24.01.2015 Views

3G & 4G Mobile Communication Systems - Department of ...

3G & 4G Mobile Communication Systems - Department of ...

3G & 4G Mobile Communication Systems - Department of ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>3G</strong>/<strong>4G</strong> <strong>Mobile</strong> <strong>Communication</strong>s <strong>Systems</strong><br />

Dr. Stefan Brück<br />

Qualcomm Corporate R&D Center Germany


Chapter VII:<br />

Fundamental Radio<br />

Resource Management<br />

2<br />

Slide 2


Fundamental Radio Resource Management<br />

Scope <strong>of</strong> Radio Resource Management<br />

Radio Resource Management in UMTS<br />

Cell Breathing<br />

Capacity – Coverage Trade-<strong>of</strong>f<br />

Power Control<br />

Near Far Problem<br />

Inner and outer loop power control<br />

Load Control<br />

Spreading Code Management in HSDPA<br />

Examples <strong>of</strong> HSDPA and HSUPA Performance<br />

Radio Resource Management in LTE<br />

LTE UL Power Control<br />

Inter Cell Interference Coordination in LTE<br />

Flexible Frequency Reuse<br />

Heterogeneous Deployments<br />

Enhanced Inter Cell Interference Coordination in LTE<br />

Almost Blank Subframes (ABS)<br />

3<br />

Slide 3


RRM – High-Level Requirements<br />

Efficient use <strong>of</strong> limited radio resources (power, code space, spectrum, time)<br />

Minimizing interference<br />

Flexibility regarding services (Quality <strong>of</strong> Service, user behaviour)<br />

Simple algorithms requiring small signalling overhead only<br />

Stability and overload protection<br />

Self adaptive in varying environments<br />

Allow interoperability in multi-vendor environments<br />

Radio Resource Management<br />

algorithms control the efficient<br />

use <strong>of</strong> resources with respect to<br />

interdependent objectives:<br />

cell coverage<br />

cell capacity<br />

quality <strong>of</strong> service<br />

4<br />

Slide 4


Context <strong>of</strong> Radio Resource Management<br />

System evaluation and standardisation activities on three levels:<br />

(E)-UTRAN<br />

Interfaces<br />

Architecture<br />

• Access Network (Architecture)<br />

• Mobility Management<br />

Cellular Network<br />

Protocols<br />

• Cellular Network Aspects (Layer 2&3)<br />

• Radio Resource Management<br />

• Radio Link (Physical Layer)<br />

5<br />

Slide 5


Radio Resource Management Components<br />

Non-Access Stratum<br />

Radio Resource Management<br />

Handover<br />

Control<br />

Load<br />

Control<br />

Packet Data<br />

Control<br />

Power<br />

Control<br />

Medium<br />

Access<br />

Control<br />

Physical layer<br />

6<br />

Slide 6


Example <strong>of</strong> Coverage and Best Server Map<br />

coverage map<br />

best server map<br />

Application: RF engineering (cell layout)<br />

Legend: red indicates high signal level, yellow<br />

indicates low level<br />

Application: HO decision<br />

Legend: color indicates cell with best<br />

CPICH in area<br />

7<br />

Slide 7


Interference in CDMA Networks<br />

Interference<br />

Multiple Access Interference<br />

Intra-Cell Interference<br />

Inter-Cell Interference<br />

Problem<br />

Different users interfere dependent on<br />

the access scheme (T/F/CDMA)<br />

Interference caused by users belonging<br />

to the same cell<br />

Interference caused by users belonging<br />

to other cells<br />

Frequency reuse factor = 1<br />

CDMA is subject to high Multiple Access Interference (MAI)<br />

MAI can be separated in intra-cell and inter-cell interference<br />

S<strong>of</strong>t capacity: CDMA capacity (max. number <strong>of</strong> users) determined by<br />

interference is s<strong>of</strong>t<br />

TDMA capacity is given by available number <strong>of</strong> time slots<br />

Handling <strong>of</strong> interference is the main challenge in designing CDMA networks<br />

8<br />

Slide 8


Interference in CDMA - Uplink<br />

9<br />

Slide 9


Interference in CDMA - Downlink<br />

10<br />

Slide 10


Cell Breathing in CDMA<br />

Specified service specific C/I needs to be maintained at receiver to<br />

guarantee QoS<br />

Growth <strong>of</strong> traffic leads to an increase in interference power<br />

Both inter-cell and intra-cell power<br />

If transmitter power cannot be further increased (max. link power), maximum<br />

cell size decreases since specific C/I at far receiver is required<br />

Load dependent maximum cell is referred to as cell breathing<br />

As network load changes over day, also the maximum cell size changes over<br />

day<br />

Especially during busy hours the interference rises ⇒ small cell size<br />

Breathing is determined by intra-cell interference<br />

⇒ Active Load Control is needed<br />

11<br />

Slide 11


Cell Breathing<br />

Coverage depending on load: Load causes interference which reduces the<br />

area where a SIR sufficient for communication can be provided<br />

Coverage low load Coverage medium load Coverage high load<br />

Yellow area: Connection may drop or be blocked<br />

12<br />

Slide 12


Coverage vs. Capacity<br />

Capacity depends on:<br />

QoS <strong>of</strong> the users (data rate, error performance (bit-error-rate))<br />

User behaviour (activity)<br />

Interference (intra- & inter-/noise)<br />

Number <strong>of</strong> carriers/ sectors<br />

Coverage (service area) depends on:<br />

Interference (intra- & inter-cell) + noise<br />

Pathloss (propagation conditions)<br />

QoS <strong>of</strong> the users (data rate, error performance (bit-error-rate))<br />

Thus, trade-<strong>of</strong>f between capacity and coverage<br />

13<br />

Slide 13


Coverage vs. Capacity<br />

3.5<br />

13kbps circuit switched service capacity versus maximum cell radius<br />

3<br />

Maximum cell radius (km)<br />

2.5<br />

2<br />

1.5<br />

1<br />

←Downlink<br />

0.5<br />

Uplink→<br />

0<br />

0 20 40 60 80 100 120 140 160 180 200<br />

Erlangs (2% GOS)<br />

Downlink limits capacity while uplink limits coverage<br />

Downlink depends more on the load (user share total transmit BS power)<br />

14<br />

Slide 14


CDMA Power Control: Basics<br />

<br />

<br />

<br />

<br />

Controls the setting <strong>of</strong> the transmit power in order to:<br />

<br />

<br />

Keep the QoS within the required limits, e.g. data rate, delay and BER<br />

Minimise interference, i.e. the overall power consumption<br />

Power control handles:<br />

<br />

<br />

Path Loss (Near-Far-Problem), Shadowing (Log-Normal-Fading) and Fast<br />

Fading (Rayleigh-, Ricean-Fading)<br />

Environment (delay spread, UE speed, …) which implies different performance<br />

<strong>of</strong> the deinterleaver and decoder<br />

Three types <strong>of</strong> power control:<br />

<br />

<br />

<br />

Inner loop power control<br />

Outer loop power control (SIR-target adjustment)<br />

Open loop power control (Power allocation)<br />

Downlink power overload control to protect amplifier<br />

<br />

<br />

Gain Clipping (GC)<br />

Aggregated Overload Control (AOC)<br />

15<br />

Slide 15


Near-Far Problem in CDMA<br />

UE 1<br />

Near-Far Problem:<br />

Spreading sequences are not orthogonal<br />

(multi-user interference)<br />

Near mobile dominates<br />

Signal to interference ratio (SIR) is lower for far<br />

mobiles and performance degrades<br />

NodeB<br />

Problem can be resolved through dynamic<br />

power control to equalize all received power levels<br />

AND/OR: By means <strong>of</strong> joint multi-user detection (MUD)<br />

UE 2<br />

16<br />

Slide 16


Impact <strong>of</strong> Power Control<br />

Source: H. Holma, A. Toskala (Ed.), “WCDMA for UMTS”,<br />

17<br />

Slide 17


Power Control Results<br />

7.5<br />

7<br />

Required UL SIR [dB]<br />

6.5<br />

6<br />

5.5<br />

5<br />

PedA<br />

VehA<br />

0 20 40 60 80 100 120<br />

Velocity [km/h]<br />

SIR requirement strongly depends on the environment (due to different fast<br />

fading conditions – Jakes models)<br />

⇒ Outer loop power control needed to adapt SIR<br />

18<br />

Slide 18


Closed Loop Power Control in UMTS<br />

Closed loop power control is used on channels which are established in both<br />

directions, such as DCH<br />

The receiver generates transmit power commands (TPC) based on the<br />

estimated received quality; the TPC are send back to the transmitter in the<br />

opposite direction<br />

The transmit power is adjusted according to the received TPC<br />

User data<br />

PA<br />

Receiver<br />

Decoder<br />

User data<br />

TPC<br />

commands<br />

Inner loop<br />

Outer<br />

loop<br />

SIR-estimate<br />

TPC<br />

commands<br />

BLER-estimate<br />

Adjust SIR target<br />

DeMUX<br />

MUX<br />

19<br />

<strong>Mobile</strong> Station<br />

Base Station/RNC<br />

Slide 19


Inner/Outer Loop Power Control<br />

<br />

<br />

Inner Loop Power Control (1500 Hz)<br />

<br />

<br />

Objective: Adjust transmit power to keep the received SIR at a given SIR target<br />

Realisation using the SIR-estimate after RAKE combining:<br />

<br />

<br />

If SIR est > SIR target , then generate TPC “DOWN”<br />

If SIR est ≤ SIR target , then generate TPC “UP”<br />

Realisation in base station (Node B)<br />

<br />

Similar mechanisms for up- and downlink<br />

Outer Loop Power Control (100 Hz max)<br />

<br />

<br />

<br />

Objective: Meet the required reception quality, e.g. average BLER<br />

Realisation using the CRC attachment<br />

<br />

<br />

If CRC ok, then decrease SIR target = SIR target – ∆ down<br />

If CRC fails, then increase SIR target = SIR target + ∆ up<br />

∆ down = ∆ up × BLER target / (1–BLER target )<br />

Realisation in radio network controller (RNC)<br />

20<br />

Slide 20


Load Control: Basics<br />

General limitations in 3 rd generation mobile systems:<br />

Limited resources: spectrum, power, (code space)<br />

Not all service requests can be granted<br />

Different types <strong>of</strong> services in the same cellular environment<br />

Service parameters (user behaviour and QoS) and environmental conditions<br />

(propagation) vary over time<br />

CDMA-specific impacts:<br />

Coverage in CDMA systems depends on the cell loading: Cell breathing<br />

CDMA systems may become unstable in highly loaded situations<br />

due to fast inner-loop power control<br />

21<br />

Slide 21


Load Control<br />

Main objective:<br />

Avoid overload situations by controlling system load<br />

Monitor and controls radio resources <strong>of</strong> users<br />

Call Admission Control (CAC)<br />

Admit or deny new users, new radio access bearers or new radio links<br />

Avoid overload situations, e.g. by means <strong>of</strong> blocking a new call<br />

Decisions are based on interference and resource measurements<br />

Congestion Control (ConC)<br />

Monitor, detect and handle overload situations with the already connected users<br />

Bring the system back to a stable state, e.g. by means <strong>of</strong> dropping an existing call<br />

CAC and ConC decisions are based on network measurements averaged<br />

over hundreds <strong>of</strong> ms<br />

No fast fading impacts in these measurments<br />

22<br />

Slide 22


Basic Resource Equations (CDMA)<br />

R bi : data rate <strong>of</strong> user i<br />

h i : channel coefficient <strong>of</strong> user i<br />

P pilot : Pilot power<br />

F i : Orthogonality factor <strong>of</strong> user i (multipath)<br />

I th : thermal noise<br />

Downlink<br />

Quality (RAKE):<br />

E<br />

N<br />

bi<br />

t<br />

=<br />

F ⋅ h ⋅<br />

i<br />

i<br />

W Rbi<br />

⋅ hi<br />

P + P<br />

(∑ )<br />

j<br />

j<br />

pilot<br />

⋅ Pi<br />

+ I<br />

inter<br />

+ I<br />

th<br />

Resource <strong>of</strong> user i:<br />

α<br />

i<br />

=<br />

Pi<br />

P<br />

o<br />

P o<br />

: Total Transmitted Power<br />

Uplink<br />

Quality (RAKE):<br />

E<br />

N<br />

bi<br />

t<br />

W<br />

=<br />

∑ ≠<br />

Pˆ<br />

j<br />

i<br />

j<br />

R<br />

bi<br />

+ I<br />

⋅ Pˆ<br />

i<br />

inter<br />

+ I<br />

th<br />

Resource <strong>of</strong> user i:<br />

α<br />

i<br />

=<br />

Pˆ<br />

i<br />

I<br />

o<br />

=<br />

W<br />

Eb<br />

N<br />

R + E<br />

b<br />

t<br />

b<br />

N<br />

t<br />

I<br />

o<br />

: Total Interference<br />

Resource Consumption strongly depends on: data rate, quality (E b /N t ), receiver<br />

structure (RAKE etc., channel estimation, path tracking, …)<br />

Non-linear relation between resource, data rate and required E b /N t<br />

23<br />

Slide 23


Resource Consumption<br />

E b/N t [dB ]<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Voice (12.2 kbps)<br />

BLER = 1%<br />

10 100 1000<br />

α<br />

Data Rate Rb [kbps]<br />

Data (144 kbps)<br />

BLER = 10%<br />

0,5% 1% 2% 5%<br />

10% 20% 35% 50%<br />

Service/BLER-dependent<br />

resource consumption<br />

Uplink example:<br />

Service I: Voice<br />

R b = 12.2kbps, E b /N t = 5dB<br />

α I = 0.99%<br />

Service II: Data<br />

R b = 144kbps, E b /N t = 3.1dB<br />

α II = 7.11%<br />

II<br />

with<br />

α =<br />

W<br />

( Eb<br />

Nt<br />

)<br />

R + ( E N<br />

b<br />

b<br />

W is the channel bandwidth and<br />

R b is the data rate<br />

t<br />

)<br />

24<br />

Slide 24


UL/DL Load Measures<br />

Noise Rise/ Power Rise [dB]<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

thr_CAC = 75%<br />

thr_ConC = 90%<br />

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100<br />

%<br />

System Load<br />

UL Measurement<br />

I = ∑<br />

ˆ<br />

∈<br />

+<br />

0<br />

P<br />

i cell i<br />

+ Iinter<br />

Ith<br />

Load Estimate<br />

I − Ith<br />

ηcurrent<br />

=<br />

I<br />

NR =<br />

I<br />

0<br />

1<br />

0<br />

0<br />

I<br />

th<br />

= 1−<br />

DL Measurement<br />

P<br />

0<br />

= ∑ ∈<br />

+<br />

P<br />

i cell i<br />

P<br />

Load Estimate<br />

η<br />

current<br />

=<br />

PR =<br />

P<br />

P<br />

p<br />

NR<br />

0<br />

− P<br />

1<br />

0<br />

P<br />

0<br />

P<br />

= 1−<br />

PR<br />

25<br />

Slide 25


Call Admission Control<br />

Noise Rise/ Power Rise [dB]<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

thr_CAC<br />

η_current + α_new<br />

η_current<br />

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100<br />

%<br />

<br />

<br />

<br />

<br />

Admitting new call always<br />

increases the cell loading<br />

CAC avoids overload by limiting<br />

this increase<br />

CAC load check:<br />

η<br />

current<br />

+ α<br />

new<br />

≤ thr<br />

CAC<br />

Threshold setting thr CAC<br />

trade-<strong>of</strong>f between<br />

Maximize capacity: prevent<br />

excessive blocking<br />

Avoid overload: thr CAC < thr ConC<br />

<br />

System Load<br />

26<br />

Slide 26


Call Admission Control (CAC)<br />

Admitting a new call always increases the cell load<br />

In order to avoid overload situations, the admission control will limit this load<br />

increase<br />

The principle is to check the current system load plus the expected resource<br />

consumption <strong>of</strong> the new call against the call admission threshold:<br />

load + consumption ≤ thr CAC <br />

In case the admission check fails, the basic strategy is to protect ongoing<br />

calls by denying the new user access to the system since dropping is<br />

assumed to be more annoying than blocking<br />

Admission control is required for uplink and downlink<br />

Arrivals <strong>of</strong> high-data-rate users that require a large amount <strong>of</strong> resources<br />

(especially in the downlink) may demand global information<br />

27<br />

Slide 27


Congestion Control<br />

Noise Rise/ Power Rise [dB]<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

NR/PR_max<br />

η_reduced<br />

η_current<br />

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100<br />

%<br />

System Load<br />

thr_ConC<br />

Even with efficient CAC overload<br />

situations still occur due to<br />

Mobility (esp. downlink)<br />

Activity<br />

During overload quality <strong>of</strong> all<br />

users is deteriorated !<br />

Triggered by measurement<br />

η ≥<br />

current<br />

thr ConC<br />

Action: reduce <strong>of</strong>fered traffic by<br />

downgrading one user<br />

Threshold setting thr ConC to<br />

preserve the coverage:<br />

NR max : limitation <strong>of</strong> MS single<br />

transmit power P imax<br />

PR max : limitation <strong>of</strong> BTS total<br />

transmit power P 0max<br />

Slide 28<br />

28


Congestion Control (ConC)<br />

<br />

<br />

Due to the mobility (especially <strong>of</strong> high data rate users) overload situations<br />

occur even if an efficient admission control algorithm is used!<br />

The congestion control is activated once the system load exceeds the<br />

congestion threshold:<br />

load ≥ thr ConC<br />

<br />

In order to overcome the overload situation the load must be lowered until<br />

load < thr ConC<br />

<br />

<br />

This is done by reducing the <strong>of</strong>fered traffic<br />

<br />

<br />

<br />

Lowering the data rate <strong>of</strong> one or several services that are insensitive to increased<br />

delays – this might be the most preferred method<br />

Performing inter-frequency (inter-system) handover<br />

Removing one or several connections<br />

Global information may be required to minimize the number <strong>of</strong> altered<br />

connections<br />

29<br />

Slide 29


Call Admission Control: Simulation Results I<br />

Trade<strong>of</strong>f between blocking and dropping<br />

Example: 64k per user, urban<br />

50%<br />

45%<br />

40%<br />

thr_CAC = 50%<br />

thr_CAC = 75%<br />

thr_CAC = 90%<br />

20%<br />

18%<br />

16%<br />

thr_CAC = 50%<br />

thr_CAC = 75%<br />

thr_CAC = 90%<br />

Blocking Probability<br />

35%<br />

30%<br />

25%<br />

20%<br />

15%<br />

10%<br />

5%<br />

Dropping Probability<br />

14%<br />

12%<br />

10%<br />

8%<br />

6%<br />

4%<br />

2%<br />

0%<br />

5 15 25 35 45 55<br />

0%<br />

5 15 25 35 45 55<br />

Offered Traffic [Erlang per s ite ]<br />

Offered Traffic [Erlang per s ite ]<br />

30<br />

Slide 30


Call Admission Control: Simulation Results II<br />

Cell load depending on CAC threshold<br />

Example: 64k per user, urban<br />

90%<br />

80%<br />

Cell Loading<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

5 15 25 35 45 55<br />

Offered Traffic [Erlang per site]<br />

thr_CAC = 50%<br />

thr_CAC = 75%<br />

thr_CAC = 90%<br />

31<br />

Slide 31


Packet Data Control: Channel Switching<br />

<br />

<br />

Flexibility<br />

Asymmetrical data rates<br />

Very low to very high data rates<br />

Control information/user information<br />

Efficient transmission making good use <strong>of</strong> CDMA characteristics<br />

Dedicated channel (DCH)<br />

<br />

Minimise transmission power by closed-loop power control<br />

Independence between uplink and downlink capacity<br />

Common channel<br />

Random access in the uplink (RACH)<br />

Dynamic scheduling in the downlink (FACH)<br />

Adaptive channel usage depending on traffic characteristics<br />

Infrequent or short packets ⇒ Common channel (Cell_FACH)<br />

Frequent or large packets ⇒ Dedicated channel (Cell_DCH)<br />

32<br />

Slide 32


Channel Switching – Example<br />

CELL_DCH CELL_FACH CELL_DCH<br />

DCH Active Time<br />

Page Download Time<br />

Reading Time<br />

“Chatty Applications”<br />

Example: Web service<br />

Chatty apps.: keep alive message, stock tickers, etc.<br />

(e.g. 100 bytes every 15 sec)<br />

Second stage: when no activity in CELL_FACH then switch to URA_PCH<br />

33<br />

Slide 33


Packet Data Control<br />

Burst Admission Control<br />

Decision on starting packet data transmission<br />

Similar principle like call admission control, i.e. check the system load against a<br />

threshold that is usually different from thr CAC<br />

Time horizon: 100msec … 10sec<br />

Rate Adaptation<br />

Choose data rate according to transmit power<br />

UE nearby NodeB<br />

UE at cell edges<br />

⇒ high data rate<br />

⇒ low data rate<br />

Decrease data rate in case <strong>of</strong> overload, cf. congestion control<br />

34<br />

Slide 34


Power Control vs. Rate Adaptation<br />

NodeB<br />

high data rate<br />

area<br />

UE 1<br />

low data rate<br />

area<br />

UE 2<br />

Power Control:<br />

Balances user received quality (BLER, SIR)<br />

Users at cell center get less share <strong>of</strong> BTS<br />

transmit power assigned than at cell edge<br />

Occurrence <strong>of</strong> power overload<br />

Rate Adaptation:<br />

Transmit power ~ data rate<br />

Users at cell edge get lower data rate<br />

assigned than at cell center<br />

Reduces also power overload<br />

In UMTS combination <strong>of</strong> power control and<br />

rate adaptation on DCH<br />

35<br />

Slide 35


Rate Adaptation Performance<br />

UM TS_urban, 50 k Byte<br />

UM TS_urban, 50 k Byte<br />

40%<br />

35%<br />

384k<br />

64k<br />

adaptive<br />

8<br />

7<br />

30%<br />

6<br />

384k<br />

Outage Probability<br />

25%<br />

20%<br />

15%<br />

10%<br />

Mean Delay [sec]<br />

5<br />

4<br />

3<br />

2<br />

64k<br />

adaptive<br />

5%<br />

1<br />

0%<br />

200 300 400 500 600<br />

Ce ll Throughput [kBit/s e c]<br />

0<br />

200 300 400 500 600<br />

Ce ll Throughput [k Bit/s e c]<br />

Rate adaptation significantly improves the RRM performance.<br />

36<br />

Slide 36


Spreading Code Management in HSDPA<br />

a) OVSF Code Tree<br />

Border adjusted by CRNC<br />

SF=2<br />

SF=4<br />

SF=8<br />

SF=16<br />

C 16,15<br />

Codes reserved for HS-PDSCH/ HS-SCCH<br />

b) Transmit Power<br />

Border adjusted by CRNC<br />

Codes available for DCH/<br />

common channels<br />

C 16,0<br />

Tx power available for HS-PDSCH/ HS-SCCH<br />

Tx power available for DCH/<br />

common channels<br />

Note: CRNC assigns resources to Node B on a cell basis<br />

37<br />

Slide 37


Cell and User Throughput versus Load<br />

Throughput [kbit/sec]<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Mean User Throughput<br />

Aggregated Cell Throughput<br />

Load Impact<br />

4 6 8 10 12 14 16 18<br />

Number <strong>of</strong> Users/ Cell<br />

36 cells network<br />

UMTS composite channel model<br />

FTP traffic model (2 Mbyte<br />

download, 30 sec thinking time)<br />

The user throughput is<br />

decreased when increasing load<br />

due to the reduced service time<br />

The cell throughput increases<br />

with the load because overall<br />

more bytes are transferred in the<br />

same time<br />

38<br />

Slide 38


HSDPA performance per UE Category<br />

2500<br />

2000<br />

Mean User Throughput<br />

Peak User Throughput<br />

Aggregated Cell Throughput<br />

Cat 6 - Cat 8 Comparison<br />

36 cells network<br />

UMTS composite channel model<br />

FTP traffic model (2 Mbyte<br />

download, 30 sec thinking time)<br />

throughput (kbps)<br />

1500<br />

1000<br />

500<br />

Higher category <strong>of</strong>fers higher<br />

max. throughput limit<br />

Cat.6: 3.6 MBit/sec<br />

Cat.8: 7.2 MBit/sec<br />

0<br />

Cat 6/ 10 users Cat 8/ 10 users Cat 6/ 20 users Cat 8/ 20 users<br />

Max. user perceived<br />

performance increased at low<br />

loading<br />

Cell performance slightly better<br />

39<br />

Slide 39


HSDPA Coverage Prediction<br />

Example Scenario<br />

15 users/cell<br />

Pedestrian A channel<br />

model<br />

Plot generated with field<br />

prediction tool<br />

HSDPA Throughput<br />

depends on location<br />

40<br />

Slide 40


User vs. Aggregate Cell Throughput for HSUPA<br />

10ms TTI, unlimited CE dec. rate<br />

2ms TTI, next release<br />

36 cells network<br />

User Throughput [kbps]<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

1<br />

2<br />

3<br />

#UEs/cell<br />

200 400 600 800 1000 1200 1400 1600<br />

Aggregated Cell Throughput [kbps]<br />

4<br />

5<br />

10<br />

6<br />

7<br />

8<br />

9<br />

UMTS composite channel<br />

model<br />

FTP traffic model (2 Mbyte<br />

upload, 30 seconds thinking<br />

time)<br />

Maximum cell throughput<br />

reached for about 7…8 UEs<br />

per cell<br />

Cell throughput drops if #UEs<br />

increases further since the<br />

associated signaling channel<br />

consume UL resources too<br />

41<br />

Slide 41


Single User Performance in HSUPA<br />

3500<br />

2ms, 1Tx<br />

10ms, 1Tx<br />

Average user throughput<br />

(RLC layer) for different<br />

channel pr<strong>of</strong>iles<br />

1 UE in the network<br />

3000<br />

1 target HARQ transmission<br />

Average User Throughput [kbps]<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

For AWGN channel<br />

conditions:<br />

10ms TTI: up to 1.7 Mbps<br />

(near theoretical limit <strong>of</strong> 1.88<br />

Mbps)<br />

2ms TTI: up to 3 Mbps<br />

(below theoretical limit 5.44<br />

Mbps)<br />

0<br />

AW GN PedA3 PedA30 VehA30 VehA120<br />

Scenario<br />

<br />

E.g. due to restrictions<br />

from RLC layer (window<br />

size, PDU size)<br />

42<br />

Slide 42


LTE Uplink Power Control<br />

Open-loop power control is the baseline<br />

uplink power control method in LTE<br />

(compensation for path loss and fading)<br />

<br />

<br />

Open-loop PC is needed to constrain the dynamic<br />

range between signals received from different UEs<br />

Unlike CDMA, there is no intra cell interference to<br />

combat; rather, fading is exploited by rate control<br />

Transmit power per PRB<br />

TxPSD (dBm) = α•PL (dB) + P0 nominal (dBm)<br />

Target SINR on PUSCH is now a function<br />

<strong>of</strong> the UE’s path loss:<br />

<br />

<br />

<br />

PL dB : pathloss, estimated from DL reference signal<br />

P0 nominal (dBm) = Γ nominal (dB) + I tot (dBm)<br />

Sum <strong>of</strong> SINR target Γ nominal and total interference<br />

I tot sent on BCH<br />

Fractional compensation factor α ≤ 1 (PUSCH)<br />

→ only a fraction <strong>of</strong> the path loss is compensated<br />

Additionally, (slow) closed loop PC can be<br />

used<br />

Target<br />

SINR<br />

SINR (dBm) = Γ nominal (dB) + (1–α)•PL (dB)<br />

Slide 43<br />

43


Interference Coordination - Flexible Frequency Reuse<br />

Cell edge<br />

Reuse > 1<br />

Cell centre<br />

Reuse = 1<br />

<br />

<br />

<br />

Scheduler can place restriction on which<br />

PRBs can be used in which sectors<br />

Achieves frequency reuse > 1<br />

Reduced inter-cell interference leads to<br />

improved SINR, especially at cell-edge<br />

Reduction in available transmission<br />

bandwidth leads to poor overall spectral<br />

efficiency<br />

Cell edge users with frequency reuse > 1,<br />

<br />

<br />

<br />

<br />

eNB transmits with higher power<br />

Improved SINR conditions<br />

Cell centre users can use whole frequency band<br />

<br />

<br />

eNB transmits with reduced power<br />

Less interference to other cells<br />

Flexible frequency reuse realized through<br />

intelligent scheduling and power allocation<br />

44<br />

Slide 44


Heterogeneous Networks<br />

Core<br />

Network<br />

Backhaul<br />

Relay<br />

Backhaul<br />

Need for Flexible and Low-<br />

Cost Network Deployment<br />

Using Mix <strong>of</strong> Macro, Pico,<br />

Relay, RRH and Home eNBs<br />

Internet<br />

HeNB<br />

Pico<br />

Macro<br />

Relay<br />

Pico<br />

Pico<br />

Network expansion due to varying traffic demand & RF environment<br />

Cell-splitting <strong>of</strong> traditional macro deployments is complex and iterative<br />

Indoor coverage and need for site acquisition add to the challenge<br />

Future network deployments based on Heterogeneous Networks (HeNBs)<br />

Deployment <strong>of</strong> Macro eNBs for initial coverage only<br />

Addition <strong>of</strong> Pico, HeNBs and Relays for capacity growth & better user experience<br />

Improved in-building coverage and flexible site acquisition with low power base stations<br />

Relays provide coverage extension with no incremental backhaul expense<br />

45<br />

Slide 45


HetNet: Macro-Pico (open access hot-spot)<br />

Macro-pico deployments with UEs operating in range expansion<br />

Large bias to compensate the power difference between macro and pico<br />

for traffic <strong>of</strong>floading<br />

Nominally a UE associates with a base station with strong DL SINR<br />

With range expansion, a UE can associate with a low power node<br />

based on smaller path loss, thus <strong>of</strong>floading the macro station<br />

With range expansion the serving cell is not necessarily the strongest one<br />

Pico<br />

Macro<br />

Pico<br />

46<br />

Slide 46


HetNet: Macro-Femto (CSG node, HeNB)<br />

Macro-femto deployments with UEs (or femto cells) operating under<br />

strong co-channel interference<br />

UEs in close proximity <strong>of</strong> a CSG femto cell they are not allowed to<br />

connect to (i.e. are still served by macro cell) may be:<br />

strongly interfered in DL by the CSG cell<br />

causing severe interference in UL to towards the femto cell<br />

Interference management helps the UE to survive<br />

CSG<br />

Macro<br />

CSG<br />

47<br />

Slide 47


Extending X2 to HeNB – <strong>3G</strong>PP Status Rel. 10<br />

During Rel. 10 work, several contributions have been discussed related to<br />

introduction <strong>of</strong> X2 interface for HeNB for mobility enhancement<br />

HeNB X2 scenarios<br />

HeNB-HeNB when the target cell is an open access HeNB<br />

HeNB-HeNB for closed/hybrid access with same CSG ID<br />

The existing X2 functionality is available for eNB and HeNB<br />

There is no separate X2 specification for HeNB and eNB<br />

The X2 functionality is optional<br />

X2 interface between eNB and HeNB has been also discussed but no<br />

agreement could be reached so far<br />

Scenario is more complex, as there may be a need for X2-GW which requires<br />

additional standardization work<br />

Postponed to Rel. 11<br />

48<br />

Slide 48


Enhanced ICIC in Rel. 10<br />

ICIC includes frequency and time domain components<br />

Frequency domain ICIC was already available in Rel. 8 and Rel. 9<br />

See lecture chapter 4 for details<br />

For the time domain ICIC, Almost Blank Subframes (ABSs) are used to<br />

protect resources receiving strong inter-cell interference (R3-103775)<br />

Extensions to X2AP are needed<br />

Time domain updates in Rel. 10 are called enhanced ICIC<br />

<br />

Both scenarios are handled differently, since there is no eNB – HeNB X2<br />

Semi-static eICIC in macro eNB – pico eNB<br />

Static eICIC in eNB – HeNB scenario<br />

ABS are defined by OAM for time domain eICIC (R3-103775)<br />

<br />

References:<br />

R3-103775, “X2 procedure and OAM requirements to support eICIC”, TSG-RAN WG3 Meeting #70,<br />

November 2010<br />

49<br />

Slide 49


Updates <strong>of</strong> the X2AP to support eICIC in Rel10<br />

Information <strong>of</strong> ABS pattern is added to the ‘Load Indication’ procedure<br />

The ABS pattern (40ms period for FDD) is sent from the aggressor to the victim<br />

The ABS patterns are semi-statically updated<br />

The ‘Load indication’ also contains an invoke indication<br />

This indicator is sent from the victim to the aggressor to ask for eICIC activation<br />

IE/Group Name Presence Range IE type and<br />

reference<br />

Invoke Indication M ENUMERATED<br />

(ABS<br />

Information, …)<br />

Semantics description<br />

–<br />

Information about the status <strong>of</strong> the ABS is added to the ‘Resource Status<br />

Reporting’ procedure<br />

Its initialization is enabled in the ‘Resource Status Reporting Initiation’ procedure<br />

This information is sent from the victim to the aggressor<br />

IE/Group Name Presence Range IE type and reference Semantics description<br />

DL ABS status M INTEGER (0..100) Percentage <strong>of</strong> ABS<br />

resource allocated for<br />

UEs protected by ABS<br />

from strong inter-cell<br />

interference.<br />

50<br />

<br />

References:<br />

R3-103667, “Introduction <strong>of</strong> X2 signaling support for eICIC”, TSG-RAN WG3 Meeting #70, November 2010<br />

R3-103776, “Enabling reporting <strong>of</strong> ABS resource status for eICIC purposes”, TSG-RAN WG3 Meeting #70,<br />

November 2010<br />

Slide 50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!