24.01.2015 Views

Optical feedback in diode lasers

Optical feedback in diode lasers

Optical feedback in diode lasers

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Risø National Laboratory<br />

<strong>Optical</strong> <strong>feedback</strong> <strong>in</strong> <strong>diode</strong> <strong>lasers</strong><br />

Diode <strong>lasers</strong> are very sensitive to optical <strong>feedback</strong><br />

due to the low Q-factor and high ga<strong>in</strong> of<br />

the lasercavity.<br />

M<br />

r 1<br />

M<br />

r 2<br />

External<br />

cavity<br />

M<br />

r 3<br />

The optical <strong>feedback</strong> techniques lead to many new attractive<br />

properties of <strong>diode</strong> <strong>lasers</strong> such as:<br />

• L<strong>in</strong>ewidth reduction<br />

• Tunability<br />

• Improved spatial and temporal coherence<br />

• Modelock<strong>in</strong>g<br />

However, the optical <strong>feedback</strong> may also lead to detrimental<br />

effects such as coherence collapse with chaotic behaviour<br />

L d<br />

L e<br />

Paul Michael Petersen, Biophotonics 05, 2 nd International Graduate summer school


Risø National Laboratory<br />

Threshold ga<strong>in</strong> and oscillation frequency<br />

A coupled cavity model may be used for the analysis of<br />

<strong>diode</strong> <strong>lasers</strong> with optical <strong>feedback</strong>.<br />

M<br />

r 1<br />

M<br />

M<br />

M<br />

r 2<br />

r<br />

External 3<br />

r 1<br />

cavity<br />

At threshold the oscillation condition is:<br />

L d<br />

M<br />

r ( ) eff ω)<br />

( gth − αm ) Ld iωτ<br />

r2 +<br />

d<br />

3<br />

1 eff<br />

( ω) = 1 where r<br />

eff( ω)<br />

=<br />

1 +<br />

2 3<br />

rr e e<br />

re<br />

rre<br />

where τ d =2n d L d /c and τ e =2L e /c are the round-trip times.<br />

iωτ<br />

e<br />

iωτ<br />

e<br />

Paul Michael Petersen, Biophotonics 05, 2 nd International Graduate summer school


Risø National Laboratory<br />

Threshold ga<strong>in</strong> and oscillation frequency<br />

The ga<strong>in</strong> and the oscillations frequency can be obta<strong>in</strong>ed from the ”oscillations<br />

condition by solv<strong>in</strong>g this equation for the amplitude and phase:<br />

g<br />

= α −<br />

1 ln[ r r ( ω ) ]<br />

th m 1 eff<br />

Ld<br />

1 reff<br />

( ω)<br />

ω − ωq<br />

=− [ α ln[ ] − Arg [ reff<br />

( ω )]<br />

τ r<br />

d<br />

Paul Michael Petersen, Biophotonics 05, 2 nd International Graduate summer school<br />

2<br />

Where ω q =2 πq/τ d is the frequency of the laser <strong>diode</strong> without <strong>feedback</strong> and<br />

where an additional phaseshift has been <strong>in</strong>cluded due to the carrier <strong>in</strong>duced<br />

variation of the refractive <strong>in</strong>dex by the α parameter given by:<br />

dn / dN<br />

α =−2<br />

k dg / dN<br />

where n is the refractive <strong>in</strong>dex, g is the ga<strong>in</strong> and N is the carrier density.


Risø National Laboratory<br />

L<strong>in</strong>ewidth reduction with external <strong>feedback</strong> cavities<br />

The l<strong>in</strong>ewidth reduction is given by<br />

dωq<br />

∆ ν =∆ν0( )<br />

dω<br />

where<br />

−2<br />

dωq 1 dln reff ( ω) dln reff<br />

( ω)<br />

= 1 + { α Re[ ] −Im[ ]}<br />

dω τ dω dω<br />

d<br />

where ∆ν 0 is the l<strong>in</strong>ewidth without <strong>feedback</strong> and dω q / dω is the frequencychirp<br />

reduction factor.<br />

Paul Michael Petersen, Biophotonics 05, 2 nd International Graduate summer school


Risø National Laboratory<br />

Stability regimes for <strong>lasers</strong> with optical <strong>feedback</strong><br />

M<br />

r 1<br />

M<br />

r 2<br />

External<br />

cavity<br />

M<br />

r 3<br />

Regime I: Stable regime where the l<strong>in</strong>ewidth is<br />

narrowed or broadened broadened depend<strong>in</strong>g<br />

on the phase of the <strong>feedback</strong><br />

Regime II: Conditionally stable<br />

Regime III: Stable s<strong>in</strong>gle mode operation is<br />

obta<strong>in</strong>ed with l<strong>in</strong>ewidth reduction<br />

Regime IV: Unstable operation with coherence<br />

collapse<br />

Regime V: Stable operation with significant<br />

l<strong>in</strong>ewidth reduction<br />

Paul Michael Petersen, Biophotonics 05, 2 nd International Graduate summer school<br />

L d<br />

L e


Risø National Laboratory<br />

<strong>Optical</strong> <strong>feedback</strong> <strong>in</strong> the Littrow configuration<br />

Laser <strong>diode</strong><br />

HR<br />

AR<br />

Grat<strong>in</strong>g<br />

In the Littrow configuration the first order diffraction is feed back to the laser<br />

and the zero order diffraction is used as an output beam. The wavelenght<br />

tun<strong>in</strong>g range is typycally 10-50 nm which is limited by the bandwidth of the<br />

semiconductor ga<strong>in</strong> medium. Usually high quality antireflection coat<strong>in</strong>g on<br />

the output facet is required to prevent self oscillation <strong>in</strong> the laser <strong>diode</strong>.<br />

The wavelenght is changed due to λ = 2as<strong>in</strong>(θ)<br />

Paul Michael Petersen, Biophotonics 05, 2 nd International Graduate summer school


Risø National Laboratory<br />

<strong>Optical</strong> <strong>feedback</strong> <strong>in</strong> the Littman configuration<br />

Laser <strong>diode</strong><br />

HR<br />

AR<br />

Grat<strong>in</strong>g<br />

In the Littman configuration the first order diffraction is reflected back from<br />

an additional mirror and the laser beam is coupled out from the zero order<br />

diffraction.<br />

Usually high quality antireflection coat<strong>in</strong>g on the output facet is required.<br />

Coat<strong>in</strong>g with up to 5% reflectivity has been used but with limited tun<strong>in</strong>g<br />

range. <strong>Optical</strong> <strong>feedback</strong> of the order of 20 % to 30 % is needed.<br />

Paul Michael Petersen, Biophotonics 05, 2 nd International Graduate summer school

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!