21.01.2015 Views

Fine Scale Meteorology & Air Quality Models - School of Architecture ...

Fine Scale Meteorology & Air Quality Models - School of Architecture ...

Fine Scale Meteorology & Air Quality Models - School of Architecture ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ASI2_Lecture 3_7/12/2011<br />

Croucher Advanced Study Institute 2011<br />

Urban Climatology for Tropical & Sub-tropical Regions<br />

<strong>Fine</strong> <strong>Scale</strong> <strong>Meteorology</strong> & <strong>Air</strong> <strong>Quality</strong> <strong>Models</strong><br />

Urban Forecasting, planning and assessment tools<br />

Jason Ching<br />

Senior Research Fellow, UNC<br />

Institute for the Environment,<br />

Chapel Hill, North Carolina, USA<br />

URBAN AIR POLLUTION<br />

Lecturer’s Photo<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Introduction and Background:<br />

Presentation Outline<br />

• Part 1: Introduction and Context<br />

• Part 2: Mesoscale Modeling<br />

– Part 2a: Mesoscale RANS-Urban canopy-based modeling<br />

– Part 2b: Urban canopy descriptions and data<br />

– Part 2c: <strong>Fine</strong> scale mesoscale modeling issues<br />

• Part 3: <strong>Air</strong> <strong>Quality</strong> Modeling: Framework for characterizing<br />

(AQ) sub-grid features<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

1


ASI2_Lecture 3_7/12/2011<br />

Part 1: Introduction: Multi-scale modeling<br />

Modeling Tools<br />

• Meteorological modeling<br />

• <strong>Air</strong> quality modeling<br />

• Sub-grid context<br />

• Urban modeling<br />

• Canopy, in-canyon modeling<br />

• LES<br />

• CFD<br />

• Local <strong>Scale</strong>-Hybrid modeling<br />

Modeling System Development<br />

•Meteorological Model Developments:<br />

– Hurricane Model-> MM5-> WRF-> MPAS<br />

Multi-scale WRF System<br />

•General Framework<br />

•PBL Formulations<br />

•TKE vs Non-TKE schemes<br />

•Land-surface models<br />

•Urbanization in WRF<br />

•UHI Sensitivity studies<br />

•<strong>Air</strong> <strong>Quality</strong> Model Developments<br />

– Dispersion models-> photochemical grid models<br />

-> Acid Deposition model -> Community<br />

Multiscale One-Atmosphere AQ/Deposition<br />

model<br />

•Climate Model Developments<br />

– GCMs-> Community Climate models-><br />

Community Earth systems model<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Common Community<br />

Model Design Features<br />

Examples:<br />

WRF (Meteorological)<br />

CMAQ (<strong>Air</strong> <strong>Quality</strong>)<br />

Preprocessors -> Core -> Postprocessors<br />

Maintenance, Version Controls<br />

Open System<br />

Open Source,<br />

Dynamic Development Framework<br />

User Friendly<br />

Community Support Infrastructure<br />

Multiscale: Gridding/Nesting capabilities<br />

User Setups & Controls<br />

Science evolves; Module options grows<br />

Complementary Documentation<br />

<strong>Meteorology</strong> and AQ feedbacks possible<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

2


ASI2_Lecture 3_7/12/2011<br />

Multi-<strong>Scale</strong> Urban <strong>Air</strong> <strong>Quality</strong> simulations<br />

Pollutant concentration resolution based on CMAQ grid size<br />

Example: Nested runs for NO x (top set) and Ozone (bottom set):<br />

Philadelphia modeling domain, July 14, 1995<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

WRF: Integrated Cross‐scale Modeling Framework<br />

WPS System<br />

Enhanced Inputs<br />

WRF‐V3 System<br />

Enhanced modeling components<br />

Advanced Applications<br />

In‐situ and remote‐sensing<br />

urban land‐use and building<br />

characteristics, anthropogenic<br />

heat and moisture.<br />

Urbanized high‐resolution<br />

land data assimilation system<br />

(u‐HRLDAS)<br />

<strong>Fine</strong>‐scale atmospheric<br />

analysis (FDDA)<br />

Noah land surface model<br />

Urban canopy models<br />

Indoor‐outdoor exchange models<br />

Urban T&D models (CFD, LES)<br />

Chemistry models (WRF‐Chem)<br />

Human‐response modeling <br />

Weather prediction<br />

<strong>Air</strong> quality<br />

Regional climate<br />

Public health and risk<br />

assessments<br />

Urban water resources<br />

Adaptation and UHI<br />

mitigation<br />

Decision support<br />

Chen et al., JOC,2010<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

3


ASI2_Lecture 3_7/12/2011<br />

Part 2a: Multiscale dependent WRF<br />

Example: PBL Ht (m) Aug 4, 2006 @ 1500 CDT<br />

27km<br />

9 km<br />

3 km<br />

1 km<br />

BEP<br />

Wave-like, convective patterns are different in scale<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

WRF Physics Options<br />

• Turbulence/Diffusion (Km Options, Diff<br />

Options)<br />

• Radiation<br />

– Long Wave<br />

– Shortwave<br />

• Surface<br />

– Surface layer<br />

– Land/water surface<br />

• PBL<br />

• Cumulus Parameterization<br />

• Microphysics<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

4


ASI2_Lecture 3_7/12/2011<br />

PBL schemes provide ensemble statistical<br />

representation <strong>of</strong> turbulence in mesoscale models<br />

Ensemble statistics model vs. LES<br />

S(ww) -5/3<br />

resolvable scales<br />

SGS<br />

~ 1 km ~100 m ~10 m < cm<br />

NWP grid >> Λ<br />

Λ<br />

LES grid


ASI2_Lecture 3_7/12/2011<br />

Land Surface Modeling<br />

• Accounts for subgrid-scale sensible and latent<br />

fluxes<br />

• LSM becomes increasingly important:<br />

-More complex PBL schemes are sensitive<br />

to surface fluxes and cloud/cumulus schemes<br />

are sensitive to the PBL structures<br />

NWP models decrease their grid-spacing (1-km<br />

and sub 1-km). Need to capture mesoscale<br />

circulations forced by surface variability in<br />

albedo, soil moisture/temperature, landuse,<br />

and snow<br />

• Challenges:<br />

Tremendous land surface variability<br />

Complex land surface/hydrology processes<br />

Initialization <strong>of</strong> soil moisture & temperature<br />

WRF LSM provides surface energy flux<br />

- ground heat storage Q G<br />

- surface sensible heat flux Q H<br />

- surface latent heat flux Q E<br />

-upward longwave radiation Q lu<br />

Alternatively:<br />

-skin temperature and sfc emissivity<br />

-upward (reflected) shortwave radiation,<br />

Q S<br />

- surface albedo, including snow effect<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Land Surface Options in WRF (5)<br />

• =1 sf_surface_physics: 5-layer<br />

thermal diffusion model, no prediction <strong>of</strong><br />

soil moisture, snow, and vegetation.<br />

• =2 sf_surface_physics: Noah LSM<br />

(Unified ARW/NMM Version 3)<br />

• Vegetation effects<br />

• Predicts soil temperature and soil<br />

moisture in four layers and diagnoses<br />

skin temperature,<br />

• Predicts snow cover and canopy<br />

moisture, handles<br />

• Fractional snow cover and frozen soil<br />

• New time-varying snow albedo (in V3.1)<br />

• Noah is coupled with two Urban Canopy<br />

Model (UCM) options (sf_urban_physics,<br />

ARW only)<br />

=1 sf_urban_physics: single layer<br />

UCM (SLUCM)<br />

=2 sf_urban_physics: Multi-layer<br />

Building Environment<br />

Parameterization (BEP), Used with MYJ<br />

or BouLac to represent buildings<br />

higher than lowest model levels<br />

=3 sf_urban_physics: Building<br />

Energy Model (BEM). Works with<br />

BEP.<br />

• =3 sf_surface_physics: RUC LSM<br />

• • Vegetation effects included<br />

• • Predicts soil temperature and soil<br />

moisture in six layers<br />

• • Multi-layer snow model<br />

• =7 sf_surface_physics: Pleim-Xiu<br />

LSM (EPA)<br />

• • New in Version 3<br />

• • Vegetation effects included<br />

• • Predicts soil temperature and soil<br />

moisture in two layers<br />

• • Simple snow-cover model<br />

• =88 sf_surface_physics: GFDL slab<br />

model. Simple land treatment<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

6


ASI2_Lecture 3_7/12/2011<br />

Part 2b: Urban<br />

Modeling<br />

• Requirements for urban<br />

canopy PBL schemes<br />

• Gridded databases for<br />

canopy model<br />

formulations<br />

• Options in WRF are:<br />

SLUCM, BEP,<br />

BEP_BEM<br />

• Implementing NUDAPT<br />

in WRF<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Melbourne<br />

Slide courtesy <strong>of</strong> Grimmond<br />

Chicago<br />

Modifed Oke 1997<br />

<strong>Scale</strong>s<br />

Chicago Gothenburg<br />

<strong>Scale</strong>s<br />

BremenASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

7


ASI2_Lecture 3_7/12/2011<br />

Impact <strong>of</strong> UCPs on Mesoscale modeling:<br />

Mixing height and wind vectors at 50 m AGL<br />

a) the standard version <strong>of</strong> MM5 using G-S PBL<br />

b) GS PBL including UCP w/BouLac<br />

a)<br />

Mixing Height at 6 p.m.<br />

b)<br />

Mixing Height at 6 p.m.<br />

X<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60 80 100<br />

Y<br />

(in meter)<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

X<br />

100<br />

80<br />

60<br />

40<br />

20<br />

5m.s -1 0<br />

0 20 40 60 80 100<br />

Y<br />

(in meter)<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

5m.s -1<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Impact <strong>of</strong> UCPs on<br />

Mesoscale modeling<br />

Difference fields<br />

(UCP- noUCP) MM5 simulations<br />

LHS: mixing height<br />

RHS: air temperature, wind<br />

vectors @50 m AGL<br />

X<br />

X<br />

X<br />

a) 6a.m.<br />

100<br />

b) 2p.m.<br />

100<br />

c) 6p.m.<br />

100<br />

0<br />

0 20 40 60 80 100<br />

Y<br />

0<br />

0 20 40 60 80 100<br />

Y<br />

0<br />

0 20 40 60 80 100<br />

Y<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

80<br />

60<br />

40<br />

20<br />

80<br />

60<br />

40<br />

20<br />

80<br />

60<br />

40<br />

20<br />

(in meter)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

-250<br />

(in meter)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

-250<br />

(in meter)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

-250<br />

X<br />

X<br />

X<br />

100<br />

80<br />

60<br />

40<br />

20<br />

100<br />

80<br />

60<br />

40<br />

20<br />

100<br />

0<br />

0 20 40 60 80 100<br />

Y<br />

0<br />

0 20 40 60 80 100<br />

Y<br />

80<br />

60<br />

40<br />

20<br />

6a.m.<br />

2p.m.<br />

6p.m.<br />

0<br />

0 20 40 60 80 100<br />

Y<br />

(in K)<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

0.2 m.s -1<br />

(in K)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

0.2 m.s -1<br />

(in K)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

0.2 m.s -1<br />

8


ASI2_Lecture 3_7/12/2011<br />

Sources <strong>of</strong> building data<br />

High resolution (meter scale) building data are technologically<br />

and operationally feasible to obtain; datasets are becoming<br />

increasingly more available and affordable. Such data provide<br />

the bases for advanced contemporary grid modeling and for<br />

each specific urban area.<br />

Photogrammetric methods<br />

<strong>Air</strong>borne LIDAR platforms<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

High resolution urban mesoscale modeling<br />

Digitization <strong>of</strong> urban details now feasible/desirable<br />

Salt Lake City<br />

Changing Morphology<br />

Hong Kong,<br />

Courtesy: Chan, Lau and Fung<br />

Nanjing, a rapidly evolving city<br />

Courtesy <strong>of</strong> Tijian Wang<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

9


ASI2_Lecture 3_7/12/2011<br />

Urban Modeling in WRF-Noah<br />

Three parameterization schemes<br />

Multi-layer Urban Canopy Model:<br />

Building Effect Parameterization<br />

(BEP)<br />

• Direct interactions with WRF PBL<br />

scheme at multiple vertical layers<br />

• Calculate effects <strong>of</strong> buildings on<br />

momentum and heat fluxes<br />

• Modify TKE scheme and turbulent<br />

length scales<br />

• Available since WRF3. 1<br />

sf_surface_physics = 2 (Noah)<br />

sf_urban_physics = 2<br />

• works with WRF’s BouLac and MYJ<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Implementation <strong>of</strong> BEP & BEP_ BEM in WRF<br />

• Building Environment Parameterization (BEP, Martilli et al.)<br />

– Sub-grid wall, ro<strong>of</strong>, and road effects on radiation and fluxes<br />

– Can be used with MYJ PBL or BouLac PBL to represent buildings higher<br />

than lowest model levels (Multi-layer urban model)<br />

• Building Energy Model (BEM, Martilli and Salamanca)<br />

– Includes anthropogenic building effects (heating, air-conditioning) in<br />

addition to BEP<br />

– The natural ventilation, the heat generated by equipment and<br />

occupants, the convective heat through the walls, and the radiation<br />

through the windows are considered in the model.<br />

– The UCP(BEP) and BEP-BEM (with and without the AC systems)<br />

schemes have been evaluated against urban energy balances fluxes<br />

measured in the BUBBLE experiment.<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

10


ASI2_Lecture 3_7/12/2011<br />

HYPOTHESIS:<br />

Anthropogenic<br />

heating is important<br />

model variable in<br />

urban heat island<br />

simulations<br />

RMSE for T2 decreased<br />

26% (18 stations in<br />

Houston) using BEP+BEM<br />

vs BEP alone<br />

Martilli et al, 2011<br />

Building Energy Model (BEM) in WRF<br />

representing indoor-outdoor heat exchanges<br />

• Time-varying room air temperature and air humidity are estimated<br />

• Natural ventilation, heat generated by equipment and occupants,<br />

heat transfer through the walls, and radiation through windows<br />

• Heat generated from cooling(air conditioning)/heating the indoor air<br />

• Available since WRF3. 2<br />

sf_surface_physics = 2 (Noah), sf_urban_physics = 3<br />

ASI 2: URBAN works CLIMATE with BEP AND and AIR BouLac POLLUTION and MYJ<br />

<strong>School</strong> <strong>of</strong><br />

PBL<br />

<strong>Architecture</strong>,<br />

onlyThe Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

NUDAPT ‐ 44 UCPs<br />

• Mean, Std Dev <strong>of</strong> building heights<br />

• Plan-area weighted mean building<br />

height<br />

• Height Histogram (5-m increments)<br />

• Plan area fraction (Bldg area total sfc<br />

area)<br />

• Plan area density (<strong>Air</strong> volume by<br />

Bldg)<br />

• Ro<strong>of</strong> area density (Like LAI)<br />

• Complete aspect ratio A sfc /A T<br />

• Frontal area index (dd)) A proj /A T<br />

• Frontal area density (dd) FAI/height<br />

• Height-to-width ratio (some)<br />

• Sky view factor (some)<br />

• & Roughness length<br />

• & Displacement height<br />

BEP, BEP_BEM UCPs<br />

• Street width , w<br />

• Building width, b<br />

• Distribution <strong>of</strong> building heights<br />

• Street direction (either N-S and E-W)<br />

• Urban fraction (from other tables<br />

based on Land use)<br />

• Thermal parameters (heat capacity,<br />

thermal diffusivity<br />

• Roughness lengths<br />

• Albedo<br />

• Emissivity<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

11


ASI2_Lecture 3_7/12/2011<br />

NUDAPT gridded UCP database being installed at NCAR<br />

for supporting WRF urban model applications<br />

11 UCPS for 44 US cities<br />

gridded at 1km & 250m<br />

derived from NIMA’s airborne<br />

lidar data sets<br />

(Courtesy NBSD: Burian &Brown<br />

Installed into<br />

WPS in CONUS<br />

(enlarged to<br />

include Honolulu)<br />

Supports SLUCM,<br />

BEP, BEP+BEM, &<br />

future urban options<br />

Albuquerque Des Moines Minneapolis Raleigh-Durham<br />

Baltimore Detroit New Orleans Richmond, VA<br />

Beaumont Fort Lauderdale New York Riverside, CA<br />

Boston Herndon-Dulles Oakland, CA Salt Lake City<br />

Buffalo Honolulu Oklahoma City San Antonio<br />

Chicago Houston Orlando San Diego<br />

Cincinnati Jacksonville, FL Philadelphia San Francisco<br />

Cleveland Kansas City, MO Phoenix Savannah<br />

Dallas Las Vegas Pittsburgh Seattle<br />

Daytona Beach Los Angeles Portland, OR St Louis<br />

Denver Miami Providence Washington ,DC<br />

Example <strong>of</strong> UCPs in NUDAPT: Harris County‐Houston<br />

1 km gridded fields from processed digitized lidar data<br />

300<br />

250<br />

Heig ht (m )<br />

200<br />

150<br />

North<br />

West<br />

Northwest<br />

100<br />

50<br />

0<br />

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

af(z)<br />

Gridded Frontal Area (packing<br />

density) Index as a function <strong>of</strong><br />

height and approach angle <strong>of</strong><br />

wind (based on Lidar data).<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

12


ASI2_Lecture 3_7/12/2011<br />

Geo‐Referencing NUDAPT‐44 database for WRF<br />

Large (1 o ) and Small (0.25 o ) Grid Tiles in WPS<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

rd_wf_binary.f90<br />

Processing steps<br />

NUDAPT into WRF<br />

Intermediate Mesh<br />

Met_em<br />

File<br />

geogrid.exe<br />

real.exe<br />

WRF_input<br />

Module_physics_i<br />

nit<br />

Module_sf_urban<br />

Module_sf_noahdr<br />

y<br />

Call urban_var_init<br />

Use module_sf_urban<br />

Call<br />

BEP_BEM<br />

Call<br />

Module_sf_bep_bem<br />

Module_sf_bep<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese BEPUniversity <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

13


ASI2_Lecture 3_7/12/2011<br />

BEP ‐ 2228 BEP_BEM ‐ 2238<br />

1500 CDT<br />

1900 CDT<br />

2300 CDT<br />

BEP: UHI <strong>of</strong> 1-2<br />

degrees is modeled<br />

during daytime, but<br />

nocturnal UHI was<br />

muted.<br />

BEP_ BEM: Stronger<br />

UHI during day, and<br />

also some UHI during<br />

night, even if after<br />

midnight the UHI<br />

begins to weaken<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

0300 CDT, 26 August 2006 PBL=8 (Bougeault and Lacarrere)<br />

BEP only: 2228 BEP_BEM: 2238<br />

Introduction <strong>of</strong> NUDAPT enhances the magnitude<br />

and gradients <strong>of</strong> the UHI. The heterogeneities <strong>of</strong><br />

the city are also better represented.<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

14


ASI2_Lecture 3_7/12/2011<br />

Cooling California Cities:<br />

Cases refer to different ranges <strong>of</strong> increasing albedo<br />

and canopy coverage (surrogate for moisture)<br />

Taha 2008, BLM 127: 218‐239<br />

Delta T (K)<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

-2.5<br />

-3<br />

-3.5<br />

-4<br />

San Fernando Valley<br />

0<br />

23<br />

7<br />

15<br />

23<br />

7<br />

15<br />

23<br />

7<br />

15<br />

23<br />

7<br />

15<br />

23<br />

case-01<br />

case-02<br />

case-10<br />

case-20<br />

case-22<br />

LST<br />

Los Angeles<br />

1<br />

0<br />

Delta T (K)<br />

-1<br />

-2<br />

-3<br />

23<br />

-4<br />

7<br />

15<br />

23<br />

7<br />

15<br />

23<br />

7<br />

15<br />

23<br />

7<br />

case-01<br />

15<br />

23<br />

case-02<br />

case-10<br />

case-20<br />

case-22<br />

LST<br />

San Diego<br />

0<br />

Delta T (K)<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

-2.5<br />

23<br />

-3<br />

7<br />

15<br />

23<br />

7<br />

15<br />

23<br />

7<br />

15<br />

23<br />

7<br />

15<br />

23<br />

case-01<br />

case-02<br />

case-10<br />

case-20<br />

case-22<br />

LST<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

<strong>Air</strong> <strong>Quality</strong> response to UHI modeled modifications:<br />

Comparison against base case for Sacramento CA<br />

Taha 2008: BLM V127: 218‐239<br />

Base case [O3]<br />

Base- Change<br />

(albedo change)<br />

Change in [O3] from base case at time <strong>of</strong> peak.<br />

Increased urban albedo scenario (corresponds to a reduction<br />

<strong>of</strong> 2‐3C in air temperature)<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

15


ASI2_Lecture 3_7/12/2011<br />

Potential exposure assessment application:<br />

Theory- Pollution retention in urban canyons<br />

Courtesy <strong>of</strong> J. Richmond-Bryant<br />

U<br />

U<br />

WIND<br />

D<br />

l<br />

WIND<br />

D<br />

W<br />

• H = Uτ/D = f(UD/ν, k 0.5 /U, l/D, D/W)<br />

= f(Re, turbulence intensity, shape)<br />

o H = nondimensional residence time <strong>of</strong> pollutant in canyon<br />

o τ = residence time<br />

o k = turbulence kinetic energy <strong>of</strong> the wind<br />

o ν = kinematic viscosity<br />

o Re = Reynolds number<br />

• Based on dimensional analysis and derived from the equation<br />

<strong>of</strong> scalar flux transport (Humphries & Vincent 1976)<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Residence time H vs D/W<br />

Courtesy <strong>of</strong> J. Richmond-Bryant<br />

Mid Manhattan05<br />

• Significant fit:<br />

o H = 22(D/W) -0.69<br />

o R 2 = 0.62<br />

o p < 0.001<br />

Two Cities MM and<br />

OkCity<br />

• Poor fit:<br />

o H = 51(D/W) -0.812<br />

o R 2 = 0.035<br />

o p = 0.022<br />

JU2003: OklCity<br />

• Scatter visible<br />

• Novel methodology, under development<br />

• Significant fit:<br />

• Qualitatively similar results for two<br />

o H = 296(D/W) cities<br />

-0.812<br />

o R 2 = 0.48<br />

• Two cities differ quantitatively<br />

o p < 0.0001<br />

• Parameterizations can utilize fine scale<br />

modeling to provide inputs for exposure<br />

assessment<br />

• Improved methodologies with multiple<br />

canopy formulation sets such as from<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION NUDAPT to be tested.<br />

<strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

16


ASI2_Lecture 3_7/12/2011<br />

Crossroads:<br />

Advances and Opportunities<br />

• Urban predictions on now on firmer bases with UCP formulations,<br />

model formulations can become even more sophisticated<br />

• New opportunities (base analyses & “what if” scenarios include:<br />

–Advanced AQ modeling, exposure assessments<br />

–Improved urban dispersion, threat assessments<br />

–UHI assessments, urban climate analyses<br />

–Hydrological and flooding assessments<br />

–Urban design and architecture for ventilation and comfort<br />

analyses<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Part 2c: <strong>Fine</strong> <strong>Scale</strong> Modeling Issues<br />

Goal: Realistic outputs from<br />

fine grid WRF mesoscale<br />

modeling.<br />

• Evolution <strong>of</strong> mesoscale<br />

•Capabilities: Available/ growing computer<br />

capabilty/capacity and evolving modeling<br />

system<br />

•Issues: Grid sizes now <strong>of</strong> same order or<br />

smaller as pbl heights, turbulence<br />

(Wyngaard’s “terra Incognita” regime)<br />

•Problems: <strong>Fine</strong> grid modeling needed to<br />

resolve observed features<br />

•Challenges: Determining and removing or<br />

reducing the levels <strong>of</strong> stochastic model noise<br />

•Approaches: WRF with parameterized SG<br />

physics options<br />

WRF with LES<br />

Conduct PULSE Study<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

17


ASI2_Lecture 3_7/12/2011<br />

WRF modeled vertical velocity at mid‐PBL (~500 m) PBL Eddies<br />

38.7<br />

( courtesy Lemone et al, WRF Workshop, 2011 , updated)<br />

38.1<br />

37.5<br />

36.9<br />

‐98.6 ‐98.0 ‐97.4 ‐96.6 ‐96.0 ‐95.4 ‐98.6 ‐98.0 ‐97.4 ‐96.6 ‐96.0 ‐95.4<br />

38.7<br />

38.1<br />

37.5<br />

36.9<br />

36.3<br />

‐98.6<br />

‐98.0 ‐97.4 ‐96.6 ‐96.0 ‐95.4<br />

‐98.6<br />

‐98.0 ‐97.4 ‐96.6 ‐96.0 ‐95.4<br />

Observations in weakly‐forced convective boundary layers:<br />

Quasi‐stationary 2‐ & 3‐D PBL meteorological fields<br />

http://lance.nasa.gov/imagery/rapid‐response/<br />

Eastern USA, October 2010<br />

Daily summertime occurrence in Houston,TX<br />

area (2006): (MODIS:Terra/Aqua Satellite ~<br />

local noon)<br />

Aug 3 Aug 4<br />

Aug 5<br />

Aug 9 Aug 11 Aug 15<br />

Aug 18 Aug 20 Aug 24<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

18


ASI2_Lecture 3_7/12/2011<br />

ACM-2<br />

BouLac<br />

QNSE<br />

TKE-NO<br />

TKE-YES<br />

TKE-YES<br />

YSU<br />

TKE-NO<br />

Results Sensitive<br />

to PBL schemes<br />

TERRA: Pixel Size 500m<br />

Aug 4 2006 @ 17:20UTC<br />

Simulations @ 20:00 UTC<br />

MYJ<br />

MYNN2<br />

MYNN3<br />

TKE-YES<br />

TKE-<br />

TKE-<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Grid size dependent results<br />

4km(upper) vs 1 km Base (lower)<br />

Heat Flux Latent Heat PBL height Ustar<br />

<strong>Fine</strong> scale structures are unresolved at 4 km, even though features are <strong>of</strong> that order. Resolution becoming<br />

apparent for grids at 1km (or less). From Rampanelli et al., (2004), with 1km grids, shallow circulations can<br />

appear due to convective instability (superadiabatic layer) at the minimum resolved scale (4dx). At the<br />

coarser horizontal grids typical <strong>of</strong> mesoscale models, such circulations would grow too slowly to be noticed.<br />

Hence at 1km the simulations are in a resolution regime where turbulence cannot be explicitly resolved, yet<br />

the superadiabatic ASI 2: URBAN CLIMATE layer can AND induce AIR POLLUTION circulations that <strong>School</strong> grow <strong>of</strong> <strong>Architecture</strong>, to noticeable The Chinese University size over <strong>of</strong> Hong the Kong, integration Hong Kong, 7-8 Dec period. 2011<br />

19


ASI2_Lecture 3_7/12/2011<br />

TERRA: Aug 4 2006 @ 1720 UTC<br />

WRF V3.2 (NOAH BEP_BEM BouLac)<br />

SW Down Base 2238 PBL Base 2238<br />

Martilli’s filter scheme<br />

applied to base case.<br />

SW Down Filtered Base 2238 PBL Filtered Base 2238<br />

Objective: To reduce<br />

amount <strong>of</strong> model noise<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Preliminary Study Findings<br />

• Low level convective features are frequent and regular features<br />

in study area for weakly forced systems based on cloud fields<br />

from satellite)<br />

• Convective features are resolvable with fine scale, less so as<br />

grid size increases, characteristics depend on physics options<br />

• Modeled simulations shows convective features to be quasi<br />

stationary<br />

• Spatial characteristic are sensitive to choice <strong>of</strong> physics options.<br />

Presents a significant challenge to modeling air quality at fine<br />

scales<br />

• Ad hoc filtering approaches might be useful towards reducing<br />

model “noise”<br />

• Concern: What is resolved, what is<br />

noise<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

20


ASI2_Lecture 3_7/12/2011<br />

erturbations nique inks to etup xploration<br />

Taking the model’s<br />

• <strong>Fine</strong> scale modeling enters the “Terra Incognita” regime<br />

• Given that mesoscale modeling systems have many<br />

operating options, how are the resulting simulation<br />

dependent on the user selection <strong>of</strong> model options.<br />

• Need to understand the properties <strong>of</strong> modeling systems<br />

dependence on the properties <strong>of</strong> their individual<br />

components and their linkages.<br />

• Ad hoc modeling group is currently undertaking this study,<br />

preliminary results follows.<br />

• Perform & explore model sensitivity studies including:<br />

Model physics, numerics, time steps, grid size, filtering<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Numerical Considerations: Horizontal Diffusion<br />

Standard configuration <strong>of</strong> WRF has in the horizontal the Smagorinsky scheme<br />

K<br />

h<br />

s<br />

C x<br />

2<br />

s<br />

C 0.4<br />

2<br />

u<br />

v<br />

<br />

0.25<br />

2 2 <br />

<br />

<br />

x<br />

y<br />

<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

2<br />

2<br />

u<br />

v<br />

<br />

<br />

<br />

y<br />

x<br />

<br />

<br />

In Martilli’s simulations, with DX=1km, this gives K h values <strong>of</strong> the order <strong>of</strong> 100-200 m2/s<br />

Standard MM5 has in the horizontal (see Xu et al. MWR 2001)<br />

K<br />

K<br />

h<br />

H 0<br />

K<br />

H 0<br />

3. 10<br />

2<br />

2<br />

<br />

2 2 u<br />

v<br />

u<br />

v<br />

<br />

Cs<br />

x<br />

0.25<br />

2 2 <br />

<br />

<br />

x y<br />

<br />

<br />

y x<br />

<br />

<br />

3<br />

x<br />

t<br />

2<br />

2<br />

600.<br />

m 2 //s<br />

s<br />

For Dx=1000.m and Dt=5s (Martilli’s case)<br />

“the background term K H0 is dominant at all levels and locations<br />

throughout the simulation time” Xu et al. MWR 2001<br />

21


ASI2_Lecture 3_7/12/2011<br />

WRF simulations over Madrid (1 km resolutión) 1200 UTC<br />

K H Smagorinsky Smagorinsky CONST: With K HO =600 m 2 /s (MM5 style)<br />

Temperature<br />

(2m)<br />

CONST<br />

Vertical velocities<br />

(250m)<br />

Vertical<br />

velocity<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Alternative methodology:<br />

In addition to filtering structures smaller than the grid cell, we also<br />

filter turbulent eddies smaller than the size <strong>of</strong> the most energetic<br />

eddies. Because we are running in RANS mode, all turbulence should<br />

be filtered out by the turbulence closure scheme. Martilli’s choice is<br />

to improve the treatment <strong>of</strong> the horizontal turbulent transport terms.<br />

u<br />

uu<br />

uv<br />

uw<br />

P<br />

uu<br />

uv<br />

uw<br />

<br />

t<br />

x<br />

y<br />

z<br />

x<br />

x<br />

y<br />

z<br />

Mean advection and pressure: resolved<br />

Can we still neglect these terms for high<br />

resolution (1km or less) runs<br />

Horizontal turbulent<br />

transport: neglected<br />

Vertical turbulent transport:<br />

parameterized<br />

Some ad hoc<br />

horizontal diffusion<br />

is <strong>of</strong>ten added<br />

Try to parameterize them: if they are not relevant they will show no impact on the<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> results. <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

22


ASI2_Lecture 3_7/12/2011<br />

Suggested parameterization<br />

u u <br />

u u K<br />

<br />

i j 2<br />

Best option would be to treat <br />

<br />

i j<br />

ijtke<br />

x<br />

j<br />

x <br />

<br />

<br />

i <br />

3<br />

As first step, Martilli assumed<br />

ui<br />

u<br />

iuj<br />

K<br />

Relatively easy to implement in WRF….<br />

x<br />

j<br />

For “ K” Martilli invoked the Bougeault and Lacarrere scheme, so<br />

the vertical diffusion coefficient becomes<br />

K<br />

z<br />

<br />

cl<br />

boulac<br />

tke<br />

By analogy, in the horizontal<br />

K c maxl<br />

, x tke<br />

x<br />

boulac<br />

<br />

z<br />

zdz<br />

tkez<br />

<br />

down<br />

<br />

z<br />

zdz<br />

tkez<br />

<br />

z o<br />

1/<br />

2<br />

l<br />

upldown<br />

<br />

minl<br />

,l <br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

z<br />

<br />

zlup<br />

z<br />

zl<br />

l<br />

l<br />

<br />

boulac<br />

g<br />

o<br />

g<br />

up<br />

down<br />

l up and l down are the distances that a parcel<br />

originating from level z, and having the<br />

TKE <strong>of</strong> level z, can travel upward and<br />

downward before coming to rest due to<br />

buoyancy effects.<br />

Application <strong>of</strong> Filter Option<br />

Base<br />

New<br />

23


ASI2_Lecture 3_7/12/2011<br />

Model study <strong>of</strong> Vortices in high-resolution WRF<br />

Courtesy <strong>of</strong> E. Gutierrez, J. Gonzalez, CCNY, & R. Bornstein, SJSU<br />

Simulations <strong>of</strong> a 2010 NYC Heat Wave: Real or Noise<br />

z=12 m, 18 EST; coarse domain, ∆x=9 km, ∆t = 1 s:<br />

Temperature (12m)<br />

W velocity (12m)<br />

Reasonable results, but not much detail<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Sensitivity to ∆x<br />

Temperature (12m)<br />

∆t fixed at 1 s<br />

Vertical velocity (12m)<br />

∆X=1 km<br />

∆X=333 m<br />

∆X=1 km<br />

∆X=333 m<br />

W (12m) X-section thru<br />

Manhattan<br />

∆X=1 km<br />

∆X=333 m<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

24


ASI2_Lecture 3_7/12/2011<br />

Sensitivity to ∆t; ∆x = 1 km<br />

Vertical Velocity x-section through Manhattan<br />

∆t=6 s<br />

∆t=1 s<br />

∆t=0.66 s<br />

∆t=0.11 s<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Terra Incognita<br />

LES and mesoscale limits<br />

From Wyngaard<br />

•If the (integral) scale <strong>of</strong> the turbulence is l, then in the LES limit, i.e., ∆ ≪ l, the numerical grid resolves all <strong>of</strong> the<br />

energy-containing turbulence.<br />

•The subgrid model is responsible only for energy transfer from the resolved scales. The standard Smagorinsky<br />

(or Lilly) subgrid model produces this transfer at the correct mean rate.<br />

•In the mesoscale limit, ∆ ≫ l, no turbulence is resolved. Turbulence effects are represented through a subgrid<br />

model, typically <strong>of</strong> the ensemble-mean type. In principle the subgrid model can be adjusted to perform well in this<br />

limit.<br />

•Between these two limits lies the Terra Incognita where the subgrid model carries significant fluxes and<br />

transfers energy. In principle neither ensemble mean nor the traditional LES closures are appropriate there.<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

25


ASI2_Lecture 3_7/12/2011<br />

Summary: <strong>Fine</strong> grid modeling issues<br />

• A Conundrum: Real features <strong>of</strong> 1-10 km scales require grid resolution<br />

about an order <strong>of</strong> magnitude finer in size; however, much stochastic<br />

noise is present in current mesoscale simulations at fine scales (Terra<br />

Incognita regime).<br />

• Quasi Stationary, persistent 2-D and 3-D circulation in weakly forced flows<br />

• Simulations are physics option dependent<br />

• K H using SMAG (allows rolls), K H SMAG + Constant (supresses rolls)<br />

• Horizontal vortices and/or structures:<br />

– Become more pronounced with decreasing ∆x = 1km, 333m & 111m<br />

– Dissipate for decreasing ∆t= 6s,1s, 0.66s, 0.33s (features are non convergent)<br />

– Reaches max strength in afternoon, dissipate at night, are computationally stable<br />

• Numerical filters may helpful in reducing stochastic model noise, but<br />

there is no fundamental guidance that currently apply.<br />

• Other aspects/sensitivities, approaches still need to be explore:<br />

Even vs odd order filters.<br />

WRF LES<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Part 3: <strong>Fine</strong> grid air quality modeling (examples CMAQ)<br />

1 km UCP 4km Native<br />

Ozone NOx<br />

• 1 km results are<br />

significantly more<br />

textured than 4<br />

km<br />

• The titrating effect<br />

<strong>of</strong> NOx on ozone<br />

(especially along<br />

highways and<br />

major point<br />

sources) are<br />

captured at 1km<br />

but not at 4 km<br />

• Photochemistry at<br />

4 km results in<br />

part from overdilution<br />

<strong>of</strong> withingrid<br />

sources<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

26


ASI2_Lecture 3_7/12/2011<br />

Dependence on UCP<br />

Ozone (1 km grid CMAQ simulations) @ 2100 GMT<br />

UCP no_UCP ∆ (UCP-no_UCP)<br />

• Significant differences in the spatial patterns shown between<br />

UCP and noUCP runs (titration effect occurs in both sets)<br />

• Flow, thermodynamics & turbulent fields differ between the<br />

UCP and noUCP simulations & contribute to differences<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Simulations are unique to grid size:<br />

Example: Ozone: <strong>Fine</strong> vs Coarse (2100 GMT)<br />

Aggregate: 4km mean<br />

from 1km (w/ucp)<br />

Native 4 km simulation<br />

∆ (Aggregate-Native)<br />

• Differences between Mean 4km aggregated from 1 km vs Native 4km<br />

• Accumulative and net <strong>of</strong> atmospheric processes acting on 1 km scale<br />

differs from that at 4km scale<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

27


ASI2_Lecture 3_7/12/2011<br />

Characterizing, Modeling Sub-Grid Features<br />

Ching and Majeed, 2011<br />

Increasing level <strong>of</strong> detail <strong>of</strong> the pollutant concentration distribution possible with<br />

decreasing model grid size.<br />

In principle, even finer concentration detail occur below 1 km grid simulations.<br />

Histogram <strong>of</strong> concentrations is derived from nested grid concentration simulations.<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Two-parameter Weibull probability density function<br />

Hereinafter “Distribution Function”<br />

k > 0 is the shape parameter<br />

λ > 0 is the scale parameter<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

28


ASI2_Lecture 3_7/12/2011<br />

HCHO Histograms and fitted Weibull distributions<br />

12km grids, Wilmington Delaware July 2001. Based on 1km CMAQ<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

1.2<br />

1<br />

Cell11:2<br />

Cell12:2<br />

Wilmington - Weibull <strong>Scale</strong> Factors<br />

Cell11:3<br />

Cell12:3<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1 101 201<br />

Time<br />

301<br />

(Hours)<br />

401 501 601<br />

25<br />

20<br />

Wilmington - Weibull Shape Factors<br />

Cell11:2<br />

Cell12:2<br />

Cell11:3<br />

Cell12:3<br />

Shape Factor<br />

15<br />

10<br />

5<br />

0<br />

1 101 201 301 401 501 601<br />

Time (Hours)<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

29


ASI2_Lecture 3_7/12/2011<br />

Cell row: Cell column R 2<br />

Regression model <strong>of</strong> Shape & <strong>Scale</strong><br />

Wilmington grid cell 11:2<br />

Shape Linear-form Log-form<br />

11:2 (SW) 0.26 0.28<br />

11:3 (SE) 0.27 0.35<br />

12:2 (NW) 0.18 0.17<br />

12:3 (NE) 0.08 0.09<br />

Cell row: Cell column R 2<br />

<strong>Scale</strong> Linear-form Log-form<br />

11:2 (SW) 0.65 0.73<br />

11:3 (SE) 0.62 0.81<br />

12:2 (NW) 0.65 0.77<br />

12:3 (NE) 0.68 0.80<br />

C 12km = Concentration (12-km cell value)<br />

E 12km = Emissions (12-km cell value)<br />

σ E1km = Std. Dev. <strong>of</strong> Emission (based on 1-km cell<br />

value)<br />

Skew E1km = Skewness <strong>of</strong> Emission (based on 1-km cell<br />

value)<br />

Kurt E1km = Kurtosis <strong>of</strong> Emission (based on 1-km cell value)<br />

U* 12km = Ustar (12-km cell value)<br />

W* 12km = Wstar (12-km cell value)<br />

PBL 12km = PBL height (12-km cell value)<br />

WS10 12km = 10m Wind Speed (12-km cell value)<br />

WD10 12km = 10m Wind Direction (12-km cell value)<br />

T10 12km = 10m Temperature (12-km cell value)<br />

Q10 12km = 10m Mixing Ratio (12-km cell value)<br />

Linear form:<br />

Shape = 0.28+0.33 C 12km -0.19 E 12km +0.26 σ E1km -0.74Skew E1km +0.75Kurt E1km -0.33 U* 12km +0.10PBL 12km<br />

+0.36WS10 12km -0.09WD10 12km -0.14T10 12km +0.08Q10 12km<br />

<strong>Scale</strong> = 0.13+0.69 C 12km +0.11 E 12km -0.04Kurt E1km -0.27U* 12km +0.21W* 12km -0.10 PBL 12km + 0.04 T10 12km<br />

Logarithmic form:<br />

Shape = -0.22+0.37 C 12km –7.4x10 -05 E 12km -0.33 σ E1km -0.30k E12km +1.50Skew E1km +0.77Kurt E1km<br />

+0.14WS10 12km -0.01WD10 12km -0.17Q10 12km<br />

<strong>Scale</strong> = 1.25+0.74 C 12km +4.8x10 -05 E 12km +0.08 σ E1km -1.34k E12km 2.60Skew E1km +0.74Kurt E1km -0.19WS10 12km<br />

ASI 2: URBAN -0.01WD10 CLIMATE 12km AND -0.07Q10 AIR POLLUTION 12km,<br />

<strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

Fitted Shape and <strong>Scale</strong> vs regression model<br />

1<br />

0.8<br />

0.6<br />

Series1<br />

Series2<br />

Series3<br />

0.4<br />

0.2<br />

0<br />

‐0.2<br />

1 101 201 301 401 501 601<br />

‐0.4<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

‐0.2<br />

Series1<br />

Series2<br />

Series3<br />

1 101 201 301 401 501 601<br />

Shape based on Regression<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

‐0.4<br />

Best it Shape<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

30


ASI2_Lecture 3_7/12/2011<br />

SGV parameterization model<br />

• Framework and template based upon a given ensemble set <strong>of</strong> a<br />

priori simulations.<br />

• Framework and template designed to provide on-line<br />

complimentary gridded output to coarse (operational) CMAQ<br />

simulations<br />

• Given growing availability <strong>of</strong> annual regional-scale CMAQ<br />

simulations, a similar approach could be satisfactorily applied<br />

and extended to very coarse grid scales, e.g., global and<br />

climate model simulations.<br />

• Potential for population exposure assessment application<br />

• Model evaluation and “Weight <strong>of</strong> Evidence” regulatory<br />

applications<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

• Modeling meso‐scale to urban‐scale features requires care when selecting sets <strong>of</strong><br />

modeling parameterizations; one size (set) may not fit all!<br />

• There are currently a variety <strong>of</strong> modeling approaches for the urban canopy ranging<br />

from slab (Reynolds averaging) to single and multiple canopy layers. Each<br />

approach has advantages and limitations, strengths and weaknesses, and its<br />

suitability may be more dependent on the required application (“Fit for Purpose”<br />

quoting Martilli).<br />

• Model results are sensitive to the choice <strong>of</strong> grid size and parameterization<br />

schemes; model evaluation approaches will need to be robust and requiring<br />

specialized datasets.<br />

• Requirements for urban modeling can differ significantly from that <strong>of</strong> meso‐scale<br />

for urban canopies that are deep and complex.<br />

• The modeling results depicting characteristic fine scale spatial structure is not as<br />

yet verified. Some important and critical issues remain to be resolved regarding<br />

simulation in the Terra Incognita regime).<br />

• Advanced urban modeling makes possible numerical experiments for predicting<br />

changes in the urban climate, UHI, and air quality <strong>of</strong> urban environments.<br />

• Databases <strong>of</strong> buildings are becoming increasingly available facilitating realization <strong>of</strong><br />

operational feasibility for modeling meteorology and air quality for individual<br />

cities.<br />

• The modeling framework supporting urban scale modeling is emerging, but the<br />

science bases and insights are growing rapidly.<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

31


ASI2_Lecture 3_7/12/2011<br />

Thank You<br />

Contact information:<br />

Jason Ching<br />

University <strong>of</strong> North Carolina<br />

Institute for the Environment CB6116<br />

(137 E. Franklin St, Chapel Hill, NC, USA 27599)<br />

Email: jksching@gmail.com<br />

ASI 2: URBAN CLIMATE AND AIR POLLUTION <strong>School</strong> <strong>of</strong> <strong>Architecture</strong>, The Chinese University <strong>of</strong> Hong Kong, Hong Kong, 7-8 Dec 2011<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!