <strong>the</strong> 100 d bioaccessibility<br />

tween soil pH <str<strong>on</strong>g>and</str<strong>on</strong>g> soil TIC, thus explaining why collin- data is most appropriate for use in <strong>the</strong> modeling enearity<br />

was not a problem for <strong>the</strong>se parameters when <strong>the</strong> deavor. Stepwise multiple regressi<strong>on</strong> indicated two commodel<br />

was fit to <strong>the</strong> Cr(III) sorpti<strong>on</strong> data. Several acidic binati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> variables c<strong>on</strong>sidered instrumental in pre-<br />

Inceptisols derived from interbedded limey shales <str<strong>on</strong>g>and</str<strong>on</strong>g> dicting <strong>the</strong> bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III) in soils: (i) % clay<br />

limest<strong>on</strong>e have relatively large residual carb<strong>on</strong>ate c<strong>on</strong>- <str<strong>on</strong>g>and</str<strong>on</strong>g> % TIC <str<strong>on</strong>g>and</str<strong>on</strong>g> (ii) % clay <str<strong>on</strong>g>and</str<strong>on</strong>g> % TOC. Using <strong>the</strong><br />

tents (Table 2), due to <strong>the</strong> slow dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> local independent variables from Table 2, <strong>the</strong> most significant<br />

scale dolomite, <str<strong>on</strong>g>and</str<strong>on</strong>g> this may serve to enhance Cr(III) model revealed that <strong>the</strong> bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III) <strong>on</strong><br />

sequestrati<strong>on</strong> in <strong>the</strong>se systems, even though <strong>the</strong> overall <strong>the</strong> soils was correlated with clay <str<strong>on</strong>g>and</str<strong>on</strong>g> TIC <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soil<br />

bulk soil pH is acidic.<br />

(Table 5). The relati<strong>on</strong>ship describing Cr(III) bioacces-<br />

The model also shows a positive correlati<strong>on</strong> between sibility was:<br />

<strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr adsorbed <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> soil clay c<strong>on</strong>tent<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> CEC. This was expected since clay minerals tend % Cr(III) bioaccessible <br />

to be dominated by negatively charged sites <strong>on</strong> <strong>the</strong> surface<br />

due to isomorphic substituti<strong>on</strong> (Klein <str<strong>on</strong>g>and</str<strong>on</strong>g> Hurlbut,<br />

16.02 (0.426 % clay) (9.56 % TIC)<br />

1993). These negatively charged sites attract <strong>the</strong> cati<strong>on</strong> with an r 2 value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.722, which indicated that as much<br />

Cr 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> a weak, electrostatic b<strong>on</strong>d is formed. The more as 72% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variability in Cr bioaccessibility was exnegatively<br />

charged sites that are available (i.e., larger plained by <strong>the</strong> model (Fig. 2). The model was statistically<br />

CEC), <strong>the</strong> greater propensity for Cr(III) sorpti<strong>on</strong>. Fur<strong>the</strong><br />

rigorous at <strong>the</strong> 99% c<strong>on</strong>fidence level since P values for<br />

<strong>the</strong>r, clay minerals typically have a large surface area<br />

independent variables were well below 0.01, indicat-<br />

that is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> accommodating large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> ing that <strong>the</strong>y all c<strong>on</strong>tributed to predicting <strong>the</strong> % bioac-<br />

Cr 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr(OH) 3 precipitated phases. The more sur- cessible Cr(III) (Table 5). Values for VIF were all nearly<br />

face area a soil has, <strong>the</strong> more reactive sites <strong>the</strong> soil 1.000, indicating that <strong>the</strong>re was no redundant informahas,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently <strong>the</strong> more Cr that will adsorb to ti<strong>on</strong> in <strong>the</strong> o<strong>the</strong>r independent variables, i.e., soil proper-<br />

<strong>the</strong> soil.<br />

ties, <str<strong>on</strong>g>and</str<strong>on</strong>g> that collinearity between independent variables<br />

was not <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern. This indicated that parameter estimates<br />

in <strong>the</strong> model were reliable, which is in agreement<br />

<str<strong>on</strong>g>Influence</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Soil</str<strong>on</strong>g> <str<strong>on</strong>g>Properties</str<strong>on</strong>g><br />

with <strong>the</strong> low st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard errors <strong>on</strong> <strong>the</strong> estimated values<br />

<strong>on</strong> Chromium Bioaccessibility<br />

(Table 5). The model also passed <strong>the</strong> Normality Test<br />

The bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III), as measured by <strong>the</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> C<strong>on</strong>stant Variance Test, suggesting that <strong>the</strong><br />

PBET method, varied widely as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil type data was normally distributed around <strong>the</strong> regressi<strong>on</strong> line<br />

with most soils limiting bioaccessibility to 45% <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> that <strong>the</strong> variance present in <strong>the</strong> dependent variable<br />

30% after 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 100 d soil-Cr aging, respectively (Ta- is c<strong>on</strong>stant. Most important, however, is <strong>the</strong> true physical<br />

ble 3, Fig. 1a–e). Bioaccessibility values were c<strong>on</strong>sistently<br />

significance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> model parameters. The model<br />

higher for 1 d aging vs. 100 d aging. For all soils suggests that Cr(III) bioaccessibility decreases as <strong>the</strong><br />

<strong>the</strong> percent bioaccessibility ranged from 3.0 to 54.7% TIC c<strong>on</strong>tent increases <str<strong>on</strong>g>and</str<strong>on</strong>g> as <strong>the</strong> clay c<strong>on</strong>tent decreases.<br />

at Day 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.5 to 35.5% at 100 d (Table 3, Fig. 1a–e). As shown with <strong>the</strong> Cr sorpti<strong>on</strong> data, Cr(III) sequestrati<strong>on</strong><br />

The aging effect is related to <strong>the</strong> enhanced stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

is enhanced by soils with high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> TIC. The<br />

Cr <strong>on</strong> <strong>the</strong> soil surface with time. Structural reorientati<strong>on</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> TIC promotes <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid phase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cr surface b<strong>on</strong>ds or slow precipitati<strong>on</strong> reacti<strong>on</strong>s can Cr(III)– hydroxides that are sparingly soluble, even un-<br />

account for <strong>the</strong> str<strong>on</strong>ger sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr at l<strong>on</strong>ger times der acidic c<strong>on</strong>diti<strong>on</strong>s. These hydroxides [i.e., Cr(OH) 3 ]<br />

(Kar<strong>the</strong>in et al., 1991). Previous studies by Stewart et precipitate <str<strong>on</strong>g>and</str<strong>on</strong>g> cover <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soil <str<strong>on</strong>g>and</str<strong>on</strong>g> are not<br />

al. (2003) have shown that aging effects are insignificant easily bioaccessible even in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> low pH<br />

after 100 d <str<strong>on</strong>g>and</str<strong>on</strong>g> that <strong>the</strong> 100 d data are most relevant in <strong>the</strong> simulated stomach fluid <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> PBET. C<strong>on</strong>se-


134 J. ENVIRON. QUAL., VOL. 32, JANUARY–FEBRUARY 2003<br />

Fig. 1. Percentage Cr(III) bioaccessibility after 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 100 d Cr-soil aging for (a) Ulitisols; (b) Alfisols; (c) Inceptisols; (d) Spodosols, Mollisols,<br />

Entisols; <str<strong>on</strong>g>and</str<strong>on</strong>g> (e ) Aridisols.


STEWART ET AL.: BIOACCESSIBILITY OF CR(III) IN SOIL 135<br />

Fig. 1. C<strong>on</strong>tinued.<br />

quently as <strong>the</strong> TIC c<strong>on</strong>tent increases <strong>the</strong> bioaccessibility % Cr(III) bioaccessible <br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III) in soil decreases. As shown with <strong>the</strong> Cr sorpti<strong>on</strong><br />

data <strong>the</strong> clay c<strong>on</strong>tent <strong>on</strong> <strong>the</strong> soil was also correlated<br />

15.54 (0.408 % clay) (3.78 % TOC)<br />

with <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr sequestrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> thus should with an r 2 value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.674. This relati<strong>on</strong>ship was similar<br />

be important in determining bioaccessibility. The bioac<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

to <strong>the</strong> clay/TIC model where higher quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> TIC<br />

cessibility model suggested that, as <strong>the</strong> clay c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

TOC resulted in decreased Cr(III) bioaccessibility.<br />

<strong>the</strong> soils increased, <strong>the</strong> percent <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <strong>on</strong> <strong>the</strong> soil that is When clay, TIC, <str<strong>on</strong>g>and</str<strong>on</strong>g> TOC were used in <strong>the</strong> same model,<br />

bioaccessible also increased. Since <strong>the</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TOC was not significant at <strong>the</strong> 90%<br />

retardati<strong>on</strong> <strong>on</strong> clay minerals is primarily weak electro-<br />

Table 5. Parameter estimates, st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard errors, <str<strong>on</strong>g>and</str<strong>on</strong>g> statistics obstatic<br />

b<strong>on</strong>ds, <strong>the</strong>se b<strong>on</strong>ds are easily broken under <strong>the</strong> tained from a multiple linear regressi<strong>on</strong> analysis that related soil<br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> PBET, allowing Cr to desorb from <strong>the</strong> properties (clay <str<strong>on</strong>g>and</str<strong>on</strong>g> TIC) to percent Cr(III) bioaccessibility.†<br />

soil <str<strong>on</strong>g>and</str<strong>on</strong>g> be released into soluti<strong>on</strong> during <strong>the</strong> simulated<br />

Parameter Value SE P VIF<br />

digesti<strong>on</strong>.<br />

Intercept 16.02 1.99 0.001 –<br />

Stepwise multiple regressi<strong>on</strong> analysis also indicated<br />

% Clay 0.426 0.0671 0.001 1.002<br />

that Cr(III) bioaccessibility was significantly correlated % TIC 9.56 1.54 0.001 1.002<br />

with clay <str<strong>on</strong>g>and</str<strong>on</strong>g> TOC c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soil (Table 6). The r 2 0.722 0.001<br />

relati<strong>on</strong>ship describing Cr(III) bioaccessibility was:<br />

† TIC, total inorganic carb<strong>on</strong>; VIF, Variance Inflati<strong>on</strong> Factor.


136 J. ENVIRON. QUAL., VOL. 32, JANUARY–FEBRUARY 2003<br />

Fig. 2. The observed (data points) <str<strong>on</strong>g>and</str<strong>on</strong>g> model fitted (grid surface)<br />

relati<strong>on</strong>ship between <strong>the</strong> two most significant independent vari-<br />

ables (% clay <str<strong>on</strong>g>and</str<strong>on</strong>g> TIC) <str<strong>on</strong>g>and</str<strong>on</strong>g> % Cr(III) bioaccessibility using <strong>the</strong><br />

model: % Cr(III) bioaccessible 16.02 (0.426 % clay) <br />

(9.56 % TIC) an r 2 value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.722.<br />

Fig. 3. The observed (data points) <str<strong>on</strong>g>and</str<strong>on</strong>g> model fitted (grid surface)<br />

relati<strong>on</strong>ship between <strong>the</strong> two independent variables (% clay <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

TOC) <str<strong>on</strong>g>and</str<strong>on</strong>g> % Cr(III) bioaccessibility using <strong>the</strong> model: % Cr(III)<br />

bioaccessible 15.54 (0.408 % clay) (3.78 % TOC) with<br />

an r 2 value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.674.<br />

c<strong>on</strong>fidence level (P 0.115). This scenario may be an <str<strong>on</strong>g>and</str<strong>on</strong>g> not easily broken. The current model again explains<br />

artifact <str<strong>on</strong>g>of</str<strong>on</strong>g> our limited data set, where <strong>the</strong> most approity<br />

more than 67% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variability in Cr(III) bioaccessibil-<br />

priate model, in fact, includes both TIC <str<strong>on</strong>g>and</str<strong>on</strong>g> TOC al<strong>on</strong>g<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> should be useful for soils low in carb<strong>on</strong>ate (TIC).<br />

with clay c<strong>on</strong>tent. A more extensive data set will be<br />

necessary to test this hypo<strong>the</strong>sis. Never<strong>the</strong>less, <strong>the</strong> model ENVIRONMENTAL SIGNIFICANCE<br />

using clay <str<strong>on</strong>g>and</str<strong>on</strong>g> TOC was statistically rigorous at <strong>the</strong><br />

99% c<strong>on</strong>fidence level since P values for <strong>the</strong> estimated This study has shown that site assessments <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

parameters were 0.01 <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> VIF values are approxic<strong>on</strong>centrati<strong>on</strong>s<br />

may not accurately reflect <strong>the</strong> risk posed<br />

metal bioaccessibility based solely <strong>on</strong> total soil metal<br />

mately 1.000, indicating that <strong>the</strong> variables all c<strong>on</strong>tribute<br />

significantly to <strong>the</strong> equati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> that no multicollinearcantly<br />

lower <strong>the</strong> percent <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr bioaccessible up<strong>on</strong> inges-<br />

by <strong>the</strong> soils. The sequestering properties <str<strong>on</strong>g>of</str<strong>on</strong>g> soil signifiity<br />

was present am<strong>on</strong>g <strong>the</strong> independent variables. This<br />

model passed <strong>the</strong> Normality Test <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> C<strong>on</strong>stant Variimmobilized<br />

as str<strong>on</strong>gly bound species <strong>on</strong> clay <str<strong>on</strong>g>and</str<strong>on</strong>g> or-<br />

ti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> o<strong>the</strong>rwise labile Cr. Chromium(III) can be<br />

ance Test. The model suggested that as <strong>the</strong> clay c<strong>on</strong>tent<br />

decreased <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> TOC c<strong>on</strong>tent increased, <strong>the</strong> % Cr(III) ganic matter, <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr– hydroxide precipitates <strong>on</strong> soil<br />

bioaccessible decreased (Fig. 3). The trend regarding mineral surfaces. It has been shown that comm<strong>on</strong> soil<br />

clay c<strong>on</strong>tent is c<strong>on</strong>sistent with <strong>the</strong> previous model <str<strong>on</strong>g>and</str<strong>on</strong>g> properties are str<strong>on</strong>gly correlated with Cr(III) bioac-<br />

<strong>the</strong> limited bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> cessibility. The availability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se soil properties is<br />

higher system organic C is c<strong>on</strong>ceptually correct. Organic comm<strong>on</strong>place (e.g., NRCS database), which allows <strong>the</strong><br />

matter found in soil is a major c<strong>on</strong>tributor to <strong>the</strong> overall percent bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III) to be estimated for<br />

negative charge in soils <str<strong>on</strong>g>and</str<strong>on</strong>g> thus is an important sorbent a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminated sites whose remediati<strong>on</strong> is<br />

for heavy metal cati<strong>on</strong>s (Sparks, 1995). Organic matter pending. The ability to rapidly assess metal bioaccessi-<br />

has <strong>the</strong> ability to form str<strong>on</strong>g b<strong>on</strong>ds with <strong>the</strong> Cr(III) bility in soils will facilitate decisi<strong>on</strong> making strategies<br />

with <strong>the</strong> metal not readily released during <strong>the</strong> PBET regarding <strong>the</strong> need for more detailed <str<strong>on</strong>g>and</str<strong>on</strong>g> expensive site-<br />

process. As Cr(III) is c<strong>on</strong>sidered a Lewis hard acid, it specific bioavailability (e.g., animal feeding) studies,<br />

forms stable complexes with <strong>the</strong> carboxyl group <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> which are designed to assess actual clean-up needs at<br />

organic matter (Sparks, 1995). These b<strong>on</strong>ds are stable c<strong>on</strong>taminated DoD sites <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r sites to a level safe<br />

for human use. Such in vivo studies are lacking with<br />

Table 6. Parameter estimates, st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard errors, <str<strong>on</strong>g>and</str<strong>on</strong>g> statistics obway<br />

(M.V. Ruby, pers<strong>on</strong>al communicati<strong>on</strong>, 2002).<br />

regard to Cr, but research in this area is currently undertained<br />

from a multiple linear regressi<strong>on</strong> analysis that related soil<br />

properties (clay <str<strong>on</strong>g>and</str<strong>on</strong>g> TOC) to percent Cr(III) bioaccessibility.†<br />

Parameter Value SE P VIF<br />

ACKNOWLEDGMENTS<br />

Intercept 15.54 2.16 0.001 – We appreciate <strong>the</strong> efforts <str<strong>on</strong>g>of</str<strong>on</strong>g> Ms. Cathy Vogel <str<strong>on</strong>g>and</str<strong>on</strong>g> Dr.<br />

% Clay 0.408 0.073 0.001 1.010 Andrea Lees<strong>on</strong>, <strong>the</strong> c<strong>on</strong>tract <str<strong>on</strong>g>of</str<strong>on</strong>g>ficers for <strong>the</strong> U.S. DoD who<br />

%TOC 3.78 0.711 0.001 1.010 supported this work <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> efforts <str<strong>on</strong>g>of</str<strong>on</strong>g> Mr. Warren Lynn <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

r 2 0.674 0.001<br />

<strong>the</strong> Nati<strong>on</strong>al Resource C<strong>on</strong>servati<strong>on</strong> Service (NRCS) who<br />

† TOC, total organic carb<strong>on</strong>; VIF, Variance Inflati<strong>on</strong> Factor.<br />

provided us with most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soils for this study.


STEWART ET AL.: BIOACCESSIBILITY OF CR(III) IN SOIL 137<br />

REFERENCES<br />

ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chromate-c<strong>on</strong>taminated groundwater by reducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

precipitati<strong>on</strong> in surface soils. J. Envir<strong>on</strong>. Qual. 23:1141–1150.<br />

Bartlett, R., <str<strong>on</strong>g>and</str<strong>on</strong>g> B. James. 1979. Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium in soils: III. Mehra, O.P., <str<strong>on</strong>g>and</str<strong>on</strong>g> M.L. Jacks<strong>on</strong>. 1960. Ir<strong>on</strong> oxide removed from soils<br />

Oxidati<strong>on</strong>. J. Envir<strong>on</strong>. Qual. 8:31–35.<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> clays by a diothi<strong>on</strong>ite–citrate system buffered with sodium<br />

Bartlett, R.J., <str<strong>on</strong>g>and</str<strong>on</strong>g> J.M. Kimble. 1976. Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium in soils: bicarb<strong>on</strong>ate. Clays Clay Miner. 7:317–327.<br />

I. Trivalent forms. J. Envir<strong>on</strong>. Qual. 5:379–383. Nriagu, J.O., <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Nieboer. 1988. Chromium in <strong>the</strong> natural <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Chung, J., R.J. Zasoski, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Lim. 1994. Kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium(III) human envir<strong>on</strong>ments. John Wiley & S<strong>on</strong>s, New York.<br />

oxidati<strong>on</strong> by various manganese oxides. Korean J. Agric. Chem. Patters<strong>on</strong>, R.R., S. Fendorf, <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Fendorf. 1997. Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Biotechnol. 37:414–420.<br />

hexavalent chromium by amorphous ir<strong>on</strong> sulfide. Envir<strong>on</strong>. Sci.<br />

Davis, S., P. Waller, R. Buschbom, J. Ballow, <str<strong>on</strong>g>and</str<strong>on</strong>g> P. White. 1990. Technol. 31:2039–2044.<br />

Quantitative estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> soil ingesti<strong>on</strong> in normal children between Paustenbach, D.J. (ed.) 1989. The risk assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

<strong>the</strong> ages <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 7 years. Populati<strong>on</strong>-based estimates using alumi- <str<strong>on</strong>g>and</str<strong>on</strong>g> human health hazards: A textbook <str<strong>on</strong>g>of</str<strong>on</strong>g> case studies. John Winum,<br />

silic<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> titanium as soil tracer elements. Arch. Envir<strong>on</strong>. ley & S<strong>on</strong>s, New York.<br />

Health 45:112–122.<br />

Proctor, D.M., E.C. Shay, <str<strong>on</strong>g>and</str<strong>on</strong>g> P.K. Scott. 1997. Health-based soil<br />

Dragun, J. 1998. The soil chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> hazardous materials. Amherst acti<strong>on</strong> levels for trivalent <str<strong>on</strong>g>and</str<strong>on</strong>g> hexavalent chromium: A comparis<strong>on</strong><br />

Scientific Publ., Amherst, MA. with state <str<strong>on</strong>g>and</str<strong>on</strong>g> federal st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards. J. <str<strong>on</strong>g>Soil</str<strong>on</strong>g> C<strong>on</strong>tam. 6:595–648.<br />

Fendorf, S.E., M. Fendorf, D.L. Sparks, <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Gr<strong>on</strong>sky. 1992. Inhibiin<br />

Rodriguez, R.R., N.T. Basta, S.W. Casteel, <str<strong>on</strong>g>and</str<strong>on</strong>g> L.W. Pace. 1999. An<br />

tory mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III) oxidati<strong>on</strong> by -MnO 2 . J. Colloid Interc<strong>on</strong>taminated<br />

vitro gastrointestinal method to estimate bioavailable arsenic in<br />

face Sci. 153:37–54.<br />

soils <str<strong>on</strong>g>and</str<strong>on</strong>g> solid media. Envir<strong>on</strong>. Sci. Technol. 33:642–<br />

Fendorf, S.E., G.M. Lamble, M.G. Staplet<strong>on</strong>, M.J. Kelly, <str<strong>on</strong>g>and</str<strong>on</strong>g> D.L. 649.<br />

Sparks. 1994. Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium (III) sorpti<strong>on</strong> <strong>on</strong> silica: I. Ruby, M.V., A. Davis, R. Scho<str<strong>on</strong>g>of</str<strong>on</strong>g>, S. Eberle, <str<strong>on</strong>g>and</str<strong>on</strong>g> C.M. Sellst<strong>on</strong>e. 1996.<br />

Cr(III) surface structure derived by extended x-ray adsorpti<strong>on</strong> fine Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lead <str<strong>on</strong>g>and</str<strong>on</strong>g> arsenic bioavailability using a physiologistructure<br />

spectroscopy. Envir<strong>on</strong>. Sci. Technol. 28:284–289.<br />

cally based extracti<strong>on</strong> test. Envir<strong>on</strong>. Sci. Technol. 30:422–430.<br />

Fendorf, S.E., <str<strong>on</strong>g>and</str<strong>on</strong>g> D.L. Sparks. 1994. Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium (III) Ruby, M.V., R. Scho<str<strong>on</strong>g>of</str<strong>on</strong>g>, W. Brattin, M. Goldade, G. Post, M. Harnois,<br />

sorpti<strong>on</strong> <strong>on</strong> silica: II. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s. Envir<strong>on</strong>. Sci. D.E. Mosby, S.W. Casteel, W. Berti, M. Carpenter, D. Edwards,<br />

Technol. 28:290–297.<br />

D. Cragin, <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Chappell. 1999. Advances in evaluating <strong>the</strong> oral<br />

Fendorf, S.E., <str<strong>on</strong>g>and</str<strong>on</strong>g> R.J. Zasoski. 1992. Chromium(III) oxidati<strong>on</strong> by bioavailability <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganics in soil for use in human health risk<br />

-MnO 2 : I. Characterizati<strong>on</strong>. Envir<strong>on</strong>. Sci. Technol. 26:79–85.<br />

assessment. Envir<strong>on</strong>. Sci. Technol. 33:3697–3705.<br />

Gargas, M.L., R.L. Nort<strong>on</strong>, M.A. Harris, D.J. Paustenbach, <str<strong>on</strong>g>and</str<strong>on</strong>g> B.L. Sheehan, P.J., D.M. Meyer, M.M. Sauer, <str<strong>on</strong>g>and</str<strong>on</strong>g> D.J. Paustenbach. 1991.<br />

Finley. 1994. Urinary excreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium following ingesti<strong>on</strong> Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> human health risks posed by exposure to chro<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chromite-ore processing residues in humans: Implicati<strong>on</strong>s for mium c<strong>on</strong>taminated soils. J. Toxicol. Envir<strong>on</strong>. Health 32:161–201.<br />

biom<strong>on</strong>itoring. Risk Anal. 14:1019–1024.<br />

Sheppard, S.C., W.G. Ev<str<strong>on</strong>g>and</str<strong>on</strong>g>en, <str<strong>on</strong>g>and</str<strong>on</strong>g> W.J. Achwartz. 1995. Ingested<br />

Hamel, S.C., B. Buckley, <str<strong>on</strong>g>and</str<strong>on</strong>g> P.J. Lioy. 1998. Bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> metals<br />

soil: Bioavailability <str<strong>on</strong>g>of</str<strong>on</strong>g> sorbed lead, cadmium, iodine, <str<strong>on</strong>g>and</str<strong>on</strong>g> mercury.<br />

in soils for different liquid to solid ratios in syn<strong>the</strong>tic gastric fluid.<br />

J. Envir<strong>on</strong>. Qual. 24:498–505.<br />

Envir<strong>on</strong>. Sci. Technol. 32:358–362.<br />

Skowr<strong>on</strong>ski, G.A., M. Seide, <str<strong>on</strong>g>and</str<strong>on</strong>g> M.S. Abdel-Rahman. 2001. Oral bio-<br />

James, B.J., <str<strong>on</strong>g>and</str<strong>on</strong>g> R.J. Bartlett. 1983. Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium in soils:<br />

accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> trivalent <str<strong>on</strong>g>and</str<strong>on</strong>g> hexavalent chromium in soil by simulated<br />

gastric fluid. J. Toxicol. Envir<strong>on</strong>. Health Part A 63:351–362.<br />

VII. Adsorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hexavalent forms. J. Envir<strong>on</strong>.<br />

Sparks, D.L. 1995. Envir<strong>on</strong>mental soil chemistry. Academic Press,<br />

Qual. 12:177–181.<br />

New York.<br />

Jardine, P.M., S.E. Fendorf, M.A. Mayes, S.C. Brooks, <str<strong>on</strong>g>and</str<strong>on</strong>g> W.B.<br />

Stewart, M.A., P.M. Jardine, M.O. Barnett, L.D. McKay, T.L. Mehl-<br />

Bailey. 1999. Fate <str<strong>on</strong>g>and</str<strong>on</strong>g> transport <str<strong>on</strong>g>of</str<strong>on</strong>g> hexavalent chromium in undishorn,<br />

S.E. Fendorf, <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Paul. 2003. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminant<br />

turbed heterogeneous soil. Envir<strong>on</strong>. Sci. Technol. 33:2939–2944.<br />

c<strong>on</strong>centrati<strong>on</strong>, aging, <str<strong>on</strong>g>and</str<strong>on</strong>g> soil properties <strong>on</strong> <strong>the</strong> bioaccessibility<br />

Kar<strong>the</strong>in, R., M. Motschi, A. Schweiger, S. Ibric, B. Sulzberger, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cr(III) <str<strong>on</strong>g>and</str<strong>on</strong>g> Cr(VI) c<strong>on</strong>taminated soil. <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Sediment C<strong>on</strong>tam.<br />

W. Stumm. 1991. Interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium(III) complexes with<br />

(in press).<br />

hydrous delta-Al 2 O 3 rearrangements in <strong>the</strong> coordinati<strong>on</strong> sphere<br />

U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency. 1996. USEPA Method 3052.<br />

studied by electr<strong>on</strong>-spin-res<strong>on</strong>ance <str<strong>on</strong>g>and</str<strong>on</strong>g> electr<strong>on</strong> spin-echo spectro-<br />

Microwave assisted acid digesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> siliceous <str<strong>on</strong>g>and</str<strong>on</strong>g> organically based<br />

scopies. Inorg. Chem. 30:1606–1611.<br />

matrices. [Online.] [20 p.] http://www.epa.gov/epaoswer/hazwaste/<br />

Klein, C., <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Hurlbut, Jr. 1993. Manual <str<strong>on</strong>g>of</str<strong>on</strong>g> mineralogy. 21st ed. test/pdfs/3052.pdf. USEPA, Washingt<strong>on</strong>, DC.<br />

Wiley, New York.<br />

Witmer, C.M., R. Harris, <str<strong>on</strong>g>and</str<strong>on</strong>g> S.I. Shupack. 1991. Oral bioavailability<br />

Levis, A.G., <str<strong>on</strong>g>and</str<strong>on</strong>g> V. Bianchi. 1982. Mutagenic <str<strong>on</strong>g>and</str<strong>on</strong>g> cytogenic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium from a specific site. Envir<strong>on</strong>. Health Perspect. 92:<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chromium compounds. p. 171–208. In S. Langjard (ed.) Biologi- 105–110.<br />

cal <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium. Elsevier Biomedical Witmer, C.M., H.S. Park, <str<strong>on</strong>g>and</str<strong>on</strong>g> S.I. Shupack. 1989. Mutagenicity <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Press, New York. dispositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium. Sci. Total Envir<strong>on</strong>. 86:131–138.<br />

Linz, D.G., <str<strong>on</strong>g>and</str<strong>on</strong>g> D.V. Nakles (ed.) 1997. Envir<strong>on</strong>mentally acceptable Yang, J.K., M.O. Barnett, P.M. Jardine, <str<strong>on</strong>g>and</str<strong>on</strong>g> S.C. Brooks. 2002. Factors<br />

endpoints in soil. Am. Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>. Eng., New York.<br />

c<strong>on</strong>trolling <strong>the</strong> bioaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> arsenic(V) <str<strong>on</strong>g>and</str<strong>on</strong>g> lead(II) in soil.<br />

Losi, M.E., C. Amrhein, <str<strong>on</strong>g>and</str<strong>on</strong>g> W.T. Frankenberger, Jr. 1994. Bioremedi- <str<strong>on</strong>g>Soil</str<strong>on</strong>g> Sediment C<strong>on</strong>tam. (In press).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!