22.01.2015 Views

Estimating VAR!MGARCH Models in Multiple Steps - WebMeets.com

Estimating VAR!MGARCH Models in Multiple Steps - WebMeets.com

Estimating VAR!MGARCH Models in Multiple Steps - WebMeets.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Estimat<strong>in</strong>g</strong> <strong>VAR</strong>-<strong>MGARCH</strong> <strong>Models</strong> <strong>in</strong><br />

<strong>Multiple</strong> <strong>Steps</strong><br />

M. Angeles Carnero and M. Hakan Eratalay y<br />

Dpt. Fundamentos del Análisis Económico<br />

Universidad de Alicante<br />

PRELIMINARY VERSION<br />

June 12, 2009<br />

Abstract<br />

This paper analyzes the performance of multiple steps estimators of Vector Autoregressive<br />

Multivariate Conditional Correlation GARCH models by means of Monte Carlo<br />

experiments. High dimensionality is one of the ma<strong>in</strong> problems <strong>in</strong> the estimation of the<br />

parameters of these models and therefore maximiz<strong>in</strong>g the likelihood function of the<br />

full model leads <strong>com</strong>monly to numerical problems. We show that if <strong>in</strong>novations are<br />

gaussian, estimat<strong>in</strong>g the parameters <strong>in</strong> multiple steps is a reasonable alternative to the<br />

full maximization of the likelihood. Our results also suggest that for the sample sizes<br />

usually encountered <strong>in</strong> …nancial econometrics, the di¤erences between the volatility<br />

estimates obta<strong>in</strong>ed with the more e¢ cient estimator and the multiple steps estimators<br />

are negligible. However, this does not seem to be the case if the distribution is<br />

a Student-t for some Conditional Correlation GARCH models. Then, multiple steps<br />

estimators lead to volatility estimates which could be far from the ones implied by the<br />

true parameters. The results obta<strong>in</strong>ed <strong>in</strong> this paper are used for estimat<strong>in</strong>g volatility<br />

<strong>in</strong>teractions <strong>in</strong> 10 European stock markets.<br />

JEL Classi…cation: C32<br />

Keywords: Volatility Spillovers, F<strong>in</strong>ancial Markets.<br />

E-mail: acarnero@merl<strong>in</strong>.fae.ua.es<br />

y Correspond<strong>in</strong>g Author. E-mail: eratalay@merl<strong>in</strong>.fae.ua.es<br />

1


1 Introduction<br />

Understand<strong>in</strong>g how stock market returns and volatilities move over time has been of<br />

great concern to researchers <strong>in</strong>to the time series literature. In addition, as the recent<br />

…nancial crisis has shown, it is also very important to realize that stock markets move<br />

together. There are many examples con…rm<strong>in</strong>g this <strong>in</strong>cidence: a very big <strong>in</strong>vestment<br />

bank <strong>in</strong> US, Lehman Brothers, declares bankruptcy and this <strong>in</strong>creases the losses <strong>in</strong> the<br />

stock market of some other country. Barack Obama’s $787 billion economic stimulus<br />

package has been passed by the US Congress and there were positive reactions to<br />

this <strong>in</strong> local and global stock markets. Therefore, try<strong>in</strong>g to model stock markets <strong>in</strong> a<br />

univariate way ignor<strong>in</strong>g this k<strong>in</strong>d of <strong>in</strong>teraction would be <strong>in</strong>su¢ cient. In this sense, Multivariate<br />

generalized autoregressive conditional heteroskedasticity (<strong>MGARCH</strong>) models<br />

have been popular tools <strong>in</strong> the literature to model volatility-covolatility of assets and<br />

markets; see, for example, Bauwens et al. (2006) and Silvenno<strong>in</strong>en et al. (2008) for a<br />

survey.<br />

The problem with many <strong>MGARCH</strong> models is that it is often di¢ cult to verify if the<br />

conditional variance-covariance matrix is positive de…nite. Engle et al. (1984) provide<br />

necessary conditions for the positive de…niteness of the variance-covariance matrix <strong>in</strong><br />

a bivariate ARCH sett<strong>in</strong>g, but extensions of these results to more general models are<br />

very <strong>com</strong>plicated. Moreover, impos<strong>in</strong>g restrictions on the log-likelihood function dur<strong>in</strong>g<br />

optimization to obta<strong>in</strong> such conditions is often di¢ cult.<br />

A model that could avoid these problems is the Constant Conditional Correlation<br />

GARCH (CCC-GARCH) model proposed by Bollerslev (1990). He shows that the<br />

gaussian maximum likelihood (ML) estimator of the correlation matrix is the sample<br />

correlation matrix which is always positive de…nite, lead<strong>in</strong>g to the result that the optimization<br />

will not fail as long as the conditional variances are positive. On the other<br />

hand, he notes that the correlation matrix can be concentrated out of the log-likelihood<br />

function, what simpli…es more the optimization problem. Due to this <strong>com</strong>putational<br />

simplicity, the CCC-GARCH model has be<strong>com</strong>e very popular <strong>in</strong> the literature. However,<br />

the CCC-GARCH model has several limitations. One of them is that it fails to expla<strong>in</strong><br />

possible volatility <strong>in</strong>teractions as po<strong>in</strong>ted out by L<strong>in</strong>g and McAleer (2003). They<br />

favor the extension proposed by Jeantheau (1998), ECCC-GARCH, where volatility<br />

spillovers can be considered. Another limitation of the CCC-GARCH model is the<br />

constant correlation assumption; see Christodoulakis and Satchell (2002), Engle (2002)<br />

and Tse and Tsui (2002) who propose the Dynamic Conditional Correlation GARCH<br />

(DCC-GARCH) model where the correlation changes over time.<br />

The DCC-GARCH model is <strong>com</strong>putationally more <strong>com</strong>plicated than the CCC-<br />

GARCH s<strong>in</strong>ce the correlation dynamics require the estimation of more parameters.<br />

Fortunately, the variance target<strong>in</strong>g approach, <strong>in</strong> which the <strong>in</strong>tercept <strong>in</strong> the correlation<br />

equation is replaced by its sample counterpart, makes the estimation managable.<br />

2


Aielli (2006) po<strong>in</strong>ts our severe problems with the variance target<strong>in</strong>g approach used<br />

when estimat<strong>in</strong>g the DCC-GARCH model <strong>in</strong> multiple steps. He suggests a correction<br />

to the DCC-GARCH model, which is referred to as Corrected DCC-GARCH (cDCC-<br />

GARCH) model. However, as also po<strong>in</strong>ted out <strong>in</strong> Capor<strong>in</strong> and McAleer (2009), the<br />

cDCC-GARCH model does not allow for variance target<strong>in</strong>g. Therefore the model of<br />

Aielli (2006) su¤ers from the curse of dimensionality s<strong>in</strong>ce as the number of time series<br />

considered <strong>in</strong>creases, the number of correlation parameters to be estimated <strong>in</strong>creases<br />

at a geometric rate.<br />

Pelletier (2006) <strong>in</strong>troduces the Regime Switch<strong>in</strong>g Dynamic Correlation GARCH<br />

(RSDC-GARCH) model <strong>in</strong> which correlations between series are allowed to be constant<br />

over time but chang<strong>in</strong>g between di¤erent regimes and driven by an unobserved markov<br />

switch<strong>in</strong>g cha<strong>in</strong>. This model is, somehow, <strong>in</strong> between the CCC-GARCH model and<br />

DCC-GARCH model, with the problem that the number of correlation parameters to<br />

be estimated <strong>in</strong>creases rapidly with the number of series considered.<br />

When deal<strong>in</strong>g with stock market returns, it is not unusual to …nd some dynamics <strong>in</strong><br />

the conditional mean, that could be approximated by a <strong>VAR</strong>MA model. One way to<br />

estimate the parameters of the full <strong>VAR</strong>MA-<strong>MGARCH</strong> conditional correlation model<br />

would be solv<strong>in</strong>g the optimization problem of a full gaussian log-likelihood function;<br />

therefore obta<strong>in</strong><strong>in</strong>g the estimates for all the parameters <strong>in</strong> one step. If the true data<br />

generat<strong>in</strong>g process (DGP) is also gaussian, then it is known that ML estimators are<br />

consistent and asymptotically normal. In the case that the true DGP is not gaussian,<br />

then we would be us<strong>in</strong>g quasi-maximum likelihood (QML) estimators. Bollerslev and<br />

Wooldridge (1992) show that under quite general conditions, these QML estimators are<br />

consistent and asymptotically normal. Bollerslev (1990), Long<strong>in</strong> and Solnik (1995) and<br />

Nakatani and Teräsvirta (2008) are few of the papers us<strong>in</strong>g one-step estimation. <strong>Estimat<strong>in</strong>g</strong><br />

all parameters <strong>in</strong> one step would be the best one could achieve, however when<br />

there are many equations and parameters <strong>in</strong>volved, it is very heavy <strong>com</strong>putationally,<br />

when feasible. As Long<strong>in</strong> and Solnik (1995) state, sometimes even the convergence <strong>in</strong><br />

the optimization process is only possible for very speci…c start<strong>in</strong>g values for the parameters.<br />

In addition, if some of the coe¢ cients are not strongly signi…cant, it is hard<br />

to achieve iterative convergence with a small sample.<br />

Under the normality assumption for the DGP, the parameters could also be estimated<br />

<strong>in</strong> two steps by estimat<strong>in</strong>g …rst the mean and variance parameters assum<strong>in</strong>g no<br />

correlation and then, <strong>in</strong> a second step, estimat<strong>in</strong>g the correlation parameters given the<br />

estimates from the …rst step; see, for example, Engle (2002). However, as Engle and<br />

Sheppard (2001) suggest for the DCC-GARCH model, these two-step estimators will<br />

be consistent and asymptotically normal but not fully e¢ cient s<strong>in</strong>ce they are limited<br />

<strong>in</strong>formation estimators.<br />

The three-steps estimation method is mentioned <strong>in</strong> Bauwens (2006) and consists<br />

of estimat<strong>in</strong>g the mean equation parameters <strong>in</strong> a …rst step, obta<strong>in</strong><strong>in</strong>g the variance<br />

3


equation parameters <strong>in</strong> a second step and …nally <strong>in</strong> the third and last step, given all<br />

other parameter estimates, estimat<strong>in</strong>g the correlation parameters. If the parameters of<br />

the …rst step are consistently estimated, then the estimators from the second step will<br />

be consistent and therefore the third step estimators will also be consistent. The second<br />

and third steps of the three-steps estimation procedure will be equivalent to the twosteps<br />

estimation method for a zero-mean series. Therefore the three-steps estimators<br />

are also asymptotically normal. Engle and Sheppard (2001) use such a three-steps<br />

procedure <strong>in</strong> the empirical part of their paper.<br />

We also consider estimat<strong>in</strong>g the models us<strong>in</strong>g the log-likelihood function based on<br />

Student-t distribution. If the true distribution of the errors is also a t-distribution,<br />

then the estimators are ML estimators, if not then they will be QML estimators. In<br />

one-step estimation, all the parameters of the model are estimated maximiz<strong>in</strong>g the loglikelihood<br />

function based on the multivariate t-distribution; see for example Harvey<br />

et al:(1992) and Fiorent<strong>in</strong>i et al: (2003). Although it would not have any theoretical<br />

support, we also tried two-step and three-step estimation methods for this case. We<br />

…nd that some, although not all, of the parameter estimates obta<strong>in</strong>ed <strong>in</strong> multiple steps<br />

can be very far from their true values.<br />

For the MC studies where we obta<strong>in</strong>ed unbiased estimators, we checked the robustness<br />

of the results to the distribution assumption. For example, s<strong>in</strong>ce the two-step and<br />

three-step estimators for CCC-GARCH model simulated and estimated with gaussian<br />

errors were unbiased, we checked the robustness of this result by simulat<strong>in</strong>g the model<br />

with t-distribution and estimat<strong>in</strong>g with gaussian distribution. Our results show that,<br />

the estimators that are unbiased under the correctly speci…ed error distribution are<br />

also unbiased when the true distribution was changed.<br />

Although the two-step estimation takes less <strong>com</strong>putational time <strong>com</strong>pared to onestep<br />

estimation, it is still costly <strong>com</strong>pared to three step estimation method, speci…cally<br />

when deal<strong>in</strong>g with big samples, many equations and/or parameters. These three estimation<br />

methods will be expla<strong>in</strong>ed later <strong>in</strong> detail <strong>in</strong> section 2 of the paper.<br />

In this paper, we consider the e¢ ciency loss that Engle (2002) and Engle and<br />

Sheppard (2001) talk about when estimat<strong>in</strong>g the correlation parameters separately<br />

from the mean and variance parameters. This type of e¢ ciency loss will be analyzed<br />

by <strong>com</strong>par<strong>in</strong>g the one-step and two-step estimation methods. As we shall see, when<br />

the errors are assumed to be gaussian, the small sample behavior of one-step and twosteps<br />

estimators are very similar. On the other hand, when the estimation is based<br />

on t-distribution, there are cases where two-steps estimators deviate from one-step<br />

estimators.<br />

Additionally, we analyze the e¤ects of separat<strong>in</strong>g the estimation of mean and variance<br />

parameters <strong>in</strong> small samples. Bauwens (2006) po<strong>in</strong>ts out that the conditional<br />

mean parameters may be estimated consistently <strong>in</strong> the …rst stage for example for a<br />

Vector Autoregressive Mov<strong>in</strong>g Average (<strong>VAR</strong>MA) model, prior to estimat<strong>in</strong>g the con-<br />

4


ditional variance parameters. He notes that estimat<strong>in</strong>g all the parameters <strong>in</strong> one stage<br />

wouldn’t br<strong>in</strong>g about ga<strong>in</strong>s <strong>in</strong> e¢ ciency <strong>in</strong> large samples, s<strong>in</strong>ce the variance-covariance<br />

matrix is asymptotically block diagonal between the mean and variance parameters. In<br />

addition, s<strong>in</strong>ce one-step estimation is <strong>com</strong>putationally more di¢ cult, what is generally<br />

done is tak<strong>in</strong>g a very simple model for the conditional mean of the series or …tt<strong>in</strong>g<br />

the demeaned series, obta<strong>in</strong>ed after a mean regression, to estimate the variance parameters;<br />

see for example Engle and Sheppard (2001). We analyze the e¤ects of such<br />

an estimation procedure <strong>in</strong> small samples by <strong>com</strong>par<strong>in</strong>g the two-step and three-step<br />

methods.<br />

In this paper we conduct Monte Carlo (MC) studies to …nd out how much e¢ ciency<br />

is lost <strong>in</strong> small samples when estimat<strong>in</strong>g the above-mentioned conditional correlation<br />

models if the estimation of the parameters are done <strong>in</strong> two or three steps <strong>in</strong>stead of one<br />

step. Assum<strong>in</strong>g gaussian errors, we …rst analyze the e¤ects of estimation <strong>in</strong> multiple<br />

steps of a CCC-GARCH model by consider<strong>in</strong>g di¤erent values for the parameters to<br />

simulate two time series. To see that the e¤ects are also robust for the number of the<br />

series or parameters considered, we consider also three time series and a study with<br />

a di¤erent mean structure. Later, we study the other conditional correlation models,<br />

ECCC, DCC, cDCC, RSDC-GARCH. As reported <strong>in</strong> the results of the MC studies,<br />

when the estimations are based on gaussian distribution the di¤erence between the onestep<br />

and multiple steps estimators <strong>in</strong> small samples is negligible. When we change the<br />

assumption on the distribution of errors to t-distribution, for some models we conclude<br />

that the di¤erences between the estimators could be relevant.<br />

Up to our knowledge, this is the …rst work <strong>com</strong>par<strong>in</strong>g these multiple steps estimators<br />

and analyz<strong>in</strong>g the e¢ ciency lost when employ<strong>in</strong>g them <strong>in</strong>stead of one-step estimation<br />

procedure <strong>in</strong> small samples. F<strong>in</strong>ally, we use the three-steps procedure to estimate the<br />

volatility spillovers <strong>in</strong> ten major European stock markets.<br />

The rest of the paper is structured as follows: <strong>in</strong> section 2 we present the models that<br />

are to our <strong>in</strong>terest. Di¤erent estimators of the parameters of these models are discussed<br />

<strong>in</strong> section 3. In section 4 we <strong>in</strong>troduce the basis of the MC experiments we conducted<br />

and discuss the results we obta<strong>in</strong>ed. In section 5, we use our results to estimate a<br />

<strong>VAR</strong>-ECCC-GARCH model with volatility spillovers us<strong>in</strong>g the data obta<strong>in</strong>ed from 10<br />

major stock markets <strong>in</strong> Europe. F<strong>in</strong>ally <strong>in</strong> section 6 concludes the paper.<br />

2 Econometric <strong>Models</strong><br />

For simplicity we consider a k-variate vector autoregressive (<strong>VAR</strong>) model of order one<br />

for the mean equation with the follow<strong>in</strong>g notation:<br />

5


Y t = + Y t 1 + " t<br />

(1)<br />

where V ar(" t jY t 1 ; :::Y 1 ) = H t , Y t is a kx1 vector of returns, is a kx1 vector of<br />

constants, is a kxk matrix of autoregressive coe¢ cients and " t is a kx1 vector of error<br />

terms as follows:<br />

Y t = y 1t y 2t : : y kt<br />

0, =<br />

<br />

1 2 : : k<br />

0<br />

2<br />

3<br />

11 12 : : 1k<br />

21 : :<br />

=<br />

: : :<br />

6<br />

7<br />

, " t = " 1t " 2t : : " 0<br />

kt<br />

4 : : : 5<br />

k1 : : : kk<br />

The stationarity of this <strong>VAR</strong>(1) model is assured if all the values of z that solve<br />

the follow<strong>in</strong>g equation are outside of the unit circle: jI k zj = 0<br />

The coe¢ cient matrix could be chosen as diagonal which wouldn’t allow for the<br />

return spillovers. In this case there will be 2k mean parameters to estimate. Otherwise<br />

this number will be k(k + 1):<br />

The conditional variance H t is modelled <strong>in</strong> the follow<strong>in</strong>g way:<br />

" t = H 1=2<br />

t t , where t is a kx1 vector with E( t ) = 0 and V ar( t ) = I k<br />

H t = D t R t D t , where D t = diag(h 1=2<br />

1t ; h 1=2<br />

2t ; :::; h 1=2<br />

kt ) and R t is the kxk conditional<br />

correlation matrix such that:<br />

2<br />

3<br />

1 12t : : 1kt<br />

12t 1 :<br />

H t = diag(h 1=2<br />

1t ; h 1=2<br />

2t ; :::; h 1=2<br />

kt ) : : :<br />

diag(h 1=2<br />

1t ; h 1=2<br />

2t ; :::; h 1=2<br />

kt<br />

6<br />

7<br />

)<br />

4 : : : 5<br />

1kt : : : 1<br />

2<br />

p p 3<br />

h 1t 12t h1t h 2t : : 1kt h1t h p kt<br />

12t h1t h 2t h 2t :<br />

=<br />

: : :<br />

6<br />

7<br />

4 : : : 5<br />

p<br />

1kt h1t h kt : : : h kt<br />

which ensures that as long as the conditional correlation matrix is positive de…nite<br />

and conditional variances are positive, the conditional variance-covariance will be positive<br />

de…nite as well. For parsimony, the variances of the error terms of each series are<br />

modelled as GARCH(1,1):<br />

6


~ ht = W + A~" 2 t + G ~ h t 1<br />

(2)<br />

where ~ h t = (h 1t ; h 2t ; :::; h kt ) 0 and ~" 2 t = (" 2 1t; " 2 2t; :::; " 2 kt )0 are kx1 vector of conditional<br />

variances and squared errors respectively and W is a kx1 and A and G are kxk matrices<br />

of coe¢ cients. A and G matrices could be restricted to be diagonal, which wouldn’t<br />

allow for volatility spillovers, as <strong>in</strong> Bollerslev (1990) or Engle (2002). On the other hand,<br />

it could be non-diagonal as <strong>in</strong> Jeantheau (1998) or L<strong>in</strong>g and McAleer (2003) allow<strong>in</strong>g<br />

for volatility spillovers. In the former case there will be 3k variance parameters to<br />

estimate, while <strong>in</strong> the latter this number will be k(2k + 1).<br />

If we denote by ! i = [W ] i , ij = [A] i;j and ij = [G] i;j , for the variances to be always<br />

positive, Jeantheau (1998) requires the follow<strong>in</strong>g trivial set of su¢ cient conditions:<br />

! i > 0, ij > 0, ij > 0 for all i, j.<br />

Nakatani and Teräsvirta (2008) provide necessary and su¢ cient conditions where<br />

they allow for negative volatility spillovers. For an empirical work, see Conrad and<br />

Karanasos (2008). For the covariance stationarity, the roots of the follow<strong>in</strong>g determ<strong>in</strong>ant<br />

has to be outside of unit circle is required:<br />

jI k (A + G)zj = 0<br />

which <strong>in</strong> the diagonal case implies that the persistence term " + " should be:<br />

ii + ii < 1 for all i.<br />

We consider four di¤erent models for the conditional correlations. The …rst and<br />

simplest is the Constant Conditional Correlation (CCC) GARCH model of Bollerslev<br />

(1990) where he restricts the correlations to be constant over time. He shows <strong>in</strong> his<br />

paper that, under this restriction, gaussian QML estimator of the correlation matrix,<br />

R, is equal to the sample correlation of the standardized residuals such that:<br />

[R] ij = b ij =<br />

P<br />

t v itv jt<br />

q<br />

( P t v2 it )(P t v2 jt ) (3)<br />

where v t = Dt<br />

1 " t are the standardized errors. Therefore the number of correlation<br />

parameters to be estimated is only k(k 1)=2.<br />

7


The second model we consider is the Dynamic Conditional Correlation (DCC)<br />

GARCH of Engle (2002) given by:<br />

R t = P t Q t P t<br />

P t = diag(Q 1=2<br />

t )<br />

Q t = (1 1 2 ) Q + 1 v t 1 vt 0 1 + 2 Q t 1 ,<br />

where Q t is generally referred to as non-standardized correlations and Q is the long<br />

run correlation matrix that could be replaced by the correlation matrix of the standardized<br />

errors which is a consistent estimator of Q. This latter process is called "variance<br />

target<strong>in</strong>g" and it makes the estimation easier, reduc<strong>in</strong>g the number of parameters to<br />

estimate from k(k 1)=2 + 2 to only 2. v t is the vector of standardized errors de…ned<br />

as before. 1 and 2 are non-negative scalars which satisfy 1 + 2 < 1, to have the<br />

correlation matrix, R t ; positive de…nite. As one can notice, these scalar coe¢ cients impose<br />

the same dynamics on di¤erent correlations. Hafner and Franses (2003) provide<br />

a more general de…nition of the model where they consider coe¢ cient matrices <strong>in</strong>stead<br />

of scalar coe¢ cients allow<strong>in</strong>g for di¤erent dynamics on di¤erent correlations, however<br />

this <strong>in</strong>creases the number of parameters considerably. For simplicity, we will focus on<br />

the set up with the scalar coe¢ cients.<br />

Engle and Sheppard (2001) and later Engle, Sheppard, Shepherd (2007) po<strong>in</strong>t out<br />

that when us<strong>in</strong>g large systems of equations, i.e. k is large, estimat<strong>in</strong>g the correlation<br />

parameters of a DCC-GARCH model separately, as <strong>in</strong> two-steps or three-steps, br<strong>in</strong>gs<br />

about signi…cant biases <strong>in</strong> the estimates of the dynamic parameters 1 and 2 . Aielli<br />

(2006) shows that two-step or three-step estimation of DCC-GARCH models with variance<br />

target<strong>in</strong>g is <strong>in</strong>consistent s<strong>in</strong>ce the correlation matrix of the standardized residuals<br />

is not a consistent estimator of the long run correlation matrix. He suggests a corrected<br />

version of the DCC-GARCH model, <strong>in</strong> this paper referred to as cDCC-GARCH, which<br />

replaces the Q t equation of DCC-GARCH model:<br />

Q t = + 1 Q t 1(v t 1 v 0 t 1 R t 1 )Q t 1 + ( 1 + 2 )Q t 1<br />

where Q t = diag(Q 1=2<br />

t ) = <strong>in</strong>v(P t ).<br />

Although Aielli (2006) suggested this model to resolve the <strong>in</strong>consistency problem<br />

<strong>in</strong> estimat<strong>in</strong>g the unconditional correlation matrix with sample correlation matrix, his<br />

model does not allow variance target<strong>in</strong>g. Therefore, his model su¤ers from the curse of<br />

dimensionality s<strong>in</strong>ce the number of parameters to be estimated, <strong>in</strong>clud<strong>in</strong>g the <strong>in</strong>tercept<br />

matrix, is k(k 1)=2 + 2 which is O(k 2 ). On the other hand, it is worth mention<strong>in</strong>g<br />

that Engle, Sheppard and Shepherd (2007) employs Aielli’s model and they use variance<br />

target<strong>in</strong>g, where they estimate the unconditional correlation matrix through a s<strong>in</strong>glefactor<br />

model.<br />

8


The last model of conditional correlations we will consider is the Regime Switch<strong>in</strong>g<br />

Dynamic Correlations GARCH, (RSDC-GARCH) model of Pelletier (2006). In<br />

his model, the conditional correlations follow a switch<strong>in</strong>g regime driven by an unobserved<br />

Markov cha<strong>in</strong> such that they are …xed <strong>in</strong> each regime but may change across<br />

regimes. For simplicity we assume a two-state Markov process such that R t , at any<br />

time t, could be equal to either R L or R H , which stand for low and high state correlation<br />

matrices respectively. The matrix of transition probabilities are given by<br />

= ff L;L ; H;L g; f L;H ; H;H gg, where i;j is the probability of pass<strong>in</strong>g from state<br />

j to state i. Given that j;j + i;j = 1, <strong>in</strong> this model the number of parameters to<br />

estimate is equal to 2k(k 1) + 2:<br />

Next section discusses how the parameters of these models are estimated. The<br />

estimation of RSDC-GARCH models will be discussed separately.<br />

3 Estimation Procedures<br />

For notation purposes, we denote all the mean parameters by = ( 0 ; vec() 0 ) 0 , all<br />

the variance parameters by = (W 0 ; vec(A 0 ); vec(G 0 )) 0 , and all the correlation parameters<br />

by which changes accord<strong>in</strong>g to the model considered above. For example,<br />

for a CCC-GARCH model = vech(R), while for cDCC-GARCH it be<strong>com</strong>es: =<br />

(vech() 0 ; 1 ; 2 ) 0 : 1<br />

3.1 CCC, DCC and cDCC GARCH models<br />

3.1.1 One-step Estimation<br />

In the one-step estimation procedure, all parameters of the model, = ( 0 ; 0 ; 0 ) 0 ,<br />

are estimated <strong>in</strong> one step simultaneously. If the DGP is gaussian (not gaussian), we<br />

assume that it is normal, then the estimation is a ML (QML) estimation and it is<br />

carried out by maximiz<strong>in</strong>g the multivariate gaussian log-likelihood function:<br />

L() =<br />

T k<br />

2 log(2) 1<br />

2<br />

P T<br />

t=1 (log jH tj + " 0 tH 1<br />

t " t )<br />

Under the assumption that ijt = ijt it jt , this log-likelihood function boils down<br />

to:<br />

L() =<br />

T k log(2) P<br />

1 T<br />

2 2 t=1 log jD P<br />

1<br />

tR t D t j T<br />

2 t=1 "0 t(D t R t D t ) 1 " t<br />

= T k<br />

2 log(2) 1<br />

2<br />

P T<br />

t=1 log jR tj<br />

P T<br />

t=1 log jD tj<br />

1<br />

2<br />

P T<br />

t=1 v0 tRt<br />

1 v t<br />

S<strong>in</strong>ce all the parameters are estimated us<strong>in</strong>g the full log-likelihood function <strong>in</strong> one<br />

step, the estimators are consistent, asymptotically normal and if the DGP is also<br />

1 vec operator stacks the colums of a matrix while vech operator stacks the columns of the lower<br />

triangular part of a matrix.<br />

9


normal they are asymptotically e¢ cient. The problem with this estimation would be<br />

that <strong>in</strong> every iteration, the correlation matrix has to be <strong>in</strong>verted which slows down<br />

the optimization process. On the other hand, when the number of series, k, <strong>in</strong>creases,<br />

the number of parameters to be estimated will <strong>in</strong>crease rapidly, which might cause<br />

convergence problems speci…cally <strong>in</strong> small samples.<br />

If we would assume that the errors follow a t-distribution, then the multivariate<br />

t-loglikelihood function to be maximized would be as <strong>in</strong> Fiorent<strong>in</strong>i et al. (2003):<br />

L(; ) = T log( ( k+1<br />

1<br />

)) T log( (<br />

2<br />

P n<br />

<br />

T 1<br />

t=1 log jH k+1<br />

2 tj log(1 +<br />

2<br />

2 ))<br />

T k<br />

2<br />

1 2<br />

log(<br />

o<br />

<br />

1 2 v0 tR 1<br />

t v t )<br />

<br />

)<br />

T k<br />

2 log()<br />

where is the <strong>in</strong>verse of the degrees of freedom as a measure of tail thickness such<br />

that it is always positive and strictly less than 0:5 for the existence of the second order<br />

moments. One concern on us<strong>in</strong>g a loglikelihood function based on t-distribution is<br />

that, as shown <strong>in</strong> Newey and Steigerwald (1997), although it will yield more e¢ cient<br />

estimators than us<strong>in</strong>g gaussian loglikelihood when the assumed distribution is correct,<br />

there is the danger that one may end up sacri…c<strong>in</strong>g consistency when it is not. S<strong>in</strong>ce this<br />

<strong>in</strong>consistency problem will not occur as long as both the true and assumed distributions<br />

are symmetric, it will not be a problem for our Monte Carlo simulations <strong>in</strong> section 4.<br />

3.1.2 Two-steps Estimation<br />

This is the procedure proposed <strong>in</strong> Engle (2002) or <strong>in</strong> Engle and Sheppard (2001) for a<br />

DCC-GARCH model. The idea is to separate the estimation of the correlation parameters<br />

from the mean and variance parameters. Assum<strong>in</strong>g gaussian errors, <strong>in</strong> the …rst<br />

step all parameters except the correlation coe¢ cients, = ( 0 ; 0 ) 0 , are estimated by<br />

maximiz<strong>in</strong>g the gaussian log-likelihood function mentioned above replac<strong>in</strong>g the correlation<br />

matrix R t with the identity matrix of size kxk; therefore maximiz<strong>in</strong>g the follow<strong>in</strong>g<br />

quasi-log-likelihood function:<br />

QL() =<br />

T k<br />

2 log(2) P T<br />

t=1 log jD tj<br />

1<br />

2<br />

P T<br />

t=1 v0 tv t<br />

Notice that <strong>in</strong> the case where there are no volatility spillovers allowed, this …rst<br />

step estimation is equivalent to estimat<strong>in</strong>g k univariate models separately. See Engle<br />

and Sheppard (2001) for details. However, when there are volatility spillovers, this …rst<br />

step estimation must be done <strong>in</strong> a multivariate fashion.<br />

In the second step, given the estimates from the …rst step, ^, the correlation coef-<br />

…cients are estimated by:<br />

QL( j^) = 1 2<br />

P T<br />

t=1<br />

<br />

log jRt j ^v tR 0 t<br />

1 ^v t<br />

10


Where the ^v t is the standardized residuals obta<strong>in</strong>ed <strong>in</strong> the …rst step. As shown <strong>in</strong><br />

Engle and Shepperd (2001), this two step estimation yields estimators which are consistent<br />

and asymptotically normal but not fully e¢ cient s<strong>in</strong>ce they are limited <strong>in</strong>formation<br />

estimators. Their proof follows closely the discussion of the asymptotic properties of<br />

two-step GMM estimators <strong>in</strong> Newey and McFadden (1994). Bollerslev (1990) shows<br />

that when the correlations are constant over time, this second step estimators are equal<br />

to the sample correlation matrix of the standardized residuals:<br />

b ij =<br />

P<br />

t ^v it^v jt<br />

p<br />

(<br />

P<br />

t ^v2 it )(P t ^v2 jt )<br />

Although itdoesn’t have theoretical support, we also consider a two-step estimation<br />

us<strong>in</strong>g log-likelihood function based on t-distribution. In the multivariate t-based loglikelihood<br />

function, we replace the correlation matrix R t with I k <strong>in</strong> the …rst step:<br />

QL(; ) = T log( ( k+1<br />

1<br />

)) T log( (<br />

2<br />

P n<br />

<br />

T<br />

t=1<br />

log jD t j log(1 +<br />

k+1<br />

2<br />

2 ))<br />

1 2<br />

log(<br />

o<br />

T k<br />

2<br />

<br />

1 2 v0 tv t )<br />

<br />

)<br />

T k<br />

2 log()<br />

Similar to the gaussian log-likelihood case, <strong>in</strong> the case where there are no volatility<br />

spillovers, we employ univariate estimation for each series while when there are<br />

volatility spillovers, we solve the multivariate problem. In the second step of the estimation<br />

based on t-distribution, we use the second step estimation with the gaussian<br />

loglikelihood.<br />

3.1.3 Three-steps Estimation<br />

This procedure is mentioned <strong>in</strong> Bauwens (2006) for the gaussian log-likelihood estimation.<br />

In the …rst step, assum<strong>in</strong>g constant variance for each error term, i.e. 2 it = 2 i 8<br />

t, and assum<strong>in</strong>g that the the correlation matrix R t is equal to the identity matrix for<br />

all t; we estimate parameters of the mean equation, , and the variance parameters 2 i<br />

by maximiz<strong>in</strong>g the follow<strong>in</strong>g quasi-loglikelihood function:<br />

QL(; 2 i ) =<br />

T k<br />

2 log(2) P T<br />

t=1 log jDj 1<br />

2<br />

P T<br />

t=1 v0 tv t<br />

where D is a vector of conditional standard deviations: D = diag(h 1=2<br />

1 ; h 1=2<br />

2 ; :::; h 1=2<br />

k ).<br />

This …rst step estimation is equivalent to do<strong>in</strong>g OLS estimation for the mean equations,<br />

equation by equation, given that under the assumptions made, the variance-covariance<br />

matrix is diagonal between the mean and variance parameters. Therefore the estimators<br />

obta<strong>in</strong>ed from this …rst step are consistent, disregard<strong>in</strong>g that the errors are actually<br />

heteroskedastic. Later <strong>in</strong> the second step, the parameters of the variance equations, ,<br />

are estimated, given the estimates of the parameters of the mean equation, b , impos<strong>in</strong>g<br />

to the full loglikelihood function only the assumption that the correlation matrix R t is<br />

replaced with identity matrix. This gives the follow<strong>in</strong>g quasi-loglikelihood function:<br />

11


QL(j b ) =<br />

T k log(2) P T<br />

2 t=1 log jD 1<br />

tj<br />

2<br />

P T<br />

t=1t ^"0 tDt<br />

2 ^" t<br />

where ^" t are the residuals obta<strong>in</strong>ed from the …rst step. After obta<strong>in</strong><strong>in</strong>g the estimators<br />

b and ^ from the …rst two steps, <strong>in</strong> the third step, the correlation parameters are<br />

estimated as <strong>in</strong> the two-step estimation:<br />

QL( j b ; ^) = 1 2<br />

P T<br />

t=1<br />

<br />

log jRt j ^v tR 0 t<br />

1 ^v t<br />

where ^v t are the standardized residuals obta<strong>in</strong>ed from the …rst two steps. Similarly,<br />

as <strong>in</strong> the two-step estimation, when the correlations are constant over time, this third<br />

step estimators could be calculated from the sample correlations of the standardized<br />

residuals:<br />

b ij =<br />

P<br />

t ^v it^v jt<br />

p<br />

(<br />

P<br />

t ^v2 it )(P t ^v2 jt )<br />

In case of a log-likelihood function based on t-distribution, these three steps are<br />

performed <strong>in</strong> a similar manner. In the …rst step, mean parameters, , are estimated<br />

along with the <strong>in</strong>verse of the degrees of freedom assum<strong>in</strong>g homoskedasticity, i.e. 2 it =<br />

2 i 8 t, by maximiz<strong>in</strong>g the …rst step loglikelihood function:<br />

QL(; ) = T log( ( k+1<br />

1<br />

)) T log( (<br />

2<br />

P n<br />

<br />

T<br />

t=1<br />

log jD t j log(1 +<br />

k+1<br />

2<br />

2 ))<br />

T k<br />

2<br />

<br />

1 2 v0 tv t )<br />

1 2<br />

log(<br />

o<br />

<br />

)<br />

T k<br />

2 log()<br />

The estimated variances, ^ 2 i , and degrees of freedom, ^, of the …rst step estimation<br />

are disregarded. In the second step, the variance parameters, , and the <strong>in</strong>verse of<br />

the degrees of freedom, , that is reported <strong>in</strong> the results are estimated given the mean<br />

parameter estimates, ^, maximiz<strong>in</strong>g the follow<strong>in</strong>g log-likelihood function:<br />

QL(; j^) = T log( ( k+1<br />

1<br />

)) T log( (<br />

2<br />

P n<br />

<br />

T<br />

t=1<br />

log jD t j log(1 +<br />

k+1<br />

2<br />

2 ))<br />

T k<br />

2<br />

<br />

1 2^"0 tD 2<br />

t ^" t )<br />

1 2<br />

log(<br />

o<br />

<br />

)<br />

T k<br />

2 log()<br />

As <strong>in</strong> the two-step estimation procedure, we use the gaussian log-likelihood function<br />

to estimate the correlation parameters, <strong>in</strong> the third step of the three-step estimation<br />

with t-based log-likelihood function. Our results from the MC studies didn’t change<br />

when we chose a t-based log-likelihood function <strong>in</strong> the estimation of correlation parameters.<br />

3.2 Estimation with RSDC-GARCH Model<br />

The RSDC-GARCH model of Pelletier (2006) suggests correlations to be constant over<br />

time but di¤erent between regimes where these regimes are driven by an unobserved<br />

12


markov cha<strong>in</strong>. In our paper, we will make use of his unrestricted two regime RSDC<br />

model. In this model, the correlation matrix at any time t could be either R L or R H .<br />

The matrix of transition probabilities is given by = ff L;L ; H;L g; f L;H ; H;H gg,<br />

where i;j is the probability of pass<strong>in</strong>g from state j to state i. If we denote by t 1 all<br />

the <strong>in</strong>formation up to t 1, then a one-step estimation, with f(:) be<strong>in</strong>g the likelihood<br />

function based on either Gaussian or Student-t distribution, would be obta<strong>in</strong>ed by<br />

maximiz<strong>in</strong>g the follow<strong>in</strong>g log-likelihood function for estimat<strong>in</strong>g = ( 0 ; 0 ; 0 ) 0 , the<br />

mean, variance and correlation parameters respectively is:<br />

L() = P T<br />

t=1 log f(Y tj t 1 )<br />

f(Y t j t 1 ) = f(Y t jS t = L; t 1 ) Pr(S t = Lj t 1 )<br />

+f(Y t jS t = H; t 1 ) (1 Pr(S t = Lj t 1 ))<br />

where f(Y t jS t ; t 1 ) is the likelihood conditional on the state and past values while<br />

f(Y t j t 1 ) is the likelihood when the state is marg<strong>in</strong>alized out. Pr(S t j t 1 ) denotes<br />

the probability of be<strong>in</strong>g <strong>in</strong> a certa<strong>in</strong> state given the past <strong>in</strong>formation. This probability<br />

is derived us<strong>in</strong>g Hamilton …lter (Hamilton, 1994, Chapter 22).<br />

In our two state model, the law of motion of Pr(S t j t 1 ) will boil down to:<br />

Pr(S<br />

h t = Lj t 1 ) = (1 H;H ) + ( L;L + H;H 1)<br />

<br />

f(Y t 1 jS t 1 =L; t 2 )Pr(S t 1 =Lj t 2 )<br />

f(Y t 1 jS t 1 =L; t 2 )Pr(S t 1 =Lj t 2 )+f(Y t 1 jS t 1 =H; t 2 )(1 Pr(S t 1 =Lj t 2 ))<br />

For the <strong>in</strong>itial condition of this iterative process, we use the long run probabilities<br />

for each state which are calculated us<strong>in</strong>g the transition probabilities and that the sum<br />

of the long run probabilities should be equal to one.<br />

S<strong>in</strong>ce the number of correlation parameters to be estimated is 2k(k 1) + 2 for k<br />

time series, as Pelletier (2006) also mentions, one-step estimation is not practicable,<br />

especially when k is not small. Pelletier (2006) uses a data set consist<strong>in</strong>g of four exchange<br />

rate series. After remov<strong>in</strong>g the mean of the data, he estimates the correlation<br />

parameters separately from estimation of the variance parameters. In our paper, this<br />

corresponds to a three-step estimation without pay<strong>in</strong>g attention to the mean parameters<br />

or then a two-step estimation for a zero mean series. The estimation of mean<br />

and variance parameters can be processed <strong>in</strong> a s<strong>in</strong>gle step or <strong>in</strong> successive two steps<br />

as discussed <strong>in</strong> the case of other conditional correlation models. When estimat<strong>in</strong>g the<br />

correlation parameters <strong>in</strong> a separate step, the log-likelihood function will be maximized<br />

tak<strong>in</strong>g the mean and variance parameter estimates as known. On the other hand, if k<br />

is large, estimat<strong>in</strong>g the correlation parameters <strong>in</strong> a separate step could be even troublesome<br />

<strong>in</strong> terms of convergence. For this reason, Pelletier (2006) suggests us<strong>in</strong>g the<br />

EM algorithm of Dempster et al:(1977), not<strong>in</strong>g that EM algorithm gives estimates that<br />

are very close to the numerical maximum. To obta<strong>in</strong> the exact numerical maximum,<br />

he suggests us<strong>in</strong>g a limited number of iterations of a Newton type algorithm.<br />

13<br />

i


3.3 Asymptotic Properties<br />

The one-step gaussian ML/QML estimators for the CCC, DCC and cDCC GARCH<br />

models are consistent and asymptotically normal such that:<br />

p n(^n 0 ) A N(0; A 1<br />

0 B 0 A 1<br />

0 )<br />

where A 0 is the negative expectation of the Hessian matrix evaluated at the true<br />

parameter vector 0 and B 0 is the expectation of the outer product of the score vector<br />

evaluated at 0 obta<strong>in</strong>ed from the full-likelihood function mentioned <strong>in</strong> one-step<br />

estimation.<br />

The two-step gaussian QML estimators mentioned are consistent as well and under<br />

mild assumptions listed <strong>in</strong> Engle and Sheppard (2001) for a DCC-GARCH model,<br />

they are asymptotically normal such that A 0 is a block lower-triangular matrix and<br />

together with B 0 , are obta<strong>in</strong>ed from the likelihood functions used <strong>in</strong> each step. The<br />

part of A 0 that corresponds to the mean and variance parameters is block diagonal<br />

where each block <strong>com</strong>es from the second derivatives of the log-likelihood functions of<br />

each correspond<strong>in</strong>g step. To obta<strong>in</strong> the part of A 0 correspond<strong>in</strong>g to the correlation<br />

parameters, we use the second derivatives from the full-likelihood function. S<strong>in</strong>ce A 0 is<br />

block lower triangular, the asymptotic variance of the two-step estimators are weakly<br />

greater than the case of a block diagonal A 0 , which belongs to the one-step estimators.<br />

This loss of e¢ ciency is due to the estimation of the correlation parameters <strong>in</strong> a separate<br />

step.<br />

Three-step QML estimators are consistent and their asymptotic distribution is very<br />

similar to that of the two-step estimators. The part of A 0 that corresponds to the<br />

correlation parameters is obta<strong>in</strong>ed <strong>in</strong> the same manner, however the part for the mean<br />

and variance equations parameters <strong>com</strong>e from the second derivatives of the likelihood<br />

functions of the correspond<strong>in</strong>g …rst two steps, therefore for the parameters of each series<br />

form<strong>in</strong>g a block diagonal matrix where the …rst block is for the mean and second block<br />

is for the variance parameters. In the three-step estimation procedure there is loss of<br />

e¢ ciency both because of separat<strong>in</strong>g the estimation of variance parameters from the<br />

mean parameters, as mentioned by Bauwens (2001) and of separat<strong>in</strong>g the estimation<br />

of correlation parameters from the mean and variance parameters as po<strong>in</strong>ted out <strong>in</strong><br />

Engle and Sheppard (2001).<br />

The asymptotic properties of one-step t-based ML estimators can be found <strong>in</strong><br />

Fiorent<strong>in</strong>i et al: (2003). It is well known that if the true distribution of the errors<br />

is also a Student-t, ML estimators based on t-errors are more e¢ cient than QML estimators<br />

based on gaussian errors. However, as shown by Newey and Steigerwald (1997),<br />

care should be taken when <strong>com</strong>put<strong>in</strong>g ML estimations based on t-distribution s<strong>in</strong>ce if<br />

the true distribution of the errors is not Student-t, one might end up sacri…c<strong>in</strong>g consistency.<br />

In our MC studies, as Newey and Steigerwald (1997) requires for consistency<br />

14


of the t-based estimators, the data is either generated from a symmetric gaussian or a<br />

symmetric t-distribution.<br />

F<strong>in</strong>ally, the asymptotic properties of the one-step and multiple steps estimators of<br />

the RSDC-GARCH model are similar and can be found <strong>in</strong> Pelletier (2006).<br />

4 Monte Carlo Experiments<br />

We …rst analyze the …nite sample performance of multiple steps estimators <strong>in</strong> di¤erent<br />

sett<strong>in</strong>gs us<strong>in</strong>g CCC-GARCH model with gaussian errors. Although we could focus on<br />

the performance of each parameter estimator, it is not really practical when we consider<br />

di¤erent models, sample sizes, estimators and parameters. In this sense, later when<br />

we consider CCC, DCC, cDCC and RSDC GARCH models with gaussian or Student-t<br />

errors, we rather look at the <strong>in</strong>-sample predictions of volatilities and correlations to<br />

<strong>com</strong>pare di¤erent estimators. For RSDC GARCH models the correlations are driven<br />

by an unobservable markov cha<strong>in</strong> and therefore the correlation parameter estimators<br />

will be analyzed <strong>in</strong>stead of correlation predictions. F<strong>in</strong>ally, for the models that the<br />

multiple steps estimation yields estimators which are very close to one-step estimators,<br />

we will do a robustness check with respect to the distribution of the errors.<br />

We consider a replication size of 1000 and <strong>in</strong> each replication a data set of k series<br />

is generated accord<strong>in</strong>g to the relevant model and distribution. We consider two time<br />

series <strong>in</strong> all the experiments except one <strong>in</strong> the …rst part where we check the robustness<br />

of the results when there are three time series. Then we estimate the parameters of<br />

the model us<strong>in</strong>g one-step, two-step and three-step estimators assum<strong>in</strong>g either gaussian<br />

or t-distribution for the errors. All simulations are performed by MATLAB <strong>com</strong>puter<br />

language. We consider three di¤erent sample sizes 500, 1000 and 5000 for the …rst<br />

part. However, hav<strong>in</strong>g realized that the 5000 sample size is already too large, <strong>in</strong> the<br />

rema<strong>in</strong><strong>in</strong>g parts we consider the sample sizes 200, 500 and 1000.<br />

In the …rst part only, to <strong>com</strong>pare di¤erent estimators, the true parameter values<br />

and the Monte Carlo average of the parameter estimates together with their correspond<strong>in</strong>g<br />

standard errors from each procedure are reported. In addition, for each<br />

parameter, average deviations of two-steps from one-step estimators and of three-steps<br />

from two-steps estimators are reported with their correspond<strong>in</strong>g Monte Carlo standard<br />

deviations. In all the parts, kernel density estimates of di¤erent estimators of each<br />

parameter are also plotted to <strong>com</strong>pare the performance of multiple steps estimators for<br />

each sample size. Also these density estimates allow us to observe graphically the bias<br />

and standard deviations of the di¤erent parameter estimators.<br />

15


eal<br />

values<br />

One­step Est Two­step Est Three­step Est<br />

Deviation of 2stepest from<br />

1stepest<br />

Deviation of 3stepest from<br />

2stepest<br />

s500 s1000 s5000 s500 s1000 s5000 s500 s1000 s5000 s500 s1000 s5000 s500 s1000 s5000<br />

μ1 0.2 0.20677 0.20410 0.20113 0.20695 0.20413 0.20117 0.20759 0.20382 0.20119 0.00018 0.00003 0.00005 0.00064 ­0.00031 0.00001<br />

­ (0.04973) (0.03642) (0.01631) (0.05029) (0.03692) (0.01628) (0.05318) (0.03901) (0.01749) (0.00660) (0.00433) (0.00186) (0.01854) (0.01387) (0.00593)<br />

β1 0.8 0.79324 0.79636 0.79928 0.79313 0.79645 0.79927 0.79200 0.79621 0.79909 ­0.00011 0.00009 ­0.00001 ­0.00113 ­0.00024 ­0.00017<br />

­ (0.02826) (0.02006) (0.00873) (0.02888) (0.02046) (0.00874) (0.03048) (0.02183) (0.00955) (0.00583) (0.00398) (0.00173) (0.01051) (0.00811) (0.00360)<br />

μ2 0.4 0.40322 0.40339 0.40022 0.40311 0.40327 0.40006 0.40302 0.40389 0.40012 ­0.00010 ­0.00012 ­0.00016 ­0.00009 0.00062 0.00005<br />

­ (0.06017) (0.04303) (0.01740) (0.06091) (0.04353) (0.01750) (0.06215) (0.04435) (0.01806) (0.00837) (0.00549) (0.00236) (0.01446) (0.01109) (0.00507)<br />

β2 0.6 0.59620 0.59763 0.59980 0.59607 0.59774 0.59994 0.59615 0.59731 0.60008 ­0.00014 0.00011 0.00014 0.00009 ­0.00043 0.00013<br />

­ (0.03807) (0.02621) (0.01135) (0.03893) (0.02683) (0.01150) (0.03943) (0.02743) (0.01190) (0.00762) (0.00516) (0.00222) (0.00966) (0.00745) (0.00348)<br />

ω1 0.1 0.17979 0.12374 0.10339 0.18172 0.12290 0.10334 0.18273 0.12374 0.10335 0.00192 ­0.00084 ­0.00005 0.00102 0.00084 0.00001<br />

­ (0.17909) (0.07936) (0.01929) (0.18270) (0.07195) (0.01947) (0.18413) (0.07482) (0.01948) (0.11269) (0.05054) (0.00322) (0.11759) (0.05370) (0.00025)<br />

α1 0.1 0.10835 0.10306 0.09988 0.10853 0.10298 0.09990 0.10643 0.10231 0.09977 0.00018 ­0.00008 0.00002 ­0.00209 ­0.00068 ­0.00013<br />

­ (0.04394) (0.03022) (0.01234) (0.04429) (0.03042) (0.01253) (0.04313) (0.03021) (0.01251) (0.00918) (0.00594) (0.00187) (0.01070) (0.00413) (0.00019)<br />

γ1 0.8 0.70641 0.77192 0.79637 0.70502 0.77285 0.79640 0.70455 0.77244 0.79652 ­0.00139 0.00093 0.00003 ­0.00047 ­0.00041 0.00012<br />

­ (0.20318) (0.09603) (0.02695) (0.20553) (0.08880) (0.02727) (0.20786) (0.09253) (0.02727) (0.12339) (0.05506) (0.00431) (0.13076) (0.05995) (0.00039)<br />

ω2 0.1 0.26975 0.12014 0.05309 0.27334 0.13184 0.05318 0.29011 0.14590 0.05400 0.00359 0.01170 0.00009 0.01677 0.01407 0.00082<br />

­ (0.30773) (0.17689) (0.01474) (0.31067) (0.19837) (0.01492) (0.33851) (0.23086) (0.03143) (0.21035) (0.13564) (0.00215) (0.21710) (0.15677) (0.02819)<br />

α2 0.1 0.06083 0.05417 0.05014 0.06092 0.05379 0.05011 0.06058 0.05388 0.05005 0.00009 ­0.00038 ­0.00003 ­0.00034 0.00010 ­0.00006<br />

­ (0.03588) (0.02312) (0.00869) (0.03653) (0.02386) (0.00874) (0.03540) (0.02336) (0.00884) (0.01187) (0.00796) (0.00121) (0.00865) (0.00532) (0.00125)<br />

γ2 0.9 0.65975 0.82210 0.89662 0.65620 0.81012 0.89656 0.63727 0.79581 0.89577 ­0.00355 ­0.01198 ­0.00006 ­0.01893 ­0.01431 ­0.00080<br />

­ (0.32238) (0.19192) (0.02074) (0.32471) (0.21186) (0.02095) (0.35500) (0.24291) (0.03530) (0.21535) (0.14075) (0.00297) (0.22300) (0.15847) (0.02950)<br />

ρ 0.2 0.19921 0.20071 0.19999 0.19751 0.19985 0.19983 0.19760 0.19981 0.19982 ­0.00170 ­0.00086 ­0.00016 0.00010 ­0.00004 0.00000<br />

­ (0.04359) (0.03147) (0.01379) (0.04325) (0.03134) (0.01378) (0.04322) (0.03134) (0.01378) (0.00155) (0.00084) (0.00011) (0.00124) (0.00072) (0.00012)<br />

Table 1: Means and standard deviations of different estimators <strong>in</strong> Basic Sett<strong>in</strong>g. Bold: Statistically significant at 5 %.<br />

4.1 Parameter Estimators of the CCC-GARCH Model<br />

In this …rst part, we consider di¤erent sett<strong>in</strong>gs where we change either some parameter<br />

values or model structure or the number of time series. In all these sett<strong>in</strong>gs we simulate<br />

data with gaussian errors and estimate the parameters with a gaussian log-likelihood<br />

function. We start our Monte Carlo experiments with a bivariate model given by<br />

equations (1) to (3) with a diagonal matrix . We …x the unconditional mean and<br />

variance equal to 1. The mean and variance persistence is set to be di¤erent one from<br />

each other but quite high. Therefore <strong>in</strong> this bivariate model, which we will refer to as<br />

basic sett<strong>in</strong>g later, we have 11 parameters to estimate. The true parameter values for<br />

this basic sett<strong>in</strong>g, as well as Monte Carlo means and standard deviations of one-step<br />

and multiple steps estimators are given <strong>in</strong> Table 1. To check the robustness of the<br />

results, <strong>in</strong> the other sett<strong>in</strong>gs we change only one assumption or property of this basic<br />

sett<strong>in</strong>g keep<strong>in</strong>g others …xed.<br />

In the second sett<strong>in</strong>g, we set the unconditional variance of one series approximately<br />

six times the other by chang<strong>in</strong>g the true parameter values <strong>in</strong> the second variance<br />

equation to: w 2 = 1, 2 = 0:15, 2 = 0:7. In the third sett<strong>in</strong>g, we set the unconditional<br />

mean of one series six times the other by chang<strong>in</strong>g the true mean parameters for the<br />

…rst series to: 1 = 0:3, 1 = 0:8. In the fourth sett<strong>in</strong>g we <strong>in</strong>crease the power of a shock<br />

that …rst return series receives on its conditional variance by chang<strong>in</strong>g the coe¢ cients<br />

to: 1 = 0:35, 1 = 0:55. We allow for return <strong>in</strong>teractions <strong>in</strong> the …fth sett<strong>in</strong>g by<br />

chos<strong>in</strong>g a non diagonal matrix with the follow<strong>in</strong>g true parameter values: 1 = 0:1,<br />

11 = 0:8; 12 = 0:1, 2 = 0:3, 21 = 0:1; 22 = 0:6. F<strong>in</strong>ally, <strong>in</strong> the sixth sett<strong>in</strong>g, we<br />

consider a trivariate model where we add another equation to the basic sett<strong>in</strong>g with<br />

the follow<strong>in</strong>g mean and variance parameters: 3 = 0:3, 3 = 0:7, w 3 = 0:05, 2 = 0:15,<br />

2 = 0:8. The true values for the correlation parameters are chosen <strong>in</strong> this sixth sett<strong>in</strong>g<br />

16


as: 12 = 0:1, 13 = 0:2, 23 = 0:3. To save space, Table 1 conta<strong>in</strong>s the results for only<br />

the basic sett<strong>in</strong>g. Although not <strong>in</strong>cluded <strong>in</strong> this paper, similar tables for the results of<br />

other sett<strong>in</strong>gs are available from the authors upon request.<br />

The results obta<strong>in</strong>ed are similar <strong>in</strong> all these sett<strong>in</strong>gs. First th<strong>in</strong>g to note is that<br />

the Monte Carlo bias and standard error of all estimators considered are decreas<strong>in</strong>g<br />

as the sample size <strong>in</strong>creases, as shown <strong>in</strong> Table 1 for the basic sett<strong>in</strong>g. The results<br />

of coe¢ cient tests <strong>in</strong> every sett<strong>in</strong>g suggest that signi…cant biases <strong>in</strong> the estimators for<br />

small samples seem to disappear when we move to larger samples, as expected when<br />

estimators are consistent.<br />

In some cases, multiple steps estimators seem to perform better than the one-step<br />

estimator; see, for example Table 1, where the average of the three-step estimates of 1<br />

and 2 are closer to the true parameter values <strong>com</strong>pared to one-step estimates. Therefore,<br />

we can not conclude that <strong>in</strong> …nite samples, multiple steps estimators over/under<br />

estimate the parameters <strong>in</strong> a systematic manner.<br />

Like for the basic sett<strong>in</strong>g, <strong>in</strong> all these sett<strong>in</strong>gs we analyzed the deviation of twosteps<br />

estimators from one-step estimators for the loss of e¢ ciency due to estimat<strong>in</strong>g the<br />

correlation separately and also the deviation of three-steps estimators from two-step<br />

estimators for the loss of e¢ ciency due to estimat<strong>in</strong>g mean and variance parameters<br />

separately. For all the sett<strong>in</strong>gs, the results suggest that the two-steps estimators follow<br />

the one-step estimators very closely such that even <strong>in</strong> small samples the deviation is<br />

very small. Similarly, the three-steps estimators are very close to two-steps estimators.<br />

We can also con…rm these results visually from Figure 1 for the basic sett<strong>in</strong>g where we<br />

plot kernel density estimates of the one-step and multiple steps estimators for sample<br />

size 500. Even for this small sample size the modes of the estimated densities of one-step<br />

and multiple steps estimators are very close to the true value of the parameter. There is<br />

very little, if any, di¤erence between the density estimates for di¤erent estimators. As<br />

the sample size <strong>in</strong>creases, these densities be<strong>com</strong>e more and more concentrated around<br />

true parameter values. We don’t <strong>in</strong>clude the …gures for higher sample sizes <strong>in</strong> this …rst<br />

part to save space.<br />

17


CCCn­CCCn<br />

Sample size: 500<br />

15<br />

10<br />

5<br />

0<br />

15<br />

10<br />

5<br />

0<br />

15<br />

10<br />

5<br />

0<br />

15<br />

10<br />

5<br />

0<br />

15<br />

10<br />

5<br />

0<br />

µ 1<br />

1step<br />

2step<br />

3step<br />

true value<br />

15<br />

10<br />

5<br />

β 1<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

0 0.2 0.4 0.6 0.8 1<br />

β 2<br />

15<br />

10<br />

5<br />

µ 2<br />

0 0.2 0.4 0.6 0.8 1<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

0 0.2 0.4 0.6 0.8 1<br />

0 0.2 0.4 0.6 0.8 1<br />

0 0.2 0.4 0.6 0.8 1<br />

0 0.2 0.4 0.6 0.8 1<br />

0 0.2 0.4 0.6 0.8 1<br />

0 0.2 0.4 0.6 0.8 1<br />

γ 1<br />

15<br />

15<br />

10<br />

10<br />

5<br />

5<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

ω 1 α 1 γ 2<br />

15<br />

15<br />

10<br />

10<br />

5<br />

5<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

ω 2 α 2 ρ<br />

15<br />

15<br />

10<br />

10<br />

5<br />

5<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

α +γ 1 1 α +γ 2 2 Figure 1: Kernel density estimates of di¤erent estimators <strong>in</strong> Basic Sett<strong>in</strong>g<br />

18


CCC­<br />

GARCH<br />

DCC­<br />

GARCH<br />

cDCC­<br />

GARCH<br />

ECCC­<br />

GARCH<br />

RSDC­<br />

GARCH<br />

μ1 0.20 0.20 0.20 0.20 0.20<br />

β11 0.80 0.80 0.80 0.80 0.80<br />

μ2 0.40 0.40 0.40 0.40 0.40<br />

β22 0.60 0.60 0.60 0.60 0.60<br />

ω1 0.10 0.10 0.10 0.10 0.10<br />

α11 0.10 0.10 0.10 0.10 0.10<br />

α12 ­ ­ ­ 0.10 ­<br />

γ11 0.80 0.80 0.80 0.80 0.80<br />

γ12 ­ ­ ­ 0.80 ­<br />

ω2 0.05 0.05 0.05 0.05 0.05<br />

α21 ­ ­ ­ 0.05 ­<br />

α22 0.05 0.05 0.05 0.05 0.05<br />

γ21 ­ ­ ­ 0.90 ­<br />

γ22 0.90 0.90 0.90 0.90 0.90<br />

ρ 0.20 ­ ­ 0.20 ­<br />

ρL ­ ­ ­ ­ 0.20<br />

ρH ­ ­ ­ ­ 0.80<br />

λ ­ 0.20 0.20 ­ ­<br />

δ1 ­ 0.04 0.04 ­ ­<br />

δ2 ­ 0.94 0.94 ­ ­<br />

πL ­ ­ ­ ­ 0.80<br />

πH ­ ­ ­ ­ 0.90<br />

Table 2. The true parameter values used to simulate the<br />

data used <strong>in</strong> the MC experiments <strong>in</strong> part 2. "λ" is the<br />

off­diagonal parameter of the <strong>in</strong>tercept <strong>in</strong> DCC and cDCC<br />

GARCH models.<br />

4.2 Predicted Volatilities and Correlations<br />

Focus<strong>in</strong>g on the di¤erences of one-step and multiple steps estimators for each parameter<br />

for all the models is not practical. Therefore <strong>in</strong>stead, <strong>in</strong> this part and the next one, we<br />

will focus on the <strong>in</strong>-sample predictions of volatilities and correlations. S<strong>in</strong>ce correlation<br />

parameter estimators depend on the standardized residuals which <strong>in</strong> turn depends on<br />

mean parameter estimators through the residuals and variance parameter estimators<br />

through the variances used for standardization, the <strong>in</strong>-sample predictions of volatilities<br />

and correlations could be used to see the e¤ects of estimat<strong>in</strong>g <strong>in</strong> multiple steps.<br />

As we could obta<strong>in</strong> the <strong>in</strong>-sample predictions of volatilities and correlations us<strong>in</strong>g<br />

di¤erent estimators, we could also derive the volatilities and correlations implied by<br />

the true parameter values. For a given sample size T , if we call the volatility predictors<br />

^h j i;t as the volatilities of series i over time t obta<strong>in</strong>ed from estimator j (one-step, twosteps<br />

or three-steps estimator) and if we denote h true<br />

i;t as the true volatilities, then the<br />

estimator for the deviation <strong>in</strong> the volatilities of series i will be:<br />

^h j i;t = P 1 T<br />

1000 t=1<br />

n^hj i;t<br />

h true<br />

i;t<br />

o<br />

Similarly, estimators for the deviations <strong>in</strong> correlations over time between series i<br />

and j, p ij;t , can be calculated as:<br />

^p j ij;t = 1<br />

1000<br />

P T<br />

t=1<br />

^p<br />

j<br />

ij;t<br />

p true<br />

ij;t<br />

When the conditional volatility and conditional correlation predictions were calculated<br />

the start<strong>in</strong>g values were taken as the unconditional volatilities and unconditional<br />

correlations.<br />

19


F<strong>in</strong>ally we plot the kernel density estimates of these deviation estimators to <strong>com</strong>pare<br />

the performances of one-step, two-steps and three-steps estimators.<br />

In this part we consider a range of GARCH models. For the CCC-GARCH model of<br />

Bollerslev (1990), we take the parameters and structure of the basic sett<strong>in</strong>g of the …rst<br />

part. We also consider DCC-GARCH model of Engle (2002), cDCC-GARCH model<br />

of Aielli (2006), ECCC-GARCH of Jeantheau (1998) and RSDC-GARCH model of<br />

Pelletier (2006). The true values of the mean, variance and correlation parameters<br />

considered are given <strong>in</strong> Table 2. On the other hand, when simulat<strong>in</strong>g the data and<br />

estimat<strong>in</strong>g the parameters we assume either Gaussian or Student-t distribution. When<br />

us<strong>in</strong>g the Student-t distribution, we chose the degrees of freedom equal to …ve, which<br />

translates to fairly fat tails for the distribution of the errors.<br />

For the models where the one-step and multiple steps estimators yield similar<br />

volatility and correlation predictions, we do a robustness check for the distribution<br />

<strong>in</strong> the third part. Check<strong>in</strong>g the robustness of the results to simulat<strong>in</strong>g with one model<br />

and estimat<strong>in</strong>g with another model is outside of the focus of this paper and a subject<br />

for future research.<br />

4.2.1 With Gaussian Errors<br />

We …rst assume that the true distribution of the errors is normal and we therefore<br />

estimate us<strong>in</strong>g a gaussian loglikelihood function. As mentioned before, the one-step<br />

and multiple steps estimators <strong>in</strong> this case are consistent asymptotically normal however<br />

the standard errors will be weakly greater for the latter estimators. See Engle and<br />

Sheppard (2001) for details.<br />

Figure 2 shows for the CCC-GARCH model, the kernel density estimates of "dev<strong>in</strong>h1",<br />

"dev<strong>in</strong>h2" and "dev<strong>in</strong>corr", the deviation estimators for the volatilities of the …rst and<br />

second series and the correlations, which are obta<strong>in</strong>ed from one-step and multiple steps<br />

estimators us<strong>in</strong>g sample sizes 200, 500 and 1000. "CCCn CCCn" is the name given<br />

to the …gure to represent that the data is simulated and estimated with a CCC-GARCH<br />

model with normal errors. The …gure suggests that the deviation estimators are distributed<br />

with a mode very close to zero and almost symmetric around zero for even<br />

the smallest sample size. Also, as the sample size grows, the distributions of these<br />

deviation estimators be<strong>com</strong>e degenerate around zero, suggest<strong>in</strong>g that the volatility<br />

and correlation predictors are consistent estimators of the ones implied by the true<br />

parameters.<br />

Similar results were obta<strong>in</strong>ed for the DCC-GARCH, cDCC-GARCH, ECCC-GARCH<br />

and RSDC-GARCH models and are available upon request.<br />

20


CCCn­CCCn<br />

10<br />

8<br />

6<br />

Sample size: 200 Sample size: 500 Sample size: 1000<br />

dev<strong>in</strong>h1<br />

1s<br />

2s<br />

3s<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

10<br />

dev<strong>in</strong>h2<br />

10<br />

dev<strong>in</strong>h2<br />

10<br />

dev<strong>in</strong>h2<br />

8<br />

8<br />

8<br />

6<br />

6<br />

6<br />

4<br />

4<br />

4<br />

2<br />

2<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr.<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

Figure 2: Kernel density estimates of the estimators of deviations of <strong>in</strong>-sample volatility<br />

and correlation predictors obta<strong>in</strong>ed from one-step and multiple steps Gaussian QML<br />

estimators of the parameters of CCC-GARCH model for di¤erent sample sizes.<br />

21


CCCt­CCCt<br />

10<br />

8<br />

6<br />

Sample size: 200 Sample size: 500 Sample size: 1000<br />

dev<strong>in</strong>h1<br />

1s<br />

2s<br />

3s<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

10<br />

dev<strong>in</strong>h2<br />

10<br />

dev<strong>in</strong>h2<br />

10<br />

dev<strong>in</strong>h2<br />

8<br />

8<br />

8<br />

6<br />

6<br />

6<br />

4<br />

4<br />

4<br />

2<br />

2<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr.<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

Figure 3: Kernel density estimates of the estimators of deviations of <strong>in</strong>-sample volatility<br />

and correlation predictors obta<strong>in</strong>ed from one-step and multiple steps Student-t QML<br />

estimators of the parameters of CCC-GARCH model for di¤erent sample sizes.<br />

4.2.2 With Student-t Errors<br />

In this second part, we assume that errors follow a t-distribution and we formulate our<br />

loglikelihood functions us<strong>in</strong>g Student-t distribution (univariate or multivariate depend<strong>in</strong>g<br />

on the method). We consider multiple steps estimators as expla<strong>in</strong>ed <strong>in</strong> Section 3.<br />

Although not supported by theory, multiple steps estimation surpris<strong>in</strong>gly yielded very<br />

close estimates to the ones obta<strong>in</strong>ed from one-step estimation for some models.<br />

Figure 3 plots kernel density estimates of the deviation estimators for the CCC-<br />

GARCH model. S<strong>in</strong>ce the errors both <strong>in</strong> the simulation and estimation process follow a<br />

Student-t distribution, the name of the …gure is "CCCt CCCt". As can be seen from<br />

the …gure, the deviation estimators, obta<strong>in</strong>ed from the di¤erence of the true volatilities<br />

and correlations and the ones obta<strong>in</strong>ed from one-step and multiple steps estimators,<br />

follow each other very closely. However, <strong>com</strong>pared to the normal distribution case,<br />

the tails of the distributions are thicker. As the sample size grows, these density<br />

estimates of the deviation estimators be<strong>com</strong>e condensed around zero. Given that the<br />

data is distributed from a symmetric Student-t distribution, one-step estimation which<br />

is obta<strong>in</strong>ed from a t-based loglikelihood yields consistent estimators. In addition, the<br />

multiple steps volatility and correlation predictors follow the one-step ones very closely.<br />

For the DCC-GARCH similar results were obta<strong>in</strong>ed and are available from the authors<br />

22


ECCCt­ECCCt<br />

10<br />

8<br />

6<br />

Sample size: 200 Sample size: 500 Sample size: 1000<br />

dev<strong>in</strong>h1<br />

1s<br />

2s<br />

3s<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

10<br />

dev<strong>in</strong>h2<br />

10<br />

dev<strong>in</strong>h2<br />

10<br />

dev<strong>in</strong>h2<br />

8<br />

8<br />

8<br />

6<br />

6<br />

6<br />

4<br />

4<br />

4<br />

2<br />

2<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr.<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

Figure 4: Kernel density estimates of the estimators of deviations of <strong>in</strong>-sample volatility<br />

and correlation predictors obta<strong>in</strong>ed from one-step and multiple steps Student-t QML<br />

estimators of the parameters of ECCC-GARCH model for di¤erent sample sizes.<br />

upon request.<br />

In the case of ECCC-GARCH, we obta<strong>in</strong>ed similar results, as shown <strong>in</strong> Figure 4,<br />

at least when the sample size was large. However, for the sample size 200, the density<br />

estimate for the deviation estimator between the three-steps volatility predictor and<br />

the volatility implied by the true parameters came out to be ‡at. This could be due<br />

to the extreme shocks generated by the t-distribution.<br />

On the other hand, the …gure for the cDCC-GARCH model, Figure 5, shows that<br />

the correlation predictor obta<strong>in</strong>ed us<strong>in</strong>g the three-step estimators is biased although<br />

the volatility predictors are not. When we looked <strong>in</strong> detail, we realized that the bias<br />

mostly <strong>com</strong>es from the <strong>in</strong>tercept estimator <strong>in</strong> the correlation equation. As we can see<br />

from the …gure, the two-steps predictors follow one-step predictors very closely for both<br />

volatilities and correlations. Therefore although one-step predictors are theoretically<br />

feasible but two-steps predictors are not, we can conclude here that, practically by<br />

separat<strong>in</strong>g the estimation of correlation parameters from the estimation of mean and<br />

variance parameters, we don’t lose much from the e¢ ciency of the estimators.<br />

Similarly, Figure 6 shows the kernel density estimates for the volatility predictors<br />

and for the correlation parameter estimators of the RSDC-GARCH model. Although<br />

the density estimates for di¤erent correlation parameter estimators do not follow each<br />

23


cDCCt­cDCCt 10<br />

8<br />

6<br />

Sample size: 200 Sample size: 500 Sample size: 1000<br />

dev<strong>in</strong>h1<br />

1s<br />

2s<br />

3s<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

10<br />

dev<strong>in</strong>h2<br />

10<br />

dev<strong>in</strong>h2<br />

10<br />

dev<strong>in</strong>h2<br />

8<br />

8<br />

8<br />

6<br />

6<br />

6<br />

4<br />

4<br />

4<br />

2<br />

2<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr.<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

Figure 5: Kernel density estimates of the estimators of deviations of <strong>in</strong>-sample volatility<br />

and correlation predictors obta<strong>in</strong>ed from one-step and multiple steps Student-t QML<br />

estimators of the parameters of cDCC-GARCH model for di¤erent sample sizes.<br />

other very closely, the density estimates for the volatility predictors do. On the other<br />

hand, the densities for the two steps estimators and three-steps estimators are relatively<br />

close to each other. In addition, although the one-step estimator is consistent <strong>in</strong> this<br />

model and sett<strong>in</strong>g, we don’t see that the mode of the density estimates for the one-step<br />

estimator is very close to the true value of the parameter. Therefore we can conclude<br />

that the sample size could be too small for the results to emerge, but the exist<strong>in</strong>g<br />

results suggest that two-steps estimation could be still usable.<br />

Therefore <strong>in</strong> this section, we conclude that when the true distribution of the errors is<br />

Student-t and the estimations are performed us<strong>in</strong>g t-loglikelihoods, for the CCC, DCC,<br />

ECCC-GARCH models the two-steps or three-steps estimation is feasible although this<br />

is not supported by the theory. For the cDCC and RSDC-GARCH model, accord<strong>in</strong>g to<br />

our …nd<strong>in</strong>gs, we don’t suggest us<strong>in</strong>g a three-steps estimation, but a two-steps estimation<br />

would yield very close estimates to the ones obta<strong>in</strong>ed by one-step estimation.<br />

4.3 Robustness of the Estimators to Distribution<br />

In this section, we changed the true distribution of the errors or the distribution assumption<br />

used to form the loglikelihood <strong>in</strong> order to check the robustness of the estimators.<br />

Whenever we generated a data us<strong>in</strong>g Student-t errors, we took the degrees of<br />

24


RSDCt­RSDCt<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

Sample size: 200 Sample size: 500 Sample size: 1000<br />

1s<br />

2s<br />

3s<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h2<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h2<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h2<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

0<br />

­1 0 1<br />

0<br />

­1 0 1<br />

0<br />

­1 0 1<br />

0<br />

­1 0 1<br />

0<br />

­1 0 1<br />

0<br />

­1 0 1<br />

corrst1<br />

corrst2<br />

corrst1<br />

corrst2<br />

corrst1<br />

corrst2<br />

15<br />

15<br />

15<br />

15<br />

15<br />

15<br />

10<br />

10<br />

10<br />

10<br />

10<br />

10<br />

5<br />

5<br />

5<br />

5<br />

5<br />

5<br />

0<br />

0 0.5 1<br />

0<br />

0 0.5 1<br />

0<br />

0 0.5 1<br />

0<br />

0 0.5 1<br />

0<br />

0 0.5 1<br />

0<br />

0 0.5 1<br />

pcorrst1<br />

pcorrst2<br />

pcorrst1<br />

pcorrst2<br />

pcorrst1<br />

pcorrst2<br />

15<br />

15<br />

15<br />

15<br />

15<br />

15<br />

10<br />

10<br />

10<br />

10<br />

10<br />

10<br />

5<br />

5<br />

5<br />

5<br />

5<br />

5<br />

0<br />

0 0.5 1<br />

0<br />

0 0.5 1<br />

0<br />

0 0.5 1<br />

0<br />

0 0.5 1<br />

0<br />

0 0.5 1<br />

0<br />

0 0.5 1<br />

Figure 6: Kernel density estimates of the estimators of deviations of <strong>in</strong>-sample volatility<br />

and correlation predictors obta<strong>in</strong>ed from one-step and multiple steps Student-t QML<br />

estimators of the parameters of RSDC-GARCH model for di¤erent sample sizes.<br />

freedom as 5. We considered only the models and distributions listed <strong>in</strong> Table 3, s<strong>in</strong>ce<br />

from the previous part, we know that the three-step estimators based on t-loglikelihood<br />

don’t perform well when estimation cDCC-GARCG and RSDC-GARCH models.<br />

Figure 7 shows the kernel density estimates for di¤erent estimators for the CCC-<br />

GARCH model when the data is generated us<strong>in</strong>g a Student-t distribution and estimated<br />

assum<strong>in</strong>g gaussian errors. Compared to the case when the true distribution and assumed<br />

distribution are both normal, <strong>in</strong> this …gure we see that the tails of the estimated<br />

densities are thicker. On the other hand, when we <strong>com</strong>pare the results with the case<br />

when the true distribution and assumed distribution are both Student-t, we see that<br />

the …gures are very similar although <strong>in</strong> the latter case there are relatively more di¤erences<br />

between one-step and multiple steps estimators. F<strong>in</strong>ally, <strong>in</strong> this part as well we<br />

con…rm that the results hold that the multiple-steps estimators follow one-step estimators<br />

very closely and the density estimates of the deviation estimators collapse to zero<br />

as the sample size grows. Similar …gures are obta<strong>in</strong>ed for the other models <strong>in</strong> the case<br />

of simulat<strong>in</strong>g the data with Student-t and estimat<strong>in</strong>g us<strong>in</strong>g gaussian loglikelihood.<br />

When we simulate the data with gaussian errors and estimate the model with<br />

Student-t loglikelihood, we see that the …gures look very similar to the case when the<br />

true distribution and the assumed distribution are both normal. Figure 8 shows the<br />

results for the CCC-GARCH model <strong>in</strong> this case. This similarity makes sense s<strong>in</strong>ce<br />

25


Model Simulation Estimation<br />

CCC­GARCH Student­t Normal<br />

CCC­GARCH Normal Student­t<br />

DCC­GARCH Student­t Normal<br />

DCC­GARCH Normal Student­t<br />

cDCC­GARCH Student­t Normal<br />

ECCC­GARCH Student­t Normal<br />

ECCC­GARCH Normal Student­t<br />

RSDC­GARCH Student­t Normal<br />

Table 3: The models and distributions<br />

considered <strong>in</strong> the robustness analysis<br />

<strong>in</strong> Section 4.3.<br />

Student-t distribution has another parameter, namely the degrees of freedom, such<br />

that this distribution could approximate Gaussian distribution when this parameter<br />

is su¢ ciently large. In fact, when we were do<strong>in</strong>g our MC experiments for this last<br />

case, we obta<strong>in</strong>ed very large estimates for the degrees of freedom. Similar …gures were<br />

obta<strong>in</strong>ed and are available on request from the authors.<br />

5 Empirical Application<br />

This section illustrates how multiple step estimators can be used to estimate volatility<br />

<strong>in</strong>teractions <strong>in</strong> several European stock markets. The question we would like to answer is<br />

the follow<strong>in</strong>g: are there “ volatility lead<strong>in</strong>g" and/or “volatility lagg<strong>in</strong>g" stock markets <strong>in</strong><br />

Europe. In other words, among European stock markets, is there a particular market,<br />

say M, whose volatility is not a¤ected by the previous volatility of the others markets<br />

while the volatility of several markets depend on lagged volatility of market M<br />

With this question <strong>in</strong> m<strong>in</strong>d, we use data conta<strong>in</strong><strong>in</strong>g daily returns on 10 European<br />

stock markets: AEX (Amsterdam), ATX (Vienna), BEL-20 (Brussels), CAC-40<br />

(Paris), DAX (Frankfurt), FTSE-100 (London), IGBM (Madrid), MIBTEL (Milan),<br />

OMXS (Stockolm) and SMI (Switzerland) 2 observed from January 8, 2002<br />

to April<br />

p<br />

30, 2009. Descriptive statistics of the returns series, <strong>com</strong>puted as 100 log t<br />

p t 1<br />

, of<br />

sample size 1770, are given <strong>in</strong> Table 2.<br />

Evidence aga<strong>in</strong>st normality is provided by di¤erent normality tests. However, we<br />

can still estimate consistently the parameters of the ECCC-GARCH model us<strong>in</strong>g the<br />

results <strong>in</strong> L<strong>in</strong>g and McAleer (2003). Also, based on the results provided by the Monte<br />

Carlo experiments, us<strong>in</strong>g multiple steps estimators seems to be reasonable. Therefore,<br />

we have estimated the ECCC-GARCH model given <strong>in</strong> equations (1), (2) and (3) with<br />

the follow<strong>in</strong>g results:<br />

2 Series have been obta<strong>in</strong>ed <strong>in</strong> the webpage http://…nance.yahoo.<strong>com</strong>.<br />

26


Sample size: 200 Sample size: 500 Sample size: 1000<br />

CCCt­CCCn<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

1s<br />

2s<br />

3s<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

4<br />

4<br />

4<br />

2<br />

2<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

0<br />

­1 ­0.5 0 0.5 1<br />

0<br />

­1 ­0.5 0 0.5 1<br />

10<br />

dev<strong>in</strong>h2<br />

10<br />

dev<strong>in</strong>h2<br />

10<br />

dev<strong>in</strong>h2<br />

8<br />

8<br />

8<br />

6<br />

6<br />

6<br />

4<br />

4<br />

4<br />

2<br />

2<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr.<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

Figure 7: Kernel density estimates of the estimators of deviations of <strong>in</strong>-sample volatility<br />

and correlation predictors obta<strong>in</strong>ed from one-step and multiple steps Gaussian QML<br />

estimators of the parameters of CCC-GARCH model for di¤erent sample sizes when<br />

the data is simulated with Student-t errors.<br />

Table 1: Descriptive statistics of return series<br />

Mean SD Skewness Kurtosis<br />

AEX 0:04 1:77 0:04 9:02<br />

ATX 0:03 1:62 0:56 13:4<br />

BEL-20 0:02 1:45 0:05 9:12<br />

CAC-40 0:02 1:65 0:13 8:99<br />

DAX 0:01 1:74 0:15 7:80<br />

FTSE-100 0:01 1:41 0:03 10:3<br />

IGBM 0:01 1:42 0:09 10:1<br />

MIBTEL 0:02 1:33 0:03 10:7<br />

OMXS 0:01 1:53 0:21 8:11<br />

SMI 0:01 1:39 0:14 8:79<br />

27


CCCn­CCCt<br />

10<br />

8<br />

6<br />

Sample size: 200 Sample size: 500 Sample size: 1000<br />

dev<strong>in</strong>h1<br />

1s<br />

2s<br />

3s<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

10<br />

8<br />

6<br />

dev<strong>in</strong>h1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

4<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

10<br />

dev<strong>in</strong>h2<br />

10<br />

dev<strong>in</strong>h2<br />

10<br />

dev<strong>in</strong>h2<br />

8<br />

8<br />

8<br />

6<br />

6<br />

6<br />

4<br />

4<br />

4<br />

2<br />

2<br />

2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr.<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

0<br />

­1 ­0.5 0 0.5 1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dev<strong>in</strong>corr<br />

0<br />

­0.2 ­0.1 0 0.1 0.2<br />

Figure 8: Kernel density estimates of the estimators of deviations of <strong>in</strong>-sample volatility<br />

and correlation predictors obta<strong>in</strong>ed from one-step and multiple steps Student-t QML<br />

estimators of the parameters of CCC-GARCH model for di¤erent sample sizes when<br />

the data is simulated with Gaussian errors.<br />

28


= 0:04 0:03 0:02 0:02 0:01 0:01 0:01 0:02 0:01 0:01 0<br />

b = diag 0:03 0:03 0:06 0:06 0:05 0:08 0:04 0:01 0:00 0:01 <br />

cW = 0:00 0:03 0:02 0:01 0:02 0:00 0:03 0:06 0:16 0:06 0<br />

2<br />

bA =<br />

6<br />

4<br />

0:14<br />

0:06 0:05<br />

0:05 0:11<br />

0:05<br />

0:02 0:07<br />

0:05<br />

0:06<br />

0:03<br />

3<br />

7<br />

5<br />

2<br />

bG =<br />

6<br />

4<br />

0:81<br />

0:85<br />

0:79<br />

0:45<br />

0:48<br />

0:81 0:65<br />

0:39<br />

0:51<br />

0:41<br />

0:91<br />

3<br />

7<br />

5<br />

2<br />

bR =<br />

6<br />

4<br />

1<br />

0:60 1<br />

0:84 0:57 1<br />

0:93 0:60 0:84 1<br />

0:88 0:59 0:79 0:91 1<br />

0:84 0:60 0:77 0:86 0:80 1<br />

0:83 0:59 0:77 0:87 0:84 0:79 1<br />

0:86 0:60 0:79 0:89 0:86 0:81 0:84 1<br />

0:80 0:59 0:73 0:82 0:80 0:76 0:76 0:78 1<br />

0:83 0:57 0:76 0:85 0:80 0:80 0:78 0:79 0:75 1<br />

3<br />

7<br />

5<br />

The standard errors of the parameter estimators are calculated analytically follow<strong>in</strong>g<br />

Hafner and Herwartz (2008). The <strong>VAR</strong>-ECCC-GARCH model could help us to<br />

29


60<br />

50<br />

40<br />

30<br />

AEX<br />

ATX<br />

BEL­20<br />

CAC­40<br />

DAX<br />

FTSE­100<br />

IGBM<br />

MIBTEL<br />

OMXS<br />

SMI<br />

20<br />

10<br />

0<br />

01/08/02 08/30/05 04/30/09<br />

Figure 9: Estimated conditional volatilities of di¤erent time series over the period<br />

considered.<br />

answer our question given that <strong>in</strong> this model <strong>in</strong>teractions among volatilities of di¤erent<br />

markets are allowed through parameters <strong>in</strong> matrices A and G. The estimated parameters<br />

suggest that, if there is a lead<strong>in</strong>g market <strong>in</strong> Europe, the …rst candidate would be<br />

the stock market <strong>in</strong>dex BEL-20 <strong>in</strong> Brussels followed by the FTSE-100 <strong>in</strong> London. When<br />

estimat<strong>in</strong>g the volatility of the 10 European stock markets, the signi…cant coe¢ cients<br />

reported <strong>in</strong> b A and b G show that previous day returns squared of the BEL-20 <strong>in</strong>dex a¤ect<br />

<strong>in</strong> a signi…cant way the volatility of AEX <strong>in</strong> Amsterdam and FTSE-100. Moreover,<br />

previous day volatility of the BEL-20 <strong>in</strong>dex a¤ect <strong>in</strong> a signi…cant way the volatility of<br />

all the other markets with the exception of AEX, ATX and DAX. On the other hand,<br />

the volatility of the BEL-20 <strong>in</strong>dex depends on its previous day volatility and squared<br />

returns together with previous day squared returns of the FTSE-100 <strong>in</strong>dex.<br />

6 Conclusions<br />

In this paper we have performed several Monte Carlo experiments to study how much<br />

e¢ ciency is lost <strong>in</strong> small samples when estimat<strong>in</strong>g Vector Autoregressive Multivariate<br />

Conditional Correlation GARCH models <strong>in</strong> multiple steps. The estimation of the correlation<br />

parameters could be separated from the estimation of the mean and variance<br />

parameters, which we refer to as two-steps estimation. Also, the mean parameters<br />

could be estimated <strong>in</strong> a …rst step, before do<strong>in</strong>g this two-step estimation and we refer to<br />

this procedure as three-steps estimation. Although one-step estimators are preferable<br />

30


ecause of their theoretical properties, they are not always feasible and therefore, estimat<strong>in</strong>g<br />

the parameters of a model <strong>in</strong> multiple steps could be a reasonable alternative.<br />

To see how they perform <strong>in</strong> practice, we start by runn<strong>in</strong>g several MC experiments us<strong>in</strong>g<br />

a CCC-GARCH model with di¤erent model structures, parameters values or number of<br />

series. Our results show that, when the distribution of the errors is gaussian, multiple<br />

steps estimators have a very good performance even <strong>in</strong> small samples.<br />

When other models are considered, namely ECCC and DCC-GARCH models, we<br />

<strong>com</strong>pute kernel density estimates of the <strong>in</strong>-sample volatility and correlation predictions<br />

obta<strong>in</strong>ed from one-step and multiple steps estimators, <strong>in</strong> order to <strong>com</strong>pare the<br />

performance of such estimators when …tt<strong>in</strong>g volatilities and correlations. If errors follow<br />

a gaussian (Student-t) distribution and estimation is based on the true gaussian<br />

(Student-t) distribution, we …nd that the volatility and correlation predictions obta<strong>in</strong>ed<br />

with di¤erent estimators are very similar. However, <strong>in</strong> the case of cDCC and RSDC-<br />

GARCH models with Student-t errors, we …nd that two-steps estimators outperform<br />

three-steps estimators which seem to be biased even when the sample size <strong>in</strong>creases.<br />

F<strong>in</strong>ally, our results also show that the performance of multiple step estimators <strong>in</strong><br />

the models considered is robust to the error distribution. In other words, if the true<br />

error distribution is Student-t but estimation is based on the gaussian distribution,<br />

kernel density estimates of the <strong>in</strong>-sample volatility and correlation predictors obta<strong>in</strong>ed<br />

from one-step and multiple steps estimators are quite similar. Analogously, if the true<br />

error distribution is gaussian but estimation is based on the Student-t distribution, the<br />

density estimates obta<strong>in</strong>ed are very similar and <strong>in</strong> this case, also similar to the ones<br />

obta<strong>in</strong>ed when the true and assumed distributions are both gaussian. This is due to<br />

the fact that the Student-t distribution can approximate the gaussian distribution for<br />

large values of the degrees of freedom parameter.<br />

Acknowledgements<br />

F<strong>in</strong>ancial support from projects ECO2008-05721/ECON by the Spanish Government<br />

and IVIE9-09I by the Instituto Valenciano de Investigaciones Económicas is gratefully<br />

acknowledged.<br />

References<br />

[1] Aielli, G. P. (2006). Consistent estimation of large scale dynamic conditional correlations.<br />

Unpublished paper: Department of Statistics, University of Florence.<br />

[2] Bollerslev, T. (1987), A conditional heteroskedastic time series model for speculative<br />

prices and rates of return. Review of Economics and Statistics, 69, 542-547.<br />

A<br />

31


[3] Bollerslev, T. (1990), Modell<strong>in</strong>g the Coherence <strong>in</strong> Short-Run Nom<strong>in</strong>al Exchange<br />

Rates: A Multivariate Generalized ARCH Model. The Review of Economics and<br />

Statistics, 72, 498-505.<br />

[4] Bollerslev, Tim and Je¤rey M. Wooldridge (1992), "Quasi Maximum Likelihood<br />

Estimation and Inference <strong>in</strong> Dynamic <strong>Models</strong> with time Vary<strong>in</strong>g Covariances,"<br />

Econometric Reviews, 11, 143-172.<br />

[5] Bauwens, L., L. Sebastien and J.V.K. Rombouts (2006), Multivariate GARCH<br />

<strong>Models</strong>: A Survey. Journal of Applied Econometrics, 21, 79-109.<br />

[6] Capor<strong>in</strong>, M. and M. McAleer (2009a), Do we really need both BEKK and DCC<br />

A tale of two covariance models, Department of Economics, University of Padova<br />

(Available at SSRN: http://ssrn.<strong>com</strong>/abstract=1338190).<br />

[7] Carnero, M. Angeles, Peña Daniel, Ruiz, Esther, 2004, "Persistence and Kurtosis<br />

<strong>in</strong> GARCH and Stochastic Volatility <strong>Models</strong>", Journal of F<strong>in</strong>ancial Econometrics,<br />

2, 319-342.<br />

[8] Carnero, M.A., D. Peña and E. Ruiz (2007), E¤ects of outliers on the identi…cation<br />

and estimation of GARCH models. Journal of Time Series Analysis, 28(4), 471-<br />

497. A<br />

[9] Carnero, M. Angeles, Peña Daniel, Ruiz, Esther, 2008, "<strong>Estimat<strong>in</strong>g</strong> and Forecast<strong>in</strong>g<br />

GARCH Volatility <strong>in</strong> the presence of Outliers", Work<strong>in</strong>g Paper.<br />

[10] Christodoulakis, G. A. and S.E. Satchell (2002), Correlated ARCH (CorrARCH):<br />

Modell<strong>in</strong>g the time-vary<strong>in</strong>g conditional correlation between …nancial asset returns.<br />

European Journal of Operational Research, 139, 351-370.<br />

[11] Conrad, C., Karanasos, M., 2008a. Negative volatility spillovers <strong>in</strong> the unrestricted<br />

ECCC-GARCH model. ETH Zurich, KOF Work<strong>in</strong>g Papers No. 189.<br />

[12] DEMPSTER, A. P., N. M. LAIRD, AND D. B. RUBIN (1977): “Maximum likelihood<br />

from <strong>in</strong><strong>com</strong>plete data via the EM algorithm,”J. Roy. Statist. Soc. Ser. B,<br />

39(1), 1–38, With discussion.<br />

[13] Engle, R., C.W.J.Granger and D. Kraft (1984), Comb<strong>in</strong><strong>in</strong>g <strong>com</strong>pet<strong>in</strong>g forecasts<br />

of <strong>in</strong>‡ation us<strong>in</strong>g a bivariate ARCH model. Journal of Economics Dynamics and<br />

Control, 8, 151-165.<br />

[14] Engle, Robert, Sheppard, Kev<strong>in</strong>, 2001, "Theoretical and Empirical Properties of<br />

Dynamic Conditional Correlation M,ultivariate GARCH", NBER Work<strong>in</strong>g Paper,<br />

No: W8554.<br />

32


[15] Engle, R. (2002), Dynamic Conditional Correlation: A Simple Class of Multivariate<br />

Generalized Autoregressive Conditional Heteroskedasticity <strong>Models</strong>. Journal of<br />

Bus<strong>in</strong>ess and Economic Statistics, 20, 339-350.<br />

[16] Engle, Robert F., Shephard, Neil and Sheppard, Kev<strong>in</strong>,Fitt<strong>in</strong>g and Test<strong>in</strong>g Vast<br />

Dimensional Time-Vary<strong>in</strong>g Covariance <strong>Models</strong>(October 2007). NYU Work<strong>in</strong>g Paper<br />

No. FIN-07-046. Available at SSRN: http://ssrn.<strong>com</strong>/abstract=1293629<br />

[17] Fiorent<strong>in</strong>i, G., Sentana, E., Calzolari, G. (2003), Maximum likelihood estimation<br />

and <strong>in</strong>ference <strong>in</strong> multivariate conditionally heteroskedastic dynamic regression<br />

models with Student-t <strong>in</strong>novations. Journal of Bus<strong>in</strong>ess and Economic Statistics<br />

21, 532–546. A<br />

[18] HAMILTON, J. D. (1994): Time Series Analysis. Pr<strong>in</strong>ceton University Press.<br />

[19] Harvey AC, Ruiz E, Shephard N. 1992. Unobservable <strong>com</strong>ponent time series models<br />

with ARCH disturbances. Journal of Econometrics 52: 129–158.<br />

[20] Jeantheau, T. (1998), Strong Consistency of Estimators For Multivariate ARCH<br />

<strong>Models</strong>. Econometric Theory, 14, 70-86.<br />

[21] L<strong>in</strong>g, S. and M. McAleer (2003), Asymptotic Theory for a Vector ARMA-GARCH<br />

Model. Econometric Theory, 19, 280-310.<br />

[22] Long<strong>in</strong>, Francois, Solnik, Bruno, 1995, "Is the correlation <strong>in</strong> <strong>in</strong>ternational equity<br />

returns constant: 1960-1990", Journal of International Money and F<strong>in</strong>ance, 14,<br />

1, 3-26.<br />

[23] Nakatani, Tomoaki, Terasvirta, Timo, 2008, "Test<strong>in</strong>g for Volatility Interactions <strong>in</strong><br />

the Constant Conditional Correlation GARCH Model", SSE/EFI Work<strong>in</strong>g Paper<br />

Series <strong>in</strong> Economics and F<strong>in</strong>ance, No: 649.<br />

[24] Newey, Whitney K., McFadden, Daniel, 1994, "Large Sample Estimation and<br />

Hypothesis Test<strong>in</strong>g", Handbook of Econometrics, 4, 2111-2245.<br />

[25] Newey WK, Steigerwald DS. 1997. Asymptotic bias for quasi maximum likelihood<br />

estimators <strong>in</strong> conditional heteroskedasticity models. Econometrica 3: 587–599.<br />

[26] Pelletier D. (2006), Regime switch<strong>in</strong>g for dynamic correlations. Journal of Econometrics,<br />

131, 445-473.<br />

[27] Silvenno<strong>in</strong>en, A. and T. Terasvirta (2008), Multivariate GARCH <strong>Models</strong>. To appear<br />

<strong>in</strong> T. G. Andersen, R. A. Davis, J.-P. Kreiss and T. Mikosch, eds. Handbook<br />

of F<strong>in</strong>ancial Time Series. New York: Spr<strong>in</strong>ger.<br />

33


[28] Tse, Y.K. and A.K.C. Tsui (2000), A Multivariate Generalized Autoregressive<br />

Conditional Heteroscedasticity Model with Time-Vary<strong>in</strong>g Correlations. Journal of<br />

Bus<strong>in</strong>ess and Economic Statistics, 20, 351-362.<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!