21.01.2015 Views

7 and 8 strand ropes : applications in ropeways - OITAF

7 and 8 strand ropes : applications in ropeways - OITAF

7 and 8 strand ropes : applications in ropeways - OITAF

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

7 <strong>and</strong> 8 str<strong>and</strong> <strong>ropes</strong> :<br />

<strong>applications</strong> <strong>in</strong> <strong>ropeways</strong>


Haul<strong>in</strong>g rope package<br />

The long term rope properties depend by:<br />

•Rope construction selection<br />

•Proper fiber core support<br />

•Low stretch<br />

•Reliable splice<br />

All these tasks must be carefully considered<br />

dur<strong>in</strong>g design, manufacture <strong>and</strong> <strong>in</strong>stallation<br />

of each wire rope.


Haul<strong>in</strong>g rope <strong>in</strong>terfaces<br />

The load is supported by the l<strong>in</strong>e rollers.<br />

α<br />

Rope<br />

Sheave<br />

D<br />

P<strong>in</strong><br />

Arm<br />

L<br />

Center p<strong>in</strong><br />

Each tower may conta<strong>in</strong>s several roller pairs.


Haul<strong>in</strong>g rope <strong>in</strong>terfaces<br />

The better roundness of 7 str<strong>and</strong> rope<br />

reduce the amplitude of the roller<br />

movements.<br />

This will improve the passenger comfort.<br />

This will also reduce the occurrence of<br />

breakages of the <strong>in</strong>stallation structures<br />

due to high frequency fatigue.<br />

Rope profiles


Haul<strong>in</strong>g rope <strong>in</strong>terfaces<br />

The <strong>ropes</strong> roundness can be compared<br />

by their profiles.<br />

The scheme below is a magnified plot of<br />

the profiles of <strong>ropes</strong> with 6, 7, <strong>and</strong> 8<br />

str<strong>and</strong>s.<br />

8 str<strong>and</strong> rope 7 str<strong>and</strong> rope 6 str<strong>and</strong> rope<br />

-25% -40%


Haul<strong>in</strong>g rope <strong>in</strong>terfaces<br />

The particular construction of the rope extend the contact po<strong>in</strong>ts with<br />

the sheaves therefore this rope will improve the rollers’ l<strong>in</strong><strong>in</strong>g lifetime<br />

S<strong>in</strong>ce flexibility depends ma<strong>in</strong>ly by the number of str<strong>and</strong>s, this rope<br />

will also allow to adopt smaller rollers <strong>in</strong> respect to other 6 str<strong>and</strong><br />

<strong>ropes</strong>.<br />

6 str<strong>and</strong>s 7 str<strong>and</strong>s<br />

Str<strong>and</strong> diameter<br />

Core diameter<br />

Str<strong>and</strong> diameter


Haul<strong>in</strong>g rope <strong>in</strong>terfaces<br />

The smaller str<strong>and</strong>s allow to adopt str<strong>and</strong> constructions made with a<br />

few number of wires .<br />

This improves the stability of the rope aga<strong>in</strong>st the clamp<strong>in</strong>g pressure<br />

<strong>and</strong> improve the splice reliability.<br />

The rope deformation at the tucks will be much less <strong>in</strong> respect to 6<br />

str<strong>and</strong> <strong>ropes</strong>


Haul<strong>in</strong>g rope design criteria<br />

General rules<br />

All the <strong>ropes</strong> for haul<strong>in</strong>g-carry<strong>in</strong>g operation must have a fiber core <strong>in</strong><br />

order to allow splices. Therefore the <strong>ropes</strong> must be produced with a<br />

s<strong>in</strong>gle layer of str<strong>and</strong>s over a core.<br />

The number of str<strong>and</strong>s must be not less than 6 to allow the splice (with a<br />

lower number of str<strong>and</strong>s, the core diameter would be smaller than those<br />

of the outer str<strong>and</strong>).


Haul<strong>in</strong>g rope design criteria<br />

Characteristic Goal Obta<strong>in</strong>ed by<br />

High metallic area To <strong>in</strong>crease load capacity 6 outer str<strong>and</strong>s<br />

Roundness To prevent vibrations <strong>in</strong>creased number of outer str<strong>and</strong>s<br />

Extended surface To reduce the pressure over the rollers <strong>and</strong> sheaves <strong>in</strong>creased number of outer str<strong>and</strong>s<br />

Flexibility<br />

To <strong>in</strong>crease the contact surface with the grips<br />

To reduce bend<strong>in</strong>g stresses<br />

Large outer area To reduce the rope wear <strong>in</strong>creased number of outer str<strong>and</strong>s<br />

Suitability for splic<strong>in</strong>g To prevent knots oversize <strong>in</strong>creased number of outer str<strong>and</strong>s<br />

Low stretch To prevent excessive shorten<strong>in</strong>g operations 6 outer str<strong>and</strong>s<br />

<strong>in</strong>creased number of outer str<strong>and</strong>s


Haul<strong>in</strong>g rope design criteria<br />

The rope metallic area decreases with the number of str<strong>and</strong>s.<br />

The adoption of compacted str<strong>and</strong>s, for 7 <strong>and</strong> 8 str<strong>and</strong> <strong>ropes</strong>, can<br />

compensate their reduction of area.<br />

The graph represents the rope fill factor depend<strong>in</strong>g by the comb<strong>in</strong>ation of<br />

various rope <strong>and</strong> str<strong>and</strong> types.<br />

Metallic area<br />

Fill factor [%]<br />

60%<br />

55%<br />

50%<br />

45%<br />

40%<br />

35%<br />

30%<br />

25%<br />

20%<br />

15%<br />

10%<br />

5%<br />

0%<br />

6 str<strong>and</strong>s 7 str<strong>and</strong>s 8 str<strong>and</strong>s<br />

19S 31WS K19S K31WS


Fibre core dimension<strong>in</strong>g<br />

The core is the key to obta<strong>in</strong> a stable <strong>and</strong> long last<strong>in</strong>g rope.<br />

The materials to be used for the core must be non sensitive to environmental<br />

conditions (low <strong>and</strong> high temperature, UV rays deterioration, water absorption,<br />

ag<strong>in</strong>g etc.).<br />

The core must be designed tak<strong>in</strong>g <strong>in</strong>to account that the air trapped between the<br />

fibers must be elim<strong>in</strong>ated dur<strong>in</strong>g the rope clos<strong>in</strong>g by the comb<strong>in</strong>ed action of<br />

pressure (generated by the outer str<strong>and</strong>s) <strong>and</strong> time (depend<strong>in</strong>g by the clos<strong>in</strong>g<br />

speed).<br />

For this purpose it is crucial to know the amount of the core volume which can<br />

be conta<strong>in</strong>ed <strong>in</strong> the rope, <strong>and</strong> to produce a core hav<strong>in</strong>g a structure that is easy<br />

to modify, <strong>in</strong> order to assume the shape that the core will take due to the outer<br />

str<strong>and</strong>s.


Fibre core dimension<strong>in</strong>g<br />

Step 1<br />

To determ<strong>in</strong>e the str<strong>and</strong><br />

dimensions when they will be<br />

<strong>in</strong> contact.<br />

This corresponds at the “end<br />

of the life” condition.<br />

Step 2<br />

To determ<strong>in</strong>e the exact rope<br />

cross section


Step 3<br />

Fibre core dimension<strong>in</strong>g<br />

To determ<strong>in</strong>e the exact<br />

volume of the fibre core<br />

which can be <strong>in</strong>cluded <strong>in</strong> the<br />

rope.<br />

Step 4<br />

To determ<strong>in</strong>e the expected<br />

rope dimensions dur<strong>in</strong>g<br />

manufacture, <strong>in</strong>stallation <strong>and</strong><br />

plant set-up.


Fibre core dimension<strong>in</strong>g<br />

The fibre core<br />

The clos<strong>in</strong>g process


Rope dynamic prestretch<strong>in</strong>g<br />

The scope is to reduce the elongation of the rope when loaded.<br />

Know<strong>in</strong>g that the splice area is the most critical part of the rope, the absolute<br />

value of the rope elongation should be selected to allow one additional rope<br />

splice (The tucks of a rope with no elongation at all, can not be relocated).<br />

This process consists of load<strong>in</strong>g <strong>and</strong> bend<strong>in</strong>g the rope dur<strong>in</strong>g its manufacture<br />

over a double traction w<strong>in</strong>ch (the first half of the mach<strong>in</strong>e <strong>in</strong>creases the load<br />

to the rope, the second half lowers the load).<br />

The tension applied at the rope can be adjusted, us<strong>in</strong>g a hydraulic driven<br />

sheave, up to 80 tons.<br />

The pre-stretch<strong>in</strong>g mach<strong>in</strong>e, which is about 90 m long, <strong>in</strong>creases the time<br />

dur<strong>in</strong>g which the rope is under tension, improv<strong>in</strong>g the effect of the prestretch<strong>in</strong>g.


Rope dynamic prestretch<strong>in</strong>g<br />

System<br />

IN<br />

Pull<strong>in</strong>g<br />

sheave<br />

System<br />

OUT


Rope prestretch<strong>in</strong>g<br />

Wire rope stretch<br />

Haul<strong>in</strong>g <strong>and</strong> carry<strong>in</strong>g <strong>ropes</strong> with detachable grips<br />

0.30%<br />

0.25%<br />

NON pre-stretched <strong>ropes</strong><br />

A%=0.0576 Log(h) + 75 h 10 -6<br />

0.20%<br />

Pre-stretched <strong>ropes</strong><br />

A%=0.0368 Log(h) + 10 h 10 -6<br />

Elongation [%]<br />

0.15%<br />

0.10%<br />

0.05%<br />

Experimental data<br />

0.00%<br />

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500<br />

Work<strong>in</strong>g hours


Tail wrapp<strong>in</strong>g material<br />

To ma<strong>in</strong>ta<strong>in</strong> the requested stability of the splice, the tails must be wrapped <strong>in</strong><br />

order to be “forced” <strong>in</strong>side the outer str<strong>and</strong>s <strong>in</strong> place of the fiber core.<br />

The material to be used for the tail wrapp<strong>in</strong>g must be wound <strong>in</strong> the exact<br />

quantity to ensure the longest work<strong>in</strong>g time <strong>and</strong> to keep the geometrical<br />

dimensions of wire rope constant.<br />

For this purpose the most modern method of wrapp<strong>in</strong>g uses re<strong>in</strong>forced rubber<br />

hose cut longitud<strong>in</strong>ally <strong>and</strong> wound over the tail. This choice of material allows to<br />

f<strong>in</strong>d a wide variety of dimensions <strong>and</strong> types on the market, to operate with any<br />

k<strong>in</strong>d of rope <strong>and</strong> size.<br />

The scheme represents the longitud<strong>in</strong>al <strong>and</strong> the cross sections of the splice area<br />

of a 7 str<strong>and</strong> rope.


Tail wrapp<strong>in</strong>g material<br />

Splice longitud<strong>in</strong>al section<br />

Fibre core Tail Filler Tuck Tuck support<br />

Tuck<br />

Outer str<strong>and</strong>s<br />

Fibre core<br />

Tail<br />

Outer str<strong>and</strong>


Tail wrapp<strong>in</strong>g material<br />

Splic<strong>in</strong>g <strong>in</strong> progress


Tail wrapp<strong>in</strong>g material<br />

The f<strong>in</strong>al result<br />

Tuck


Experimental results<br />

The practical results of the <strong>in</strong>stallation of 7 str<strong>and</strong>s rope confirm the suitability of<br />

the rope for the scope of reduc<strong>in</strong>g vibrations <strong>and</strong> noise.<br />

A Chairlift 34 mm x 1400 m – bright – 2002 – replacement of the old rope<br />

B Chairlift 36 mm x 2150 m – galvanized – 2002 – first equipment<br />

C Cableway 32 mm x 1740 m – bright – 2002 – replacement of the old rope<br />

D Cableway 34 mm x 1740 m – bright – 2002 – replacement of the old rope<br />

E Chairlift 30 mm x 2050 m – bright – 2002 – replacement of the old rope<br />

F Funicular 33 mm x 1600 m – bright – 2002 – replacement of the old rope<br />

G Cableway 32 mm x 1850 m – bright – 2003 – replacement of the old rope<br />

H Cableway 35 mm x 1670 m – bright 2004 – Plant revamp<strong>in</strong>g<br />

I Cableway 35 mm x 3340 m – bright 2004 – Plant revamp<strong>in</strong>g<br />

J Cableway 25 mm x 3200 m – galvanized 2004 – replacement of the old rope<br />

K Cableway 25 mm x 2480 m – galvanized 2004 – replacement of the old rope<br />

L Chairlift 42 mm x 2805 m – galvanized 2004 – first equipment<br />

M Cableway 27 mm x 2300 m – bright 2004 – Plant revamp<strong>in</strong>g<br />

N Cableway 24 mm x 2300 m – bright 2004 – Plant revamp<strong>in</strong>g


Experimental results<br />

ROLLER' VIBRATIONS<br />

0.08<br />

0.07<br />

Optimized<br />

0.06<br />

Acceleration [g]<br />

0.05<br />

0.04<br />

0.03<br />

Worst<br />

0.02<br />

0.01<br />

0<br />

1 2 2 3 3 4<br />

Armonics<br />

6 str<strong>and</strong>s optimized 6 str<strong>and</strong>s worst 7 str<strong>and</strong>s optimized 7 str<strong>and</strong>s worst


Conclusion<br />

The new 7 str<strong>and</strong> rope, together with the cableway package, gives a number of<br />

advantages <strong>in</strong> comparison with the classic 6 str<strong>and</strong> rope:<br />

•Better pressure distribution over clamps, grips <strong>and</strong><br />

rollers.<br />

•Lower rollers’ cost due to their possible reduction <strong>in</strong><br />

size.<br />

•Massive reduction of vibrations over the support<br />

structures.<br />

•Controlled stretch<br />

•Reliable <strong>and</strong> less <strong>in</strong>vasive splice<br />

Most of 6 str<strong>and</strong> <strong>ropes</strong> can be replaced by<br />

the 7 or 8 str<strong>and</strong> <strong>ropes</strong>.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!