22.01.2015 Views

Relationship between element content determined by wavelength ...

Relationship between element content determined by wavelength ...

Relationship between element content determined by wavelength ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SCIENTIFIC WORKS OF THE INSTITUTE OF HORTICULTURE,<br />

LITHUANIAN RESEARCH CENTRE FOR AGRICULTURE AND<br />

FORESTRY AND ALEKSANDRAS STULGINSKIS UNIVERSITY.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2012. 31(3–4).<br />

<strong>Relationship</strong> <strong>between</strong> <strong>element</strong> <strong>content</strong> <strong>determined</strong> <strong>by</strong><br />

<strong>wavelength</strong>-dispersive x-ray fluorescence spectrometry<br />

and field emergence of green bean seed<br />

Haluk Çağlar Kaymak 1 , İsmail Güvenç 2 , Ali Gürol 3 , Arif Bastuğ 4<br />

1<br />

Atatürk University, Faculty of Agriculture, Department of<br />

Horticulture, 25240 Erzurum, Turkey,<br />

E-mail hckaymak@atauni.edu.tr<br />

2<br />

Sütçü İmam University, Faculty of Agriculture,<br />

Department of Horticulture, Kahramanmaraş, 46000, Turkey,<br />

E-mail guvencis@hotmail.com<br />

3<br />

Atatürk University, Faculty of Science, Department of Physics,<br />

25240 Erzurum, Turkey, E-mail agurol@atauni.edu.tr<br />

4<br />

Aksaray University, Faculty of Science and Art, Department of<br />

Physics, 68100, Aksaray, Turkey, E-mail abastug@aksaray.edu.tr<br />

The aim of this study was to determine the relationship <strong>between</strong> seed <strong>element</strong> <strong>content</strong> and<br />

field emergence. Four green bean (Phaseolus vulgaris L.) cultivars (‘Gina’, ‘Sarıkız’, ‘Balkız’<br />

and ‘Sırık-Ayse’) were evaluated using standard germination test (SGT), germination rate,<br />

seed <strong>element</strong> <strong>content</strong> (<strong>determined</strong> <strong>by</strong> <strong>wavelength</strong>-dispersive X-Ray fluorescence (WDXRF)<br />

spectrometry) and field emergence (FE). The percentage field emergence of the four cultivars<br />

at three sowing dates was also evaluated. Sowing dates were: early: 2 May (FE – I), optimum:<br />

20 May (FE – II) and late: 7 June (FE – III). Correlation coefficients among laboratory emergence<br />

tests were calculated and there were significant differences. N, Mg, Si, S, K, Mn, Fe,<br />

Ni, Zn and Rb <strong>content</strong> were all significantly correlated with field emergence at the different<br />

sowings. The highest correlation was <strong>between</strong> Mn and FE – I (r = -0.842). Seven of sixteen<br />

<strong>element</strong>s were significantly correlated with SGT, especially Mn, Ni and Rb. WDXRF seems<br />

to be a suitable method for rapid assessment of seed <strong>element</strong> <strong>content</strong> and may be of use for<br />

the rapid prediction of field emergence of green bean cultivars.<br />

Key words: field emergence, germination, Phaseolus vulgaris L., WDXRF.<br />

Introduction. Seed quality depends on many factors which include moisture<br />

<strong>content</strong>, germination level, pathogen contamination, varietal purity and physical integrity.<br />

Seed quality affects field emergence and seed laboratory quality tests should<br />

be related to assessing potential field emergence (Kolasinska et al., 2000). Recently<br />

considerable research has been conducted on seed quality tests to predict the field<br />

47


emergence of beans and has reported significant correlations <strong>between</strong> field emergence<br />

and laboratory tests. The conductivity test (Kolasinska et al., 2000; Palabıyık,<br />

Peksen, 2008) gave reliable estimates of potential field emergence for common bean.<br />

Further, the tetrazolium test correlates with field emergence but the correlations were<br />

not as high as those for a standard germination test (Kaymak, Guvenc, 2008) and the<br />

cold test is one of the oldest and most popular seed vigour tests (Vieira et al., 2010).<br />

The cold test and the accelerated aging test are recommended <strong>by</strong> Miguel and Cicero<br />

(1999) and Binotti et al. (2008). As reported <strong>by</strong> Vieira et al. (1999), Kolasinska et al.<br />

(2000), Muasya and Auma (2003) and Kaymak and Guvenc (2008), the relationship<br />

<strong>between</strong> laboratory tests and field emergence is complex and variable.<br />

Interest in direct, multi-<strong>element</strong> analysis of plant samples has increased in the last<br />

few years and includes X-ray fluorescence spectrometry (XRF). Simplicity of sample<br />

preparation, minimum need for manipulation, speed and the opportunity of analyzing<br />

several different <strong>element</strong>s have promoted XRF as a useful alternative to conventional<br />

spectroscopic techniques (Margui et al., 2005). In addition the short analysis time of<br />

this method makes it suitable for routine analyses (Noda et al., 2006), and useful to<br />

determine seed <strong>element</strong> <strong>content</strong> and seed quality indirectly.<br />

Although many researchers have shown significant correlations <strong>between</strong> field<br />

emergence and seed quality tests, such as counting the number of seed with broken<br />

coats, electrical conductivity of seed leakage, the cold test and tetrazolium viability<br />

tests, controversial results in predicting field emergence have been reported and most<br />

tests do not cover the relationship <strong>between</strong> seed <strong>element</strong> <strong>content</strong> and field emergence.<br />

Therefore, the aim of this paper was to study the application of <strong>wavelength</strong>-dispersive<br />

XRF spectrometry for testing seed viability and vigour.<br />

Object, methods and conditions. This study was conducted under field and<br />

laboratory conditions during 2004–2005 at Ataturk University, College of Agriculture,<br />

Erzurum, Turkey, to determine the application of <strong>wavelength</strong>-dispersive XRF<br />

spectrometry for testing seed viability and vigour. Seed of four green bean (Phaseolus<br />

vulgaris L.) cultivars (‘Gina’, ‘Sarıkız’, ‘Balkız’ and ‘Sırık-Ayse’) were used and<br />

seeds of vegetable species were supplied <strong>by</strong> vegetables seed companies in Turkey.<br />

S t a n d a r d g e r m i n a t i o n t e s t: Standard germination tests (SGT) were<br />

conducted using four replicates of 25 seed of each cultivar. Seed was incubated in<br />

Petri dishes <strong>between</strong> two filter papers saturated with water, which contained Benlate<br />

1 g l -1 to prevent fungal growth at 20 °C (ISTA, 1996). Visible radicle protrusion was<br />

the criterion of germination. Germinated seeds were recorded and discarded at 24 h<br />

intervals over 10 days scoring. Results were expressed as final germination percentage.<br />

G e r m i n a t i o n r a t e ( G R ): GR was calculated according to the equation<br />

(germination rate = germination percentage in 1 st day/1 + ….. + germination percentage<br />

nth day/n) of Kaymak et al. (2009) and Kaymak (2012).<br />

F i e l d e m e r g e n c e ( F E ): To assess FE, seed from each sample was hand<br />

sown at 5 cm deep in four replicate plots (Kolasinska et al., 2000). Seed was sown<br />

at three sowing dates [(early: May 2 (FE-I), optimum: May 20 (FE – II) and late:<br />

June 7 (FE – III)] into a loamy soil in north-eastern Turkey in 2004. The experimental<br />

area (Erzurum) is located <strong>between</strong> 40° 57’ and 39° 10’N latitude, 40° 15’ and<br />

42° 35’E longitude and is at 1 850 m above sea level. Counts started as seedlings began<br />

to emerge and continued until no further seedlings appeared. Seedlings were counted<br />

as emerged when the cotyledons were free of the soil surface (Kolasinska et al., 2000).<br />

48


Wa v e l e n g t h - d i s p e r s i v e X - R a y f l u o r e s c e n c e ( W D X R F )<br />

a n a l y s i s: A WDXRF spectrometer (Rigaku ZSX-100e with Rhodium target<br />

X-ray, Rigaku, Japan) was used for the analysis of the seed <strong>element</strong> <strong>content</strong>. This<br />

instrument was controlled <strong>by</strong> a computer using ZSX Software (Rigaku, Japan). The<br />

ZSX 100e WDXRF spectrometer characteristics included; analysis of <strong>element</strong>s from<br />

B to U, 4 kW 70 kV end-window X-ray tube, micro area mapping down to 0.5 mm,<br />

up to five primary beam filters, 4 analyzing crystals [LiF, Ge (111), PET (002) and<br />

TAP (100)], and eight limiting area diaphragms, optional secondary collimators, automatic<br />

sample changer, compact design and multi window, multi-function fundamental<br />

parameters software.<br />

Seed was grinded in a porcelain muller. The ground material was used for all XRF<br />

analyses. In the XRF Laboratory, 2 g weight, 2.5 mm thickness and 35 mm diameter<br />

pellets were produced <strong>by</strong> applying 15 t of pressure with a Spex press (Cat. B25). After<br />

the preparation of the pellets, they were incubated at 80 °C for 20 min to remove all<br />

moisture and were then used for <strong>element</strong> determination. LiF, Ge (111), PET (002)<br />

and TAP (100) crystals were used to separate the X rays coming from the pellets in<br />

WDXRF spectrometer. At the end of the WDXRF analysis; the major, minor and trace<br />

<strong>element</strong> <strong>content</strong>s of seeds were <strong>determined</strong> as mass percentage (wt%) (wt% = <strong>element</strong><br />

mass × 100 / total mass) (Kaymak et al., 2010 a and 2010 b).<br />

E x p e r i m e n t a l d e s i g n a n d s t a t i s t i c a l a n a l y s i s. The laboratory<br />

experiments were conducted as randomized complete block designs, with four<br />

replicates. Data obtained were subjected to ANOVA and differences <strong>between</strong> means<br />

compared using Duncan’s multiple range test. Additionally, the correlation coefficients<br />

(r) <strong>between</strong> tests were <strong>determined</strong>.<br />

Results and discussion. Means of the green bean cultivars for SGT and GR are<br />

shown in Table 1. There were significant differences (P < 0.01) among cultivars for<br />

SGT and GR.<br />

Table 1. Mean values of germination (%) and germination rate (%) in four bean<br />

cultivars<br />

1 lentelė. Keturių pupelių veislių daigumo (%) ir daigumo lygio vidurkiai (%)<br />

Cultivars<br />

Veislės<br />

SGT<br />

SDT<br />

GR<br />

DL<br />

cv. ‘Gina’ 86.7 ab 31.2 NS / NP<br />

cv. ‘Sarıkız’ 96.7 a 31.2<br />

cv. ‘Sırık Ayse’ 73.3 b 24.7<br />

cv. ‘Balkız’ 95.0 a 29.4<br />

SEM<br />

SVK<br />

3.044 1.378<br />

P values<br />

P reikšmės<br />

0.002 0.330<br />

Different letters denote significant differences <strong>between</strong> the cultivars: NS – not significant,<br />

SGT – standard germination test, GR – germination rate, SEM: standard error of mean.<br />

Skirtingos raidės žymi patikimus skirtumus tarp veislių: NP – nepatikima, SDT – standartinis<br />

daigumo testas, DL – daigumo lygis, SVK – standartinė vidurkio paklaida.<br />

49


The cultivar germination percentage ranged from 73.3 % (‘Sırık Ayse’) and<br />

96.7‘% (‘Sarıkız’). Although there were no significant differences <strong>between</strong> cultivars<br />

and GR, the highest germination rate was <strong>determined</strong> in ‘Gina’ and ‘Sarıkız’<br />

(31.2 %).<br />

Kolasinska et al. (2000), in Phaseolus vulgaris, reported that most samples had<br />

a standard germination > 80 % and varied from 39 % to 99 %. Bean cultivars that had<br />

high germination under favourable laboratory conditions (Palabıyık, Peksen, 2008)<br />

and germination percentages of seed under optimum conditions could give 100 %<br />

germination (Balkaya, Odabas, 2002). The bean cultivars used in this study also<br />

performed well under favourable laboratory conditions. Results from this work were<br />

similar to the above studies.<br />

The green bean field emergence data test is shown in Table 2. Mean seedling<br />

emergence varied depending on cultivars and sowing date. For bean field emergence<br />

at different times, the cultivar x sowing date interaction was statistically significant<br />

(P < 0.01). Significant cultivar x sowing date interaction for field emergence demonstrated<br />

that the effect of sowing date varied considerably. In other words, this<br />

interaction also indicated that performance of cultivars was affected <strong>by</strong> sowing date<br />

for field emergence. Both early and late sowing decreased field emergence across all<br />

cultivars. High emergence rates were obtained at the optimum sowing date (FE – II).<br />

Sarıkız and Gina (28.7 %) had the lowest emergence in FE-I (early) and FE – III (late),<br />

respectively. Emergence values at FE – II ranged from 73.7 % (‘Sarıkız’) to 81.3 %<br />

(‘Sırık Ayse’) for all samples.<br />

Table 2. Mean field emergence (%) of four bean cultivars in different sowing<br />

dates<br />

2 lentelė. Keturių skirtingu metu pasėtų pupelių veislių lauko daigumo vidurkis (%)<br />

Sowing date<br />

Sėjos data<br />

Cultivars<br />

Veislės<br />

Field emergence<br />

Lauko daigumas (%)<br />

1 2 3<br />

cv. ‘Gina’<br />

30.0 b (b)<br />

Early (FE – I)<br />

cv. ‘Sarıkız’<br />

28.7 b (c)<br />

Ankstyvos<br />

cv. ‘Sırık Ayse’<br />

44.7 a (b)<br />

cv. ‘Balkız’<br />

32.3 b (b)<br />

cv. ‘Gina’<br />

81.0 a (a)<br />

Optimum (FE – II) cv. ‘Sarıkız’<br />

73.7 c (a)<br />

Optimalios<br />

cv. ‘Sırık Ayse’<br />

81.3 a (a)<br />

cv. ‘Balkız’<br />

78.0 b (a)<br />

cv. ‘Gina’<br />

28.7 b (b)<br />

Late (FE – III)<br />

cv. ‘Sarıkız’<br />

47.0 a (b)<br />

Vėlyvos<br />

cv. ‘Sırık Ayse’<br />

47.0 a (b)<br />

cv. ‘Balkız’<br />

40.0 a (b)<br />

SEM 0.685<br />

50


Table 2 continued<br />

2 lentelės tęsinys<br />

1 2 3<br />

Early (FE – I)<br />

33.9 C<br />

Ankstyvos<br />

Optimum (FE – II)<br />

78.5 A<br />

Optimalios<br />

Late (FE – III)<br />

40.7 B<br />

Vėlyvos<br />

cv. ‘Gina’<br />

46.6 B<br />

cv. ‘Sarıkız’<br />

49.8 B<br />

cv. ‘Sırık Ayse’<br />

57.7 A<br />

cv. ‘Balkız’<br />

50.1 B<br />

F values<br />

P reikšmės<br />

P values<br />

P reikšmės<br />

Sowing date<br />

409.61 0.001<br />

Sėjos data<br />

Cultivars<br />

11.79 0.001<br />

Veislės<br />

Sowing date × cultivar<br />

Sėjos data × veislė<br />

6.62 0.001<br />

Different letters denote significant differences at 0.001 probability level. Letters in parenthesis<br />

are comparisons of each cultivar across sowing date. Letters that are not in parenthesis are<br />

comparisons of each sowing date across cultivars; SEM: standard error of mean<br />

Skirtingos raidės žymi patikimus skirtumus esant tikimybės lygiui 0,001. Raidės skliaustuose –<br />

tai kiekvienos veislės palyginimas su sėjos data. Raidės, kurios nėra skliaustuose, – tai kiekvienos<br />

sėjos datos palyginimas su veislėmis; SVK – standartinė vidurkio paklaida<br />

In the work to determine the effect of sowing time, in common bean, average<br />

field emergence varied from 17 % from early planting to 91 % under better conditions<br />

(Kolasinska et al., 2000). In another emergence trial, on beans, seed field emergence<br />

differences were related to sowing time and cultivar characteristics (Balkaya, Odabas,<br />

2002; Kaymak, Guvenc, 2008).<br />

The major environmental factor influencing field emergence is soil temperature<br />

and moisture at sowing (Kolasinska et al., 2000; Kaymak, Guvenc, 2008). The optimum<br />

soil and air temperatures for emergence are > 9 and 14 °C, respectively (Gunay,<br />

2005) and temperatures of 8–10 °C are considered to the lower limit for bean seedling<br />

development. Moreau-Valancogne et al. (2008) also reported that field emergence rates<br />

varied from 56 to 90 % and these differences were large <strong>between</strong> sowing situations,<br />

emergence was mainly delayed <strong>by</strong> low soil temperatures or dry conditions, and the<br />

optimum soil temperature for bean seed germination was 20–30 °C and germination<br />

of 39 bean seed samples at 10 °C was <strong>by</strong> 60 % lower (Kolasinska et al., 2000). In<br />

this experiment, detailed information about the soil and air temperature and rainfall<br />

of the experimental area were shown in Figure (TSMR, 2004). Average field emergence<br />

(Table 2) ceased to depend on soil temperature at temperatures above 14 °C.<br />

51


Average field emergence in FE-I fell at a temperature below 9 °C. In addition, rain<br />

at the experimental area was lower at the last sowing than in the early and optimum<br />

sowings (TSMR, 2004).<br />

Fig. Soil temperature at 5 cm depth and average air temperature (°C) and<br />

rainfall (mm) of experimental area<br />

Pav. Dirvos temperatūra 5 cm gylyje ir eksperimentinio sklypo vidutinė<br />

oro temperatūra (°C) bei krituliai (mm)<br />

As shown in Table 3, the major <strong>element</strong>s with a <strong>content</strong> of ≥ 0.1 wt% (Al-Bataina<br />

et al., 2003) in all samples were N and K. Differences among cultivars were statistically<br />

significant (P < 0.01). Nitrogen was present in all cultivars with values ranging from<br />

9.32 wt% to 10.13 wt%. The K <strong>content</strong> was 1.0130 wt%, 1.1667 wt%, 1.3867 wt%<br />

and 1.4433 wt% in Gina, Sırık Ayse, Balkız and Sarıkız, respectively. Minor <strong>element</strong>s,<br />

with a <strong>content</strong> of less than 0.1 wt% (Al-Bataina et al., 2003) in all samples were: Mg,<br />

P and S. Values for these <strong>element</strong>s ranged from 0.1736 wt% to 0.5320 wt% in all<br />

samples. There were no significant differences in minor <strong>element</strong>s (Table 3).<br />

Trace <strong>element</strong>s varied with cultivar. Trace <strong>element</strong>s in all samples were: Na,<br />

Al, Si, Cl, Ca, Mn, Fe, Ni, Cu, Zn and Rb. The Na <strong>content</strong> was <strong>between</strong> 0.0054 wt%<br />

(‘Sarkız’) and 0.0150 wt% (‘Balkız’). While the Al, Si and Mn <strong>content</strong> was the highest<br />

in ‘Gina’, the lowest values were <strong>determined</strong> in ‘Balkız’, ‘Sarıkız’ and ‘Sırık Ayse’.<br />

Values for Fe ranged from 0.0061 wt% (‘Balkız’) to 0.0117 wt% (‘Gina’) in all samples.<br />

Calcium ranged from 0.0006 wt% to 0.0009 wt% and the <strong>content</strong> of Rb was<br />

0.0007 wt%, 0.0008 wt%, 0.0010 wt% and 0.0011 wt% which are taken from ‘Gina’,<br />

‘Sırık Ayse’, Sarıkız’ and ‘Balkız’, respectively. There were no significant differences<br />

among Cl, Ca, Cu, Zn and cultivars. Finally, the trace <strong>element</strong> values ranged from<br />

0.0007 wt% to 0.0150 wt% in all samples.<br />

52


Table 3. Elemental composition in seed of four green bean cultivars<br />

3 lentelė. Keturių žaliųjų pupelių veislių sėklų <strong>element</strong>ų sudėtis (wt%)<br />

Major<br />

<strong>element</strong>s<br />

Pagrindiniai <strong>element</strong>ai<br />

Minor <strong>element</strong>s<br />

Šalutiniai <strong>element</strong>ai<br />

Trace <strong>element</strong>s<br />

Mikro<strong>element</strong>ai<br />

Cultivars<br />

Veislės<br />

‘Gina’ ‘Sarıkız’ ‘Sırık Ayse’ ‘Balkız’ SEM P values<br />

P reikšmės<br />

N 10.1330 9.9200 9.3200 9.7770 0.1192 0.068<br />

K 1.0130 1.4433 1.1667 1.3867 0.0712 0.092<br />

Mg 0.2193 0.2123 0.2143 0.2233 0.0054 0.918<br />

P 0.5102 0.5282 0.4656 0.5320 0.0142 0.363<br />

S 0.1892 0.2054 0.1736 0.1990 0.0053 0.156<br />

Na 0.0066 0.0054 b 0.0081 0.0150 a 0.0016 0.142<br />

Al 0.0023 a 0.0012 b 0.0018 ab 0.0011 b 0.0002 0.025<br />

Si 0.0088 a 0.0054 b 0.0064 b 0.0055 b 0.0004 0.001<br />

Cl 0.0046 0.0053 0.0053 0.0066 0.0004 0.324<br />

Ca 0.0492 0.0412 0.0449 0.0491 0.0020 0.498<br />

Mn 0.0017 a 0.0015 a 0.0012 b 0.0016 a 0.0001 0.007<br />

Fe 0.0117 a 0.0065 b 0.0066 b 0.0061 b 0.0007 0.001<br />

Ni 0.0007 b 0.0009 a 0.0006 b 0.0009 a 0.0001 0.014<br />

Cu 0.0011 0.0011 0.0010 0.0010 0.0001 0.629<br />

Zn 0.0029 0.0021 0.0020 0.0026 0.0002 0.136<br />

Rb 0.0007 b 0.0010 a 0.0008 b 0.0011 a 0.0001 0.013<br />

Different letters denote significant differences among cultivars: wt% – mass percentage,<br />

SEM – standard error of mean<br />

Skirtingos raidės žymi patikimus skirtumus tarp veislių: wt% – masės procentas, SVK –<br />

standartinė vidurkio paklaida<br />

The WDXRF analyses allowed the determination of major, minor and<br />

trace <strong>element</strong>s which changed depending on cultivars (Table 3). Decoteau (2000)<br />

reported that mature dry bean seed contained 144 mg Ca 100 g -1 , 425 mg P 100 g -1 ,<br />

7.8 mg Fe 100 g -1 , 19 mg Na 100 g -1 and 1 196 mg K 100 g -1 . However, there was no<br />

report on the <strong>element</strong>al composition of green bean seeds. In our study, sixteen different<br />

<strong>element</strong>s were <strong>determined</strong> in seeds of four green bean cultivars.<br />

The correlation coefficients (r) among field emergence, SGT and <strong>element</strong> <strong>content</strong>s<br />

of the bean cultivars used in this study are presented in Table 4. N, Mg, Si, S,<br />

K, Mn, Fe, Ni, Zn and Rb were significantly correlated with field emergence at the<br />

different sowings (Table 4.). The highest correlation was <strong>between</strong> Mn and FE – I<br />

(r = -0.842). Five of sixteen <strong>element</strong>s were significantly correlated with the SGT, especially<br />

P (r = 0.612), Ni (r = 0.740) and Rb (r = 0.624). While there were limited data, Akıncı<br />

and Akıncı (2011) reported that Ni was stimulator for germination and seedling growth<br />

of spinach in low concentrations (25 mg L -1 ). Results for Ni in this work were confirmative<br />

of mentioned study.<br />

53


Table 4. Cumulative correlation <strong>between</strong> <strong>element</strong>ų <strong>content</strong> and field emergence<br />

and seed quality parameters<br />

4 lentelė. Kumuliacinės koreliacijos tarp <strong>element</strong>ų kiekio, lauko daigumo ir sėklos kokybės<br />

rodiklių koeficientai (r)<br />

Major <strong>element</strong>s<br />

Pagrindiniai <strong>element</strong>ai<br />

Minor <strong>element</strong>s<br />

Šalutiniai <strong>element</strong>ai<br />

Trace <strong>element</strong>s<br />

Mikro<strong>element</strong>ai<br />

Early (FE – I) Optimum (FE – II) Late (FE – III) SGT GR<br />

Ankstyva Optimali Vėlyva SDT DL<br />

N -0.536 (0.036) -0.320 (0.155) -0.478 (0.082) 0.426 0.335<br />

(0.084) (0.144)<br />

K -0.082 (0.400) -0.289 (0.181) 0.616 (0.016) 0.511 0.015<br />

(0.037) (0.481)<br />

Mg -0.033 (0.460) 0.508 (0.046) 0.179 (0.289) 0.080 -0.180<br />

(0.403) (0.288)<br />

P -0.360 (0.125) -0.210 (0.257) 0.098 (0.381) 0.612 0.369<br />

(0.017) (0.119)<br />

S -0.413 (0.091) -0.581 (0.024) 0.082 (0.400) 0.702 0.355<br />

(0.005) (0.128)<br />

Na 0.021 (0.474) -0.014 (0.483) -0.120 (0.356) 0.081 -0.009<br />

(0.401) (0.489)<br />

Al 0.087 (0.394) 0.490 (0.053) -0.361 (0.124) -0.554 -0.006<br />

(0.027) (0.493)<br />

Si -0.047 (0.443) 0.552 (0.031) -0.629 (0.014) -0.313 0.050<br />

(0.161) (0.438)<br />

Cl -0.018 (0.478) -0.467 (0.063) 0.142 (0.329) 0.240 0.193<br />

(0.226) (0.274)<br />

Ca -0.083 (0.399) 0.328 (0.149) -0.233 (0.233) 0.052 -0.140<br />

(0.436) (0.333)<br />

Mn -0.842 (0.001) -0.115 (0.361) -0.556 (0.030) 0.514 0.572<br />

(0.044) (0.026)<br />

Fe -0.256 (0.211) 0.378 (0.113) -0.732 (0.003) -0.143 0.263<br />

(0.328) (0.204)<br />

Ni -0.455 (0.069) -0.627 (0.015) 0.147 (0.324) 0.740 0.111<br />

(0.003) (0.365)<br />

Cu -0.388 (0.106) 0.081 (0.401) -0.105 (0.372) 0.262 0.644<br />

(0.205) (0.012)<br />

Zn -0.513 (0.044) 0.217 (0.249) -0.683 (0.007) 0.089 -0.512<br />

(0.392) (0.046)<br />

Rb -0.231 (0.235) -0.275 (0.194) 0.546 (0.033) 0.624 0.133<br />

(0.015) (0.340)<br />

Numbers in parenthesis denote P values: SGT – standard germination test; GR – germination<br />

rate; FE – field emergence<br />

Skaičiai skliausteliuose žymi P reikšmes: SDT – standartinis daigumo testas; DL – daigumo<br />

lygis; LD – lauko daigumas<br />

54


The relationship <strong>between</strong> field emergence and other seed quality tests has been<br />

<strong>determined</strong> <strong>by</strong> other workers (Vieira et al., 1999; Miguel, Cicero, 1999; Kolasinska<br />

et al., 2000; Kaymak, Guvenc, 2008; Palabıyık, Peksen, 2008 Binotti et al., 2008,<br />

Vieira et al., 2010). Although there are no detailed reports on the relationships <strong>between</strong><br />

the <strong>element</strong>al <strong>content</strong> of seed and field emergence, ten <strong>element</strong>s were significantly<br />

correlated with field emergence in this study (Table 4).<br />

Conclusion. Consequently, the analysis time for <strong>wavelength</strong>-dispersive X-Ray<br />

fluorescence (WDXRF) spectrometry is short at 1 h sample -1 . Thus, WDXRF seems<br />

to be a suitable method for rapid assessment of seed <strong>element</strong>al <strong>content</strong>. Also, this rapid<br />

method is a reliable technique for analyzing the <strong>element</strong>al <strong>content</strong> and to predict<br />

field emergence of green bean seed. The study showed that some of <strong>element</strong>s, such<br />

as N, Zn, Mn, S, Fe and Ni are negatively and Mg, Si, K, and Rb are positively related<br />

to field emergence in the green bean cultivars. It is clear that WDXRF is a suitable<br />

method for the rapid assessment of bean seed <strong>element</strong>al <strong>content</strong> and may be of use<br />

for the rapid prediction of field emergence of green bean cultivars.<br />

Gauta 2012 12 01<br />

Parengta spausdinti 2012 12 10<br />

References<br />

1. Akıncı, S., Akıncı I. E., 2011. Effect of nickel on germination and some seedling<br />

growth parameters in spinach (Spinacia oleracea). Ekoloji, 20(79): 69–76.<br />

2. Al-Bataina, B. A., Maslat, A. O., Al-Kofahi, M. M., 2003. Element analysis and<br />

biological studies on ten oriental spices using XRF and Ames test. Journal of<br />

Trace Elements in Medicine and Biology, 17(2): 85–90.<br />

3. Balkaya A., Odabas, S. 2002. Determination of the seed characteristics in some<br />

significant snap bean varieties grown in Samsun, Turkey. Pakistan Journal of<br />

Biological Sciences, 5: 382–387.<br />

4. Binotti F. F. D. S., Haga K. I., Cardoso E. D., Alves C. Z., de Sa M. E., Arf O.<br />

2008. <strong>Relationship</strong>s of accelerated aging time with bulk conductivity test and<br />

with physiological seed quality in common bean. Acta Scientiarum-Agronomy,<br />

30: 247–254.<br />

5. Decoteau R. D. 2000. Nutritional value of vegetables. Vegetable crops.<br />

N Jersey, USA.<br />

6. Gunay A. 2005. Fresh bean (Phaseolus vulgaris L.), Growing vegetables. İzmir,<br />

Turkey.<br />

7. ISTA. 1996. International rules for seed testing rules. International Seed Testing<br />

Association. Zurich, Switzerland.<br />

8. Kaymak H. C., Güvenç İ. 2008. The determination of the relations among the<br />

field emergence and physical properties and some laboratory tests of fresh bean<br />

(Phaseolus vulgaris L.) seeds. Journal of Alata Horticultural Research Station,<br />

Alatarım, 7: 36–43.<br />

55


9. Kaymak H. C., Güvenç İ., Yarali F., Dönmez M. F. 2009. The effects of biopriming<br />

with PGPR on germination of radish (Raphanus sativus L.) seeds under<br />

saline conditions. Turkish Journal of Agriculture and Forestry, 33(2): 173–179.<br />

10. Kaymak H. C., Guvenc I., Gurol A. 2010a. Correlation <strong>between</strong> endogenous <strong>element</strong>s<br />

and development of hollowing in the root of radish (Raphanus sativus L.)<br />

cultivars. Žemdir<strong>by</strong>stė=Agriculture, 97(3): 97–104.<br />

11. Kaymak H. C., Guvenc I., Gurol A. 2010 b. Elemental analysis of different radish<br />

(Raphanus sativus L.) cultivars <strong>by</strong> using <strong>wavelength</strong>-dispersive X-ray fluorescence<br />

spectrometry (WDXRF). Bulgarian Journal of Agricultural Science,<br />

16(6): 769–774.<br />

12. Kaymak H. C. 2012. The relationships <strong>between</strong> seed fatty acids profile and seed<br />

germination in cucurbit species. Žemdir<strong>by</strong>stė=Agriculture, 99(3): 299–304.<br />

13. Kolasinska K., Szyrmer J., Dul S. 2000. <strong>Relationship</strong> <strong>between</strong> laboratory seed<br />

quality tests and field emergence of common bean seed. Crop Science, 40:<br />

470–475.<br />

14. Margui E., Hidalgo M., Queralt I. 2005. Multi<strong>element</strong>al fast analysis of vegetation<br />

samples <strong>by</strong> <strong>wavelength</strong> dispersive X-ray fluorescence spectrometry:<br />

Possibilities and drawbacks. Spectrochimica Acta, Part B, 60: 1 363–1 372.<br />

15. Miguel M. H., Cicero S. M. 1999. Cold test for evaluating bean seed vigour.<br />

Scientia Agricola, 56: 1 233–1 243.<br />

16. Noda T., Tsuda S., Mori M., Takigawa S., Matsuura-Endo C., Kim S. J.,<br />

Hashimoto N., Yamauchi H. 2006. Determination of the phosphorus <strong>content</strong> in<br />

potato starch using an EDXRF method. Food Chemistry, 95: 632–637.<br />

17. Palabıyık B., Peksen E. 2008. Effects of seed storage periods on electrical conductivity<br />

of seed leakage, germination and field emergence percentage in common<br />

bean (Phaseolus vulgaris L.). Asian Journal of Chemistry, 20: 3 033–3 041.<br />

18. Moreau-Valancogne P., Coste F., Crozat Y., Dürr C. 2008.Assessing emergence<br />

of bean (Phaseolus vulgaris L.) seed lots in France: Field observations and simulations.<br />

European Journal of Agronomy, 28: 309–320.<br />

19. Muasya R. M., Auma E. O. 2003. <strong>Relationship</strong> <strong>between</strong> seed quality variation<br />

and bulk seed quality in common bean (Phaseolus vulgaris). African Crop<br />

Science Conference Proceedings, 6: 31–37.<br />

20. TSMR, 2004. Turkish State Meteorological Service Reports, Erzurum. Information<br />

Note. http://www.meteor.gov.tr/tahmin/il-ve-ilceler.aspxm=ERZURUM#sfB<br />

21. Vieira R. D., Paiva-Aguero J. A., Perecin D., Bittencourt S. R. M. 1999.<br />

Correlation of electrical conductivity and other vigor tests with field emergence<br />

of soybean seedlings. Seed Science Technology, 27: 67–75.<br />

22. Vieira B. G. T. L., Vieira R. D., Krzyzanowski F. C., Neto J. D. F. 2010.<br />

Alternative procedure for the cold test for soybean seeds. Scientia Agricola, 67:<br />

540–545.<br />

56


SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2012. 31(3–4).<br />

Santykis tarp <strong>element</strong>ų kiekio, kurį lemia rentgeno fluorescencinė<br />

spektrometrija, naudojant bangų dispersiją, ir žaliųjų pupelių sėklų<br />

lauko daigumo<br />

H. Ç. Kaymak, İ. Güvenç, A. Gürol, A. Bastuğ<br />

Santrauka<br />

Šio tyrimo tikslas buvo nustatyti ryšį tarp <strong>element</strong>ų kiekio sėklose ir lauko daigumo.<br />

Keturios žaliųjų pupelių (Phaseolus vulgaris L.) veislės (‘Gina’, ‘Sarıkız’, ‘Balkız’ ir ‘Sırık-<br />

Ayse’) buvo įvertintos pagal standartinį daigumo testą (SDT), daigumo lygį, <strong>element</strong>ų kiekį<br />

sėklose (nustatoma rentgeno fluorescencine spektrometrija, naudojant bangų dispersiją<br />

(RFSBD)) ir lauko daigumą (LD). Buvo įvertintas ir keturių veislių, pasėtų trimis skirtingais<br />

laikotarpiais, lauko daigumas. Sėjos datos: ankstyvoji sėja – gegužės 2 d. (LD – I), optimali<br />

sėja – gegužės 20 d. (LD – II) ir vėlyvoji sėja – birželio 7 d. (LD – III). Buvo apskaičiuoti<br />

koreliacijos koeficientai tarp laboratorinių daigumo tyrimų ir rasta patikimų skirtumų. N, Mg,<br />

Si, S, K, Mn, Fe, Ni, Zn ir Rb kiekis patikimai koreliavo su lauko daugumu sėjant skirtingais<br />

terminais. Labiausiai koreliavo Mn ir FE – I (r = -0,842). Septyni iš šešiolikos <strong>element</strong>ų patikimai<br />

koreliavo su SDT, ypač Mn, Ni ir Rb. RFCBD, atrodo, yra patikimas būdas greitai<br />

įvertinti <strong>element</strong>ų kiekį sėklose ir gali būti taikomas žaliųjų pupelių veislių lauko daigumui<br />

greitai numatyti.<br />

Reikšminiai žodžiai: daigumas, lauko daigumas, Phaseolus vulgaris L., RFSBD.<br />

57

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!