23.01.2015 Views

Droughts in Canada: An Overview - Drought Research Initiative

Droughts in Canada: An Overview - Drought Research Initiative

Droughts in Canada: An Overview - Drought Research Initiative

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong><strong>Drought</strong>s</strong> <strong>in</strong> <strong>Canada</strong>: <strong>An</strong> <strong>Overview</strong><br />

Barrie Bonsal<br />

Environment <strong>Canada</strong><br />

Saskatoon, SK, <strong>Canada</strong>


Outl<strong>in</strong>e<br />

• Background<br />

• Past drought occurrence<br />

• Large-scale atmospheric causes<br />

• Current monitor<strong>in</strong>g & prediction<br />

• Future droughts<br />

• <strong>Research</strong> requirements


<strong><strong>Drought</strong>s</strong> <strong>in</strong> <strong>Canada</strong>


<strong>Drought</strong> Impacts<br />

Agriculture


<strong>Drought</strong> Impacts<br />

Water Resources


<strong>Drought</strong> Impacts


<strong>Drought</strong> <strong>Research</strong> <strong>in</strong> <strong>Canada</strong><br />

• Fragmented – spatially and<br />

temporally<br />

• Based on severe drought<br />

occurrence (e.g., 1999-2005)<br />

• Majority for Canadian Prairies<br />

• Historical comparisons difficult<br />

due to short and variable climate<br />

station records<br />

• Canadian droughts unique – both<br />

cold and warm season<br />

phenomenon


a) Kamloops, BC<br />

-6<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

6<br />

1900<br />

1905<br />

1910<br />

1915<br />

1920<br />

1925<br />

1930<br />

1935<br />

1940<br />

1945<br />

1950<br />

1955<br />

1960<br />

1965<br />

1970<br />

1975<br />

1980<br />

1985<br />

1990<br />

1995<br />

2000<br />

b) Saskatoon, SK<br />

-6<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

6<br />

1900<br />

1905<br />

1910<br />

1915<br />

1920<br />

1925<br />

1930<br />

1935<br />

1940<br />

1945<br />

1950<br />

1955<br />

1960<br />

1965<br />

1970<br />

1975<br />

1980<br />

1985<br />

1990<br />

1995<br />

2000<br />

c) Sherbrooke, QC<br />

-6<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

6<br />

1900<br />

1905<br />

1910<br />

1915<br />

1920<br />

1925<br />

1930<br />

1935<br />

1940<br />

1945<br />

1950<br />

1955<br />

1960<br />

1965<br />

1970<br />

1975<br />

1980<br />

1985<br />

1990<br />

1995<br />

2000<br />

d) Yarmouth, NS<br />

-6<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

6<br />

1900<br />

1905<br />

1910<br />

1915<br />

1920<br />

1925<br />

1930<br />

1935<br />

1940<br />

1945<br />

1950<br />

1955<br />

1960<br />

1965<br />

1970<br />

1975<br />

1980<br />

1985<br />

1990<br />

1995<br />

2000<br />

<strong>An</strong>nual PDSI<br />

<strong>An</strong>nual PDSI<br />

<strong>Drought</strong> Occurrence


Reconstructed Regional July Palmer <strong>Drought</strong> Severity Index<br />

(Sauchyn et al. 2001)<br />

2<br />

Southwestern<br />

Saskatchewan<br />

0<br />

-2<br />

frequent<br />

drought<br />

1700 1800 1900 2000<br />

2<br />

decadal<br />

drought<br />

0<br />

-2<br />

North-central<br />

Montana<br />

1600 1700 1800 1900 2000


Warm, Dry W<strong>in</strong>ters Over <strong>Canada</strong><br />

500mb Flow<br />

500mb <strong>An</strong>omalies<br />

El Niño, +PNA, +PDO, Deep Aleutian Low


Hot, Dry Summers Over Western <strong>Canada</strong><br />

500mb Flow<br />

500mb <strong>An</strong>omalies<br />

+PNA, Meridional Flow, +PDO


Coupled SVD pattern between Global<br />

W<strong>in</strong>ter SSTs and Summer PDSI<br />

(1940-2002)<br />

W<strong>in</strong>ter Interannual and <strong>in</strong>terdecadal ENSO-like pattern is associated with dry<br />

summer conditions <strong>in</strong> western and central <strong>Canada</strong>. Squared Covariance Fraction<br />

= 28%, Correlation between time expansion = 0.5<br />

(Shabbar and Sk<strong>in</strong>ner, 2004)


<strong>Drought</strong> Monitor<strong>in</strong>g<br />

• Real-time <strong>in</strong>formation on drought<br />

conditions over agricultural regions<br />

of <strong>Canada</strong><br />

• National map illustrat<strong>in</strong>g current<br />

and historical temperature,<br />

precipitation, and drought <strong>in</strong>dex<br />

maps (SPI, PDSI) at various time<br />

steps<br />

• Reports of lake and reservoir<br />

levels, stream flows, snowpack<br />

accumulations, water-supply<br />

volume forecasts, dugout water<br />

levels, pasture conditions (for the<br />

Prairies)<br />

• The North American <strong>Drought</strong><br />

Monitor


<strong>Drought</strong> Prediction<br />

• <strong>Drought</strong> prediction <strong>in</strong>volves<br />

anticipat<strong>in</strong>g climatic anomalies that<br />

produce unusually hot, dry conditions<br />

for extended periods<br />

• EC currently produces 3-month<br />

determ<strong>in</strong>istic T & P forecasts for lead<br />

times of 3, 4, 6, 9, and 12 months<br />

• The 3 & 4 month lead time forecasts<br />

are based upon and ensemble of 40<br />

model runs (GCM & NWP)<br />

• Longer lead times use a statistical<br />

(CCA) model us<strong>in</strong>g SST anomalies<br />

over the previous 12 months<br />

• Skill higher for cold season and for<br />

temperature


Future <strong><strong>Drought</strong>s</strong><br />

SPI<br />

PDSI


<strong>Research</strong> Needs<br />

1. A better understand<strong>in</strong>g of the physical causes of drought<br />

<strong>in</strong>itiation, persistence, and term<strong>in</strong>ation at a variety of spatial and<br />

temporal scales<br />

• Large-scale atmospheric and oceanic oscillations<br />

• Soil moisture anomalies<br />

• Storm tracks<br />

• Moisture sources<br />

• Physical causes of multi-year droughts<br />

• <strong>Drought</strong> migration


<strong>Research</strong> Needs<br />

2. Quantification and assessment of past drought occurrences<br />

• Past trends and variability<br />

• <strong>Drought</strong> <strong>in</strong>dices<br />

• Paleo-drought studies<br />

3. Better knowledge regard<strong>in</strong>g future drought occurrence<br />

• More reliable GCM/RCM output<br />

• Improved downscal<strong>in</strong>g methods<br />

• Future changes to large-scale circulation patterns


<strong>Research</strong> Needs<br />

4. Ability to more accurately predict drought onset, <strong>in</strong>tensity, and<br />

term<strong>in</strong>ation<br />

• Improvements <strong>in</strong> modell<strong>in</strong>g and monitor<strong>in</strong>g of current drought<br />

conditions<br />

• More reliable short term (seasonal) climate forecast<br />

5. More effective short and long-term adaptation strategies to<br />

defend aga<strong>in</strong>st future droughts

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!