23.01.2015 Views

Landscapes Forest and Global Change - ESA - Escola Superior ...

Landscapes Forest and Global Change - ESA - Escola Superior ...

Landscapes Forest and Global Change - ESA - Escola Superior ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

E.S. Meier et al. 2010. Projections of shifts in species distributions<br />

73<br />

available, one may consider for each species adequate migration assumptions (i.e. “no<br />

migration” for mid to late successional species <strong>and</strong> “unlimited migration” for early successional<br />

species), <strong>and</strong> may have to investigate more intensively the influence on range shifts by smallscale<br />

processes limiting species establishment, survival <strong>and</strong> dispersal, such as biotic interactions<br />

(e.g. inter-specific competition, facilitation) or disturbances, which were so far are often ignored<br />

in analysis on large-scale species distributions.<br />

Improved predictions of potential species distributions under future climates <strong>and</strong> in<br />

novel communities may assist strategies for sustainable forest management. Especially in this<br />

domain it is important to dynamically adapt management decisions to on-going climate changes,<br />

due to the long life span of trees. Tree life cycles take multiple decades to complete, <strong>and</strong> the rate<br />

at which trees can disperse <strong>and</strong> migrate, invade <strong>and</strong> form closed forests in areas that become<br />

climatically suitable is even slower. Incorporating such local processes by combining a dynamic<br />

model approach with large-scale SDMs will be crucial for a better underst<strong>and</strong>ing of how tree<br />

species interact in a changing climate. This is key to produce more accurate <strong>and</strong> detailed<br />

predictions of tree responses to climate change as are required by forest-management.<br />

References<br />

Bertness, M. D. & R. Callaway (1994) Positive interactions in communities. Trends in Ecology<br />

& Evolution, 9, 191-193.<br />

Brooker, R. W., J. M. J. Travis, E. J. Clark & C. Dytham (2007) Modelling species' range shifts<br />

in a changing climate: The impacts of biotic interactions, dispersal distance <strong>and</strong> the rate<br />

of climate change. Journal of Theoretical Biology, 245, 59-65.<br />

Caplat, P., M. An<strong>and</strong> & C. Bauch (2008) Interactions between climate change, competition,<br />

dispersal, <strong>and</strong> disturbances in a tree migration model. Theor Ecol, 209–220.<br />

Davis, M. B. & R. G. Shaw (2001) Range shifts <strong>and</strong> adaptive responses to Quaternary climate<br />

change. Science, 292, 673-679.<br />

Etterson, J. R. & R. G. Shaw (2001) Constraint to adaptive evolution in response to global<br />

warming. Science, 294, 151-154.<br />

Higgins, S. I., J. S. Clark, R. Nathan, T. Hovestadt, F. Schurr, J. M. V. Fragoso, M. R. Aguiar, E.<br />

Ribbens & S. Lavorel (2003) Forecasting plant migration rates: managing uncertainty for<br />

risk assessment. Journal of Ecology, 91, 341-347.<br />

Iverson, L. R., M. W. Schwartz & A. M. Prasad (2004) How fast <strong>and</strong> far might tree species<br />

migrate in the eastern United States due to climate change <strong>Global</strong> Ecology <strong>and</strong><br />

Biogeography, 13, 209-219.<br />

Lischke, H., N. E. Zimmermann, J. Bolliger, S. Rickebusch & T. J. Loffler. 2004. TreeMig: A<br />

forest-l<strong>and</strong>scape model for simulating spatio-temporal patterns from st<strong>and</strong> to l<strong>and</strong>scape<br />

scale. In International Conference of the International-Environmental-Modelling-<strong>and</strong>-<br />

Software-Society, 409-420. Osnabruck, GERMANY: Elsevier Science Bv.<br />

MacArthur, R. H. 1972. Geographical ecology: patterns in the distribution of species.<br />

Parmesan, C. & G. Yohe (2003) A globally coherent fingerprint of climate change impacts<br />

across natural systems. Nature, 421, 37-42.<br />

Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig & J. A. Pounds (2003)<br />

Fingerprints of global warming on wild animals <strong>and</strong> plants. Nature, 421, 57-60.<br />

Solomon, A. M. & A. P. Kirilenko (1997) Climate change <strong>and</strong> terrestrial biomass: what if trees<br />

do not migrate <strong>Global</strong> Ecology <strong>and</strong> Biogeography Letters, 6, 139-148.<br />

Thuiller, W., M. B. Araújo & S. Lavorel (2004) Do we need l<strong>and</strong>-cover data to model species<br />

distributions in Europe Journal of Biogeography, 31, 353-361.<br />

Whittaker, R. J., K. J. Willis & R. Field (2001) Scale <strong>and</strong> species richness: towards a general,<br />

hierarchical theory of species diversity. Journal of Biogeography, 28, 453-470.<br />

Woodward, F. I. 1987. Climate <strong>and</strong> plant distribution. Cambridge University Press. London.<br />

<strong>Forest</strong> <strong>L<strong>and</strong>scapes</strong> <strong>and</strong> <strong>Global</strong> <strong>Change</strong>-New Frontiers in Management, Conservation <strong>and</strong> Restoration. Proceedings of the IUFRO L<strong>and</strong>scape Ecology<br />

Working Group International Conference, September 21-27, 2010, Bragança, Portugal. J.C. Azevedo, M. Feliciano, J. Castro & M.A. Pinto (eds.)<br />

2010, Instituto Politécnico de Bragança, Bragança, Portugal.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!