22.01.2015 Views

Woolliams, John - The Roslin Institute - University of Edinburgh

Woolliams, John - The Roslin Institute - University of Edinburgh

Woolliams, John - The Roslin Institute - University of Edinburgh

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Prospects & Progress:<br />

Challenges for the Future<br />

<strong>John</strong> <strong>Woolliams</strong><br />

<strong>The</strong> <strong>Roslin</strong> <strong>Institute</strong> & R(D)SVS<br />

<strong>University</strong> <strong>of</strong> <strong>Edinburgh</strong>, U.K.


Introduction<br />

What may technology <strong>of</strong>fer


One Vision <strong>of</strong> the Future<br />

• Clone-tested on 5 farm types<br />

» most suited to farm type ‘C’<br />

• Carries udder health transgene<br />

• Naturally resistant to bTB<br />

• Category ‘A’ environmental impact<br />

» very low methane per kg milk<br />

• Information provided<br />

» optimum feeding pr<strong>of</strong>ile<br />

» predicted sensitivities to suboptimal<br />

conditions<br />

» genetic & breeding merit for 30<br />

trait with accuracy > 0.9<br />

• Chris Warkup<br />

• Nextgen Daisy


Issues<br />

• Cloning<br />

• Transgenics<br />

• Disease Resistance<br />

• Genotype x Environment Interaction<br />

• Detailed Breeding Information<br />

• Complex Breeding Objectives


Issues<br />

• Cloning<br />

• Transgenics<br />

<br />

<br />

• Disease Resistance<br />

<br />

• Genotype x Environment Interaction<br />

• Detailed Breeding Information<br />

• Complex Breeding Objectives


Precision Animal Breeding


Precision Animal Breeding<br />

• Relevant to<br />

» breeding for products and services<br />

» medical & scientific research<br />

» conservation<br />

» leisure and recreation


Precision Breeding Goals<br />

• To increase the scope and precision <strong>of</strong> predictions <strong>of</strong> the<br />

outcomes <strong>of</strong> breeding<br />

• To avoid the introduction and advance <strong>of</strong> characteristics<br />

deleterious to animal well-being or, more generally, the wellbeing<br />

<strong>of</strong> the species<br />

• To manage genetic resources and diversity between and<br />

within populations in accordance with the principles set out in<br />

the Convention on Biological Diversity<br />

Flint & <strong>Woolliams</strong>, 2008, Proc.Roy.Soc.B


Translation to Poultry<br />

• Better precision <strong>of</strong> traits in the broad breeding goal<br />

» improving evaluation methods<br />

» addressing disease traits<br />

» proactively predicting genetic consequences (correlations)<br />

» genotype by environment interactions<br />

» breeding for different (global) environments


Genomic Evaluation & Selection


Dairy Progress<br />

• Going well!<br />

• Accuracy <strong>of</strong> a<br />

newborn > 0.8<br />

» Milk Net Merit<br />

» 2 years ago!<br />

Source:<br />

USDA


Dairy Progress<br />

• However<br />

» easy to identify<br />

genotyping costs<br />

» low risk testing<br />

» good phenotypes<br />

» low Ne!<br />

Many thousands <strong>of</strong> tested &<br />

genotyped bulls<br />

i.e.<br />

high accuracy phenotypes<br />

Source:<br />

USDA


Factors for Accuracy<br />

Phenotypes<br />

Genome Data<br />

Methodology<br />

Accuracy


Factors for Accuracy<br />

Phenotypes<br />

Genetic<br />

Architecture<br />

Genome Data<br />

Heritability<br />

Methodology<br />

Number<br />

Records<br />

Accuracy


Factors for Accuracy<br />

Phenotypes<br />

Genetic<br />

Architecture<br />

Population<br />

Genome<br />

Structure<br />

Genome Data<br />

Heritability<br />

Number<br />

Markers<br />

Methodology<br />

Number<br />

Records<br />

Marker<br />

Selection<br />

Accuracy


Capturing Variance by SNP<br />

• Max accuracy <strong>of</strong> bovine 50k<br />

chip ~ 0.9 for milk yield net merit<br />

» confidence interval up to 0.93<br />

Daetwyler (2009)


Poultry Phenotypes<br />

Phenotypes<br />

• Phenotypes – poultry well-placed (with commitment)<br />

» number records<br />

» heritability<br />

» genetic architecture<br />

<br />

<br />

<br />

» breeding company structure promotes relevant recording in good &<br />

accumulating numbers


Poultry Genotypes<br />

Genotypes<br />

• Genotypes<br />

» marker choice<br />

» SNP polymorphism must be within populations<br />

» layers and broilers e.g. between – breed predictors still poor


Poultry Genotypes<br />

Genotypes<br />

• Genotypes<br />

» marker choice<br />

» number <strong>of</strong> markers<br />

» larger Ne than dairy cattle in some sectors<br />

» marker density scaled by Ne, 50k chip in dairy ~ 100k in broilers


Poultry Genotypes<br />

Genotypes<br />

• Genotypes<br />

» marker choice<br />

» number <strong>of</strong> markers<br />

» population genome structure<br />

» impact <strong>of</strong> the micro-chromosomes


Poultry Genotypes<br />

Genotypes<br />

• Genotypes – problems being overcome for chickens<br />

» marker choice<br />

» number <strong>of</strong> markers<br />

» population genome structure


Poultry Genotypes<br />

Genotypes<br />

• Genotypes – problems being overcome for chickens<br />

» marker choice<br />

» number <strong>of</strong> markers<br />

» population genome structure<br />

<br />

<br />

» current status <strong>of</strong> turkey & duck genomes and SNP discovery well<br />

behind chickens!


Genomic Evaluation<br />

• However may look to accuracy → 0.9+ for new born animals<br />

over time for routinely recorded traits<br />

• Precision in breeding for what we routinely measure<br />

» less conflict between ‘desired’/’most pr<strong>of</strong>itable’ direction <strong>of</strong> gain and<br />

achieved gain<br />

Desired Gain<br />

Egg Number<br />

Egg Number<br />

Achieved Gain<br />

Growth<br />

Growth


Genetic Epidemiology


Precision in Goals<br />

• Disease resistance is an important part <strong>of</strong> the<br />

complex goal<br />

• How well do we address disease traits


Example from Dairy Cattle<br />

• Analysis <strong>of</strong> bovine TB<br />

» large scale field data<br />

» disease occurs in ‘herd size’ epidemics<br />

» record which animals culled for bTB in each herd before<br />

epidemic halted<br />

» phenotype ‘1’ if culled, 0 if survive<br />

» evidence <strong>of</strong> genetic variation in bTB susceptibility<br />

» h 2 = 0.15 on ‘underlying complementary log-log scale’


Gen’ Epi’ Problems (1)<br />

• Bias in estimates<br />

» exposure, sensitivity & specificity <strong>of</strong> diagnosis<br />

• <strong>The</strong>ory to quantify degree <strong>of</strong> bias<br />

» all factors lead to underestimate <strong>of</strong> h 2<br />

» consistently underestimated importance <strong>of</strong> genetics<br />

» e.g. correction for bTB gives h 2 ~ 0.20 to 0.25<br />

Bishop & <strong>Woolliams</strong> (2010)<br />

• More theory to be done<br />

• Better analytical models to correct biases


Gen’ Epi’ Problems (2)<br />

• Incomplete disease models for genetic variance<br />

» ignore infectivity i.e. ‘shedders’<br />

» impact <strong>of</strong> variation in infectivity potentially as large as<br />

variation in susceptibility<br />

» no easy way to capture this variance in genetic models


Gen’ Epi’ Problems (3)<br />

• What does h 2 ~ 0.25 on ‘underlying complementary<br />

log-log scale’ mean to an epidemiologist<br />

» epidemiologists work on ‘SIR’ models<br />

» time-dependent models with very different<br />

parameterisation<br />

• Need to reconcile models


Role <strong>of</strong> Genomics<br />

• Why debate genetic epidemiology in a session on<br />

next generation technology & ‘omics<br />

• Currently, genetics <strong>of</strong> disease relies upon<br />

» repeated challenge testing by breeding companies<br />

» cost<br />

» biosecurity<br />

» welfare <strong>of</strong> birds<br />

» pedigree analysis <strong>of</strong> epidemics<br />

» relies on quality commercial data


Role <strong>of</strong> Genomics<br />

• Genomics releases these<br />

constraints<br />

» can generate progress in<br />

absence <strong>of</strong> epidemic or<br />

routine testing<br />

» retain ‘genomic memory’ <strong>of</strong><br />

desirable disease resistance<br />

Potential<br />

Breeding Pyramid<br />

Progress<br />

Infrequent<br />

challenge test<br />

Dissemination<br />

Genomic<br />

information


Predicting Genetic Correlations


Genotype to Phenotype<br />

Genome<br />

Gene 1<br />

Gene 3<br />

Gene 2<br />

Gene 4<br />

Gene 6<br />

Gene 5<br />

Gene 7<br />

Protein A<br />

Protein B<br />

Protein C<br />

Protein D<br />

Complex D-E<br />

Protein E<br />

Protein F<br />

Protein G<br />

Environment<br />

Metabolite 1<br />

Metabolite 2<br />

Metabolite 3<br />

Metabolite 4<br />

Metabolite 5<br />

Cell<br />

Division<br />

Growth rate<br />

Cell<br />

Growth


Genotype to Phenotype<br />

Genome<br />

Gene 1<br />

Gene 3<br />

Gene 2<br />

Gene 4<br />

Gene 6<br />

Gene 5<br />

Gene 7<br />

Protein A<br />

Protein B<br />

Protein C<br />

Protein D<br />

Complex D-E<br />

Protein E<br />

Protein F<br />

Protein G<br />

Environment<br />

Physiology<br />

Metabolite 1<br />

Metabolite 2<br />

Metabolite 3<br />

Metabolite 4<br />

Metabolite 5<br />

Cell<br />

Division<br />

Growth rate<br />

Cell<br />

Growth


Genotype to Phenotype<br />

Genome<br />

Gene 1<br />

Gene 2<br />

Gene 6<br />

Gene 3<br />

Gene 4<br />

Gene 5<br />

Gene 7<br />

Protein A<br />

Protein B<br />

Protein C<br />

Protein D<br />

Complex D-E<br />

Protein E<br />

Protein F<br />

Protein G<br />

Environment<br />

Physiology<br />

Quantitative Genetics<br />

Metabolite 1<br />

Metabolite 2<br />

Metabolite 3<br />

Metabolite 4<br />

Metabolite 5<br />

Cell<br />

Division<br />

Growth rate<br />

Cell<br />

Growth


Genotype to Phenotype<br />

Genome<br />

Gene 1<br />

Gene 3<br />

Gene 2<br />

Gene 4<br />

Gene 6<br />

Gene 5<br />

Gene 7<br />

Protein A<br />

Protein B<br />

Protein C<br />

Protein D<br />

Complex D-E<br />

Protein E<br />

Protein F<br />

Protein G<br />

Environment<br />

Metabolite 1<br />

Metabolite 2<br />

Metabolite 3<br />

Metabolite 4<br />

Metabolite 5<br />

Cell<br />

Division<br />

Growth rate<br />

Cell<br />

Growth


Genotype to Phenotype<br />

• Gene expression is where physiology, systems<br />

biology and genetics ‘join up’ & communicate<br />

directly


Variation in Expression<br />

• eQTL<br />

» genetic variants affecting<br />

mRNA abundance<br />

» genetical genomics<br />

» Gibbs et al., PLoS Genetics 6<br />

(5): e1000952<br />

» study <strong>of</strong> human brain<br />

» many eQTL


Variation in Expression<br />

• eQTL<br />

» genetic variants affecting<br />

mRNA abundance<br />

» genetical genomics<br />

» Gibbs et al., PLoS Genetics 6<br />

(5): e1000952<br />

» study <strong>of</strong> human brain<br />

» many eQTL<br />

cis<br />

trans


Variation in Expression<br />

• Epigenetic factors regulate expression<br />

» such as methylation (DNA, histone marks)<br />

» ‘switches’ <strong>of</strong> DNA transcription & expression<br />

• Methylation is a very dynamic process<br />

» regulation <strong>of</strong> heat shock in chickens<br />

• Opened up by next generation sequencing


Variation in Expression<br />

• mQTL exist!<br />

» and in abundance<br />

» some loci affect the<br />

methylation state <strong>of</strong> other loci<br />

» Gibbs et al., PLoS Genetics 6<br />

(5): e1000952<br />

» study <strong>of</strong> human brain<br />

» genetical epigenetics<br />

cis<br />

trans


Precision Breeding<br />

• Bioinformatics analysis <strong>of</strong> eQTL & mQTL can begin<br />

to predict genetic correlations<br />

» network building<br />

» pathway analysis


Precision Breeding<br />

• Bioinformatics analysis <strong>of</strong> eQTL & mQTL can begin<br />

to predict genetic correlations<br />

» network building<br />

» pathway analysis<br />

• Specific hypothesis that mQTL may be important to<br />

understand and overcome G x E<br />

» poor regulation <strong>of</strong> ‘production’ loci under challenge<br />

» disease or nutritional challenges


Summary


Summary<br />

• Challenges to deliver Precision Breeding<br />

1. Delivery <strong>of</strong> genomic evaluation<br />

• < 2015<br />

• made feasible by next generation technology<br />

2. Genetic epidemiology, theory and application<br />

• < 2020<br />

• beneficial exploitation requires genomic evaluation +<br />

3. Predicting genetic correlations, including GxE<br />

• < 2025<br />

• requires next generation sequencing

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!