21.01.2015 Views

Papel de las actividades superóxido dismutasa y catalasa en la ...

Papel de las actividades superóxido dismutasa y catalasa en la ...

Papel de las actividades superóxido dismutasa y catalasa en la ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

FACULTAD DE CIENCIAS<br />

DEPARTAMENTO DE MICROBIOLOGÍA<br />

<strong>Papel</strong> <strong>de</strong> <strong><strong>la</strong>s</strong> activida<strong>de</strong>s <strong>superóxido</strong> <strong>dismutasa</strong><br />

y cata<strong><strong>la</strong>s</strong>a <strong>en</strong> <strong>la</strong> virul<strong>en</strong>cia <strong>de</strong> Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida. Estrategias para <strong>la</strong><br />

estimu<strong>la</strong>ción <strong>de</strong>l estallido respiratorio <strong>en</strong><br />

fagocitos <strong>de</strong> l<strong>en</strong>guados cultivados<br />

PATRICIA DÍAZ ROSALES<br />

Tesis doctoral<br />

2006


FACULTAD DE CIENCIAS<br />

DEPARTAMENTO DE MICROBIOLOGÍA<br />

<strong>Papel</strong> <strong>de</strong> <strong><strong>la</strong>s</strong> activida<strong>de</strong>s <strong>superóxido</strong> <strong>dismutasa</strong><br />

y cata<strong><strong>la</strong>s</strong>a <strong>en</strong> <strong>la</strong> virul<strong>en</strong>cia <strong>de</strong> Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida. Estrategias para <strong>la</strong><br />

estimu<strong>la</strong>ción <strong>de</strong>l estallido respiratorio <strong>en</strong><br />

fagocitos <strong>de</strong> l<strong>en</strong>guados cultivados<br />

Memoria pres<strong>en</strong>tada por Dña. Patricia Díaz Rosales<br />

para optar al grado <strong>de</strong> Doctora <strong>en</strong> Biología<br />

con M<strong>en</strong>ción <strong>de</strong> Doctorado Europeo


FACULTAD DE CIENCIAS<br />

DEPARTAMENTO DE MICROBIOLOGÍA<br />

D. ANTONIO DE VICENTE MORENO, Director <strong>de</strong>l Departam<strong>en</strong>to <strong>de</strong><br />

Microbiología <strong>de</strong> <strong>la</strong> Universidad <strong>de</strong> Má<strong>la</strong>ga.<br />

INFORMA QUE:<br />

Dña. Patricia Díaz Rosales ha realizado <strong>en</strong> los <strong>la</strong>boratorios d e<br />

este Departam<strong>en</strong>to el trabajo experim<strong>en</strong>tal conduc<strong>en</strong>te a <strong>la</strong> e<strong>la</strong>boración<br />

<strong>de</strong> <strong>la</strong> pres<strong>en</strong>te memoria <strong>de</strong> Tesis Doctoral<br />

Y para que así conste, expido el pres<strong>en</strong>te informe,<br />

Má<strong>la</strong>ga, 11 <strong>de</strong> Septiembre <strong>de</strong> 2006<br />

Fdo. Antonio <strong>de</strong> Vic<strong>en</strong>te Mor<strong>en</strong>o


Esta Tesis ha sido realizada <strong>en</strong> el Departam<strong>en</strong>to <strong>de</strong> Microbiología <strong>de</strong> <strong>la</strong><br />

Universidad <strong>de</strong> Má<strong>la</strong>ga, bajo <strong>la</strong> dirección <strong>de</strong>l Dr. Miguel Ángel Moriñigo Gutiérrez y <strong>la</strong><br />

Dra. Mª Carm<strong>en</strong> Balebona Accino. Durante <strong>la</strong> realización <strong>de</strong> este trabajo <strong>de</strong><br />

investigación se ha llevado a cabo el apr<strong>en</strong>dizaje <strong>de</strong> técnicas útiles para dicha tesis <strong>en</strong><br />

los sigui<strong>en</strong>tes <strong>la</strong>boratorios :<br />

- School of Biological Sci<strong>en</strong>ces, University of Aber<strong>de</strong><strong>en</strong> (Aber<strong>de</strong><strong>en</strong>, Escocia,<br />

Reino Unido), bajo <strong>la</strong> supervisión <strong>de</strong>l Dr. C.J. Secombes (<strong>de</strong> Octubre a Diciembre<br />

<strong>de</strong> 2003).<br />

- Departam<strong>en</strong>to <strong>de</strong> Biología Celu<strong>la</strong>r, Facultad <strong>de</strong> Biología, Universidad <strong>de</strong><br />

Murcia (Murcia, España), bajo <strong>la</strong> supervisión <strong>de</strong>l Dr. J. Meseguer (<strong>de</strong> Septiembre a<br />

Diciembre <strong>de</strong> 2004).<br />

- Laboratory of Microbiology, Agrotechnology and Food Sci<strong>en</strong>ces, University<br />

of Wag<strong>en</strong>ing<strong>en</strong> (Wag<strong>en</strong>ing<strong>en</strong>, Ho<strong>la</strong>nda), bajo <strong>la</strong> supervisión <strong>de</strong>l Dr. H. Smidt (<strong>de</strong><br />

Septiembre a Diciembre <strong>de</strong> 2005).<br />

El Dr. Miguel Ángel Moriñigo Gutiérrez, Profesor Titu<strong>la</strong>r <strong>de</strong> Microbiología <strong>de</strong> <strong>la</strong><br />

Universidad <strong>de</strong> Má<strong>la</strong>ga, y <strong>la</strong> Dra. Mª Carm<strong>en</strong> Balebona Accino, Profesora Titu<strong>la</strong>r <strong>de</strong><br />

Microbiología <strong>de</strong> <strong>la</strong> Universidad <strong>de</strong> Má<strong>la</strong>ga, dan su conformidad a <strong>la</strong> Memoria <strong>de</strong> <strong>la</strong><br />

Tesis titu<strong>la</strong>da: <strong>Papel</strong> <strong>de</strong> <strong><strong>la</strong>s</strong> activida<strong>de</strong>s <strong>superóxido</strong> <strong>dismutasa</strong> y cata<strong><strong>la</strong>s</strong>a <strong>en</strong> <strong>la</strong><br />

virul<strong>en</strong>cia <strong>de</strong> Photobacterium damse<strong>la</strong>e subsp. piscicida. Estrategias para <strong>la</strong><br />

estimu<strong>la</strong>ción <strong>de</strong>l estallido respiratorio <strong>en</strong> fagocitos <strong>de</strong> l<strong>en</strong>guados cultivados,<br />

pres<strong>en</strong>tada por <strong>la</strong> Doctoranda Dña. Patricia Díaz Rosales para optar al Título <strong>de</strong> Doctor<br />

<strong>en</strong> Biología con M<strong>en</strong>ción <strong>de</strong> Doctorado Europeo por <strong>la</strong> Universidad <strong>de</strong> Má<strong>la</strong>ga.<br />

En Má<strong>la</strong>ga, a 11 <strong>de</strong> Septiembre <strong>de</strong> 2006.<br />

Dr. Miguel Ángel Moriñigo Gutiérrez<br />

Dra. Mª Carm<strong>en</strong> Balebona Accino


Los <strong>en</strong>sayos que constituy<strong>en</strong> esta Tesis han sido subv<strong>en</strong>cionados principalem<strong>en</strong>te a<br />

través <strong>de</strong> difer<strong>en</strong>tes proyectos <strong>de</strong>l Ministerio <strong>de</strong> Ci<strong>en</strong>cia y Tecnología (España),<br />

concretam<strong>en</strong>te los proyectos con <strong><strong>la</strong>s</strong> refer<strong>en</strong>cias AGL2002-01488 y PETRI 95-0657<br />

subv<strong>en</strong>cionaron los trabajos realizados sobre <strong>la</strong> virul<strong>en</strong>cia <strong>de</strong> Photobacterium damse<strong>la</strong>e<br />

subsp. piscicida. Los experim<strong>en</strong>tos realizados con Porphyridium cru<strong>en</strong>tum fueron<br />

sufragados fundam<strong>en</strong>talm<strong>en</strong>te con cargo al proyecto AGL2002-01488, así como los<br />

proyectos AGL2005-02655 y RNM-295 (Junta <strong>de</strong> Andalucía) que subv<strong>en</strong>cionaron <strong>la</strong> parte<br />

re<strong>la</strong>cionada con el cultivo <strong>de</strong> <strong><strong>la</strong>s</strong> algas. Por último, con cargo al proyecto AGL2005-<br />

07454-CO2-O2 se realizaron los <strong>en</strong>sayos con bacterias pot<strong>en</strong>cialm<strong>en</strong>te probióticas.<br />

La Doctoranda ha sido becaria <strong>de</strong>l p<strong>la</strong>n <strong>de</strong> Formación <strong>de</strong> Profesorado Universitario<br />

(F.P.U.) <strong>de</strong>l Ministerio <strong>de</strong> Educación, Cultura y Deporte.<br />

Parte <strong>de</strong> los resultados expuestos <strong>en</strong> esta Tesis han sido publicados y comunicados<br />

<strong>en</strong> <strong><strong>la</strong>s</strong> sigui<strong>en</strong>tes revistas y congresos:<br />

Publicaciones:<br />

- Díaz-Rosales, P, Chabrillón, M, Arijo, S, Martínez-Manzanares, E, Moriñigo,<br />

MA & Balebona, MC (2006). Production of superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e activities<br />

in Photobacterium damse<strong>la</strong>e subsp. piscicida and ability to survive in contact with sole<br />

phagocytes. Journal of Fish Diseases 29, 1-10.<br />

- Díaz-Rosales, P, Chabrillón, M, Moriñigo, MA & Balebona, MC (2003). Survival<br />

to exog<strong>en</strong>ous hydrog<strong>en</strong> peroxi<strong>de</strong> of Photobacterium damse<strong>la</strong>e subsp. piscicida un<strong>de</strong>r<br />

differ<strong>en</strong>t culture conditions. Journal of Fish Diseases 26, 305-308.<br />

Congresos internacionales:<br />

- Díaz-Rosales, P, Chabrillón, M, Smidt, H, Salinas, I, Arijo, S, Cuesta, A,<br />

Meseguer, J, Esteban, MA, Balebona, MC & Moriñigo, MA. Study of the intestinal<br />

microbiota of gilthead seabream (Sparus aurata, L.) and sole (Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup<br />

1858) by DGGE. Society of Applied Microbiology. Summer confer<strong>en</strong>ce “Living<br />

Together: polymicrobial communities”. Edinburgh, Scot<strong>la</strong>nd, U.K. 2006.


- Díaz-Rosales, P, Rico, RM, Arijo, S, Chabrillón, M, Balebona, MC, Sá<strong>en</strong>z <strong>de</strong><br />

Rodrigáñez, M, A<strong>la</strong>rcón, FJ & Moriñigo, MA. Effect of two probiotics on respiratory<br />

burst of phagocytes from sole (Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup 1858). Aquaculture Europe<br />

2006. “Linking Tradition and Technology. Highest Quality for the Consumer”.<br />

Flor<strong>en</strong>ce, Italy. 2006.<br />

- Balebona, MC, Díaz, P, Chabrillón, M, Zorril<strong>la</strong>, I, Arijo, S & Martínez, E.<br />

Determination of superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e activity in Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida un<strong>de</strong>r differ<strong>en</strong>t culture conditions. 10 th International<br />

Confer<strong>en</strong>ce of the European Association of Fish Pathologists. Dublin, Ire<strong>la</strong>nd, U.K.<br />

2001.<br />

Congresos nacionales:<br />

- Díaz-Rosales, P, León-Rubio, JM, Rico, RM, Decara, J, Balebona, MC, Abda<strong>la</strong>,<br />

R, Figueroa, FL & Moriñigo, MA. Efecto inmunoestimu<strong>la</strong>nte <strong>de</strong>l alga Porphyridium<br />

cru<strong>en</strong>tum sobre <strong>la</strong> respuesta inmune <strong>de</strong>l l<strong>en</strong>guado (Solea s<strong>en</strong>egal<strong>en</strong>sis) tras su<br />

administración por vía oral fr<strong>en</strong>te a <strong>la</strong> infección por Photobacterium damse<strong>la</strong>e subsp.<br />

piscicida. X Congreso Nacional <strong>de</strong> Acuicultura. Gandía. 2005.<br />

- Díaz-Rosales, P, Martínez-Manzanares, E, Moriñigo, MA & Balebona, MC.<br />

Efecto inmunoestimu<strong>la</strong>nte <strong>de</strong>l alga Porphyridium cru<strong>en</strong>tum sobre el estallido<br />

respiratorio <strong>en</strong> fagocitos <strong>de</strong> l<strong>en</strong>guado (Solea s<strong>en</strong>egal<strong>en</strong>sis). V Congreso <strong>de</strong><br />

Microbiología <strong>de</strong>l Medio Acuático <strong>de</strong> <strong>la</strong> Sociedad Españo<strong>la</strong> <strong>de</strong> Microbiología.<br />

Tarragona. 2004.<br />

- Díaz-Rosales, P, Arijo, S, Moriñigo, MA & Balebona, MC. Resist<strong>en</strong>cia <strong>de</strong><br />

Photobacterium damse<strong>la</strong>e subsp. piscicida al estallido respiratorio <strong>de</strong> fagocitos <strong>de</strong><br />

l<strong>en</strong>guado (Solea s<strong>en</strong>egal<strong>en</strong>sis). V Congreso <strong>de</strong> Microbiología <strong>de</strong>l Medio Acuático <strong>de</strong> <strong>la</strong><br />

Sociedad Españo<strong>la</strong> <strong>de</strong> Microbiología. Tarragona. 2004.


- Díaz-Rosales, P, Arijo, S, Chabrillón, M, Castán, J, Martínez-Manzanares, E &<br />

Balebona, MC. <strong>Papel</strong> <strong>de</strong> <strong>la</strong> <strong>superóxido</strong> <strong>dismutasa</strong> y <strong>de</strong> <strong>la</strong> cata<strong><strong>la</strong>s</strong>a <strong>en</strong> <strong>la</strong> virul<strong>en</strong>cia <strong>de</strong><br />

Photobacterium damse<strong>la</strong>e subsp. piscicida. IV Congreso <strong>de</strong> Microbiología <strong>de</strong>l Medio<br />

Acuático <strong>de</strong> <strong>la</strong> Sociedad Españo<strong>la</strong> <strong>de</strong> Microbiología. Sevil<strong>la</strong>. 2002.


A Raúl Díaz Rosales


Sabe esperar, aguarda que <strong>la</strong> marea fluya<br />

–así <strong>en</strong> <strong>la</strong> costa un barco– sin que el partir te inquiete,<br />

todo el que aguarda sabe que <strong>la</strong> victoria es suya;<br />

porque <strong>la</strong> vida es <strong>la</strong>rga y el arte es un juguete.<br />

Y si <strong>la</strong> vida es corta<br />

y no llega el mar a tu galera,<br />

aguarda sin partir y siempre espera,<br />

que el arte es <strong>la</strong>rgo y, a<strong>de</strong>más, no importa.<br />

ANTONIO MACHADO


Í ND I C E<br />

I<br />

ND E X


ÍNDICE / INDEX<br />

<strong>Papel</strong> <strong>de</strong> <strong><strong>la</strong>s</strong> activida<strong>de</strong>s <strong>superóxido</strong> <strong>dismutasa</strong> y cata<strong><strong>la</strong>s</strong>a <strong>en</strong> <strong>la</strong> virul<strong>en</strong>cia <strong>de</strong><br />

Photobacterium damse<strong>la</strong>e subsp. piscicida. Estrategias para <strong>la</strong> estimu<strong>la</strong>ción <strong>de</strong>l<br />

estallido respiratorio <strong>en</strong> fagocitos <strong>de</strong> l<strong>en</strong>guados cultivados<br />

PÁGINA / PAGE<br />

RESUMEN 1<br />

INTRODUCCIÓN 5<br />

1. La acuicultura. El cultivo <strong>de</strong>l l<strong>en</strong>guado<br />

(Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup 1858) 7<br />

2. Photobacterium damse<strong>la</strong>e subsp. piscicida 8<br />

2.1. Características morfológicas,<br />

bioquímicas y serológicas 9<br />

2.2. Sintomatología <strong>de</strong> <strong>la</strong> pseudotuberculosis 11<br />

2.3. Modo <strong>de</strong> transmisión 12<br />

2.4. Mecanismos <strong>de</strong> virul<strong>en</strong>cia 13<br />

3. Las activida<strong>de</strong>s <strong>superóxido</strong> <strong>dismutasa</strong><br />

y cata<strong><strong>la</strong>s</strong>a como factores <strong>de</strong> virul<strong>en</strong>cia 16<br />

3.1. Estallido respiratorio 17<br />

3.2. Actividad <strong>superóxido</strong> <strong>dismutasa</strong> 19<br />

3.3. Actividad cata<strong><strong>la</strong>s</strong>a 19<br />

3.4. Las activida<strong>de</strong>s <strong>superóxido</strong> <strong>dismutasa</strong><br />

y cata<strong><strong>la</strong>s</strong>a <strong>en</strong> Photobacterium damse<strong>la</strong>e<br />

subsp. piscicida 21


ÍNDICE / INDEX<br />

4. Estimu<strong>la</strong>ción <strong>de</strong>l estallido respiratorio por difer<strong>en</strong>tes<br />

microorganismos fr<strong>en</strong>te a <strong>la</strong> infección por<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida 22<br />

4.1. Prev<strong>en</strong>ción y tratami<strong>en</strong>to <strong>de</strong> <strong>la</strong> pseudotuberculosis 22<br />

4.2. Inmunomodu<strong>la</strong>ción. Inmunoestimu<strong>la</strong>ción 24<br />

4.3. Uso <strong>de</strong> <strong><strong>la</strong>s</strong> algas como inmunoestimu<strong>la</strong>ntes 26<br />

4.3.1. Porphyridium cru<strong>en</strong>tum 28<br />

4.4. Efecto inmunoestimu<strong>la</strong>nte <strong>de</strong> bacterias<br />

pot<strong>en</strong>cialm<strong>en</strong>te probióticas 29<br />

OBJETIVOS 35<br />

MATERIAL Y MÉTODOS 39<br />

RESULTADOS Y DISCUSIÓN 43<br />

CONCLUSIONES 59<br />

Role of superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e activities in Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida virul<strong>en</strong>ce. Strategies for respiratory burst activity<br />

stimu<strong>la</strong>tion in sole phagocytes<br />

ABSTRACT 65<br />

INTRODUCTION 69<br />

1. Aquaculture. The culture of sole<br />

(Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup 1858) 71


ÍNDICE / INDEX<br />

2. Photobacterium damse<strong>la</strong>e subsp. piscicida 72<br />

2.1. Transmission mo<strong>de</strong> 73<br />

2.2. Virul<strong>en</strong>ce mechanisms 74<br />

3. Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e activities<br />

as virul<strong>en</strong>ce factors 74<br />

3.1. Respiratory burst 75<br />

3.2. Superoxi<strong>de</strong> dismutase activity 76<br />

3.3. Cata<strong><strong>la</strong>s</strong>e activity 76<br />

3.4. Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e<br />

activities in Photobacterium damse<strong>la</strong>e<br />

subsp. piscicida 78<br />

4. Stimu<strong>la</strong>tion of respiratory burst activity by<br />

differ<strong>en</strong>t microorganisms after Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida infection 79<br />

4.1. Prev<strong>en</strong>tion and treatm<strong>en</strong>t of pseudotuberculosis 79<br />

4.2. Immunomodu<strong>la</strong>tion. Immunostimu<strong>la</strong>tion 80<br />

4.3. Use of algae as immunostimu<strong>la</strong>nts 81<br />

4.3.1. Porphyridium cru<strong>en</strong>tum 82<br />

4.4. Immunostimu<strong>la</strong>nt effect of pot<strong>en</strong>tial probiotic bacteria 84<br />

AIMS 87<br />

MATERIALS AND METHODS 91<br />

RESULTS AND DISCUSSION 95<br />

CONCLUSIONS 107<br />

REFERENCIAS / REFERENCES 111<br />

SECCIÓN DE ARTÍCULOS / ARTICLE SECTION 133


R<br />

E S U M E N


RESUMEN<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida es una bacteria gram negativa capaz <strong>de</strong><br />

sobrevivir como patóg<strong>en</strong>o intracelu<strong>la</strong>r <strong>en</strong> el interior <strong>de</strong> fagocitos <strong>de</strong> l<strong>en</strong>guado, gracias a<br />

<strong>la</strong> acción protectora <strong>de</strong> <strong><strong>la</strong>s</strong> activida<strong>de</strong>s <strong>superóxido</strong> <strong>dismutasa</strong> y cata<strong><strong>la</strong>s</strong>a. Estas <strong>en</strong>zimas<br />

confier<strong>en</strong> resist<strong>en</strong>cia al patóg<strong>en</strong>o fr<strong>en</strong>te a los radicales reactivos <strong>de</strong> oxíg<strong>en</strong>o producidos<br />

<strong>en</strong> el interior <strong>de</strong> los fagocitos durante el <strong>de</strong>nominado estallido respiratorio. Por tanto,<br />

ambas activida<strong>de</strong>s <strong>en</strong>zimáticas pue<strong>de</strong>n ser consi<strong>de</strong>radas importantes factores <strong>de</strong><br />

virul<strong>en</strong>cia <strong>de</strong> este patóg<strong>en</strong>o, facilitando su invasión y el establecimi<strong>en</strong>to <strong>de</strong> <strong>la</strong><br />

<strong>en</strong>fermedad, <strong>la</strong> pseudotuberculosis. La estrategia <strong>de</strong>sarrol<strong>la</strong>da para <strong>la</strong> prev<strong>en</strong>ción <strong>de</strong><br />

dicha <strong>en</strong>fermedad se ha <strong>en</strong>focado hacia <strong>la</strong> búsqueda <strong>de</strong> microorganismos con capacidad<br />

estimu<strong>la</strong>nte <strong>de</strong>l estallido respiratorio <strong>de</strong> fagocitos <strong>de</strong> l<strong>en</strong>guado. Los microorganismos<br />

<strong>en</strong>sayados fueron <strong>la</strong> microalga Porphyridium cru<strong>en</strong>tum y dos bacterias pot<strong>en</strong>cialm<strong>en</strong>te<br />

probióticas. Los resultados obt<strong>en</strong>idos son prometedores ya que tanto <strong>la</strong> microalga como<br />

una <strong>de</strong> <strong><strong>la</strong>s</strong> bacterias <strong>en</strong>sayadas –Pdp11– son capaces <strong>de</strong> estimu<strong>la</strong>r el estallido respiratorio<br />

y, <strong>de</strong> esta manera, contribuir a <strong>la</strong> resist<strong>en</strong>cia a <strong>la</strong> <strong>en</strong>fermedad. Se abre, por tanto, un<br />

nuevo campo <strong>en</strong> <strong>la</strong> lucha contra <strong>la</strong> pseudotuberculosis: <strong>la</strong> aplicación <strong>de</strong> sustancias<br />

proce<strong>de</strong>ntes <strong>de</strong> algas, así como <strong>de</strong> compon<strong>en</strong>tes bacterianos, que pudieran ser<br />

consi<strong>de</strong>rados probióticos.<br />

3


I N T R O D U C C I Ó N


INTRODUCCIÓN<br />

1. LA ACUICULTURA. EL CULTIVO DEL LENGUADO<br />

(Solea s<strong>en</strong>egal<strong>en</strong>sis, KAUP 1858)<br />

El increm<strong>en</strong>to <strong>de</strong>mográfico mundial junto con el estancami<strong>en</strong>to <strong>de</strong> <strong>la</strong> actividad<br />

extractiva y cambios prefer<strong>en</strong>ciales <strong>en</strong> <strong>la</strong> dieta, <strong>en</strong> <strong>la</strong> que se valora cada vez más el<br />

pescado como un alim<strong>en</strong>to muy saludable, son factores que han conducido a que <strong>la</strong><br />

producción global <strong>de</strong> pesca no satisfaga <strong><strong>la</strong>s</strong> <strong>de</strong>mandas creci<strong>en</strong>tes <strong>de</strong>l mercado. Según <strong>la</strong><br />

Organización <strong>de</strong> <strong><strong>la</strong>s</strong> Naciones Unidas para <strong>la</strong> Agricultura y <strong>la</strong> Alim<strong>en</strong>tación (FAO),<br />

nuestro p<strong>la</strong>neta está habitado por alre<strong>de</strong>dor <strong>de</strong> 6500 millones <strong>de</strong> personas, y se prevée<br />

que para el año 2050, <strong>la</strong> pob<strong>la</strong>ción mundial alcance <strong>la</strong> cifra <strong>de</strong> 9000 a 10000 millones.<br />

(FAO, 2005 ). Esta situación<br />

preocupa a <strong>la</strong> hora <strong>de</strong> p<strong>la</strong>ntear cómo alim<strong>en</strong>tar a <strong>la</strong> pob<strong>la</strong>ción mundial <strong>en</strong> un futuro<br />

próximo. En respuesta a esta situación surge <strong>la</strong> acuicultura como una bu<strong>en</strong>a alternativa<br />

para el abastecimi<strong>en</strong>to <strong>de</strong> <strong>la</strong> pob<strong>la</strong>ción.<br />

La acuicultura, según <strong>la</strong> <strong>de</strong>finición <strong>de</strong> <strong>la</strong> FAO, es el cultivo <strong>de</strong> organismos<br />

acuáticos, incluy<strong>en</strong>do peces, moluscos, crustáceos y p<strong>la</strong>ntas acuáticas. Actualm<strong>en</strong>te es<br />

uno <strong>de</strong> los sectores productores <strong>de</strong> alim<strong>en</strong>to con mayor pot<strong>en</strong>cial <strong>de</strong> crecimi<strong>en</strong>to y<br />

juega, por tanto, un papel es<strong>en</strong>cial <strong>en</strong> el futuro <strong>de</strong> <strong>la</strong> alim<strong>en</strong>tación humana.<br />

En los últimos años <strong>la</strong> actividad productiva <strong>de</strong> <strong>la</strong> industria acuíco<strong>la</strong>, tanto <strong>de</strong> agua<br />

marina como <strong>de</strong> agua dulce, ha experim<strong>en</strong>tado un crecimi<strong>en</strong>to expon<strong>en</strong>cial muy<br />

importante, especialm<strong>en</strong>te <strong>en</strong> lo que se refiere a <strong>la</strong> acuicultura marina int<strong>en</strong>siva <strong>de</strong><br />

peces. Hasta ahora <strong>la</strong> acuicultura marina <strong>en</strong> países mediterráneos se ha c<strong>en</strong>trado<br />

fundam<strong>en</strong>talm<strong>en</strong>te <strong>en</strong> <strong>la</strong> producción <strong>de</strong> dos especies –dorada (Sparus aurata, L.) y<br />

lubina (Dic<strong>en</strong>trarchus <strong>la</strong>brax, L.)– lo que ha provocado una saturación <strong>en</strong> el mercado.<br />

En los últimos años, para increm<strong>en</strong>tar <strong><strong>la</strong>s</strong> oportunida<strong>de</strong>s <strong>de</strong> mercado, se han realizado<br />

investigaciones <strong>en</strong>caminadas a <strong>la</strong> búsqueda <strong>de</strong> nuevas especies pot<strong>en</strong>cialm<strong>en</strong>te aptas<br />

para el cultivo. El l<strong>en</strong>guado s<strong>en</strong>egalés (Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup 1858) es actualm<strong>en</strong>te<br />

una <strong>de</strong> <strong><strong>la</strong>s</strong> especies cuyo cultivo se ha increm<strong>en</strong>tado <strong>de</strong> forma significativa (JACUMAR,<br />

2005) <strong>en</strong> el área atlántica y mediterránea (Dinis, 1999). El l<strong>en</strong>guado s<strong>en</strong>egalés es una<br />

especie acuíco<strong>la</strong> que <strong>de</strong>s<strong>de</strong> <strong>la</strong> década <strong>de</strong> los set<strong>en</strong>ta ha sido objeto <strong>de</strong> interés <strong>en</strong><br />

7


INTRODUCCIÓN<br />

acuicultura, <strong>de</strong>bido a su alto precio <strong>en</strong> el mercado, <strong>la</strong> posibilidad <strong>de</strong> reproducción <strong>en</strong><br />

cautividad, los resultados obt<strong>en</strong>idos <strong>en</strong> el cultivo <strong>de</strong> <strong><strong>la</strong>s</strong> <strong>la</strong>rvas y a que cu<strong>en</strong>ta con un<br />

mercado pot<strong>en</strong>cial (Dinis y Reis, 1995; Magalhaes y Dinis, 1996).<br />

Actualm<strong>en</strong>te no es posible afirmar que esta especie esté consolidada a nivel <strong>de</strong> una<br />

producción industrial, ya que <strong>la</strong> inci<strong>de</strong>ncia <strong>de</strong> patologías limita <strong>la</strong> producción <strong>de</strong><br />

<strong>en</strong>gor<strong>de</strong> <strong>de</strong>l l<strong>en</strong>guado. Se han realizado estudios sobre los microorganismos patóg<strong>en</strong>os<br />

que afectan a esta especie (Rodríguez et al., 1997; Zorril<strong>la</strong> et al., 1999; Magariños et al.,<br />

2003; Arijo et al., 2005), y aunque <strong>en</strong>tre otros patóg<strong>en</strong>os se han ais<strong>la</strong>do Vibrio harveyi y<br />

T<strong>en</strong>acibaculum maritimum (Zorril<strong>la</strong> et al., 1999; Cepeda y Santos, 2003),<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida, causante <strong>de</strong> <strong>la</strong> pasteurelosis, o<br />

pseudotuberculosis, es el principal patóg<strong>en</strong>o responsable <strong>de</strong> importantes pérdidas <strong>en</strong> el<br />

cultivo <strong>de</strong>l l<strong>en</strong>guado s<strong>en</strong>egalés, llegando a ser el principal factor limitante <strong>en</strong> <strong>la</strong><br />

producción <strong>de</strong> esta especie (Zorril<strong>la</strong> et al., 1999; Magariños et al., 2003; Arijo et al.,<br />

2005).<br />

2. Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

La bacteria marina P. damse<strong>la</strong>e subsp. piscicida es el ag<strong>en</strong>te etiológico <strong>de</strong> <strong>la</strong><br />

septicemia bacteriana <strong>de</strong>nominada pseudotuberculosis (Kubota et al., 1970) <strong>de</strong>bido a que<br />

<strong>en</strong> los casos crónicos, los peces <strong>en</strong>fermos muestran gránulos b<strong>la</strong>ncos promin<strong>en</strong>tes <strong>en</strong> los<br />

órganos internos, consist<strong>en</strong>tes <strong>en</strong> una acumu<strong>la</strong>ción <strong>de</strong> célu<strong><strong>la</strong>s</strong> bacterianas. Esta<br />

<strong>en</strong>fermedad fue <strong>de</strong>scrita por primera vez <strong>en</strong> pob<strong>la</strong>ciones salvajes <strong>de</strong> perca (Morone<br />

americanus) y lubina estriada (Morone saxatilis) <strong>en</strong> Estados Unidos (Snieszko et al.,<br />

1964). Sin embargo, actualm<strong>en</strong>te los hospedadores naturales <strong>de</strong>l patóg<strong>en</strong>o incluy<strong>en</strong> una<br />

amplia variedad <strong>de</strong> especies piscíco<strong><strong>la</strong>s</strong> marinas, tanto <strong>de</strong> aguas cálidas como frías,<br />

provocando importantes pérdidas económicas <strong>en</strong> pob<strong>la</strong>ciones salvajes y cultivadas <strong>de</strong><br />

Japón, don<strong>de</strong> afecta principalm<strong>en</strong>te a <strong>la</strong> serio<strong>la</strong> (Serio<strong>la</strong> quinqueradiata) (Kusuda y<br />

Sa<strong>la</strong>ti, 1993), <strong>de</strong> Estados Unidos y <strong>de</strong> Europa, don<strong>de</strong> causa estragos <strong>en</strong> cultivos <strong>de</strong><br />

dorada (Sparus aurata) (Ceshia et al., 1991; Toranzo et al., 1991), lubina (Dic<strong>en</strong>trarchus<br />

<strong>la</strong>brax) (Baudin-Laur<strong>en</strong>cin et al., 1991; Balebona et al., 1992), lubina estriada (Morone<br />

8


INTRODUCCIÓN<br />

saxatilis) (Hawke et al., 1987) y l<strong>en</strong>guado (Solea s<strong>en</strong>egal<strong>en</strong>sis), como se ha <strong>de</strong>scrito<br />

reci<strong>en</strong>tem<strong>en</strong>te (Zorril<strong>la</strong> et al., 1999; Magariños et al., 2003; Arijo et al., 2005).<br />

2.1. CARACTERÍSTICAS MORFOLÓGICAS, BIOQUÍMICAS Y SEROLÓGICAS<br />

P. damse<strong>la</strong>e subsp. piscicida es una bacteria halófi<strong>la</strong>, Gram negativa, <strong>de</strong> forma<br />

baci<strong>la</strong>r (0,8-1,3 x 1,4-4 µm <strong>de</strong> tamaño). Se caracteriza por su tinción bipo<strong>la</strong>r y su<br />

pleomorfismo, <strong>de</strong>p<strong>en</strong>di<strong>en</strong>te <strong>de</strong> <strong><strong>la</strong>s</strong> condiciones <strong>de</strong> cultivo. Las características f<strong>en</strong>otípicas<br />

están resumidas <strong>en</strong> <strong>la</strong> Tab<strong>la</strong> 1.<br />

Siempre se ha consi<strong>de</strong>rado que P. damse<strong>la</strong>e subsp. piscicida constituía un taxón<br />

morfológico, bioquímico, fisiológico, f<strong>en</strong>otípico y serológicam<strong>en</strong>te homogéneo<br />

(Magariños et al., 1992). Sin embargo, <strong>la</strong> aplicación <strong>de</strong> nuevas técnicas molecu<strong>la</strong>res para<br />

el análisis g<strong>en</strong>ético, como ribotipado y RAPD (Random Amplification of Polymorphic<br />

DNA) ha mostrado <strong>la</strong> exist<strong>en</strong>cia <strong>de</strong> dos linajes clonales o g<strong>en</strong>ogrupos <strong>en</strong> P. damse<strong>la</strong>e<br />

subsp. piscicida, uno <strong>en</strong> cepas proce<strong>de</strong>ntes <strong>de</strong> Europa y otro <strong>en</strong> ais<strong>la</strong>dos <strong>de</strong> Japón<br />

(Magariños et al, 1997; Thyss<strong>en</strong> et al., 1999; Magariños et al., 2000; Kvitt et al., 2002;<br />

Romal<strong>de</strong>, 2002; Juíz-Río et al., 2005). En cualquier caso, se pue<strong>de</strong> observar una<br />

homog<strong>en</strong>eidad <strong>de</strong>ntro <strong>de</strong>l linaje clonal <strong>en</strong>tre cepas ais<strong>la</strong>das <strong>de</strong> especies piscíco<strong><strong>la</strong>s</strong><br />

difer<strong>en</strong>tes; confirmándose este hecho <strong>en</strong> los estudios g<strong>en</strong>éticos realizados a cepas <strong>de</strong><br />

este microorganismo ais<strong>la</strong>das a partir <strong>de</strong> l<strong>en</strong>guados cultivados <strong>en</strong> nuestro país,<br />

revelándose que estas cepas pert<strong>en</strong>ec<strong>en</strong> al g<strong>en</strong>ogrupo europeo (Magariños et al., 2003).<br />

Este hecho podría indicar una posible transmisión horizontal <strong>de</strong>l patóg<strong>en</strong>o <strong>en</strong>tre peces<br />

cultivados <strong>en</strong> <strong><strong>la</strong>s</strong> mismas áreas (Magariños et al., 2003).<br />

9


INTRODUCCIÓN<br />

Tab<strong>la</strong> 1 Características g<strong>en</strong>erales <strong>de</strong> Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

Tinción <strong>de</strong> Gram - Tinción bipo<strong>la</strong>r +<br />

Cata<strong><strong>la</strong>s</strong>a + Oxidasa +<br />

Movilidad - Rojo Metilo +<br />

Producción H 2 S - O/F +/+<br />

Producción gas (glucosa) - Crecimi<strong>en</strong>to TCBS -<br />

Crecimi<strong>en</strong>to a:<br />

Crecimi<strong>en</strong>to <strong>en</strong> NaCl:<br />

4 ºC - 0% -<br />

10 ºC + 3% +<br />

20 ºC + 6% -<br />

30 ºC + 8% -<br />

37 ºC - Producción <strong>de</strong> ácidos:<br />

β ga<strong>la</strong>ctosidasa (ONPG) - arabinosa -<br />

Ge<strong>la</strong>tinasa - maltosa -<br />

Ureasa - sacarosa -<br />

Caseinasa - rhamnosa -<br />

Ami<strong><strong>la</strong>s</strong>a - amigdalina -<br />

Fosfolipasa + inositol -<br />

Lipasa (Twe<strong>en</strong> 80) + manosa +<br />

Arginina dihidro<strong><strong>la</strong>s</strong>a + manitol -<br />

Lisina <strong>de</strong>scarboxi<strong><strong>la</strong>s</strong>a - sorbitol -<br />

Ornitina <strong>de</strong>scarboxi<strong><strong>la</strong>s</strong>a - glicerol -<br />

Hidrólisis <strong>de</strong> esculina - <strong>la</strong>ctosa -<br />

Voges-Proskauer + melobiosa -<br />

Indol - glucosa +<br />

Nitrato - ga<strong>la</strong>ctosa +<br />

Citrato - fructosa +<br />

Resist<strong>en</strong>cia a: S<strong>en</strong>sibilidad a:<br />

Estreptomicina Ampicilina Novobiocina<br />

Eritromicina Cloranf<strong>en</strong>icol Tetraciclina<br />

Kanamicina Oxitetraciclina Ácido oxolínico<br />

Nitrofurantoína Ag<strong>en</strong>te vibriostático O/129<br />

Trimetoprim-sulfametoxazol<br />

10


INTRODUCCIÓN<br />

2.2. SINTOMATOLOGÍA DE LA PSEUDOTUBERCULOSIS<br />

Los signos patológicos externos son, g<strong>en</strong>eralm<strong>en</strong>te, poco l<strong>la</strong>mativos y, por lo<br />

g<strong>en</strong>eral, los peces afectados no suel<strong>en</strong> mostrar lesiones externas. En algunos casos <strong>de</strong><br />

doradas <strong>en</strong>fermas se pue<strong>de</strong> apreciar una pigm<strong>en</strong>tación anormal <strong>en</strong> <strong>la</strong> piel así como leves<br />

zonas hemorrágicas <strong>en</strong> cabeza y branquias (Toranzo et al., 1991). En lubina<br />

(Dic<strong>en</strong>trarchus <strong>la</strong>brax) se ha llegado a observar hinchazón <strong>en</strong> <strong>la</strong> cavidad abdominal<br />

(Balebona et al., 1992), a<strong>de</strong>más <strong>de</strong> lesiones ulcerativas <strong>en</strong> <strong>la</strong> piel y ext<strong>en</strong>sas hemorragias,<br />

especialm<strong>en</strong>te <strong>en</strong> <strong>la</strong> boca, ojos y muscu<strong>la</strong>tura (Fouz et al., 2000).<br />

Internam<strong>en</strong>te los peces <strong>en</strong>fermos muestran septicemia hemorrágica y necrosis <strong>en</strong> <strong>la</strong><br />

mayoría <strong>de</strong> los órganos, apareci<strong>en</strong>do los tubérculos típicos <strong>de</strong> <strong>la</strong> <strong>en</strong>fermedad. Estos no<br />

son sino acumu<strong>la</strong>ciones <strong>de</strong> bacterias, fagocitos necróticos y granulomas.<br />

Histopatológicam<strong>en</strong>te esas l<strong>la</strong>mativas lesiones necróticas con gran<strong>de</strong>s masas<br />

bacterianas, <strong>de</strong> forma ext<strong>en</strong>siva, aguda y multifocal observadas <strong>en</strong> los órganos internos,<br />

sugier<strong>en</strong> que <strong>la</strong> <strong>en</strong>fermedad se <strong>de</strong>sarrol<strong>la</strong> como un proceso septicémico agudo. Dichas<br />

lesiones granulomatosas aparec<strong>en</strong> como una reacción <strong>de</strong> <strong><strong>la</strong>s</strong> célu<strong><strong>la</strong>s</strong> epiteliales cuando <strong>la</strong><br />

viabilidad <strong>de</strong> <strong>la</strong> bacteria <strong>de</strong>crece por medicación. A<strong>de</strong>más <strong>de</strong> <strong>la</strong> necrosis y <strong>la</strong> exist<strong>en</strong>cia<br />

<strong>de</strong> granulomas <strong>en</strong> bazo, riñón e hígado, don<strong>de</strong> se pue<strong>de</strong> <strong>de</strong>tectar bacterias <strong>en</strong> los<br />

sinusoi<strong>de</strong>s y vasos hepáticos, es posible el <strong>de</strong>sarrollo <strong>de</strong> una espl<strong>en</strong>omegalia (Toranzo et<br />

al., 1991) <strong>de</strong>bida a <strong>la</strong> infiltración <strong>de</strong> célu<strong><strong>la</strong>s</strong> sanguíneas junto con grupos <strong>de</strong> bacterias que<br />

tapan los capi<strong>la</strong>res y espacios intersticiales, así como <strong>la</strong> aparición <strong>de</strong> zonas<br />

b<strong>la</strong>nquecinas, o pali<strong>de</strong>z, <strong>en</strong> bazo y riñón (Kubota et al., 1970; Wolke, 1975; Tung et al.,<br />

1985; Hawke et al., 1987; Toranzo et al., 1991; Balebona et al., 1992; Noya et al., 1995a).<br />

En l<strong>en</strong>guados (Solea s<strong>en</strong>egal<strong>en</strong>sis) afectados por <strong>la</strong> pseudotuberculosis <strong>la</strong><br />

pigm<strong>en</strong>tación oscura <strong>en</strong> <strong>la</strong> piel y <strong>la</strong> hinchazón <strong>en</strong> <strong>la</strong> cavidad abdominal pue<strong>de</strong>n ser dos<br />

síntomas externos que po<strong>de</strong>mos <strong>de</strong>tectar. Algunas muestras pue<strong>de</strong>n también pres<strong>en</strong>tar<br />

exoftalmia hemorrágica, pequeñas úlceras <strong>en</strong> <strong>la</strong> piel y pali<strong>de</strong>z branquial (Zorril<strong>la</strong> et al.,<br />

1999). En cuanto a los órganos internos se pue<strong>de</strong> apreciar espl<strong>en</strong>omegalia, pali<strong>de</strong>z <strong>en</strong><br />

hígado y riñón, así como tubérculos <strong>de</strong> 1-2 mm <strong>de</strong> diámetro <strong>en</strong> el bazo.<br />

11


INTRODUCCIÓN<br />

2.3. MODO DE TRANSMISIÓN<br />

P. damse<strong>la</strong>e subsp. piscicida es una bacteria altam<strong>en</strong>te patóg<strong>en</strong>a que no parece<br />

t<strong>en</strong>er especificidad por el hospedador. Por tanto, <strong>la</strong> pseudotuberculosis pue<strong>de</strong> ser un<br />

riesgo para especies piscíco<strong><strong>la</strong>s</strong> marinas <strong>en</strong> <strong><strong>la</strong>s</strong> que aún no se ha <strong>de</strong>scrito. Algunos<br />

autores seña<strong>la</strong>n <strong>la</strong> exist<strong>en</strong>cia <strong>de</strong> difer<strong>en</strong>cias <strong>en</strong> <strong>la</strong> susceptibilidad a <strong>la</strong> pseudotuberculosis,<br />

<strong>en</strong> doradas y lubinas, basadas <strong>en</strong> <strong>la</strong> edad y el tamaño <strong>de</strong>l pez (Noya et al., 1995b). Esto<br />

podría <strong>de</strong>berse a <strong>la</strong> funcionalidad <strong>de</strong> macrófagos y neutrófilos que <strong>en</strong> doradas mayores<br />

<strong>de</strong> 20-30 g pue<strong>de</strong>n fagocitar efici<strong>en</strong>tem<strong>en</strong>te y matar a <strong><strong>la</strong>s</strong> bacterias (Noya et al., 1995b;<br />

Skarmeta et al., 1995), <strong>en</strong> tanto que <strong>en</strong> doradas <strong>de</strong> m<strong>en</strong>os <strong>de</strong> 1 g <strong>de</strong>b<strong>en</strong> existir<br />

<strong>de</strong>fici<strong>en</strong>cias <strong>en</strong> compon<strong>en</strong>tes <strong>de</strong>l suero implicados <strong>en</strong> <strong>la</strong> fagocitosis y posterior muerte<br />

<strong>de</strong> Photobacterium por los fagocitos, haciéndo<strong><strong>la</strong>s</strong> más susceptibles a <strong>la</strong> infección.<br />

El modo <strong>de</strong> transmisión y <strong>la</strong> ruta <strong>de</strong> infección implicadas <strong>en</strong> esta <strong>en</strong>fermedad aún<br />

se <strong>de</strong>sconoc<strong>en</strong> con <strong>de</strong>talle (Magariños et al., 1995). Los datos exist<strong>en</strong>tes apuntan a que <strong>la</strong><br />

pseudotuberculosis es una <strong>en</strong>fermedad <strong>de</strong> mayor preval<strong>en</strong>cia <strong>en</strong> los meses <strong>de</strong> verano<br />

(Frerichs y Roberts, 1989) con altas temperaturas <strong>de</strong>l agua (mayores <strong>de</strong> 23ºC) y alta<br />

salinidad (20-30%) (Hawke et al., 1987). En cuanto a <strong>la</strong> superviv<strong>en</strong>cia <strong>en</strong> el agua, se ha<br />

<strong>de</strong>mostrado que este patóg<strong>en</strong>o sobrevive <strong>en</strong> ambi<strong>en</strong>tes acuáticos marinos como célu<strong><strong>la</strong>s</strong><br />

viables pero no cultivables durante periodos prolongados (Magariños et al., 1994) pero<br />

mant<strong>en</strong>i<strong>en</strong>do prácticam<strong>en</strong>te <strong>la</strong> misma infectividad pot<strong>en</strong>cial para los peces que <strong><strong>la</strong>s</strong><br />

célu<strong><strong>la</strong>s</strong> viables y cultivables (Magariños et al., 1994). Esto sugiere que el medio acuático<br />

podría constituir un reservorio y un vehículo <strong>de</strong> transmisión para este patóg<strong>en</strong>o,<br />

contribuy<strong>en</strong>do el aum<strong>en</strong>to <strong>de</strong> <strong><strong>la</strong>s</strong> temperaturas al <strong>de</strong>sarrollo <strong>de</strong> <strong>la</strong> epizootia (Toranzo et<br />

al., 1991; Magariños et al., 2001).<br />

Se han hecho difer<strong>en</strong>tes estudios para valorar <strong><strong>la</strong>s</strong> distintas vías <strong>de</strong> <strong>en</strong>trada <strong>de</strong>l<br />

patóg<strong>en</strong>o. Por un <strong>la</strong>do, parece ser que <strong>la</strong> infección pue<strong>de</strong> iniciarse por ingestión <strong>de</strong>l<br />

patóg<strong>en</strong>o (Magariños et al., 1995). Por otro <strong>la</strong>do, evaluando el papel <strong>de</strong> <strong>la</strong> piel como<br />

puerta <strong>de</strong> <strong>en</strong>trada <strong>de</strong>l microorganismo, se ha observado que P. damse<strong>la</strong>e subsp.<br />

piscicida es resist<strong>en</strong>te a <strong>la</strong> acción <strong>de</strong>l mucus <strong>de</strong> piel <strong>de</strong> dorada y <strong>de</strong> lubina, aunque<br />

s<strong>en</strong>sible al <strong>de</strong> rodaballo (Magariños et al., 1995), lo que podría ser una razón por <strong>la</strong> que<br />

12


INTRODUCCIÓN<br />

<strong><strong>la</strong>s</strong> epi<strong>de</strong>mias surgidas <strong>en</strong> Europa nunca hayan afectado al rodaballo, y sí a <strong>la</strong> dorada y a<br />

<strong>la</strong> lubina.<br />

De mom<strong>en</strong>to, no se ha podido <strong>de</strong>mostrar <strong>la</strong> exist<strong>en</strong>cia <strong>de</strong> un portador <strong>de</strong> esta<br />

<strong>en</strong>fermedad, ya que no se ha podido ais<strong>la</strong>r <strong>la</strong> bacteria <strong>de</strong> peces supervivi<strong>en</strong>tes a una<br />

exposición experim<strong>en</strong>tal (Toranzo et al., 1991), sin po<strong>de</strong>r <strong>de</strong>scartar, por otro <strong>la</strong>do, que <strong>la</strong><br />

bacteria se <strong>en</strong>cu<strong>en</strong>tre <strong>en</strong> estos casos a una conc<strong>en</strong>tración por <strong>de</strong>bajo <strong>de</strong> los límites <strong>de</strong><br />

<strong>de</strong>tección clásicos, o <strong>en</strong> estado viable no cultivable.<br />

2.4. MECANISMOS DE VIRULENCIA<br />

La virul<strong>en</strong>cia <strong>de</strong> los microorganismos patóg<strong>en</strong>os es un complejo proceso<br />

multifactorial. En el caso <strong>de</strong> P. damse<strong>la</strong>e subsp. piscicida aún se <strong>de</strong>sconoc<strong>en</strong> muchos<br />

aspectos re<strong>la</strong>tivos a su virul<strong>en</strong>cia, sobre todo a nivel molecu<strong>la</strong>r.<br />

La capacidad <strong>de</strong> adher<strong>en</strong>cia e invasión es es<strong>en</strong>cial <strong>en</strong> los primeros estadios <strong>de</strong> <strong>la</strong><br />

infección. Una vez <strong>en</strong> el interior <strong>de</strong>l hospedador, <strong>la</strong> adhesión a los tejidos promueve <strong>la</strong><br />

liberación <strong>de</strong> toxinas y prece<strong>de</strong> a <strong>la</strong> p<strong>en</strong>etración <strong>en</strong> <strong><strong>la</strong>s</strong> célu<strong><strong>la</strong>s</strong> diana por parte <strong>de</strong> los<br />

microorganismos. Aunque P. damse<strong>la</strong>e subsp. piscicida pres<strong>en</strong>ta una débil adhesión a<br />

difer<strong>en</strong>tes líneas celu<strong>la</strong>res <strong>de</strong> peces, sí ha mostrado una elevada capacidad adhesiva a<br />

intestino <strong>de</strong> dorada, lubina y rodaballo (Magariños et al., 1996a). Se ha <strong>de</strong>tectado su<br />

capacidad para invadir líneas celu<strong>la</strong>res <strong>de</strong> peces (Magariños et al., 1996a; Elkamel y<br />

Thune, 2003) y permanecer viable, así como <strong>de</strong> proliferar <strong>en</strong> el interior <strong>de</strong> los<br />

macrófagos sin sufrir cambios morfológicos apar<strong>en</strong>tes, liberándose microorganismos al<br />

medio que inva<strong>de</strong>n célu<strong><strong>la</strong>s</strong> adyac<strong>en</strong>tes (Magariños et al., 1996a; Elkamel et al., 2003).<br />

Este hecho pue<strong>de</strong> ser relevante in vivo ya que garantiza el mant<strong>en</strong>imi<strong>en</strong>to <strong>de</strong>l patóg<strong>en</strong>o<br />

durante cierto periodo <strong>de</strong> tiempo <strong>en</strong> el tejido infectado, lo que contribuye a un estado <strong>de</strong><br />

infección crónica y <strong>de</strong> portador por parte <strong>de</strong>l hospedador. Incluso Elkamel et al. (2003)<br />

concluy<strong>en</strong> <strong>en</strong> su estudio que P. damse<strong>la</strong>e subsp. piscicida es un patóg<strong>en</strong>o intracelu<strong>la</strong>r<br />

muy efici<strong>en</strong>te, que pue<strong>de</strong> sobrevivir y multiplicarse <strong>en</strong> el interior <strong>de</strong> macrófagos <strong>de</strong><br />

peces como <strong>la</strong> lubina.<br />

La importancia como factores <strong>de</strong> virul<strong>en</strong>cia <strong>de</strong> los productos extracelu<strong>la</strong>res (ECPs)<br />

secretados por P. damse<strong>la</strong>e subsp. piscicida está bi<strong>en</strong> docum<strong>en</strong>tada (Balebona et al.,<br />

13


INTRODUCCIÓN<br />

1992; Magariños et al., 1992; Noya et al., 1995a y b; Romal<strong>de</strong>, 2002; Bakopoulos et al.,<br />

2004). Los ECPs <strong>de</strong> P. damse<strong>la</strong>e subsp. piscicida son fuertem<strong>en</strong>te tóxicos por vía<br />

intraperitoneal (Noya et al., 1995a; Bakopoulos et al., 2004) y llegan a ser letales para<br />

difer<strong>en</strong>tes especies piscíco<strong><strong>la</strong>s</strong> y para ratón (Magariños et al., 1992). Las principales<br />

activida<strong>de</strong>s <strong>de</strong>mostradas son <strong>la</strong> hemolítica, fosfolipasa y citotóxica (Magariños et al.,<br />

1992). Estudios histológicos han implicado estas activida<strong>de</strong>s, <strong>en</strong> particu<strong>la</strong>r –<strong><strong>la</strong>s</strong><br />

fosfolipasas– <strong>en</strong> <strong>la</strong> patogénesis <strong>de</strong> <strong>la</strong> pseudotuberculosis (Noya et al., 1995b).<br />

La implicación <strong>de</strong>l material polisacarídico capsu<strong>la</strong>r ha sido c<strong>la</strong>ram<strong>en</strong>te <strong>de</strong>mostrada<br />

<strong>en</strong> <strong>la</strong> virul<strong>en</strong>cia <strong>de</strong> P. damse<strong>la</strong>e subsp. piscicida (Bonet et al., 1994; Magariños et al.,<br />

1996b; Romal<strong>de</strong> y Magariños, 1997; Acosta et al., 2006). Aunque todas <strong><strong>la</strong>s</strong> cepas <strong>de</strong> P.<br />

damse<strong>la</strong>e subsp. piscicida sintetizan una estructura externa adicional <strong>en</strong> un medio<br />

<strong>en</strong>riquecido <strong>en</strong> glucosa, sólo <strong><strong>la</strong>s</strong> cepas virul<strong>en</strong>tas sintetizan constitutivam<strong>en</strong>te una fina<br />

cápsu<strong>la</strong> (Magariños et al., 1996b) que les confiere resist<strong>en</strong>cia a <strong>la</strong> inactivación por suero,<br />

e increm<strong>en</strong>ta el grado <strong>de</strong> virul<strong>en</strong>cia (Magariños et al., 1996b; Acosta et al., 2006),<br />

a<strong>de</strong>más <strong>de</strong> reducir <strong>la</strong> fagocitosis por parte <strong>de</strong> los macrófagos (Arijo et al., 1998). Por lo<br />

tanto, <strong>la</strong> pres<strong>en</strong>cia <strong>de</strong> cápsu<strong>la</strong> juega un importante papel <strong>en</strong> <strong>la</strong> patogénesis <strong>de</strong> P.<br />

damse<strong>la</strong>e subsp. piscicida, como prueba el hecho <strong>de</strong> que <strong><strong>la</strong>s</strong> cepas no virul<strong>en</strong>tas son<br />

eliminadas <strong>de</strong>l pez <strong>en</strong> corto tiempo, aunque <strong><strong>la</strong>s</strong> cepas no virul<strong>en</strong>tas, <strong>en</strong> <strong><strong>la</strong>s</strong> que se induce<br />

<strong>la</strong> síntesis <strong>de</strong> cápsu<strong>la</strong>, pres<strong>en</strong>tan también resist<strong>en</strong>cia al suero (Magariños et al., 1997;<br />

Arijo et al., 1998). A<strong>de</strong>más, esta inducción <strong>de</strong> <strong>la</strong> expresión capsu<strong>la</strong>r <strong>en</strong> cepas no<br />

virul<strong>en</strong>tas increm<strong>en</strong>ta su resist<strong>en</strong>cia a <strong>la</strong> acción bactericida <strong>de</strong>l suero y disminuye su<br />

DL 50 alre<strong>de</strong>dor <strong>de</strong> 2-3 unida<strong>de</strong>s logarítmicas (Magariños et al., 1996b). De todas formas,<br />

in vivo, <strong><strong>la</strong>s</strong> condiciones limitantes <strong>en</strong> hierro hac<strong>en</strong> que P. damse<strong>la</strong>e subsp. piscicida no<br />

pres<strong>en</strong>te una cápsu<strong>la</strong> <strong>de</strong> tamaño importante (Acosta et al., 2003), lo que podría suponer<br />

una mayor exposición <strong>de</strong> <strong><strong>la</strong>s</strong> adhesinas a <strong>la</strong> superficie, si<strong>en</strong>do esto un aspecto útil para <strong>la</strong><br />

colonización (Magariños et al., 1996b).<br />

La capacidad <strong>de</strong> conseguir hierro es primordial para el crecimi<strong>en</strong>to <strong>de</strong> bacterias<br />

patóg<strong>en</strong>as <strong>en</strong> el interior <strong>de</strong>l hospedador, si<strong>en</strong>do, por tanto, es<strong>en</strong>cial para causar<br />

infección. A<strong>de</strong>más, se ha constatado que este microorganismo muestra un elevado<br />

número <strong>de</strong> activida<strong>de</strong>s <strong>de</strong> sus ECPs bajo condiciones limitantes <strong>de</strong> hierro (Bakopoulos<br />

14


INTRODUCCIÓN<br />

et al., 1997). En P. damse<strong>la</strong>e subsp. piscicida se han <strong>de</strong>scrito difer<strong>en</strong>tes estrategias para<br />

conseguir hierro, un sistema <strong>de</strong> incorporación <strong>de</strong> hierro codificado a nivel<br />

cromosómico, consist<strong>en</strong>te <strong>en</strong> un si<strong>de</strong>róforo química y biológicam<strong>en</strong>te re<strong>la</strong>cionado con <strong>la</strong><br />

multocidina producida por Pasteurel<strong>la</strong> multocida y, al m<strong>en</strong>os, tres proteínas <strong>de</strong><br />

membrana externa <strong>de</strong> alto peso molecu<strong>la</strong>r regu<strong>la</strong>das por hierro (Magariños et al., 1994).<br />

También se ha <strong>de</strong>scrito <strong>la</strong> capacidad <strong>de</strong> P. damse<strong>la</strong>e subsp. piscicida <strong>de</strong> utilizar<br />

directam<strong>en</strong>te el grupo hemo como única fu<strong>en</strong>te <strong>de</strong> hierro y que <strong>la</strong> inyección<br />

intraperitoneal <strong>de</strong> hemina antes <strong>de</strong> <strong>la</strong> infección experim<strong>en</strong>tal increm<strong>en</strong>ta <strong>la</strong> letalidad <strong>de</strong><br />

este patóg<strong>en</strong>o (Magariños et al., 1994). Igualm<strong>en</strong>te se ha <strong>de</strong>mostrado que <strong>en</strong> rodaballo el<br />

sistema génico <strong>de</strong> transporte <strong>de</strong>l grupo hemo se expresa in vivo, durante <strong>la</strong> infección <strong>de</strong><br />

P. damse<strong>la</strong>e subsp. piscicida (Juíz-Río, 2006). La base g<strong>en</strong>ética <strong>de</strong> estos sistemas <strong>de</strong><br />

captación <strong>de</strong> hierro por si<strong>de</strong>róforos muestra una pat<strong>en</strong>te diversidad (Juíz-Río, 2006).<br />

Se ha <strong>de</strong>mostrado <strong>la</strong> re<strong>la</strong>ción <strong>en</strong>tre <strong>la</strong> cápsu<strong>la</strong> y <strong>la</strong> capacidad <strong>de</strong> adquirir hierro (do<br />

Vale et al., 2001; Romal<strong>de</strong>, 2002), jugando los polisacáridos capsu<strong>la</strong>res un papel<br />

secundario <strong>en</strong> <strong>la</strong> unión <strong>de</strong> <strong>la</strong> hemina. La expresión <strong>de</strong>l material capsu<strong>la</strong>r es <strong>de</strong>p<strong>en</strong>di<strong>en</strong>te<br />

<strong>de</strong> <strong>la</strong> disponibilidad <strong>de</strong> hierro y <strong>de</strong> <strong>la</strong> fase <strong>de</strong> crecimi<strong>en</strong>to, así <strong><strong>la</strong>s</strong> célu<strong><strong>la</strong>s</strong> crecidas bajo<br />

condiciones limitantes <strong>de</strong> hierro manifiestan m<strong>en</strong>or cantidad <strong>de</strong> material capsu<strong>la</strong>r que<br />

<strong><strong>la</strong>s</strong> célu<strong><strong>la</strong>s</strong> suplem<strong>en</strong>tadas con hierro (do Vale et al., 2001). Esto pue<strong>de</strong> explicar <strong>la</strong><br />

necesidad <strong>de</strong> <strong>la</strong> bacteria <strong>de</strong> expresar su si<strong>de</strong>róforo y/o receptores <strong>de</strong> hierro durante el<br />

tiempo que recorre el sistema circu<strong>la</strong>torio <strong>de</strong>l hospedador. Una vez que el<br />

microorganismo alcanza los difer<strong>en</strong>tes tejidos, <strong>la</strong> cantidad <strong>de</strong> material capsu<strong>la</strong>r<br />

probablem<strong>en</strong>te se increm<strong>en</strong>ta <strong>en</strong> respuesta a los mecanismos <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa celu<strong>la</strong>r <strong>de</strong>l<br />

hospedador. A<strong>de</strong>más el papel <strong>de</strong>l hierro <strong>en</strong> <strong>la</strong> expresión <strong>de</strong> activida<strong>de</strong>s <strong>en</strong>zimáticas ha<br />

sido también <strong>de</strong>scrito, y algunas <strong>en</strong>zimas proteolíticas, como <strong>la</strong> ge<strong>la</strong>tinasa y caseinasa<br />

son sólo sintetizadas cuando <strong><strong>la</strong>s</strong> cepas son cultivadas bajo condiciones restrictivas <strong>de</strong><br />

hierro (Magariños et al., 1994; Romal<strong>de</strong>, 2002).<br />

Reci<strong>en</strong>tem<strong>en</strong>te se ha <strong>de</strong>scrito que difer<strong>en</strong>tes cepas virul<strong>en</strong>tas <strong>de</strong> este patóg<strong>en</strong>o<br />

produc<strong>en</strong> una exotoxina, <strong>la</strong> AIP56, codificada p<strong><strong>la</strong>s</strong>mídicam<strong>en</strong>te, y que ti<strong>en</strong>e <strong>la</strong> capacidad<br />

<strong>de</strong> inducir apoptosis <strong>en</strong> leucocitos <strong>de</strong> lubina (do Vale et al., 2005).<br />

15


INTRODUCCIÓN<br />

En resum<strong>en</strong>, los mecanismos <strong>de</strong> invasión y superviv<strong>en</strong>cia <strong>de</strong> <strong>la</strong> bacteria<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida <strong>en</strong> el interior <strong>de</strong>l hospedador aún no se<br />

conoc<strong>en</strong>: mi<strong>en</strong>tras que unos autores confirman <strong>la</strong> pres<strong>en</strong>cia <strong>de</strong> bacterias intactas <strong>en</strong> el<br />

interior <strong>de</strong> <strong><strong>la</strong>s</strong> célu<strong><strong>la</strong>s</strong> <strong>de</strong>l pez, sugiri<strong>en</strong>do <strong>la</strong> capacidad <strong>de</strong> <strong>la</strong> bacteria <strong>de</strong> sobrevivir como<br />

patóg<strong>en</strong>o intracelu<strong>la</strong>r (Noya et al., 1995b; López-Dóriga et al., 2000); otros autores han<br />

observado que este patóg<strong>en</strong>o es altam<strong>en</strong>te susceptible a los radicales oxigénicos<br />

g<strong>en</strong>erados durante el estallido respiratorio <strong>en</strong> el interior <strong>de</strong> los fagocitos (Skarmeta et<br />

al., 1995; Arijo et al., 1998; Barnes et al., 1999a).<br />

Es obvio, por tanto, que <strong>la</strong> patogénesis <strong>de</strong> P. damse<strong>la</strong>e subsp. piscicida es un<br />

proceso complejo y multifactorial, no <strong>en</strong>t<strong>en</strong>dido por completo. En esta Tesis Doctoral se<br />

int<strong>en</strong>ta profundizar y ac<strong>la</strong>rar, <strong>en</strong> <strong>la</strong> medida <strong>de</strong> lo posible, parte <strong>de</strong> ese proceso, si P.<br />

damse<strong>la</strong>e subsp. piscicida es capaz, o no, <strong>de</strong> sobrevivir al estallido respiratorio g<strong>en</strong>erado<br />

<strong>en</strong> el interior <strong>de</strong> <strong><strong>la</strong>s</strong> célu<strong><strong>la</strong>s</strong> fagocíticas <strong>de</strong> l<strong>en</strong>guado s<strong>en</strong>egalés, asimismo, se realiza un<br />

estudio <strong>de</strong> difer<strong>en</strong>tes estrategias <strong>de</strong> prev<strong>en</strong>ción <strong>de</strong> esta <strong>en</strong>fermedad bacteriana, mediante<br />

<strong>la</strong> aplicación <strong>de</strong> inmunoestimu<strong>la</strong>ntes y probióticos al hospedador.<br />

3. LAS ACTIVIDADES SUPERÓXIDO DISMUTASA Y<br />

CATALASA COMO FACTORES DE VIRULENCIA<br />

La inactivación bacteriana <strong>en</strong> el interior <strong>de</strong> los fagocitos se efectúa mediante dos<br />

tipos <strong>de</strong> mecanismos: in<strong>de</strong>p<strong>en</strong>di<strong>en</strong>tes <strong>de</strong> oxíg<strong>en</strong>o, mediados por los constituy<strong>en</strong>tes <strong>de</strong> los<br />

gránulos <strong>de</strong> los fagocitos (<strong>en</strong>zimas lisosomales, catepsinas, <strong>de</strong>f<strong>en</strong>sinas, <strong>la</strong>ctoferrina,<br />

<strong>en</strong>zimas proteolíticas), y <strong>de</strong>p<strong>en</strong>di<strong>en</strong>tes <strong>de</strong> oxíg<strong>en</strong>o. En estos últimos se da <strong>la</strong> formación<br />

<strong>de</strong> compuestos oxig<strong>en</strong>ados como peróxido <strong>de</strong> hidróg<strong>en</strong>o (H 2 O 2 ), radicales como el<br />

anión <strong>superóxido</strong> (O 2·- ) y radical hidroxilo (OH - ), productos que se forman durante el<br />

<strong>de</strong>nominado estallido respiratorio que sigue a <strong>la</strong> activación <strong>de</strong> <strong>la</strong> <strong>en</strong>zima nicotinamidaa<strong>de</strong>nín-dinucleótido-fosfato-hidróg<strong>en</strong>o<br />

(NADPH) oxidasa <strong>de</strong> <strong>la</strong> membrana tras <strong>la</strong><br />

fagocitosis.<br />

16


INTRODUCCIÓN<br />

3.1. ESTALLIDO RESPIRATORIO<br />

Tras <strong>la</strong> fagocitosis –proceso por el cual los fagocitos interiorizan a los<br />

microorganismos– los leucocitos liberan al interior <strong>de</strong> los fagosomas el cont<strong>en</strong>ido <strong>de</strong> sus<br />

gránulos citop<strong><strong>la</strong>s</strong>máticos, <strong>en</strong>tre los que <strong>de</strong>stacan diversos factores citotóxicos tales como<br />

metabolitos oxig<strong>en</strong>ados y <strong>en</strong>zimas lisosomales, con el fin <strong>de</strong> matar y digerir a los<br />

microorganismos.<br />

La producción <strong>de</strong> dichos metabolitos <strong>de</strong> oxíg<strong>en</strong>o se lleva a cabo <strong>en</strong> el proceso<br />

conocido como estallido respiratorio, o explosión respiratoria, que se produce <strong>en</strong> los<br />

fagocitos ante <strong>la</strong> pres<strong>en</strong>cia <strong>de</strong> bacterias, experim<strong>en</strong>tando un rápido increm<strong>en</strong>to <strong>en</strong> el<br />

consumo <strong>de</strong> oxíg<strong>en</strong>o. Actualm<strong>en</strong>te, el término <strong>de</strong> estallido respiratorio se consi<strong>de</strong>ra<br />

ina<strong>de</strong>cuado ya que dicho increm<strong>en</strong>to <strong>en</strong> el consumo <strong>de</strong> oxíg<strong>en</strong>o no se <strong>de</strong>be a un<br />

increm<strong>en</strong>to <strong>en</strong> <strong>la</strong> tasa respiratoria, sino que se produce <strong>en</strong> <strong>la</strong> superficie celu<strong>la</strong>r don<strong>de</strong> se<br />

usa el oxíg<strong>en</strong>o extracelu<strong>la</strong>r para g<strong>en</strong>erar radicales reactivos <strong>de</strong> oxíg<strong>en</strong>o, los<br />

<strong>de</strong>nominados ROS (reactive oxyg<strong>en</strong> species) (O 2·- , H 2 O 2 , OH - ). La pres<strong>en</strong>cia <strong>de</strong> dichos<br />

radicales libres se asocia al <strong>en</strong>vejecimi<strong>en</strong>to celu<strong>la</strong>r, sin embargo, su toxicidad ha<br />

<strong>en</strong>contrado utilidad <strong>en</strong> los fagocitos como mecanismo <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa fr<strong>en</strong>te a bacterias<br />

<strong>de</strong>bido a su gran actividad microbiocida.<br />

El estallido respiratorio se <strong>de</strong>s<strong>en</strong>ca<strong>de</strong>na por <strong>la</strong> estimu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> membrana <strong>de</strong>l<br />

fagocito. Tras dicha estimu<strong>la</strong>ción, <strong>la</strong> <strong>en</strong>zima NADPH oxidasa, pres<strong>en</strong>te <strong>en</strong> <strong>la</strong> membrana<br />

celu<strong>la</strong>r, es capaz <strong>de</strong> reducir el O 2 <strong>en</strong> anión <strong>superóxido</strong> (O 2·- ) (Roos et al., 2003). De<br />

forma secu<strong>en</strong>cial, por <strong>la</strong> reducción unival<strong>en</strong>te <strong>de</strong>l O 2 , se g<strong>en</strong>era toda una serie <strong>de</strong><br />

especies reactivas altam<strong>en</strong>te tóxicas: los <strong>de</strong>nominados radicales reactivos <strong>de</strong>l oxíg<strong>en</strong>o.<br />

Los primeros <strong>en</strong> producirse son el radical <strong>superóxido</strong> (O 2·- ) y el peróxido <strong>de</strong> hidróg<strong>en</strong>o<br />

(H 2 O 2 ) por acción <strong>de</strong> <strong>la</strong> <strong>superóxido</strong> <strong>dismutasa</strong> (SOD) sobre el O 2·- . El anión <strong>superóxido</strong><br />

ti<strong>en</strong>e un alto po<strong>de</strong>r bactericida, así que es prob<strong>la</strong>ble que este radical por sí solo sea<br />

capaz <strong>de</strong> eliminar microorganismos. El peróxido <strong>de</strong> hidróg<strong>en</strong>o pue<strong>de</strong> reaccionar con el<br />

<strong>superóxido</strong>, g<strong>en</strong>erando radicales hidroxilo (OH - ) y oxíg<strong>en</strong>o singleto ( 1 O 2 ), ambos<br />

altam<strong>en</strong>te reactivos y tóxicos.<br />

Por otro <strong>la</strong>do el anión <strong>superóxido</strong> pue<strong>de</strong> también reaccionar con óxido <strong>de</strong> nitróg<strong>en</strong>o<br />

(NO), que es <strong>de</strong>rivado <strong>de</strong> L-arginina y O 2 molecu<strong>la</strong>r, <strong>en</strong> una reacción catalizada por <strong>la</strong><br />

17


INTRODUCCIÓN<br />

óxido nítrico sintasa (NOS) <strong>en</strong> <strong>la</strong> que se produce peroxinitrito, un intermediario <strong>de</strong>l<br />

nitróg<strong>en</strong>o muy reactivo.<br />

El oxíg<strong>en</strong>o singleto pue<strong>de</strong> ser convertido <strong>en</strong> un compuesto simi<strong>la</strong>r al ozono (O 3 ) <strong>en</strong><br />

una reacción catalizada por <strong>la</strong> unión <strong>de</strong> anticuerpos con microorganismos o neutrófilos.<br />

El peróxido <strong>de</strong> hidróg<strong>en</strong>o, junto con el cloruro, pue<strong>de</strong> ser sustrato <strong>de</strong> <strong>la</strong> <strong>en</strong>zima<br />

mieloperoxidasa (MPO) g<strong>en</strong>erándose ácido hipoclórico (HClO), muy tóxico para <strong>la</strong><br />

mayor parte <strong>de</strong> los microorganismos. El hipoclórico reacciona con aminas secundarias,<br />

formando cloraminas secundarias, que son igual <strong>de</strong> microbiocidas que el ácido, pero<br />

mucho más estables.<br />

Por lo tanto, un gran número <strong>de</strong> reacciones químicas se produce <strong>en</strong> el pequeño<br />

espacio <strong>en</strong>tre <strong>la</strong> bacteria ingerida y <strong>la</strong> membrana <strong>de</strong>l fagosoma. Para comp<strong>en</strong>sar <strong>la</strong> carga<br />

electrónica <strong>de</strong>bida a <strong>la</strong> reducción <strong>de</strong>l oxíg<strong>en</strong>o molecu<strong>la</strong>r <strong>en</strong> anión <strong>superóxido</strong>, se da un<br />

flujo <strong>de</strong> protones (H + ) o <strong>de</strong> otros cationes, como K + . Si todos los electrones bombeados<br />

al interior <strong>de</strong>l fagosoma fueran comp<strong>en</strong>sados por el flujo <strong>de</strong> protones, el pH <strong>de</strong>l<br />

fagosoma permanecería neutro; sin embargo, se aum<strong>en</strong>ta hasta 8, a pesar <strong>de</strong> <strong>la</strong> liberación<br />

<strong>de</strong> ácidos proce<strong>de</strong>ntes <strong>de</strong> los gránulos citop<strong><strong>la</strong>s</strong>máticos que se fusionan con el fagosoma.<br />

Esto indica que otros cationes, como el potasio (K + ), pue<strong>de</strong>n <strong>en</strong>trar <strong>en</strong> el fagosoma <strong>en</strong><br />

lugar <strong>de</strong> los protones (Reeves et al., 2002). Si se da ese flujo <strong>de</strong> iones potasio, estos<br />

cationes mediarían <strong>la</strong> solubilización <strong>de</strong> proteasas que están unidas a <strong>la</strong> matriz <strong>de</strong><br />

proteoglucano <strong>de</strong> los gránulos. Por tanto, el increm<strong>en</strong>to <strong>de</strong>l pH intrafagosomal alcanza<br />

los valores óptimos <strong>de</strong> <strong>la</strong> acción <strong>de</strong> proteasas, pudi<strong>en</strong>do afirmarse que <strong>la</strong> NADPH<br />

oxidasa, a<strong>de</strong>más <strong>de</strong> matar a los microorganismos por medio <strong>de</strong> sus radicales oxigénicos,<br />

actúa liberando proteasas lisosomales. De este modo, <strong>la</strong> NADPH oxidasa leucocitaria<br />

induce <strong>la</strong> muerte microbiana directa, vía productos oxidativos, e indirectam<strong>en</strong>te, vía<br />

liberación <strong>de</strong> proteasas.<br />

El estallido respiratorio conduce a <strong>la</strong> inactivación <strong>de</strong> proteínas y a <strong>la</strong> oxidación <strong>de</strong><br />

ácidos nucleicos y otras molécu<strong><strong>la</strong>s</strong> es<strong>en</strong>ciales, lo que repres<strong>en</strong>ta una estrategia<br />

importante <strong>de</strong>l sistema inmunitario <strong>en</strong> <strong>la</strong> lucha contra <strong><strong>la</strong>s</strong> infecciones. Para competir con<br />

los radicales libres g<strong>en</strong>erados, los microorganismos patóg<strong>en</strong>os se han visto obligados a<br />

<strong>de</strong>sarrol<strong>la</strong>r estrategias <strong>en</strong> un doble fr<strong>en</strong>te: por un <strong>la</strong>do, <strong>la</strong> protección fr<strong>en</strong>te a los<br />

18


INTRODUCCIÓN<br />

radicales g<strong>en</strong>erados <strong>en</strong> su propio metabolismo aerobio y por otro, <strong>la</strong> <strong>de</strong>f<strong>en</strong>sa fr<strong>en</strong>te al<br />

contacto con estos radicales producidos <strong>en</strong> célu<strong><strong>la</strong>s</strong> fagocíticas. A esta resist<strong>en</strong>cia fr<strong>en</strong>te a<br />

los ROS contribuy<strong>en</strong> <strong>en</strong>zimas antioxidantes tales como <strong><strong>la</strong>s</strong> <strong>superóxido</strong> <strong>dismutasa</strong>s,<br />

cata<strong><strong>la</strong>s</strong>as y peroxidasas.<br />

Estas <strong>en</strong>zimas repres<strong>en</strong>tan un arma <strong>de</strong>f<strong>en</strong>siva fr<strong>en</strong>te al ataque <strong>de</strong> célu<strong><strong>la</strong>s</strong><br />

fagocíticas, contribuy<strong>en</strong>do al pot<strong>en</strong>cial virul<strong>en</strong>to <strong>de</strong>l microorganismo patóg<strong>en</strong>o <strong>en</strong> su<br />

interacción con el hospedador.<br />

3.2. LA ACTIVIDAD SUPERÓXIDO DISMUTASA<br />

La <strong>superóxido</strong> <strong>dismutasa</strong> repres<strong>en</strong>ta <strong>la</strong> primera línea <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa <strong>de</strong> <strong><strong>la</strong>s</strong> célu<strong><strong>la</strong>s</strong><br />

fr<strong>en</strong>te al estrés oxidativo. Cataliza <strong>la</strong> conversión <strong>de</strong> los radicales anión <strong>superóxido</strong> <strong>en</strong><br />

peróxido <strong>de</strong> hidróg<strong>en</strong>o y oxíg<strong>en</strong>o (ecuación 1).<br />

(1) O 2·- + 2H + H 2 O 2 + O 2<br />

La actividad SOD ha sido <strong>de</strong>tectada <strong>en</strong> una amplia variedad <strong>de</strong> seres vivos, <strong>de</strong>s<strong>de</strong><br />

bacterias a humanos, implicada como <strong>de</strong>f<strong>en</strong>sa es<strong>en</strong>cial fr<strong>en</strong>te a <strong>la</strong> toxicidad pot<strong>en</strong>cial <strong>de</strong>l<br />

oxíg<strong>en</strong>o. Cualquier célu<strong>la</strong> que utilice el oxíg<strong>en</strong>o ti<strong>en</strong>e el pot<strong>en</strong>cial <strong>de</strong> producir anión<br />

<strong>superóxido</strong> y, por tanto, <strong>de</strong>be cont<strong>en</strong>er alguna forma <strong>de</strong> <strong>superóxido</strong> <strong>dismutasa</strong><br />

(Fridovich, 1974).<br />

Las <strong>superóxido</strong> <strong>dismutasa</strong>s constituy<strong>en</strong> una familia <strong>de</strong> metalo<strong>en</strong>zimas que se<br />

c<strong><strong>la</strong>s</strong>ifican <strong>en</strong> cuatro grupos según el metal que actúe <strong>de</strong> cofactor: FeSOD, MnSOD,<br />

CuZnSOD y NiSOD, esta última <strong>de</strong>scrita reci<strong>en</strong>tem<strong>en</strong>te <strong>en</strong> Streptomyces<br />

(Lynch y Kuramitsu, 2000).<br />

3.3. LA ACTIVIDAD CATALASA<br />

Las cata<strong><strong>la</strong>s</strong>as también forman parte <strong>de</strong> <strong>la</strong> <strong>de</strong>f<strong>en</strong>sa <strong>de</strong> <strong><strong>la</strong>s</strong> bacterias fr<strong>en</strong>te al estrés<br />

oxidativo. Catalizan <strong>la</strong> <strong>de</strong>scomposición <strong>de</strong>l peróxido <strong>de</strong> hidróg<strong>en</strong>o, transformándolo <strong>en</strong><br />

agua y oxíg<strong>en</strong>o (ecuación 2).<br />

19


INTRODUCCIÓN<br />

(2) 2H 2 O 2 2H 2 O + O 2<br />

Algunas cata<strong><strong>la</strong>s</strong>as ti<strong>en</strong><strong>en</strong> a<strong>de</strong>más actividad peroxidasa, un donador orgánico <strong>de</strong><br />

electrones, o a veces un ión haluro, es empleado <strong>en</strong> <strong>la</strong> reducción <strong>de</strong>l peróxido <strong>de</strong><br />

hidróg<strong>en</strong>o (ecuación 3).<br />

(3) RH 2 + H 2 O 2 2H 2 O + R<br />

Las cata<strong><strong>la</strong>s</strong>as se pue<strong>de</strong>n dividir <strong>en</strong> tres grupos (Loew<strong>en</strong>, 1997): cata<strong><strong>la</strong>s</strong>as<br />

monofuncionales con grupo hemo (FeCat), cata<strong><strong>la</strong>s</strong>as bifuncionales con grupo hemo<br />

(cata<strong><strong>la</strong>s</strong>as-peroxidasas) y pseudocata<strong><strong>la</strong>s</strong>as sin grupo hemo (MnCat), estas últimas se<br />

<strong>de</strong>nominan pseudocata<strong><strong>la</strong>s</strong>as porque son resist<strong>en</strong>tes a los inhibidores comunes para <strong><strong>la</strong>s</strong><br />

cata<strong><strong>la</strong>s</strong>as, como <strong>la</strong> azida y el cianuro.<br />

Las activida<strong>de</strong>s <strong>superóxido</strong> <strong>dismutasa</strong> y cata<strong><strong>la</strong>s</strong>a proteg<strong>en</strong> no sólo <strong>de</strong> forma directa<br />

eliminando aniones supéroxido y peróxido <strong>de</strong> hidróg<strong>en</strong>o, respectivam<strong>en</strong>te, sino que<br />

también impi<strong>de</strong>n <strong>la</strong> formación <strong>de</strong>l radical hidroxilo OH·, <strong>la</strong> especie reactiva <strong>de</strong>rivada <strong>de</strong>l<br />

oxíg<strong>en</strong>o con mayor po<strong>de</strong>r oxidante.<br />

De esta forma, el papel <strong>de</strong> dichas <strong>en</strong>zimas pue<strong>de</strong> ser fundam<strong>en</strong>tal a <strong>la</strong> hora <strong>de</strong><br />

proteger a bacterias patóg<strong>en</strong>as durante el estallido respiratorio que sigue a <strong>la</strong> fagocitosis<br />

y por ello se asocian a mecanismos <strong>de</strong> virul<strong>en</strong>cia (Tab<strong>la</strong> 2). Así, <strong>la</strong> habilidad <strong>de</strong> un<br />

organismo <strong>de</strong> infectar a su hospedador es <strong>de</strong>bida, al m<strong>en</strong>os <strong>en</strong> parte, a su resist<strong>en</strong>cia<br />

fr<strong>en</strong>te a <strong>la</strong> producción <strong>de</strong> ROS por <strong><strong>la</strong>s</strong> célu<strong><strong>la</strong>s</strong>, principalm<strong>en</strong>te monocitos/macrófagos y<br />

polimorfonucleados. Irónicam<strong>en</strong>te <strong>la</strong> evolución ha seleccionado organismos que utilizan<br />

dichas célu<strong><strong>la</strong>s</strong> como diana, así que <strong>la</strong> posesión <strong>de</strong> <strong>en</strong>zimas como SOD y cata<strong><strong>la</strong>s</strong>a<br />

contribuirá a <strong>la</strong> resist<strong>en</strong>cia fr<strong>en</strong>te al hospedador y, por tanto, al establecimi<strong>en</strong>to <strong>de</strong> <strong>la</strong><br />

infección.<br />

20


INTRODUCCIÓN<br />

Tab<strong>la</strong> 2 Ejemplos <strong>de</strong> microorganismos patóg<strong>en</strong>os <strong>en</strong> los que <strong><strong>la</strong>s</strong> activida<strong>de</strong>s SOD y cata<strong><strong>la</strong>s</strong>a<br />

juegan un papel importante <strong>en</strong> <strong>la</strong> virul<strong>en</strong>cia<br />

Patóg<strong>en</strong>o Factor <strong>de</strong> virul<strong>en</strong>cia Refer<strong>en</strong>cia<br />

Listeria monocytog<strong>en</strong>es FeSOD Welch et al., 1979<br />

Shigel<strong>la</strong> flexneri FeSOD Franzon et al., 1990<br />

Pseudomonas syringae Cata<strong><strong>la</strong>s</strong>as (no <strong>de</strong>terminadas) Klotz y Hutcheson,<br />

1992<br />

Caulobacter cresc<strong>en</strong>tus CuZnSOD Schnell y Steinman,<br />

1995<br />

Aeromonas salmonicida FeSOD Barnes et al., 1996<br />

Pseudomonas aeruginosa MnSOD Po<strong>la</strong>ck et al., 1996<br />

Legionel<strong>la</strong> pneumophi<strong>la</strong> CuZnSOD St. John y Steinman,<br />

1996<br />

A. salmonicida subsp. MnSOD y FeCata<strong><strong>la</strong>s</strong>a Barnes et al., 1999b<br />

salmonicida<br />

Mycobacterium tuberculosis Cata<strong><strong>la</strong>s</strong>a-Peroxidasa Manca et al., 1999<br />

Streptococcus pneumoniae MnSOD Yesilkaya et al., 2000<br />

Vibrio harveyi Cata<strong><strong>la</strong>s</strong>a monofuncional Vattanaviboon y<br />

Mongkolsuk, 2001<br />

Salmonel<strong>la</strong> <strong>en</strong>terica CuZnSOD Uzzau et al., 2002<br />

Vibrio shiloi SOD (no <strong>de</strong>terminada) Banin et al., 2003<br />

3.4. LAS ACTIVIDADES SUPERÓXIDO DISMUTASA Y CATALASA EN<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

Como ya se citó <strong>en</strong> el apartado 2.4., algunos autores confirman <strong>la</strong> pres<strong>en</strong>cia <strong>de</strong><br />

bacterias intactas <strong>en</strong> el interior <strong>de</strong> célu<strong><strong>la</strong>s</strong> <strong>de</strong>l pez, sugiri<strong>en</strong>do <strong>la</strong> habilidad <strong>de</strong> P.<br />

damse<strong>la</strong>e subsp. piscicida <strong>de</strong> sobrevivir como patóg<strong>en</strong>o intracelu<strong>la</strong>r (Noya et al., 1995a;<br />

López-Dóriga et al., 2000; Elkamel et al., 2003), mi<strong>en</strong>tras que otros autores han<br />

observado que este patóg<strong>en</strong>o es altam<strong>en</strong>te susceptible a los radicales oxidativos<br />

g<strong>en</strong>erados durante el estallido respiratorio <strong>en</strong> los fagocitos (Skarmeta et al., 1995; Arijo<br />

et al., 1998; Barnes et al., 1999a).<br />

21


INTRODUCCIÓN<br />

Para esc<strong>la</strong>recer este último punto es imprescindible profundizar <strong>en</strong> el estudio <strong>de</strong> <strong><strong>la</strong>s</strong><br />

activida<strong>de</strong>s <strong>superóxido</strong> <strong>dismutasa</strong> y cata<strong><strong>la</strong>s</strong>a manifestadas por P. damse<strong>la</strong>e subsp.<br />

piscicida. Una mayor información sobre el papel <strong>de</strong> dichas activida<strong>de</strong>s <strong>en</strong> <strong>la</strong> virul<strong>en</strong>cia<br />

<strong>de</strong>l patóg<strong>en</strong>o podría contribuir a <strong>en</strong>t<strong>en</strong><strong>de</strong>r <strong><strong>la</strong>s</strong> interacciones <strong>en</strong>tre P. damse<strong>la</strong>e subsp.<br />

piscicida y su hospedador.<br />

Barnes et al. (1999a) <strong>de</strong>terminaron <strong>la</strong> exist<strong>en</strong>cia <strong>en</strong> P. damse<strong>la</strong>e subsp. piscicida <strong>de</strong><br />

una SOD con hierro <strong>en</strong> su c<strong>en</strong>tro activo, localizada <strong>en</strong> el espacio periplásmico, y <strong>de</strong> una<br />

cata<strong><strong>la</strong>s</strong>a, sin <strong>de</strong>terminar, localizada <strong>en</strong> el citop<strong><strong>la</strong>s</strong>ma. La actividad SOD se veía reducida<br />

por el crecimi<strong>en</strong>to <strong>en</strong> condiciones restrictivas <strong>de</strong> hierro, así como <strong>en</strong> bajas<br />

conc<strong>en</strong>traciones <strong>de</strong> oxíg<strong>en</strong>o, mi<strong>en</strong>tras que <strong>la</strong> cata<strong><strong>la</strong>s</strong>a era expresada constitutivam<strong>en</strong>te,<br />

aunque <strong>en</strong> los geles se apreciaron difer<strong>en</strong>cias <strong>en</strong> los niveles <strong>de</strong> <strong>la</strong> actividad <strong>de</strong> <strong><strong>la</strong>s</strong><br />

difer<strong>en</strong>tes cepas analizadas.<br />

4. ESTIMULACIÓN DEL ESTALLIDO RESPIRATORIO POR<br />

DIFERENTES MICROORGANISMOS FRENTE A LA<br />

INFECCIÓN POR Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

4.1. PREVENCIÓN Y TRATAMIENTO DE LA PSEUDOTUBERCULOSIS<br />

El principal método utilizado <strong>en</strong> <strong><strong>la</strong>s</strong> piscifactorías para el control <strong>de</strong> <strong>la</strong> <strong>en</strong>fermedad<br />

son los ag<strong>en</strong>tes quimioterapéuticos: los antibióticos. Hasta finales <strong>de</strong> los och<strong>en</strong>ta eran<br />

muy efectivos <strong>en</strong> el tratami<strong>en</strong>to <strong>de</strong> esta infección, pero <strong>la</strong> aparición <strong>de</strong> cepas resist<strong>en</strong>tes<br />

(Aoki et al., 1981; Miranda y Zemelman, 2002; Radu et al., 2003; Zorril<strong>la</strong> et al., 2003) y<br />

<strong>la</strong> contaminación <strong>de</strong>l medio acuático (Kautsky et al., 2000; Sivaram et al., 2004) han<br />

llegado a constituir un grave problema <strong>en</strong> <strong>la</strong> acuicultura. La prev<strong>en</strong>ción <strong>de</strong> <strong><strong>la</strong>s</strong><br />

<strong>en</strong>fermeda<strong>de</strong>s infecciosas es una alternativa conv<strong>en</strong>i<strong>en</strong>te, <strong>de</strong> ahí que el <strong>de</strong>sarrollo <strong>de</strong><br />

sustancias inmunoestimu<strong>la</strong>ntes, capaces <strong>de</strong> activar el sistema inmune <strong>de</strong>l pez e inducir<br />

una mejor respuesta fr<strong>en</strong>te a los patóg<strong>en</strong>os, suponga una bu<strong>en</strong>a alternativa al uso <strong>de</strong><br />

antibióticos <strong>en</strong> acuicultura (Sakai, 1999). A<strong>de</strong>más <strong>de</strong> <strong>la</strong> posible aparición <strong>de</strong><br />

resist<strong>en</strong>cias, otro inconv<strong>en</strong>i<strong>en</strong>te que explica <strong>la</strong> ineficacia <strong>de</strong>l tratami<strong>en</strong>to con antibióticos<br />

es el hecho <strong>de</strong> que P. damse<strong>la</strong>e subsp. piscicida pue<strong>de</strong> pasar por un periodo intracelu<strong>la</strong>r<br />

22


INTRODUCCIÓN<br />

<strong>de</strong> parasitismo <strong>en</strong> el interior <strong>de</strong>l macrófago durante <strong>la</strong> infección (Kusuda y Sa<strong>la</strong>ti, 1993),<br />

lo que le evitaría estar <strong>en</strong> contacto con el antibiótico. Se comprueba, por tanto, que <strong>la</strong><br />

inmunoprofi<strong>la</strong>xis sería <strong>la</strong> mejor vía para prev<strong>en</strong>ir <strong>la</strong> pseudotuberculosis.<br />

A lo <strong>la</strong>rgo <strong>de</strong> los últimos veinte años, ha salido a <strong>la</strong> luz una gran variedad <strong>de</strong><br />

estudios que han analizado <strong>la</strong> eficacia <strong>de</strong> <strong>la</strong> inmunización mediante vacunación a <strong>la</strong> hora<br />

<strong>de</strong> prev<strong>en</strong>ir <strong>la</strong> pseudotuberculosis (Romal<strong>de</strong> y Magariños, 1997). La mayoría <strong>de</strong> <strong><strong>la</strong>s</strong><br />

vacunas probadas consistieron <strong>en</strong> célu<strong><strong>la</strong>s</strong> inactivadas por calor o por formalina (Fukuda<br />

y Kusuda, 1981; Kusuda y Hamaguchi, 1987; Kusuda y Hamaguchi, 1988; Hamaguchi y<br />

Kusuda, 1989). Aunque se alcanzó un cierto grado <strong>de</strong> protección, los mejores resultados<br />

fueron obt<strong>en</strong>idos empleando formu<strong>la</strong>ciones basadas <strong>en</strong> los lipopolisacáridos y <strong>en</strong> <strong><strong>la</strong>s</strong><br />

fracciones ribosomales <strong>de</strong> <strong><strong>la</strong>s</strong> bacterias (Fukuda y Kusuda, 1985; Kusuda et al., 1988;<br />

Kawakami et al., 1997). Sin embargo, estas formu<strong>la</strong>ciones pres<strong>en</strong>taron no sólo<br />

problemas <strong>de</strong> reproducibilidad, sino también dificulta<strong>de</strong>s <strong>en</strong> su producción a gran<br />

esca<strong>la</strong>. La inmunización pasiva también ha sido evaluada (Fukuda y Kusuda, 1981), pero<br />

los resultados mostraron un tiempo muy corto <strong>de</strong> protección. Uno <strong>de</strong> los porc<strong>en</strong>tajes <strong>de</strong><br />

protección más altos fr<strong>en</strong>te a <strong>la</strong> pseudotuberculosis se obtuvo con una bacterina<br />

<strong>en</strong>riquecida con productos extracelu<strong>la</strong>res (ECPs) (Magariños et al., 1994, 1997, 1999).<br />

Esta vacuna <strong>en</strong> <strong>la</strong> actualidad está disponible comercialm<strong>en</strong>te y ha sido empleada con<br />

éxito <strong>en</strong> varios países europeos, incluy<strong>en</strong>do España, Portugal y Grecia.<br />

La investigación <strong>en</strong> busca <strong>de</strong> vacunas más efectivas se ha dirigido también hacia el<br />

uso <strong>de</strong> bacterias vivas at<strong>en</strong>uadas (Kusuda y Hamaguchi, 1988), cuya utilización todavía<br />

no está permitida, y el uso <strong>de</strong> proteínas <strong>de</strong> <strong>la</strong> <strong>en</strong>vuelta celu<strong>la</strong>r (Magariños et al., 1994)<br />

como antíg<strong>en</strong>os protectores.<br />

Tal y como m<strong>en</strong>cionamos anteriorm<strong>en</strong>te, Magariños et al. (2000) <strong>de</strong>mostraron por<br />

medio <strong>de</strong> <strong>la</strong> técnica RAPD <strong>la</strong> exist<strong>en</strong>cia <strong>de</strong> dos linajes clonales según su proce<strong>de</strong>ncia:<br />

uno que incluiría a <strong><strong>la</strong>s</strong> cepas <strong>de</strong> orig<strong>en</strong> europeo y otro que <strong>en</strong>globaría a <strong><strong>la</strong>s</strong> <strong>de</strong><br />

proce<strong>de</strong>ncia japonesa y norteamericana. Más reci<strong>en</strong>tem<strong>en</strong>te, Juíz-Río et al. (2005),<br />

aplicando <strong>la</strong> técnica <strong>de</strong> hibridación subtractiva, concluyeron que este patóg<strong>en</strong>o pres<strong>en</strong>ta<br />

una alta heterog<strong>en</strong>eidad g<strong>en</strong>ética. Sin embargo, P. damse<strong>la</strong>e subsp. piscicida ha<br />

mostrado ser un microorganismo bioquímica y antigénicam<strong>en</strong>te homogéneo, incluy<strong>en</strong>do<br />

23


INTRODUCCIÓN<br />

<strong><strong>la</strong>s</strong> cepas <strong>de</strong>l patóg<strong>en</strong>o ais<strong>la</strong>das <strong>de</strong> l<strong>en</strong>guados cultivados <strong>en</strong> España (Bakopoulos et al.,<br />

1995; Magariños et al., 1996c, 2003). Por lo tanto, <strong>la</strong> inmunización con vacunas<br />

comerciales, originalm<strong>en</strong>te <strong>de</strong>sarrol<strong>la</strong>das para otros peces cultivados tales como dorada<br />

y lubina (Romal<strong>de</strong> y Magariños, 1997; Magariños et al., 1999), podría ser consi<strong>de</strong>rada<br />

como una medida efectiva para prev<strong>en</strong>ir <strong>la</strong> pseudotuberculosis <strong>en</strong> l<strong>en</strong>guado. Es<br />

necesario reseñar, sin embargo, que el l<strong>en</strong>guado es una especie totalm<strong>en</strong>te difer<strong>en</strong>te a<br />

aquel<strong><strong>la</strong>s</strong> especies piscíco<strong><strong>la</strong>s</strong> <strong>en</strong> <strong><strong>la</strong>s</strong> que estas vacunas se vi<strong>en</strong><strong>en</strong> aplicando, y, por tanto,<br />

es necesaria una a<strong>de</strong>cuación <strong>de</strong> su empleo <strong>en</strong> el l<strong>en</strong>guado. Hay <strong>de</strong>scritos diseños<br />

vacunales dival<strong>en</strong>tes que incluy<strong>en</strong> bacterina y ECPs inactivados por formol <strong>de</strong> Vibrio<br />

harveyi y P. damse<strong>la</strong>e subsp. piscicida y que se han aplicado específicam<strong>en</strong>te a<br />

l<strong>en</strong>guado obt<strong>en</strong>iéndose resultados prometedores (Arijo et al., 2005) aunque su<br />

efectividad es limitada <strong>en</strong> el tiempo. Por lo tanto, no hay que <strong>de</strong>scartar otros aspectos <strong>de</strong><br />

<strong>la</strong> profi<strong>la</strong>xis como es el empleo <strong>de</strong> los inmunoestimu<strong>la</strong>ntes y los probióticos.<br />

Los inmunoestimu<strong>la</strong>ntes son más seguros que los antibióticos, y su rango <strong>de</strong><br />

eficacia es más amplio que el <strong>de</strong> <strong><strong>la</strong>s</strong> vacunas, aunque su acción es <strong>de</strong> corta duración.<br />

Así, <strong>la</strong> estrategia más efectiva para prev<strong>en</strong>ir y combatir posibles <strong>en</strong>fermeda<strong>de</strong>s<br />

infecciosas <strong>de</strong> peces pue<strong>de</strong> ser el uso combinado <strong>de</strong> los métodos <strong>de</strong>scritos (Sakai, 1999).<br />

De hecho, <strong>en</strong> <strong>la</strong> actualidad, el uso <strong>de</strong> inmunoestimu<strong>la</strong>ntes, junto a ag<strong>en</strong>tes<br />

quimioterapéuticos o vacunas, ha sido ampliam<strong>en</strong>te aceptado por parte <strong>de</strong> los<br />

acuicultores. Sin embargo, es necesaria <strong>la</strong> búsqueda <strong>de</strong> nuevos ag<strong>en</strong>tes<br />

inmunoestimu<strong>la</strong>ntes que abarat<strong>en</strong> los costes <strong>de</strong> producción y result<strong>en</strong> efectivos fr<strong>en</strong>te a<br />

los patóg<strong>en</strong>os.<br />

La aplicación <strong>de</strong> los probióticos <strong>en</strong> acuicultura surge también por <strong>la</strong> necesidad <strong>de</strong><br />

contar con estrategias <strong>de</strong>stinadas al control <strong>de</strong> <strong>en</strong>fermeda<strong>de</strong>s que afectan a <strong><strong>la</strong>s</strong> especies<br />

cultivadas.<br />

4.2. INMUNOMODULACIÓN. INMUNOESTIMULACIÓN<br />

La inmunomodu<strong>la</strong>ción es <strong>la</strong> capacidad que ti<strong>en</strong><strong>en</strong> <strong>de</strong>terminadas sustancias y<br />

ag<strong>en</strong>tes <strong>de</strong> regu<strong>la</strong>r el sistema inmunitario, pudiéndose hab<strong>la</strong>r <strong>de</strong> inmunoestimu<strong>la</strong>ción o<br />

inmuno<strong>de</strong>presión si se estimu<strong>la</strong> o <strong>de</strong>prime dicho sistema, respectivam<strong>en</strong>te. La principal<br />

24


INTRODUCCIÓN<br />

razón <strong>de</strong> <strong>la</strong> búsqueda <strong>de</strong> nuevos ag<strong>en</strong>tes inmunoestimu<strong>la</strong>ntes es el gran <strong>de</strong>sarrollo <strong>de</strong> <strong>la</strong><br />

acuicultura y el increm<strong>en</strong>to <strong>de</strong> situaciones <strong>de</strong> estrés y <strong>en</strong>fermeda<strong>de</strong>s causadas por los<br />

cultivos int<strong>en</strong>sivos, que suel<strong>en</strong> producir un increm<strong>en</strong>to <strong>de</strong> <strong>la</strong> susceptibilidad a <strong><strong>la</strong>s</strong><br />

infecciones. Se han llevado a cabo algunos estudios <strong>en</strong> los que este efecto negativo fue<br />

superado por el uso <strong>de</strong> inmunoestimu<strong>la</strong>ntes (Siwicki et al., 1994; An<strong>de</strong>rson, 1996), ya<br />

que increm<strong>en</strong>tan los mecanismos <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa inespecíficos. Facilitan <strong>la</strong> función <strong>de</strong> <strong><strong>la</strong>s</strong><br />

célu<strong><strong>la</strong>s</strong> fagocíticas e increm<strong>en</strong>ta su actividad bactericida, si<strong>en</strong>do los mecanismos<br />

implicados los ya m<strong>en</strong>cionados in<strong>de</strong>p<strong>en</strong>di<strong>en</strong>tes y <strong>de</strong>p<strong>en</strong>di<strong>en</strong>tes (estallido respiratorio) <strong>de</strong><br />

oxíg<strong>en</strong>o (An<strong>de</strong>rson et al., 1992; Sakai, 1999).<br />

El empleo <strong>de</strong> inmunoestimu<strong>la</strong>ntes ti<strong>en</strong>e un valor principalm<strong>en</strong>te prev<strong>en</strong>tivo,<br />

pue<strong>de</strong>n ser capaces <strong>de</strong> comp<strong>en</strong>sar <strong><strong>la</strong>s</strong> limitaciones <strong>de</strong> los quimioterapéuticos y <strong>de</strong> <strong><strong>la</strong>s</strong><br />

vacunas (Tab<strong>la</strong> 3). Los inmunoestimu<strong>la</strong>ntes son más seguros que los quimioterapéuticos<br />

y su rango <strong>de</strong> eficacia es más amplio que el <strong>de</strong> <strong><strong>la</strong>s</strong> vacunas (Sakai, 1999). Su principal<br />

inconv<strong>en</strong>i<strong>en</strong>te es <strong>la</strong> corta duración <strong>de</strong> su acción ya que estas sustancias actúan sobre el<br />

sistema inmunitario inespecífico el cual carece <strong>de</strong> memoria (An<strong>de</strong>rson, 1996; Sakai,<br />

1999). Sakai (1999) afirma que, como reg<strong>la</strong> g<strong>en</strong>eral, <strong>la</strong> estrategia más efectiva para<br />

prev<strong>en</strong>ir y combatir posibles <strong>en</strong>fermeda<strong>de</strong>s infecciosas <strong>de</strong> peces es el uso combinado <strong>de</strong><br />

<strong>la</strong> vacunación y <strong>la</strong> administración <strong>de</strong> immunoestimu<strong>la</strong>ntes. De esta manera, con un<br />

conocimi<strong>en</strong>to <strong>de</strong>tal<strong>la</strong>do <strong>de</strong> <strong>la</strong> eficacia y limitaciones, el inmunoestimu<strong>la</strong>nte pue<strong>de</strong> llegar<br />

a ser una herrami<strong>en</strong>ta po<strong>de</strong>rosa <strong>en</strong> el control <strong>de</strong> <strong>en</strong>fermeda<strong>de</strong>s <strong>en</strong> peces.<br />

Aunque se han estudiado muchas sustancias naturales y sintéticas, con resultados<br />

que <strong>de</strong>muestran una pot<strong>en</strong>ciación <strong>de</strong>l sistema inmune <strong>de</strong> peces y un increm<strong>en</strong>to <strong>de</strong> <strong>la</strong><br />

resist<strong>en</strong>cia a <strong>la</strong> <strong>en</strong>fermedad, <strong>la</strong> búsqueda <strong>de</strong> nuevos inmunoestimu<strong>la</strong>ntes continúa hacia<br />

<strong>la</strong> mejora <strong>de</strong> <strong><strong>la</strong>s</strong> condiciones <strong>en</strong> los cultivos int<strong>en</strong>sivos. Estos nuevos productos <strong>de</strong>b<strong>en</strong><br />

poseer dos características: proporcionar una estimu<strong>la</strong>ción g<strong>en</strong>eral y ser económicam<strong>en</strong>te<br />

asequibles. En los últimos años, los estudios <strong>de</strong>stinados a tal fin se han c<strong>en</strong>trado<br />

principalm<strong>en</strong>te <strong>en</strong> el empleo <strong>de</strong> sustancias <strong>de</strong> orig<strong>en</strong> natural cuyas v<strong>en</strong>tajas principales<br />

respecto a <strong><strong>la</strong>s</strong> <strong>de</strong> orig<strong>en</strong> sintético radican <strong>en</strong> el hecho <strong>de</strong> ser sustancias no tóxicas,<br />

bio<strong>de</strong>gradables y biocompatibles con <strong>la</strong> salud humana.<br />

25


INTRODUCCIÓN<br />

Tab<strong>la</strong> 3 Comparación <strong>de</strong> <strong><strong>la</strong>s</strong> características <strong>de</strong> quimioterapéuticos, vacunas e<br />

inmunoestimu<strong>la</strong>ntes (Sakai, 1999)<br />

QUIMIOTERAPÉUTICOS VACUNAS INMUNOESTIMULANTES<br />

Cuándo Terapéutico Profiláctico Profiláctico<br />

Eficacia Excel<strong>en</strong>te Excel<strong>en</strong>te Bu<strong>en</strong>a<br />

Espectro <strong>de</strong><br />

actividad<br />

Medio Limitado Amplio<br />

Duración Corta Larga Corta<br />

4.3. USO DE LAS ALGAS COMO INMUNOESTIMULANTES<br />

En los últimos años se ha c<strong>en</strong>trado <strong>la</strong> at<strong>en</strong>ción <strong>en</strong> organismos marinos como fu<strong>en</strong>te<br />

<strong>de</strong> sustancias <strong>de</strong> interés terapéutico. En este s<strong>en</strong>tido, <strong>la</strong> capacidad <strong>de</strong> <strong><strong>la</strong>s</strong> algas para<br />

producir metabolitos secundarios <strong>de</strong> interés farmacéutico, como antibióticos, antivirales,<br />

antitumorales y antiinf<strong>la</strong>matorios ha sido ext<strong>en</strong>sam<strong>en</strong>te docum<strong>en</strong>tada (Scheuer, 1990;<br />

Faulkner, 1993; González <strong>de</strong>l Val et al., 2001). Sin embargo, los estudios <strong>en</strong>focados<br />

hacia <strong>la</strong> <strong>de</strong>tección <strong>de</strong> propieda<strong>de</strong>s inmunomodu<strong>la</strong>doras <strong>de</strong> extractos proce<strong>de</strong>ntes <strong>de</strong><br />

algas son todavía muy escasos (Blinkova et al., 2001; Castro et al., 2004, 2006). En esta<br />

Memoria nos hemos c<strong>en</strong>trado <strong>en</strong> el estudio <strong>de</strong> <strong>la</strong> microalga roja Porphyridium cru<strong>en</strong>tum<br />

como posible fu<strong>en</strong>te <strong>de</strong> sustancias inmunoestimu<strong>la</strong>ntes para l<strong>en</strong>guados cultivados. El<br />

alga cumpliría con los requisitos que hoy día se p<strong>la</strong>ntean <strong>en</strong> <strong>la</strong> búsqueda <strong>de</strong> nuevas<br />

sustancias pot<strong>en</strong>cialm<strong>en</strong>te inmunoestimu<strong>la</strong>ntes, ya que es una sustancia natural y su<br />

cultivo no suele ser costoso, tanto <strong>de</strong>s<strong>de</strong> el punto <strong>de</strong> vista económico, como <strong>en</strong> cuanto a<br />

tiempo y esfuerzo necesarios.<br />

Las algas ti<strong>en</strong><strong>en</strong> difer<strong>en</strong>tes compuestos con efecto sobre el sistema inmunitario <strong>de</strong><br />

los peces. Muchas algas son fu<strong>en</strong>te importante <strong>de</strong> los <strong>de</strong>nominados ácidos grasos<br />

poliinsaturados, PUFAs, es<strong>en</strong>ciales como requerimi<strong>en</strong>to dietético <strong>de</strong> muchos teleósteos<br />

(Bell et al., 1985; Kov<strong>en</strong> et al., 2001). A<strong>de</strong>más, algunos <strong>de</strong> ellos, como el ácido<br />

26


INTRODUCCIÓN<br />

araquidónico, están implicados <strong>en</strong> <strong>la</strong> síntesis <strong>de</strong> eicosanoi<strong>de</strong> y, por tanto, <strong>en</strong> <strong>la</strong><br />

producción <strong>de</strong> prostag<strong>la</strong>ndinas, implicadas <strong>en</strong> los procesos <strong>de</strong> estrés a través <strong>de</strong> <strong>la</strong><br />

modu<strong>la</strong>ción <strong>en</strong> <strong>la</strong> liberación <strong>de</strong>l cortisol y, por consigui<strong>en</strong>te, <strong>de</strong> <strong>la</strong> inmunidad celu<strong>la</strong>r<br />

(Vil<strong>la</strong>lta et al., 2005).<br />

Otro <strong>de</strong> los compon<strong>en</strong>tes que <strong>en</strong>contramos <strong>en</strong> <strong><strong>la</strong>s</strong> algas son los carot<strong>en</strong>oi<strong>de</strong>s, como<br />

el β-carot<strong>en</strong>o, <strong>la</strong> astaxantina, <strong>la</strong> cataxantina o <strong><strong>la</strong>s</strong> xantofilinas. Amar et al. (2004)<br />

<strong>de</strong>mostraron que el β-carot<strong>en</strong>o ais<strong>la</strong>do <strong>de</strong>l alga Dunaliel<strong>la</strong> salina es capaz <strong>de</strong> modu<strong>la</strong>r,<br />

tras <strong>la</strong> administración oral, algunos <strong>de</strong> los mecanismos <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa innata <strong>en</strong> trucha<br />

arcoiris (Oncorhynchus mykiss), como <strong>la</strong> actividad alternativa <strong>de</strong>l complem<strong>en</strong>to y <strong>la</strong><br />

lisozima <strong>en</strong> el suero, así como <strong>la</strong> fagocitosis. Los carot<strong>en</strong>oi<strong>de</strong>s increm<strong>en</strong>tan igualm<strong>en</strong>te<br />

<strong>la</strong> actividad fagocítica y <strong>la</strong> producción <strong>de</strong> citoquinas (B<strong>en</strong>dich, 1989; Chew, 1993).<br />

Las algas son también una fu<strong>en</strong>te natural <strong>de</strong> vitaminas, algunas <strong>de</strong> <strong><strong>la</strong>s</strong> cuales ti<strong>en</strong><strong>en</strong><br />

posibles efectos estimu<strong>la</strong>ntes sobre el sistema inmune <strong>de</strong> peces, como es el caso <strong>de</strong> <strong>la</strong><br />

vitamina C (Hardie et al., 1991; Cuesta et al., 2002; J<strong>en</strong>ey y J<strong>en</strong>ey, 2002; Lin y Shiau,<br />

2005), <strong>la</strong> vitamina E (Hardie et al., 1990; Cuesta et al., 2001) y otras <strong>de</strong>l grupo B (Miles<br />

et al., 2001).<br />

La utilización <strong>de</strong> polisacáridos como inmunoestimu<strong>la</strong>ntes está ampliam<strong>en</strong>te<br />

ext<strong>en</strong>dida <strong>en</strong> <strong>la</strong> acuicultura, pudiéndose adquirir comercialm<strong>en</strong>te (Siwicki et al., 1994;<br />

Cook et al., 2003; Couso et al., 2003; Bagni et al., 2005), si<strong>en</strong>do los glucanos los más<br />

estudiados <strong>en</strong> peces (Kumar et al., 2005). Los β-glucanos consist<strong>en</strong> <strong>en</strong> una serie <strong>de</strong><br />

residuos <strong>de</strong> β-1,3-glucopiranosil <strong>de</strong>rivados <strong>de</strong> levaduras y micelios <strong>de</strong> hongos. Estos<br />

azúcares parec<strong>en</strong> t<strong>en</strong>er un pot<strong>en</strong>te efecto inmunoestimu<strong>la</strong>nte, fundam<strong>en</strong>talm<strong>en</strong>te sobre<br />

los mecanismos <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa inespecíficos, induci<strong>en</strong>do resist<strong>en</strong>cia a infecciones. La<br />

mayor parte <strong>de</strong> estos estudios se c<strong>en</strong>tra <strong>en</strong> β-glucanos ais<strong>la</strong>dos <strong>de</strong> <strong>la</strong> levadura<br />

Saccharomyces cerevisiae (Santarém et al., 1997; Castro et al., 1999; Kumari y Sahoo,<br />

2006; Marqués et al., 2006).<br />

Otro polisacárido pot<strong>en</strong>cialm<strong>en</strong>te inmunoestimu<strong>la</strong>nte, proce<strong>de</strong>nte <strong>de</strong> difer<strong>en</strong>tes<br />

macro-y micro- algas pardas, es el ácido algínico. El alginato es conocido <strong>en</strong> <strong>la</strong><br />

acuicultura hace mucho tiempo, utilizándose <strong>en</strong> <strong>la</strong> fabricación <strong>de</strong> pi<strong>en</strong>so como<br />

estabilizador <strong>de</strong> <strong>la</strong> estructura. Las propieda<strong>de</strong>s inmunomodu<strong>la</strong>doras fueron <strong>de</strong>terminadas<br />

27


INTRODUCCIÓN<br />

<strong>en</strong> extractos <strong>de</strong> Phyophaecaetes, como Laminaria digitata (Dalmo et al., 1998;<br />

Gabriels<strong>en</strong> y Austr<strong>en</strong>g, 1998) y otros (Miles et al., 2001; Peddie et al., 2002; Skjermo y<br />

Bergh, 2004; Bagni et al., 2005).<br />

4.3.1. Porphyridium cru<strong>en</strong>tum<br />

Porphyridium cru<strong>en</strong>tum es una microalga roja, pert<strong>en</strong>eci<strong>en</strong>te a <strong>la</strong> familia<br />

Rodophyta, or<strong>de</strong>n Porphyridiales. Sus célu<strong><strong>la</strong>s</strong> se caracterizan por ser esféricas y sin<br />

pared celu<strong>la</strong>r. Acumu<strong>la</strong> gran<strong>de</strong>s cantida<strong>de</strong>s <strong>de</strong> ácidos grasos, que llegan a alcanzar <strong>en</strong>tre<br />

9 y 14% <strong>de</strong>l peso seco, especialm<strong>en</strong>te el ácido araquidónico (36% <strong>de</strong>l total <strong>de</strong> los ácidos<br />

grasos), y cantida<strong>de</strong>s consi<strong>de</strong>rables <strong>de</strong> ácido eicosap<strong>en</strong>ta<strong>en</strong>oico. El cont<strong>en</strong>ido proteico<br />

está <strong>en</strong> el rango <strong>de</strong>l 28 al 39%, y los carbohidratos disponibles varían <strong>en</strong>tre un 40 y un<br />

57%. La biomasa conti<strong>en</strong>e tocoferol, vitamina K y una gran cantidad <strong>de</strong> carot<strong>en</strong>os<br />

(Rebolloso et al., 2000).<br />

Una propiedad característica <strong>de</strong> P. cru<strong>en</strong>tum es que sus célu<strong><strong>la</strong>s</strong> son capaces <strong>de</strong><br />

excretar un polisacárido sulfatado, un heteropolímero acídico compuesto por xilosa,<br />

glucosa, ga<strong>la</strong>ctosa y ésteres <strong>de</strong> sulfato (You y Barneu, 2004). Este polisacárido es <strong>de</strong><br />

gran importancia dado que pue<strong>de</strong> ser usado comercialm<strong>en</strong>te como espesante,<br />

estabilizante y emulsionante (Arad et al., 1985, 1988; Adda et al., 1986).<br />

El alga P. cru<strong>en</strong>tum conti<strong>en</strong>e sustancias pres<strong>en</strong>tes <strong>en</strong> otros microorganismos <strong>de</strong> los<br />

cuales se ha <strong>de</strong>mostrado su efecto inmunoestimu<strong>la</strong>nte <strong>en</strong> fagocitos <strong>de</strong> peces. Estas<br />

sustancias incluy<strong>en</strong> ácido araquidónico (Kov<strong>en</strong> et al., 2001), carbohidratos (Kumar et<br />

al., 2005), vitaminas (Hardie et al. 1990, 1991; Ortuño et al., 1999, 2003; J<strong>en</strong>ey y J<strong>en</strong>ey,<br />

2002), carot<strong>en</strong>oi<strong>de</strong>s (Amar et al., 2004) y polisacáridos (Siwicki et al., 1994; Santarém et<br />

al., 1997; Castro et al., 1999; Bagni et al., 2000, 2005; Esteban et al., 2001; J<strong>en</strong>ey y J<strong>en</strong>ey,<br />

2002; Cook et al., 2003; Couso et al., 2003), pudi<strong>en</strong>do producir una respuesta inmune más<br />

g<strong>en</strong>eral al poseer varias sustancias ya probadas como inmunoestimu<strong>la</strong>ntes (Ortuño et<br />

al., 2002).<br />

P. cru<strong>en</strong>tum posee <strong><strong>la</strong>s</strong> principales características para po<strong>de</strong>r ser consi<strong>de</strong>rada como<br />

un pot<strong>en</strong>cial inmunoestimu<strong>la</strong>nte. Su cultivo no es costoso, ni <strong>de</strong>s<strong>de</strong> el punto <strong>de</strong> vista <strong>de</strong><br />

esfuerzo necesario, ni <strong>en</strong> términos económicos. A nivel industrial es conv<strong>en</strong>i<strong>en</strong>te<br />

28


INTRODUCCIÓN<br />

simplificar <strong>la</strong> administración <strong>de</strong>l inmunoestimu<strong>la</strong>nte, proporcionándo<strong>la</strong> por vía oral,<br />

incluyéndo<strong>la</strong> <strong>en</strong> el pi<strong>en</strong>so y con el m<strong>en</strong>or grado <strong>de</strong> manipu<strong>la</strong>ción posible. De hecho,<br />

durante los últimos años exist<strong>en</strong> cada vez más trabajos <strong>en</strong> los que se <strong>en</strong>sayan<br />

organismos completos, como levaduras (Siwicki et al., 1994; Ortuño et al., 2002;<br />

Rodríguez et al., 2003), hongos (Rodríguez et al., 2004) y probióticos (Verschuere et al.,<br />

2000; Irianto y Austin, 2003; Salinas et al., 2005; Díaz-Rosales et al., 2006). Sin embargo,<br />

a pesar <strong>de</strong> que son numerosos los estudios realizados con extractos o <strong>de</strong>terminados<br />

compuestos <strong>de</strong>rivados <strong>de</strong> algas (Kov<strong>en</strong> et al., 2001; Castro et al., 2004; Skjermo y Bergh,<br />

2004; Díaz-Rosales et al., 2005; Hou y Ch<strong>en</strong>, 2005; Vil<strong>la</strong>lta et al., 2005), son escasos los<br />

estudios que p<strong>la</strong>ntean el empleo <strong>de</strong> algas completas (Blinkova et al., 2001; Val<strong>en</strong>te et al.,<br />

2006).<br />

4.4. EFECTO INMUNOESTIMULANTE DE BACTERIAS<br />

POTENCIALMENTE PROBIÓTICAS<br />

La <strong>de</strong>finición <strong>de</strong> probiótico ha ido cambiando a lo <strong>la</strong>rgo <strong>de</strong>l tiempo, proponiéndose<br />

como probióticos a bacterias vivas o inactivadas o a alguno <strong>de</strong> sus compon<strong>en</strong>tes<br />

celu<strong>la</strong>res que también pue<strong>de</strong>n ejercer ciertos efectos b<strong>en</strong>eficiosos (Ouwehand y<br />

Salmin<strong>en</strong>, 1998; Iso<strong>la</strong>uri et al., 2002). Así, Salmin<strong>en</strong> et al. (1999) han separado <strong>la</strong><br />

<strong>de</strong>finición <strong>de</strong> probiótico <strong>de</strong>l alim<strong>en</strong>to y <strong>de</strong> su característica <strong>de</strong> ser microorganismos<br />

vivos con lo que se ha dado paso al sigui<strong>en</strong>te concepto: “un probiótico es cualquier<br />

preparación microbiana (no necesariam<strong>en</strong>te viva), o los compon<strong>en</strong>tes <strong>de</strong> célu<strong><strong>la</strong>s</strong><br />

microbianas, que ti<strong>en</strong><strong>en</strong> un efecto b<strong>en</strong>eficioso <strong>en</strong> <strong>la</strong> salud <strong>de</strong>l hospedador”. Igualm<strong>en</strong>te,<br />

Schrez<strong>en</strong>meir y <strong>de</strong> Vrese (2001) hac<strong>en</strong> refer<strong>en</strong>cia a los probióticos como “una<br />

preparación o producto que conti<strong>en</strong>e microorganismos <strong>de</strong>finidos <strong>en</strong> número sufici<strong>en</strong>te,<br />

capaces <strong>de</strong> alterar <strong>la</strong> microbiota, por imp<strong>la</strong>ntación o colonización, <strong>en</strong> un compartim<strong>en</strong>to<br />

<strong>de</strong>l hospedador y por el que ejerce efectos b<strong>en</strong>eficiosos sobre <strong>la</strong> salud <strong>de</strong>l hospedador”.<br />

Según <strong>la</strong> FAO, el término probiótico hace refer<strong>en</strong>cia a un complem<strong>en</strong>to microbiano <strong>de</strong><br />

<strong>la</strong> dieta que afecta b<strong>en</strong>eficiosam<strong>en</strong>te a <strong>la</strong> fisiología <strong>de</strong>l hospedador mediante modu<strong>la</strong>ción<br />

<strong>de</strong> <strong>la</strong> inmunidad sistémica y local, a<strong>de</strong>más <strong>de</strong> mejorar el ba<strong>la</strong>nce microbiano mediante <strong>la</strong><br />

29


INTRODUCCIÓN<br />

prev<strong>en</strong>ción <strong>de</strong> <strong>la</strong> colonización gastrointestinal por bacterias no <strong>de</strong>seables. Los avances<br />

<strong>en</strong> el empleo <strong>de</strong> los probióticos <strong>en</strong> gana<strong>de</strong>ría y medicina humana han conducido a<br />

consi<strong>de</strong>rar su aplicación también <strong>en</strong> <strong>la</strong> práctica acuíco<strong>la</strong> ya que pue<strong>de</strong>n ser una<br />

alternativa <strong>en</strong> <strong>la</strong> lucha contra <strong>la</strong> infección microbiana (Sakai, 1999). La investigación <strong>de</strong><br />

<strong>la</strong> aplicación <strong>de</strong> los probióticos <strong>en</strong> <strong>la</strong> industria acuíco<strong>la</strong> se ha increm<strong>en</strong>tado <strong>en</strong> los<br />

últimos años por <strong>la</strong> <strong>de</strong>manda <strong>de</strong> una industria acuíco<strong>la</strong> que, <strong>en</strong>tre otros aspectos, int<strong>en</strong>ta<br />

respetar el medio ambi<strong>en</strong>te. Los probióticos surg<strong>en</strong> <strong>de</strong> <strong>la</strong> necesidad <strong>de</strong> contar con<br />

estrategias <strong>de</strong>stinadas al biocontrol <strong>de</strong> <strong>en</strong>fermeda<strong>de</strong>s que afectan a <strong><strong>la</strong>s</strong> especies<br />

cultivadas <strong>en</strong> acuicultura. La mayoría <strong>de</strong> los trabajos realizados con probióticos <strong>en</strong><br />

peces se ha c<strong>en</strong>trado <strong>en</strong> el grado <strong>de</strong> protección <strong>de</strong>l pez fr<strong>en</strong>te a <strong>en</strong>fermeda<strong>de</strong>s infecciosas<br />

por su capacidad para inhibir el crecimi<strong>en</strong>to <strong>de</strong>l patóg<strong>en</strong>o. Actualm<strong>en</strong>te muchos <strong>de</strong> los<br />

estudios que se están realizando para dilucidar los mecanismos responsables <strong>de</strong> los<br />

efectos <strong>de</strong> los probióticos se están c<strong>en</strong>trando <strong>en</strong> <strong><strong>la</strong>s</strong> propieda<strong>de</strong>s inmunomodu<strong>la</strong>doras <strong>de</strong><br />

<strong><strong>la</strong>s</strong> cepas (Nikoske<strong>la</strong>in<strong>en</strong> et al., 2003; Irianto y Austin, 2003; Panigrahi et al., 2004;<br />

Salinas et al., 2005, 2006; Díaz-Rosales, 2006). De hecho, muchos <strong>de</strong> los<br />

inmunoestimu<strong>la</strong>ntes probados <strong>en</strong> acuicultura son compon<strong>en</strong>tes <strong>de</strong> célu<strong><strong>la</strong>s</strong> microbianas,<br />

como los glucanos, lipopolisacáridos y muramil dipéptido (An<strong>de</strong>rson, 1992). Sin<br />

embargo, <strong>la</strong> mayoría <strong>de</strong> ellos están c<strong>en</strong>trados <strong>en</strong> especies <strong>de</strong> agua dulce, si<strong>en</strong>do escasos,<br />

por el contrario, los llevados a cabo <strong>en</strong> especies marinas, y nulos los que se refier<strong>en</strong> a<br />

l<strong>en</strong>guado s<strong>en</strong>egalés (Tab<strong>la</strong> 4).<br />

Los animales acuáticos son muy difer<strong>en</strong>tes a los terrestres por lo que el concepto<br />

<strong>de</strong> probiótico cambia a <strong>la</strong> hora <strong>de</strong> su aplicación <strong>en</strong> acuicultura (Verschuere et al., 2000).<br />

La microbiota intestinal <strong>de</strong> <strong><strong>la</strong>s</strong> especies cultivadas interactúa <strong>de</strong> forma constante con el<br />

ambi<strong>en</strong>te, el cual ti<strong>en</strong>e una influ<strong>en</strong>cia mucho mayor sobre <strong>la</strong> salud <strong>de</strong> los peces que <strong>en</strong> el<br />

caso <strong>de</strong> los humanos o animales terrestres. Por lo tanto, <strong>de</strong>bido a que existe un flujo<br />

continuo <strong>de</strong> agua pasando a través <strong>de</strong>l tracto digestivo, <strong>la</strong> microbiota intestinal <strong>de</strong> los<br />

peces es <strong>de</strong>p<strong>en</strong>di<strong>en</strong>te <strong>de</strong>l ambi<strong>en</strong>te externo. De hecho, se han realizado estudios sobre <strong>la</strong><br />

microbiota <strong>de</strong>l pez y se ha visto que <strong>la</strong> variación es sustancial y que fluctúa diariam<strong>en</strong>te<br />

(Spanggaard et al., 2000). Por lo tanto, <strong>la</strong> mayoría <strong>de</strong> <strong><strong>la</strong>s</strong> bacterias son transitorias <strong>en</strong> el<br />

intestino <strong>de</strong>l pez, con intrusiones continuas <strong>de</strong> bacterias proce<strong>de</strong>ntes <strong>de</strong>l agua y <strong>de</strong> <strong>la</strong><br />

comida. De esta manera, no sólo se hab<strong>la</strong> <strong>de</strong> probiótico cuando se adiciona al alim<strong>en</strong>to,<br />

30


INTRODUCCIÓN<br />

sino también cuando se aña<strong>de</strong>n al medio, tanque o <strong>la</strong>guna <strong>de</strong> cultivo. Aquí el concepto<br />

<strong>de</strong> probiótico se amplía, <strong>de</strong>nominándose biocontrol cuando el tratami<strong>en</strong>to es con<br />

microorganismos antagonistas al patóg<strong>en</strong>o, o biorremediación cuando <strong>la</strong> calidad <strong>de</strong>l<br />

agua es mejorada.<br />

Verschuere et al. (2000) propon<strong>en</strong> una <strong>de</strong>finición modificada para el término<br />

probiótico aplicada <strong>en</strong> acuicultura: “Complem<strong>en</strong>to microbiano vivo que ti<strong>en</strong>e un efecto<br />

b<strong>en</strong>eficioso sobre el hospedador modificando <strong>la</strong> comunidad microbiana re<strong>la</strong>cionada con<br />

el hospedador o con el ambi<strong>en</strong>te, asegurando un uso mejorado <strong>de</strong>l alim<strong>en</strong>to o<br />

aum<strong>en</strong>tando su valor nutricional, favoreci<strong>en</strong>do <strong>la</strong> respuesta <strong>de</strong>l hospedador a <strong><strong>la</strong>s</strong><br />

<strong>en</strong>fermeda<strong>de</strong>s, o mejorando <strong>la</strong> calidad <strong>de</strong>l ambi<strong>en</strong>te”.<br />

Entre los mecanismos propuestos para explicar el modo <strong>en</strong> el que los probióticos<br />

pue<strong>de</strong>n interactuar con los patóg<strong>en</strong>os t<strong>en</strong>emos: (1) Exclusión competitiva por <strong>la</strong><br />

producción <strong>de</strong> compuestos antimicrobianos <strong>en</strong>tre los que se han <strong>de</strong>scrito bacteriocinas,<br />

lisozimas y proteasas (Austin et al., 1995; Sugita et al., 1997; Gatesoupe, 1999; Gram et<br />

al., 1999; Verschuere et al., 2000). Tan importante se ha consi<strong>de</strong>rado <strong>la</strong> capacidad <strong>de</strong><br />

inhibir el crecimi<strong>en</strong>to <strong>de</strong> bacterias patóg<strong>en</strong>as <strong>de</strong> peces, que esta característica se ha<br />

convertido <strong>en</strong> uno <strong>de</strong> los criterios más empleados para <strong>la</strong> selección <strong>de</strong> pot<strong>en</strong>ciales<br />

probióticos <strong>en</strong> acuicultura; (2) Competición por los nutri<strong>en</strong>tes y <strong>en</strong>ergía disponible<br />

(Smith y Davey, 1993; Pybus et al., 1994; Gatesoupe et al., 1997; Gram et al., 1999) y (3)<br />

Interfer<strong>en</strong>cia adhesiva <strong>en</strong> el hospedador (Olsson et al., 1992; Jöborn et al., 1997;<br />

Nikoske<strong>la</strong>in<strong>en</strong> et al., 2001; Chabrillón et al., 2005a y b).<br />

31


INTRODUCCIÓN<br />

Tab<strong>la</strong> 4 Efectos b<strong>en</strong>eficiosos <strong>de</strong> probióticos sobre el sistema inmune <strong>de</strong> peces<br />

PROBIÓTICO HOSPEDADOR INCREMENTO RESPUESTA REFERENCIA<br />

INMUNE<br />

Bacteria Gram Oncorhynchus Número eritrocitos y leucocitos, Irianto y Austin,<br />

positiva, no mykiss (trucha actividad lisozima, fagocitosis 2003<br />

i<strong>de</strong>ntificada arcoiris)<br />

Vibrio fluvialis Oncorhynchus Número eritrocitos y leucocitos, Irianto y Austin,<br />

mykiss<br />

actividad lisozima, fagocitosis 2003<br />

Aeromonas Oncorhynchus Número eritrocitos y leucocitos, Irianto y Austin,<br />

hydrophi<strong>la</strong> mykiss<br />

actividad lisozima, fagocitosis 2003<br />

Carnobacterium Oncorhynchus Número eritrocitos y leucocitos, Irianto y Austin,<br />

mykiss<br />

actividad lisozima, fagocitosis 2003<br />

Lactobacillus Oncorhynchus Estallido respiratorio, actividad Nikoske<strong>la</strong>in<strong>en</strong> et al.,<br />

rhamnosus mykiss<br />

bactericida suero, niveles Ig suero 2003<br />

Bacillus<br />

P<strong>en</strong>aeus<br />

Índice inmune (hemograma, Gullian et al., 2004<br />

vannamei producción anión <strong>superóxido</strong>,<br />

actividad f<strong>en</strong>oloxidasa, actividad<br />

antibacteriana, conc<strong>en</strong>tración<br />

proteica p<strong><strong>la</strong>s</strong>ma)<br />

Lactobacillus Oncorhynchus Activida<strong>de</strong>s lisozima y complem<strong>en</strong>to Panigrahi et al., 2004<br />

rhamnosus mykiss<br />

suero, fagocitosis<br />

Lactobacillus Sparus aurata Fagocitosis, actividad citotóxica Salinas et al., 2005<br />

<strong>de</strong>lbrüeckii subsp. (dorada)<br />

<strong>la</strong>ctis<br />

Bacillus subtilis Sparus aurata Fagocitosis, actividad citotóxica Salinas et al., 2005<br />

Aeromonas sobria<br />

Alteromonadaceae,<br />

G. Shewanel<strong>la</strong><br />

(Pdp11)<br />

Alteromonadaceae,<br />

G. Shewanel<strong>la</strong><br />

(51M6)<br />

Oncorhynchus Número leucocitos, fagocitosis,<br />

mykiss<br />

estallido respiratorio<br />

Sparus aurata Peroxidasa suero, actividad<br />

complem<strong>en</strong>to, fagocitosis<br />

Sparus aurata Peroxidasa suero, actividad<br />

complem<strong>en</strong>to, fagocitosis, actividad<br />

citotóxica<br />

Brunt y Austin, 2005<br />

Díaz-Rosales et al.,<br />

2006<br />

Díaz-Rosales et al.,<br />

2006<br />

32


INTRODUCCIÓN<br />

La necesidad <strong>de</strong> mejorar <strong>la</strong> resist<strong>en</strong>cia fr<strong>en</strong>te a <strong><strong>la</strong>s</strong> <strong>en</strong>fermeda<strong>de</strong>s, así como <strong>de</strong><br />

aum<strong>en</strong>tar <strong>la</strong> efici<strong>en</strong>cia <strong>en</strong> <strong>la</strong> alim<strong>en</strong>tación y <strong>en</strong> el <strong>de</strong>sarrollo <strong>de</strong>l crecimi<strong>en</strong>to son aspectos<br />

fundam<strong>en</strong>tales <strong>en</strong> varios sectores <strong>de</strong> esta industria <strong>en</strong> el empeño <strong>de</strong> lograr una reducción<br />

<strong>de</strong> los costes <strong>de</strong> producción. La microbiota gastrointestinal <strong>de</strong>sempeña una función<br />

importante <strong>en</strong> <strong>la</strong> nutrición y salud <strong>de</strong>l organismo hospedador. En este s<strong>en</strong>tido, los<br />

probióticos también pue<strong>de</strong>n <strong>de</strong>sempeñar un papel interesante, <strong>de</strong> esta forma <strong>en</strong> humanos<br />

y <strong>en</strong> <strong>la</strong> gana<strong>de</strong>ría terrestre se han investigado distintas formas <strong>de</strong> alterar <strong>la</strong> microbiota<br />

gastrointestinal por el empleo <strong>de</strong> probióticos con vistas a lograr unos efectos favorables,<br />

tales como mejora <strong>de</strong>l crecimi<strong>en</strong>to, <strong>de</strong> <strong>la</strong> digestión, <strong>de</strong> <strong>la</strong> inmunidad y <strong>de</strong> <strong>la</strong> resist<strong>en</strong>cia a<br />

<strong>la</strong> <strong>en</strong>fermedad <strong>de</strong>l hospedador. Si bi<strong>en</strong> <strong>en</strong> el campo <strong>de</strong> <strong>la</strong> acuicultura hay numerosos<br />

trabajos que han caracterizado <strong>la</strong> microbiota gastrointestinal <strong>de</strong> distintos peces<br />

cultivados, fundam<strong>en</strong>talm<strong>en</strong>te salmónidos (Spanggaard et al., 2000; Huber et al., 2004,<br />

J<strong>en</strong>s<strong>en</strong> et al., 2004; Burr et al., 2005), estos estudios son nulos <strong>en</strong> lo que se refiere a<br />

algunos <strong>de</strong> los peces marinos más cultivados <strong>en</strong> nuestra área, así como <strong>en</strong> <strong>la</strong> valoración<br />

<strong>de</strong> los efectos que sobre <strong>la</strong> microbiota gastrointestinal <strong>de</strong> estos peces pue<strong>de</strong> t<strong>en</strong>er <strong>la</strong><br />

aplicación <strong>de</strong> microorganismos probióticos. Este tipo <strong>de</strong> estudios son muy interesantes<br />

<strong>de</strong>s<strong>de</strong> el punto <strong>de</strong> vista <strong>de</strong> <strong>la</strong> información que pue<strong>de</strong>n aportar para una mejor aplicación<br />

<strong>de</strong> microorganismos <strong>en</strong> estrategias profilácticas y <strong>de</strong> biocontrol <strong>de</strong> <strong>en</strong>fermeda<strong>de</strong>s.<br />

33


O BJ E T I V O S


OBJETIVOS<br />

El trabajo p<strong>la</strong>nteado <strong>en</strong> esta Memoria <strong>de</strong> Tesis Doctoral consiste <strong>en</strong> <strong>la</strong><br />

profundización <strong>en</strong> el conocimi<strong>en</strong>to <strong>de</strong> ciertos aspectos <strong>de</strong> <strong>la</strong> virul<strong>en</strong>cia <strong>de</strong><br />

Photobacterium damse<strong>la</strong>e subsp. piscicida, así como <strong>la</strong> optimización <strong>de</strong> estrategias<br />

dirigidas a <strong>la</strong> prev<strong>en</strong>ción <strong>de</strong> <strong>la</strong> <strong>en</strong>fermedad que este patóg<strong>en</strong>o causa. En base a ello, se<br />

han p<strong>la</strong>nteado los sigui<strong>en</strong>tes objetivos:<br />

1. Estudio <strong>de</strong>l papel <strong>de</strong> <strong><strong>la</strong>s</strong> activida<strong>de</strong>s <strong>en</strong>zimáticas <strong>superóxido</strong> <strong>dismutasa</strong> y<br />

cata<strong><strong>la</strong>s</strong>a pres<strong>en</strong>tes <strong>en</strong> Photobacterium damse<strong>la</strong>e subsp. piscicida, evaluando<br />

su contribución a <strong>la</strong> resist<strong>en</strong>cia <strong>de</strong>l patóg<strong>en</strong>o fr<strong>en</strong>te a <strong>la</strong> acción bactericida <strong>de</strong><br />

los fagocitos <strong>de</strong> l<strong>en</strong>guado.<br />

2. Evaluación <strong>de</strong>l posible efecto inmunoestimu<strong>la</strong>nte sobre el estallido<br />

respiratorio <strong>de</strong> fagocitos <strong>de</strong> l<strong>en</strong>guados cultivados que pueda ejercer <strong>la</strong><br />

utilización <strong>de</strong> <strong>la</strong> microalga Porphyridium cru<strong>en</strong>tum y <strong>de</strong> microorganismos<br />

probióticos.<br />

37


M<br />

A T E R I A L Y M É T O D O S


MATERIA L Y MÉTODOS<br />

La metodología, así como el material empleado, <strong>en</strong> <strong>la</strong> realización <strong>de</strong> los difer<strong>en</strong>tes<br />

experim<strong>en</strong>tos que conforman esta Tesis Doctoral, se <strong>de</strong>tal<strong>la</strong>n <strong>en</strong> cada uno <strong>de</strong> los<br />

artículos incluidos <strong>en</strong> <strong>la</strong> Sección <strong>de</strong> artículos.<br />

41


R<br />

E S U L T A D O S Y D I S C U S I Ó N


RESULTADO S Y DISCUSIÓN<br />

El primer objetivo abordado <strong>en</strong> esta Tesis Doctoral ha consistido <strong>en</strong> el estudio <strong>de</strong>l<br />

papel <strong>de</strong> <strong><strong>la</strong>s</strong> activida<strong>de</strong>s <strong>en</strong>zimáticas <strong>superóxido</strong> <strong>dismutasa</strong> y cata<strong><strong>la</strong>s</strong>a <strong>en</strong> <strong>la</strong> virul<strong>en</strong>cia <strong>de</strong><br />

Photobacterium damse<strong>la</strong>e subsp. piscicida. En concreto, se ha evaluado <strong>la</strong> contribución<br />

<strong>de</strong> estas activida<strong>de</strong>s <strong>en</strong> <strong>la</strong> resist<strong>en</strong>cia <strong>de</strong>l patóg<strong>en</strong>o fr<strong>en</strong>te a <strong>la</strong> formación <strong>de</strong> radicales<br />

oxigénicos g<strong>en</strong>erados durante el estallido respiratorio <strong>de</strong> fagocitos <strong>de</strong> l<strong>en</strong>guado y, por<br />

tanto, su posible papel como factores <strong>de</strong> virul<strong>en</strong>cia (artículos 1.1. y 1.2., Sección <strong>de</strong><br />

artículos).<br />

Previam<strong>en</strong>te, Barnes et al. (1999a) <strong>de</strong>mostraron que este microorganismo in vitro<br />

conti<strong>en</strong>e sufici<strong>en</strong>te actividad <strong>superóxido</strong> <strong>dismutasa</strong> para <strong>de</strong>scomponer los aniones<br />

<strong>superóxido</strong> g<strong>en</strong>erados fotoquímicam<strong>en</strong>te, y que <strong>la</strong> susceptibilidad <strong>de</strong> <strong>la</strong> bacteria vi<strong>en</strong>e<br />

dada por <strong>la</strong> acumu<strong>la</strong>ción <strong>de</strong> peróxido <strong>de</strong> hidróg<strong>en</strong>o, ya que al adicionar cata<strong><strong>la</strong>s</strong>a <strong>la</strong><br />

superviv<strong>en</strong>cia se increm<strong>en</strong>ta. Estos hechos muestran <strong>la</strong> importancia <strong>de</strong>l peróxido <strong>de</strong><br />

hidróg<strong>en</strong>o <strong>en</strong> <strong>la</strong> inactivación <strong>de</strong> esta bacteria y, por consigui<strong>en</strong>te, <strong>la</strong> importancia <strong>de</strong> <strong>la</strong><br />

actividad cata<strong><strong>la</strong>s</strong>a <strong>en</strong> <strong>la</strong> resist<strong>en</strong>cia a este radical, cuyo papel no había sido <strong>de</strong>terminado<br />

anteriorm<strong>en</strong>te. En el pres<strong>en</strong>te trabajo, los resultados obt<strong>en</strong>idos sobre el papel <strong>de</strong> <strong>la</strong><br />

cata<strong><strong>la</strong>s</strong>a están <strong>de</strong>sarrol<strong>la</strong>dos <strong>en</strong> los artículos 1.1. y 1.2. (Sección <strong>de</strong> artículos). El primer<br />

artículo evalúa el papel in vitro <strong>de</strong> dicha <strong>en</strong>zima antioxidante <strong>en</strong> <strong>la</strong> protección <strong>de</strong> P.<br />

damse<strong>la</strong>e subsp. piscicida fr<strong>en</strong>te al peróxido <strong>de</strong> hidróg<strong>en</strong>o, <strong>de</strong>mostrándose <strong>la</strong> relevancia<br />

<strong>de</strong> <strong>la</strong> actividad cata<strong><strong>la</strong>s</strong>a <strong>en</strong> <strong>la</strong> resist<strong>en</strong>cia <strong>de</strong>l patóg<strong>en</strong>o fr<strong>en</strong>te a este radical oxig<strong>en</strong>ado.<br />

Los resultados obt<strong>en</strong>idos muestran que <strong>la</strong> resist<strong>en</strong>cia que confiere <strong>la</strong> actividad cata<strong><strong>la</strong>s</strong>a<br />

fr<strong>en</strong>te al peróxido <strong>de</strong> hidróg<strong>en</strong>o varía según <strong>la</strong> condición <strong>de</strong> cultivo a <strong>la</strong> que <strong>la</strong> bacteria<br />

se vea sometida. Así, cuando se ejerce un estrés oxidativo, por adición <strong>de</strong> peróxido <strong>de</strong><br />

hidróg<strong>en</strong>o, esa resist<strong>en</strong>cia se increm<strong>en</strong>ta; <strong>en</strong> cambio, cuando <strong><strong>la</strong>s</strong> condiciones son<br />

limitantes <strong>de</strong> hierro, los porc<strong>en</strong>tajes <strong>de</strong> superviv<strong>en</strong>cia disminuy<strong>en</strong>. A<strong>de</strong>más, según el<br />

grado <strong>de</strong> virul<strong>en</strong>cia esa resist<strong>en</strong>cia variará, si<strong>en</strong>do mayor <strong>en</strong> <strong>la</strong> cepa virul<strong>en</strong>ta que <strong>en</strong> <strong>la</strong><br />

no virul<strong>en</strong>ta. Por otro <strong>la</strong>do, <strong>en</strong> el artículo 1.2. (Sección <strong>de</strong> artículos) se <strong>de</strong>terminó <strong>la</strong><br />

pres<strong>en</strong>cia <strong>de</strong> actividad cata<strong><strong>la</strong>s</strong>a <strong>en</strong> difer<strong>en</strong>tes cepas <strong>de</strong> P. damse<strong>la</strong>e subsp. piscicida y se<br />

cuantificó espectrofotométricam<strong>en</strong>te dicha actividad <strong>en</strong> bacterias sometidas a difer<strong>en</strong>tes<br />

condiciones <strong>de</strong> cultivo. Los resultados obt<strong>en</strong>idos seña<strong>la</strong>n que los mayores porc<strong>en</strong>tajes <strong>de</strong><br />

superviv<strong>en</strong>cia coinci<strong>de</strong>n con <strong><strong>la</strong>s</strong> condiciones <strong>en</strong> <strong><strong>la</strong>s</strong> que los niveles <strong>de</strong> actividad cata<strong><strong>la</strong>s</strong>a<br />

<strong>de</strong>tectados son también superiores. Así, <strong>la</strong> cepa virul<strong>en</strong>ta Lg h41/01 pres<strong>en</strong>ta mayor<br />

45


RESULTADO S Y DISCUSIÓN<br />

resist<strong>en</strong>cia al estallido respiratorio <strong>de</strong> fagocitos <strong>de</strong> l<strong>en</strong>guado que <strong>la</strong> no virul<strong>en</strong>ta EPOY-<br />

8803-II, mi<strong>en</strong>tras que <strong>la</strong> adición <strong>de</strong> peróxido <strong>de</strong> hidróg<strong>en</strong>o a los cultivos increm<strong>en</strong>ta <strong>la</strong><br />

superviv<strong>en</strong>cia <strong>de</strong> ambos. La aus<strong>en</strong>cia <strong>de</strong> cápsu<strong>la</strong> podría ser un factor que haría disminuir<br />

<strong>la</strong> superviv<strong>en</strong>cia fr<strong>en</strong>te a los ROS, pero los bajos niveles <strong>de</strong> actividad cata<strong><strong>la</strong>s</strong>a obt<strong>en</strong>idos<br />

para EPOY-8803-II, sugier<strong>en</strong> que <strong>la</strong> falta <strong>de</strong> virul<strong>en</strong>cia podría v<strong>en</strong>ir <strong>de</strong>terminada, <strong>en</strong> gran<br />

parte, por <strong>la</strong> baja actividad <strong>en</strong>zimática <strong>de</strong> dicha proteína antioxidante, es <strong>de</strong>cir, <strong>la</strong><br />

cata<strong><strong>la</strong>s</strong>a ejerce un papel importante <strong>en</strong> <strong>la</strong> virul<strong>en</strong>cia <strong>de</strong> P. damse<strong>la</strong>e subsp. piscicida. En<br />

muchas bacterias ya se ha <strong>de</strong>mostrado que <strong>la</strong> exposición previa a conc<strong>en</strong>traciones<br />

subletales <strong>de</strong> un oxidante pue<strong>de</strong> inducir <strong>la</strong> protección fr<strong>en</strong>te a conc<strong>en</strong>traciones letales<br />

<strong>de</strong>l mismo (Mongkolsuk et al., 1996). Un ejemplo es el <strong>de</strong>scrito por Barnes et al. (1999b)<br />

<strong>en</strong> el caso <strong>de</strong> A. salmonicida, <strong>la</strong> cual, tras los pulsos <strong>de</strong> peróxido <strong>de</strong> hidróg<strong>en</strong>o, es capaz<br />

<strong>de</strong> resistir <strong>la</strong> conc<strong>en</strong>tración <strong>de</strong> peróxido <strong>de</strong> 100 mM, letal <strong>en</strong> aus<strong>en</strong>cia <strong>de</strong> pretratami<strong>en</strong>to<br />

con peróxido <strong>de</strong> hidróg<strong>en</strong>o. Es interesante seña<strong>la</strong>r que para EPOY-8803-II <strong><strong>la</strong>s</strong><br />

difer<strong>en</strong>cias, <strong>en</strong> cuanto a los porc<strong>en</strong>tajes <strong>de</strong> superviv<strong>en</strong>cia, son significativas <strong>en</strong>tre los<br />

cultivos crecidos hasta fase estacionaria y aquellos adicionados con peróxido, si<strong>en</strong>do<br />

estos últimos mayores. Sin embargo, para <strong>la</strong> cepa Lg h41/01 no ocurre lo mismo, ya que no<br />

se aprecian difer<strong>en</strong>cias significativas <strong>en</strong> <strong>la</strong> superviv<strong>en</strong>cia <strong>de</strong> los cultivos con o sin<br />

peróxido.<br />

Por otro <strong>la</strong>do, <strong>la</strong> superviv<strong>en</strong>cia disminuye <strong>de</strong> forma significativa <strong>en</strong> ambas cepas<br />

cuando se somet<strong>en</strong> a condiciones limitantes <strong>de</strong> hierro. No po<strong>de</strong>mos olvidar que estamos<br />

ante una cata<strong><strong>la</strong>s</strong>a <strong>de</strong> tipo férrica (artículo 1.2., Sección <strong>de</strong> artículos), por lo que <strong>la</strong><br />

car<strong>en</strong>cia <strong>de</strong> este metal limita su síntesis, y, por tanto, su actividad.<br />

Tanto <strong>superóxido</strong> <strong>dismutasa</strong> como cata<strong><strong>la</strong>s</strong>a son metalo<strong>en</strong>zimas, pudi<strong>en</strong>do poseer<br />

difer<strong>en</strong>tes metales <strong>en</strong> su c<strong>en</strong>tro activo. En <strong>la</strong> bibliografía se han <strong>de</strong>scrito<br />

microorganismos capaces <strong>de</strong> producir difer<strong>en</strong>tes iso<strong>en</strong>zimas <strong>de</strong> <strong>superóxido</strong> <strong>dismutasa</strong> y<br />

cata<strong><strong>la</strong>s</strong>a inducibles según <strong><strong>la</strong>s</strong> condiciones <strong>de</strong> cultivo a <strong><strong>la</strong>s</strong> que el microorganismo es<br />

sometido, como altos niveles <strong>de</strong> oxíg<strong>en</strong>o, bajos niveles <strong>de</strong> hierro o crecimi<strong>en</strong>to hasta <strong>la</strong><br />

fase estacionaria (Storz et al., 1990; Privalle y Fridovich, 1992; Crockford et al., 1995;<br />

Schnell y Steinman, 1995; Barnes et al., 1996; Po<strong>la</strong>ck et al., 1996; St. John y Steinman,<br />

46


RESULTADO S Y DISCUSIÓN<br />

1996; Lynch y Kuramitsu, 2000; Yesilkaya et al., 2000; Geslin et al., 2001; Vattanaviboon<br />

y Mongkolsuk, 2001).<br />

Sin embargo, aún es escasa <strong>la</strong> información sobre <strong><strong>la</strong>s</strong> activida<strong>de</strong>s <strong>superóxido</strong><br />

<strong>dismutasa</strong> y cata<strong><strong>la</strong>s</strong>a y <strong>la</strong> posible inducción <strong>de</strong> <strong><strong>la</strong>s</strong> difer<strong>en</strong>tes isoformas <strong>en</strong> P. damse<strong>la</strong>e<br />

subsp. piscicida. Así <strong>en</strong> este trabajo se <strong>de</strong>terminó si este patóg<strong>en</strong>o podría expresar<br />

difer<strong>en</strong>tes iso<strong>en</strong>zimas <strong>de</strong> <strong>superóxido</strong> <strong>dismutasa</strong> y <strong>de</strong> cata<strong><strong>la</strong>s</strong>a cuando es cultivado bajo<br />

difer<strong>en</strong>tes condiciones <strong>de</strong> cultivo. Los resultados obt<strong>en</strong>idos <strong>en</strong> este trabajo muestran que<br />

ninguna <strong>de</strong> <strong><strong>la</strong>s</strong> condiciones <strong>de</strong> cultivo <strong>en</strong>sayadas induc<strong>en</strong> <strong>la</strong> síntesis <strong>de</strong> difer<strong>en</strong>tes<br />

isoformas <strong>de</strong> <strong>superóxido</strong> <strong>dismutasa</strong> o cata<strong><strong>la</strong>s</strong>a <strong>en</strong> ninguna <strong>de</strong> <strong><strong>la</strong>s</strong> cepas <strong>de</strong> P. damse<strong>la</strong>e<br />

subsp. piscicida.<br />

Todas y cada una <strong>de</strong> <strong><strong>la</strong>s</strong> cepas <strong>en</strong>sayadas pres<strong>en</strong>tan una so<strong>la</strong> banda <strong>de</strong> actividad<br />

<strong>superóxido</strong> <strong>dismutasa</strong>, banda <strong>de</strong> simi<strong>la</strong>r movilidad electroforética a <strong>la</strong> <strong>superóxido</strong><br />

<strong>dismutasa</strong> férrica <strong>de</strong>scrita por Barnes et al. (1999a). Incluso bajo condiciones <strong>de</strong> estrés<br />

oxidativo, tras <strong>la</strong> adición <strong>de</strong> peróxido <strong>de</strong> hidróg<strong>en</strong>o o <strong>de</strong>l g<strong>en</strong>erador <strong>de</strong> radicales<br />

oxigénicos paraquat, no se induce una iso<strong>en</strong>zima distinta, estando <strong>de</strong>scrito que<br />

condiciones aeróbicas induc<strong>en</strong> <strong>la</strong> síntesis <strong>de</strong> CuZnSOD y <strong>de</strong> MnSOD <strong>en</strong> Escherichia<br />

coli (Hassan y Fridovich, 1977; Privalle y Fridovich, 1992; B<strong>en</strong>ov y Fridovich, 1994;<br />

Geslin et al., 2001), así como <strong>de</strong> esta última <strong>en</strong> A. salmonicida (Barnes et al., 1996;<br />

Barnes et al., 1999b), Pseudomonas aeruginosa (Po<strong>la</strong>ck et al., 1996) y Streptococcus<br />

pneumoniae (Yesilkaya et al., 2000). Ni tan siquiera condiciones restrictivas <strong>de</strong> hierro<br />

que induc<strong>en</strong> <strong>la</strong> síntesis <strong>de</strong> MnSOD (Privalle y Fridovich, 1992; Barnes et al., 1999b)<br />

induc<strong>en</strong> <strong>la</strong> síntesis <strong>de</strong> una iso<strong>en</strong>zima distinta. Aunque serían necesarios más estudios, <strong>la</strong><br />

falta <strong>de</strong> inducción <strong>de</strong> una SOD nueva podría ser <strong>de</strong>bida a <strong>la</strong> exist<strong>en</strong>cia <strong>de</strong> un único g<strong>en</strong><br />

codificador <strong>de</strong> <strong>la</strong> <strong>superóxido</strong> <strong>dismutasa</strong> férrica, el sodB (Lynch y Kuramitsu, 2000).<br />

De igual modo, todas <strong><strong>la</strong>s</strong> cepas, bajo todas <strong><strong>la</strong>s</strong> condiciones <strong>de</strong> cultivo <strong>en</strong>sayadas,<br />

pres<strong>en</strong>tan una so<strong>la</strong> banda <strong>de</strong> actividad cata<strong><strong>la</strong>s</strong>a <strong>de</strong> simi<strong>la</strong>r movilidad electroforética a <strong>la</strong><br />

ya <strong>de</strong>scrita por Barnes et al. (1999a). Esta <strong>en</strong>zima fue caracterizada, mediante el uso <strong>de</strong><br />

inhibidores, no pudi<strong>en</strong>do ser <strong>de</strong>tectada <strong>en</strong> geles tras <strong>la</strong> exposición a <strong>la</strong> azida sódica, y<br />

viéndose reducida ligeram<strong>en</strong>te tras el tratami<strong>en</strong>to con cianuro potásico, por lo que<br />

estamos ante una cata<strong><strong>la</strong>s</strong>a férrica, ya que <strong><strong>la</strong>s</strong> cata<strong><strong>la</strong>s</strong>as con manganeso <strong>en</strong> su c<strong>en</strong>tro<br />

47


RESULTADO S Y DISCUSIÓN<br />

activo reti<strong>en</strong><strong>en</strong> su actividad tras tratami<strong>en</strong>to con azida y cianuro, y son inhibidas con<br />

cloruro <strong>de</strong> mercurio (Kono y Fridovich, 1983; Allgood y Perry, 1986; Barnes et al.,<br />

1999b).<br />

A pesar <strong>de</strong> que ninguna <strong>de</strong> <strong><strong>la</strong>s</strong> condiciones <strong>de</strong> cultivo <strong>en</strong>sayadas induc<strong>en</strong> <strong>la</strong> síntesis<br />

<strong>de</strong> más <strong>de</strong> un tipo <strong>de</strong> iso<strong>en</strong>zima <strong>superóxido</strong> <strong>dismutasa</strong> o cata<strong><strong>la</strong>s</strong>a, sí se aprecian<br />

difer<strong>en</strong>cias <strong>en</strong> <strong>la</strong> int<strong>en</strong>sidad <strong>de</strong> <strong><strong>la</strong>s</strong> bandas <strong>de</strong>tectadas por electroforesis nativa, así como<br />

<strong>en</strong> los niveles <strong>de</strong> actividad, tras su cuantificación espectrofotométricam<strong>en</strong>te. Estos<br />

resultados concuerdan con los obt<strong>en</strong>idos por Barnes et al. (1999a) que <strong>de</strong>tectaron<br />

difer<strong>en</strong>cias <strong>en</strong> cultivos sometidos a difer<strong>en</strong>tes conc<strong>en</strong>traciones <strong>de</strong> hierro y distintos<br />

niveles <strong>de</strong> oxíg<strong>en</strong>o. Los niveles más bajos <strong>de</strong> actividad <strong>superóxido</strong> <strong>dismutasa</strong> y cata<strong><strong>la</strong>s</strong>a<br />

se obti<strong>en</strong><strong>en</strong> <strong>en</strong> cultivos sometidos a condiciones limitantes <strong>de</strong> hierro, hecho atribuible a<br />

<strong>la</strong> naturaleza férrica <strong>de</strong> ambas <strong>en</strong>zimas. Es interesante seña<strong>la</strong>r que, tanto para <strong>la</strong><br />

actividad <strong>superóxido</strong> <strong>dismutasa</strong>, como cata<strong><strong>la</strong>s</strong>a, bajo condiciones restrictivas <strong>de</strong> hierro,<br />

<strong>la</strong> cepa virul<strong>en</strong>ta pres<strong>en</strong>ta mayores niveles <strong>de</strong> actividad. Esto nos indica <strong>la</strong> importancia<br />

<strong>de</strong> <strong>la</strong> pres<strong>en</strong>cia <strong>de</strong> mecanismos <strong>de</strong> captación <strong>de</strong> hierro tanto para <strong>la</strong> expresión <strong>de</strong> SOD<br />

como <strong>de</strong> cata<strong><strong>la</strong>s</strong>a. De esta forma, los microorganismos capaces <strong>de</strong> obt<strong>en</strong>er hierro a partir<br />

<strong>de</strong>l hospedador serían capaces <strong>de</strong> expresar niveles más elevados <strong>de</strong> <strong><strong>la</strong>s</strong> <strong>en</strong>zimas<br />

antioxidantes y podrían <strong>de</strong>scomponer los radicales <strong>superóxido</strong> y peróxido <strong>de</strong> hidróg<strong>en</strong>o<br />

g<strong>en</strong>erados por dicho hospedador. Sin embargo, si bi<strong>en</strong> <strong>en</strong> otras especies bacterianas<br />

como Listeria monocytog<strong>en</strong>es (Welch et al., 1979), Shigel<strong>la</strong> flexneri (Franzon et al.,<br />

1990) o A. salmonicida (Barnes et al., 1999b) se ha <strong>de</strong>mostrado <strong>la</strong> importancia <strong>de</strong> SOD<br />

como <strong>en</strong>zima antioxidante y su contribución a <strong>la</strong> patogénesis, <strong>en</strong> el caso <strong>de</strong> P. damse<strong>la</strong>e<br />

subsp. piscicida este papel no está tan c<strong>la</strong>ro. Pero <strong>la</strong> cepa EPOY-8803-II, que no es<br />

virul<strong>en</strong>ta para l<strong>en</strong>guados, ti<strong>en</strong>e niveles <strong>de</strong> actividad cercanos a los <strong>de</strong> <strong>la</strong> cepa virul<strong>en</strong>ta.<br />

Estos resultados pue<strong>de</strong>n atribuirse a unos niveles <strong>de</strong>fici<strong>en</strong>tes <strong>de</strong> otras activida<strong>de</strong>s<br />

antioxidantes tales como cata<strong><strong>la</strong>s</strong>a, lo que haría que se dieran oxidaciones como<br />

consecu<strong>en</strong>cia <strong>de</strong> <strong>la</strong> acumu<strong>la</strong>ción <strong>de</strong> otros radicales <strong>de</strong>rivados <strong>de</strong> <strong>la</strong> <strong>de</strong>scomposición <strong>de</strong><br />

<strong>superóxido</strong>. Otra posible explicación a <strong>la</strong> no virul<strong>en</strong>cia <strong>de</strong> <strong>la</strong> cepa EPOY-8803-II es su<br />

car<strong>en</strong>cia <strong>de</strong> cápsu<strong>la</strong>, que <strong>la</strong> haría más susceptible al reconocimi<strong>en</strong>to por el sistema<br />

inmune <strong>de</strong>l hospedador.<br />

48


RESULTADO S Y DISCUSIÓN<br />

Una vez <strong>de</strong>terminada in vitro <strong>la</strong> importancia tanto <strong>de</strong> SOD (Barnes et al., 1999a),<br />

como <strong>de</strong> cata<strong><strong>la</strong>s</strong>a (artículo 1.2., Sección <strong>de</strong> artículos), se analizó el papel <strong>de</strong> estas<br />

activida<strong>de</strong>s in vivo, mediante incubación <strong>de</strong> <strong>la</strong> bacteria con fagocitos. Como se ha<br />

m<strong>en</strong>cionado anteriorm<strong>en</strong>te, <strong>la</strong> interacción, el modo <strong>de</strong> invadir y sobrevivir <strong>en</strong> el interior<br />

<strong>de</strong>l hospedador, <strong>en</strong>tre los fagocitos <strong>de</strong> l<strong>en</strong>guado y P. damse<strong>la</strong>e subsp. piscicida aún no<br />

se conoc<strong>en</strong> bi<strong>en</strong>. Mi<strong>en</strong>tras que algunos autores seña<strong>la</strong>n <strong>la</strong> pres<strong>en</strong>cia <strong>de</strong> célu<strong><strong>la</strong>s</strong> <strong>de</strong> P.<br />

damse<strong>la</strong>e subsp. piscicida intactas <strong>en</strong> el interior <strong>de</strong> célu<strong><strong>la</strong>s</strong> <strong>de</strong> dorada, sugiri<strong>en</strong>do <strong>la</strong><br />

capacidad <strong>de</strong> <strong>la</strong> bacteria para sobrevivir como patóg<strong>en</strong>o intracelu<strong>la</strong>r <strong>en</strong> dorada (Noya et<br />

al., 1995b; López-Dóriga et al., 2000), incluso <strong>de</strong> multiplicarse <strong>en</strong> el interior <strong>de</strong><br />

macrófagos <strong>de</strong>l pez (Kubota et al., 1970; Hawke et al., 1987; Noya et al., 1995a; Elkamel<br />

et al., 2003), otros han observado que este patóg<strong>en</strong>o es altam<strong>en</strong>te susceptible a los<br />

radicales oxidativos g<strong>en</strong>erados durante el estallido respiratorio <strong>en</strong> los fagocitos <strong>de</strong><br />

trucha, lubina y dorada (Skarmeta et al., 1995). Barnes et al. (1999a) confirmaron que P.<br />

damse<strong>la</strong>e subsp. piscicida es incapaz <strong>de</strong> respon<strong>de</strong>r al ataque oxidativo g<strong>en</strong>erado durante<br />

el estallido respiratorio, ya que <strong>en</strong> dicho trabajo <strong><strong>la</strong>s</strong> cepas <strong>en</strong>sayadas mostraron alta<br />

susceptibilidad a radicales <strong>de</strong> oxíg<strong>en</strong>o g<strong>en</strong>erados in vitro.<br />

Los resultados incluidos <strong>en</strong> el artículo 1.2. (Sección <strong>de</strong> artículos) muestran que P.<br />

damse<strong>la</strong>e subsp. piscicida es capaz <strong>de</strong> sobrevivir al m<strong>en</strong>os cinco horas <strong>en</strong> contacto con<br />

fagocitos <strong>de</strong> l<strong>en</strong>guado, si<strong>en</strong>do los porc<strong>en</strong>tajes <strong>de</strong> superviv<strong>en</strong>cia mayores <strong>en</strong> <strong>la</strong> cepa<br />

virul<strong>en</strong>ta (62%) que <strong>en</strong> <strong>la</strong> no virul<strong>en</strong>ta (19%), y correspondi<strong>en</strong>do <strong><strong>la</strong>s</strong> condiciones <strong>de</strong><br />

cultivo con aquel<strong><strong>la</strong>s</strong> <strong>en</strong> <strong><strong>la</strong>s</strong> que <strong>la</strong> actividad cata<strong><strong>la</strong>s</strong>a muestra también un increm<strong>en</strong>to, lo<br />

que indica un importante papel <strong>de</strong> <strong>la</strong> cata<strong><strong>la</strong>s</strong>a <strong>en</strong> <strong>la</strong> superviv<strong>en</strong>cia bacteriana. Estos<br />

resultados sugier<strong>en</strong> que <strong>la</strong> inactivación bacteriana podría ser <strong>de</strong>bida a <strong>la</strong> acumu<strong>la</strong>ción <strong>de</strong><br />

peróxido <strong>de</strong> hidróg<strong>en</strong>o, precursor <strong>de</strong>l radical hidroxilo. Mi<strong>en</strong>tras que Barnes et al.<br />

(1999a) mostraron que tanto <strong>la</strong> cepa virul<strong>en</strong>ta como <strong>la</strong> no virul<strong>en</strong>ta eran susceptibles a<br />

los radicales g<strong>en</strong>erados fotoquímicam<strong>en</strong>te, <strong>en</strong> este trabajo se <strong>de</strong>muestra que <strong>la</strong> cepa no<br />

virul<strong>en</strong>ta EPOY-8803-II, es significativam<strong>en</strong>te más susceptible que <strong>la</strong> virul<strong>en</strong>ta, Lg h41/01 ,<br />

al estallido respiratorio <strong>de</strong> fagocitos <strong>de</strong> l<strong>en</strong>guado. A<strong>de</strong>más <strong>de</strong> los niveles bajos <strong>de</strong><br />

actividad cata<strong><strong>la</strong>s</strong>a, esa susceptibilidad podría también ser causada por <strong>la</strong> aus<strong>en</strong>cia <strong>de</strong><br />

cápsu<strong>la</strong>, <strong>la</strong> cápsu<strong>la</strong> podría proteger a <strong><strong>la</strong>s</strong> bacterias <strong>de</strong> los radicales oxig<strong>en</strong>ados o prev<strong>en</strong>ir<br />

<strong>la</strong> activación <strong>de</strong> los fagocitos (Miller y Britigan, 1997; Arijo et al., 1998).<br />

49


RESULTADO S Y DISCUSIÓN<br />

Finalm<strong>en</strong>te, se ha constatado <strong>la</strong> importancia <strong>de</strong>l hierro <strong>en</strong> <strong>la</strong> resist<strong>en</strong>cia <strong>de</strong> <strong>la</strong><br />

bacteria P. damse<strong>la</strong>e subsp. piscicida, tal y como se ha <strong>de</strong>scrito <strong>en</strong> otros<br />

microorganismos (Miller y Britigan, 1997; Weinberg, 2000). P. damse<strong>la</strong>e subsp.<br />

piscicida es más susceptible a los fagocitos <strong>de</strong> l<strong>en</strong>guado cuando <strong><strong>la</strong>s</strong> célu<strong><strong>la</strong>s</strong> bacterianas<br />

son cultivadas bajo condiciones limitantes <strong>de</strong> hierro. La bacteria requiere hierro para su<br />

crecimi<strong>en</strong>to, replicación y síntesis <strong>de</strong> <strong>en</strong>zimas tales como <strong>superóxido</strong> <strong>dismutasa</strong> y<br />

cata<strong><strong>la</strong>s</strong>a, habiéndose <strong>de</strong>scrito <strong>la</strong> pres<strong>en</strong>cia <strong>de</strong> un si<strong>de</strong>róforo <strong>en</strong> P. damse<strong>la</strong>e subsp.<br />

piscicida (Magariños et al., 1994; Naka et al., 2005). Sin embargo, a pesar <strong>de</strong> su<br />

capacidad para obt<strong>en</strong>er hierro, varios autores han observado que <strong><strong>la</strong>s</strong> célu<strong><strong>la</strong>s</strong> cultivadas<br />

<strong>en</strong> condiciones limitantes <strong>de</strong> hierro, reduc<strong>en</strong> su material capsu<strong>la</strong>r (do Vale et al., 2001).<br />

Cabría p<strong>en</strong>sar que estas célu<strong><strong>la</strong>s</strong> con cápsu<strong>la</strong> reducida, serían más susceptibles a <strong>la</strong><br />

fagocitosis y al estrés oxidativo. Los resultados obt<strong>en</strong>idos (artículos 1.1. y 1.2., Sección<br />

<strong>de</strong> artículos) indican que el hierro juega un importante papel <strong>en</strong> <strong>la</strong> superviv<strong>en</strong>cia <strong>de</strong> P.<br />

damse<strong>la</strong>e subsp. piscicida <strong>en</strong> contacto con los fagocitos, sugiriéndose que ello es<br />

atribuible a <strong>la</strong> contribución <strong>de</strong>l material capsu<strong>la</strong>r, o a <strong>la</strong> síntesis <strong>de</strong> SOD y cata<strong><strong>la</strong>s</strong>a. En<br />

conclusión, P. damse<strong>la</strong>e subsp. piscicida es capaz <strong>de</strong> sobrevivir <strong>en</strong> contacto con<br />

fagocitos <strong>de</strong> l<strong>en</strong>guado, si<strong>en</strong>do los porc<strong>en</strong>tajes <strong>de</strong> superviv<strong>en</strong>cia mayores <strong>en</strong> <strong>la</strong> cepa<br />

virul<strong>en</strong>ta que <strong>en</strong> <strong>la</strong> no virul<strong>en</strong>ta. El hecho <strong>de</strong> que los niveles <strong>de</strong> cata<strong><strong>la</strong>s</strong>a también se vean<br />

increm<strong>en</strong>tados sugiere un posible papel <strong>de</strong> <strong>la</strong> <strong>en</strong>zima cata<strong><strong>la</strong>s</strong>a <strong>en</strong> <strong>la</strong> superviv<strong>en</strong>cia<br />

bacteriana.<br />

Una vez <strong>de</strong>terminados los papeles <strong>de</strong> <strong><strong>la</strong>s</strong> activida<strong>de</strong>s <strong>superóxido</strong> <strong>dismutasa</strong> y<br />

cata<strong><strong>la</strong>s</strong>a <strong>en</strong> <strong>la</strong> protección <strong>de</strong> P. damse<strong>la</strong>e subsp. piscicida fr<strong>en</strong>te al estallido respiratorio<br />

<strong>de</strong> fagocitos <strong>de</strong> l<strong>en</strong>guado, el sigui<strong>en</strong>te problema a abordar fue <strong>la</strong> búsqueda <strong>de</strong> estrategias<br />

para <strong>la</strong> prev<strong>en</strong>ción <strong>de</strong> <strong>la</strong> <strong>en</strong>fermedad que dicha bacteria produce. Como ya hemos<br />

m<strong>en</strong>cionado anteriorm<strong>en</strong>te, una <strong>de</strong> <strong><strong>la</strong>s</strong> líneas a <strong>de</strong>sarrol<strong>la</strong>r <strong>en</strong> <strong>la</strong> prev<strong>en</strong>ción y tratami<strong>en</strong>to<br />

<strong>de</strong> <strong>la</strong> pseudotuberculosis es <strong>la</strong> aplicación <strong>de</strong> inmunoestimu<strong>la</strong>ntes, que increm<strong>en</strong>tan <strong>la</strong><br />

respuesta inmune <strong>de</strong>l hospedador, fr<strong>en</strong>te a una infección. El parámetro inmunológico <strong>en</strong><br />

el que se ha c<strong>en</strong>trado esta Memoria es el estallido respiratorio <strong>en</strong> fagocitos <strong>de</strong> l<strong>en</strong>guado<br />

y como posibles immunoestimu<strong>la</strong>ntes, dos tipos <strong>de</strong> microorganismos: una micralga roja,<br />

Porphyridium cru<strong>en</strong>tum y dos bacterias pot<strong>en</strong>cialm<strong>en</strong>te probióticas, cuyas activida<strong>de</strong>s<br />

50


RESULTADO S Y DISCUSIÓN<br />

inmunoestimu<strong>la</strong>ntes han sido <strong>de</strong>mostradas <strong>en</strong> fagocitos <strong>de</strong> mamíferos (Morris et al.,<br />

2000) y <strong>de</strong> dorada (Díaz-Rosales et al., 2006; Salinas et al., 2006), respectivam<strong>en</strong>te.<br />

En primer lugar se evaluó <strong>la</strong> posible actividad inmunoestimu<strong>la</strong>nte <strong>de</strong>l estallido<br />

respiratorio <strong>de</strong> fagocitos <strong>de</strong> l<strong>en</strong>guado ejercido por P. cru<strong>en</strong>tum. Para ello se realizaron<br />

experim<strong>en</strong>tos in vitro con los extractos acuosos y etanólicos obt<strong>en</strong>idos a partir <strong>de</strong>l alga,<br />

ya que exist<strong>en</strong> numerosos datos acerca <strong>de</strong> <strong>la</strong> capacidad <strong>de</strong> estimu<strong>la</strong>ción <strong>de</strong> difer<strong>en</strong>tes<br />

extractos algales sobre el sistema inmune <strong>de</strong> peces (Fujiki et al., 1992; Castro et al.,<br />

2004; Díaz-Rosales et al., 2005; Hou y Ch<strong>en</strong>, 2005; Castro et al., 2006). Los resultados<br />

obt<strong>en</strong>idos (artículo 2.1., Sección <strong>de</strong> artículos) muestran que ninguno <strong>de</strong> los dos extractos<br />

estimu<strong>la</strong> <strong>la</strong> producción <strong>de</strong>l anión <strong>superóxido</strong>, mi<strong>en</strong>tras que el control positivo que se<br />

<strong>en</strong>sayó, β-glucano comercial extraído <strong>de</strong>l alga Eugl<strong>en</strong>a gracilis, sí es capaz <strong>de</strong><br />

increm<strong>en</strong>tar el estallido respiratorio tras 30 min <strong>en</strong> contacto con los fagocitos pero sólo a<br />

<strong>la</strong> conc<strong>en</strong>tración más alta <strong>en</strong>sayada (10 mg ml -1 ). Estos resultados concuerdan con los<br />

<strong>de</strong>scritos por Castro et al. (1999), que observó increm<strong>en</strong>to <strong>de</strong>l estallido respiratorio <strong>en</strong><br />

fagocitos <strong>de</strong> rodaballo (Psetta maxima) y dorada tras <strong>en</strong>sayar difer<strong>en</strong>tes conc<strong>en</strong>traciones<br />

<strong>de</strong> β-glucanos proce<strong>de</strong>ntes <strong>de</strong> hongos y levaduras. Por otro <strong>la</strong>do, Castro et al. (2004)<br />

<strong>en</strong>contraron gran<strong>de</strong>s variaciones <strong>en</strong> <strong><strong>la</strong>s</strong> capacida<strong>de</strong>s inmunoestimu<strong>la</strong>ntes <strong>de</strong> los extractos<br />

algales <strong>de</strong>p<strong>en</strong>di<strong>en</strong>do, no sólo <strong>de</strong>l orig<strong>en</strong>, sino también <strong>de</strong> <strong><strong>la</strong>s</strong> conc<strong>en</strong>traciones <strong>en</strong>sayadas<br />

y <strong>de</strong> los tiempos <strong>de</strong> incubación.<br />

P. cru<strong>en</strong>tum pres<strong>en</strong>ta varias v<strong>en</strong>tajas <strong>en</strong> su cultivo, pues ti<strong>en</strong>e un crecimi<strong>en</strong>to<br />

rápido y con bajo coste, lo que hace que sea muy fácil trabajar con el<strong>la</strong>. A<strong>de</strong>más, el<br />

hecho <strong>de</strong> ser una sustancia natural permite consi<strong>de</strong>rar<strong>la</strong> a priori como biocompatible,<br />

bio<strong>de</strong>gradable y segura para el medio ambi<strong>en</strong>te y <strong>la</strong> salud humana, características que<br />

permit<strong>en</strong> consi<strong>de</strong>rar<strong>la</strong> una bu<strong>en</strong>a sustancia inmunoestimu<strong>la</strong>nte. Por ello, y una vez<br />

<strong>en</strong>sayados in vitro los extractos acuosos y etanólicos <strong>de</strong> <strong>la</strong> microalga, se realizó un<br />

experim<strong>en</strong>to in vivo <strong>en</strong> el que se administró por vía oral el alga completa (artículo 2.1.,<br />

Sección <strong>de</strong> artículos). Hasta ahora, los trabajos realizados administrando<br />

microorganismos completos a peces han sido, principalm<strong>en</strong>te, con bacterias,<br />

consi<strong>de</strong>radas probióticas (Verschuere et al., 2000; Nikoske<strong>la</strong>in<strong>en</strong> et al., 2001; Irianto y<br />

Austin, 2003; Salinas et al., 2005; Balcázar et al., 2006; Díaz-Rosales et al., 2006; Salinas<br />

51


RESULTADO S Y DISCUSIÓN<br />

et al., 2006) pero son muy escasos los estudios sobre algas completas (Blinkova et al.,<br />

2001; Val<strong>en</strong>te et al., 2006). Por otro <strong>la</strong>do, P. cru<strong>en</strong>tum acumu<strong>la</strong> gran<strong>de</strong>s cantida<strong>de</strong>s <strong>de</strong><br />

lípidos, como ácido araquidónico o eicosap<strong>en</strong>tanoico (Kinsel<strong>la</strong> et al., 1990; Kov<strong>en</strong> et al.,<br />

2001); carbohidratos (Fujiki et al., 1992; Santarém et al., 1997; Bagni et al., 2000; Morris<br />

et al., 2000; Esteban et al., 2001; J<strong>en</strong>ey y J<strong>en</strong>ey, 2002; Cook et al., 2003; Couso et al.,<br />

2003; Castro et al., 2004; Bagni et al., 2005; Kumar et al., 2005); carot<strong>en</strong>os (Tachinaba et<br />

al., 1997; Amar et al., 2004); vitaminas (Hardie et al., 1990, 1991; Ortuño et al., 1999;<br />

J<strong>en</strong>ey y J<strong>en</strong>ey, 2002). Debido al hecho <strong>de</strong> cont<strong>en</strong>er difer<strong>en</strong>tes sustancias<br />

inmunoestimu<strong>la</strong>ntes, su uso podría g<strong>en</strong>erar una respuesta inmune más g<strong>en</strong>eral como ya<br />

ha sido propuesta para otros microorganismos como levaduras (Ortuño et al., 2002;<br />

Rodríguez et al., 2003).<br />

Así, durante cuatro semanas, se alim<strong>en</strong>taron tres grupos <strong>de</strong> l<strong>en</strong>guados con pi<strong>en</strong>so<br />

suplem<strong>en</strong>tado con <strong>la</strong> microalga liofilizada, pi<strong>en</strong>so normal, o con un inmunoestimu<strong>la</strong>nte<br />

comercial, Sanostim. A<strong>de</strong>más, para evaluar el posible efecto sinérgico <strong>de</strong>l<br />

inmunoestimu<strong>la</strong>nte con una vacuna, tras dos semanas <strong>de</strong>l inicio <strong>de</strong>l experim<strong>en</strong>to, un<br />

conjunto <strong>de</strong> peces fue inocu<strong>la</strong>do intraperitonealm<strong>en</strong>te con una bacterina compuesta por<br />

célu<strong><strong>la</strong>s</strong> <strong>de</strong> P. damse<strong>la</strong>e subsp. piscicida inactivadas con formol. Los resultados<br />

obt<strong>en</strong>idos muestran que tras cuatro semanas <strong>de</strong> administración <strong>de</strong>l alga como<br />

suplem<strong>en</strong>to <strong>en</strong> <strong>la</strong> dieta normal <strong>de</strong> los peces, <strong>la</strong> producción <strong>de</strong> anión <strong>superóxido</strong> se<br />

increm<strong>en</strong>ta <strong>en</strong> aquellos l<strong>en</strong>guados que han sido inmunizados con <strong>la</strong> vacuna. Ese<br />

increm<strong>en</strong>to es estadísticam<strong>en</strong>te significativo, no sólo respecto a los peces alim<strong>en</strong>tados<br />

con una dieta normal, sino también respecto a los peces alim<strong>en</strong>tados con el<br />

inmunoestimu<strong>la</strong>nte comercial. La acción conjunta <strong>de</strong> un inmunoestimu<strong>la</strong>nte y una<br />

vacuna ha sido <strong>de</strong>scrita por numerosos autores que concluy<strong>en</strong> que <strong>la</strong> combinación <strong>de</strong><br />

vacunación y administración <strong>de</strong> inmunoestimu<strong>la</strong>nte increm<strong>en</strong>ta <strong>la</strong> pot<strong>en</strong>cia <strong>de</strong> <strong>la</strong> vacuna<br />

(J<strong>en</strong>ey y An<strong>de</strong>rson, 1993; RØsrstad et al., 1993; Aakre et al., 1994; Sakai et al., 1995;<br />

Baulny et al., 1996; Sakai, 1999).<br />

Seguidam<strong>en</strong>te, y una vez <strong>de</strong>mostrado el efecto inmunoestimu<strong>la</strong>nte <strong>de</strong>l alga, se<br />

valoró el efecto inmunoestimu<strong>la</strong>nte <strong>de</strong> <strong>la</strong> fracción polisacarídica extracelu<strong>la</strong>r <strong>de</strong> P.<br />

52


RESULTADO S Y DISCUSIÓN<br />

cru<strong>en</strong>tum sobre el estallido respiratorio <strong>de</strong> fagocitos <strong>de</strong> l<strong>en</strong>guado, tanto in vitro como in<br />

vivo (artículo 2.2., Sección <strong>de</strong> artículos).<br />

Los resultados obt<strong>en</strong>idos indican que in vitro, <strong>de</strong>spués <strong>de</strong> treinta minutos <strong>de</strong><br />

contacto con <strong><strong>la</strong>s</strong> célu<strong><strong>la</strong>s</strong> <strong>de</strong>l pez, ninguna <strong>de</strong> <strong><strong>la</strong>s</strong> conc<strong>en</strong>traciones <strong>en</strong>sayadas <strong>de</strong>l<br />

polisacárido extracelu<strong>la</strong>r <strong>de</strong> P. cru<strong>en</strong>tum estimu<strong>la</strong> el estallido respiratorio <strong>de</strong> fagocitos<br />

<strong>de</strong> l<strong>en</strong>guado. Estos resultados contrastan con los obt<strong>en</strong>idos por Castro et al. (2004, 2006)<br />

qui<strong>en</strong>es sugier<strong>en</strong> que <strong>la</strong> estimu<strong>la</strong>ción <strong>de</strong>l estallido respiratorio <strong>en</strong> fagocitos <strong>de</strong> rodaballo<br />

(Psetta maxima), <strong>en</strong> pres<strong>en</strong>cia <strong>de</strong> extractos <strong>de</strong> algas, es <strong>de</strong>bida a los polisacáridos<br />

algales. Por otro <strong>la</strong>do, los resultados obt<strong>en</strong>idos por Castro et al. (2004) indican que <strong>la</strong><br />

capacidad inmunoestimu<strong>la</strong>nte varía <strong>en</strong> gran medida según <strong>la</strong> especie <strong>de</strong> alga. Por lo que<br />

<strong>la</strong> falta <strong>de</strong> estimu<strong>la</strong>ción <strong>de</strong>l estallido respiratorio in vitro por parte <strong>de</strong> los polisacáridos<br />

<strong>de</strong> P. cru<strong>en</strong>tum pue<strong>de</strong> ser <strong>de</strong>bida, por un <strong>la</strong>do, a que simplem<strong>en</strong>te no t<strong>en</strong>gan capacidad<br />

inmunoestimu<strong>la</strong>nte, <strong>la</strong> conc<strong>en</strong>tración a <strong>la</strong> que se <strong>en</strong>cu<strong>en</strong>tra sea baja, o el tiempo <strong>de</strong><br />

contacto con los fagocitos sea insufici<strong>en</strong>te. Sin embargo, el control positivo que<br />

cont<strong>en</strong>ía β-glucano comercial sí induce un increm<strong>en</strong>to <strong>en</strong> el estallido respiratorio,<br />

aunque únicam<strong>en</strong>te a <strong>la</strong> conc<strong>en</strong>tración mayor <strong>en</strong>sayada (10 mg ml -1 ).<br />

Adicionalm<strong>en</strong>te, los l<strong>en</strong>guados se inocu<strong>la</strong>ron intraperitonealm<strong>en</strong>te con 500 µg <strong>de</strong> <strong>la</strong><br />

fracción extracelu<strong>la</strong>r polisacarídica. Como <strong>en</strong> el trabajo anterior, posteriorm<strong>en</strong>te se<br />

inmunizaron con una bacterina compuesta por célu<strong><strong>la</strong>s</strong> <strong>de</strong> P. damse<strong>la</strong>e subsp. piscicida<br />

inactivadas con formol. Se tomaron muestras a <strong><strong>la</strong>s</strong> 24 h y a los 7 días. Los resultados<br />

obt<strong>en</strong>idos indican que a <strong>la</strong> conc<strong>en</strong>tración y tiempos <strong>en</strong>sayados, 1 y 7 días tras <strong>la</strong><br />

inocu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> fracción polisacarídica, no se produce un increm<strong>en</strong>to <strong>en</strong> el estallido<br />

respiratorio <strong>de</strong> fagocitos <strong>de</strong> l<strong>en</strong>guado, ni siquiera <strong>en</strong> los peces inmunizados. A<strong>de</strong>más, se<br />

observa que 24 h post-inocu<strong>la</strong>ción, el estallido respiratorio se reduce <strong>en</strong> los fagocitos <strong>de</strong><br />

los peces inocu<strong>la</strong>dos con <strong>la</strong> fracción polisacarídica o con <strong>la</strong> bacterina. Esta disminución<br />

<strong>de</strong>l estallido respiratorio podría ser atribuida a una inmunosupresión causada por estrés<br />

tras <strong>la</strong> manipu<strong>la</strong>ción (Thompson et al., 1993; Pulsford et al., 1995), <strong>de</strong>sapareci<strong>en</strong>do este<br />

efecto tras siete días <strong>de</strong>l inicio <strong>de</strong>l experim<strong>en</strong>to.<br />

En resum<strong>en</strong>, se pue<strong>de</strong> concluir que <strong>la</strong> fracción polisacarídica <strong>de</strong> P. cru<strong>en</strong>tum <strong>en</strong> <strong><strong>la</strong>s</strong><br />

condiciones <strong>de</strong>scritas no increm<strong>en</strong>tó el estallido respiratorio <strong>de</strong> fagocitos <strong>de</strong> l<strong>en</strong>guado.<br />

53


RESULTADO S Y DISCUSIÓN<br />

Estos resultados sugier<strong>en</strong> que <strong>la</strong> estimu<strong>la</strong>ción observada tras <strong>la</strong> administración por vía<br />

oral <strong>de</strong>l alga completa liofilizada sería <strong>de</strong>bida a otro <strong>de</strong> los compon<strong>en</strong>tes <strong>de</strong>l alga, con<br />

propieda<strong>de</strong>s inmunoestimu<strong>la</strong>ntes. Por otro <strong>la</strong>do, <strong>la</strong> acción inmunoestimu<strong>la</strong>nte <strong>de</strong>l<br />

polisacárido pue<strong>de</strong> estar dirigida a otro parámetro inmunológico, no necesariam<strong>en</strong>te al<br />

estallido respiratorio, así exist<strong>en</strong> numerosos trabajos que <strong>de</strong>scrib<strong>en</strong> <strong>la</strong> capacidad<br />

inmunoestimu<strong>la</strong>nte <strong>de</strong> polisacáridos <strong>en</strong> peces, increm<strong>en</strong>tando <strong>la</strong> actividad lisozima <strong>en</strong> el<br />

suero, <strong>la</strong> actividad <strong>de</strong>l complem<strong>en</strong>to, <strong>la</strong> actividad citotóxica <strong>de</strong> fagocitos o <strong>la</strong> actividad<br />

fagocítica, <strong>en</strong>tre otras (Santarém et al., 1997; Esteban et al., 2001; Chang et al., 2003;<br />

Bagni et al., 2005; Kumari y Sahoo, 2006).<br />

Otra <strong>de</strong> <strong><strong>la</strong>s</strong> estrategias <strong>de</strong>sarrol<strong>la</strong>das <strong>en</strong> esta Memoria para el tratami<strong>en</strong>to <strong>de</strong> <strong>la</strong><br />

pseudotuberculosis fue el empleo <strong>de</strong> bacterias pot<strong>en</strong>cialm<strong>en</strong>te probióticas. En el trabajo<br />

realizado (artículo 2.3., Sección <strong>de</strong> artículos) <strong><strong>la</strong>s</strong> bacterias pot<strong>en</strong>cialm<strong>en</strong>te probióticas<br />

fueron administradas por vía oral, suplem<strong>en</strong>tándose el pi<strong>en</strong>so con el que eran<br />

alim<strong>en</strong>tados los l<strong>en</strong>guados. En este caso, a<strong>de</strong>más <strong>de</strong> evaluar el estallido respiratorio <strong>de</strong><br />

fagocitos <strong>de</strong> riñón, se llevó a cabo una infección experim<strong>en</strong>tal con P. damse<strong>la</strong>e subsp.<br />

piscicida, para <strong>de</strong>terminar el grado <strong>de</strong> protección que pudieran aportar los probióticos.<br />

Al mismo tiempo, se estudió <strong>la</strong> microbiota intestinal, con objeto <strong>de</strong> <strong>de</strong>tectar posibles<br />

cambios que produjeran los probióticos incorporados <strong>en</strong> <strong>la</strong> dieta.<br />

Las bacterias seleccionadas para este experim<strong>en</strong>to fueron <strong><strong>la</strong>s</strong> cepas Pdp11 y Pdp13,<br />

ais<strong>la</strong>das <strong>de</strong> piel <strong>de</strong> dorada (Chabrillón, 2003). Su i<strong>de</strong>ntificación nos lleva a situar<strong><strong>la</strong>s</strong><br />

<strong>de</strong>ntro <strong>de</strong> <strong>la</strong> familia Alteromonadaceae, género Shewanel<strong>la</strong>. Es el primer <strong>en</strong>sayo in vivo<br />

que se realiza con Pdp13, <strong>en</strong> cambio con <strong>la</strong> cepa Pdp11 ya exist<strong>en</strong> varios trabajos<br />

publicados, así Chabrillón et al. (2005a) estudiaron <strong>la</strong> interacción con el patóg<strong>en</strong>o Vibrio<br />

harveyi, mostrando <strong>la</strong> capacidad <strong>de</strong> Pdp11 <strong>de</strong> adherirse al mucus intestinal <strong>de</strong> dorada, el<br />

efecto antagonista fr<strong>en</strong>te a una cepa patóg<strong>en</strong>a <strong>de</strong> V. harveyi, <strong>la</strong> capacidad <strong>de</strong> inhibir <strong>la</strong><br />

unión <strong>de</strong>l patóg<strong>en</strong>o y, por último, <strong>de</strong> conferir protección fr<strong>en</strong>te una infección<br />

experim<strong>en</strong>tal. También se han publicado resultados obt<strong>en</strong>idos con Pdp11 y <strong>la</strong> bacteria<br />

patóg<strong>en</strong>a P. damse<strong>la</strong>e subsp. piscicida, así Chabrillón et al. (2005b) <strong>de</strong>mostraron el<br />

efecto antagonista <strong>de</strong> Pdp11 fr<strong>en</strong>te a una cepa <strong>de</strong> P. damse<strong>la</strong>e subsp. piscicida y <strong>la</strong><br />

inhibición <strong>de</strong> <strong>la</strong> unión <strong>de</strong> dicho patóg<strong>en</strong>o al mucus intestinal. Estos resultados obt<strong>en</strong>idos<br />

54


RESULTADO S Y DISCUSIÓN<br />

permit<strong>en</strong> consi<strong>de</strong>rar a <strong>la</strong> cepa Pdp11 como una bu<strong>en</strong>a candidata para ser usada como<br />

probiótico.<br />

En cuanto a <strong>la</strong> posible estimu<strong>la</strong>ción <strong>de</strong>l estallido respiratorio se ha observado que<br />

mi<strong>en</strong>tras <strong>la</strong> producción <strong>de</strong> anión <strong>superóxido</strong> por parte <strong>de</strong> los fagocitos ais<strong>la</strong>dos <strong>de</strong> peces<br />

alim<strong>en</strong>tados con <strong>la</strong> cepa Pdp11 se ve increm<strong>en</strong>tada significativam<strong>en</strong>te transcurridos dos<br />

meses <strong>de</strong>s<strong>de</strong> el inicio <strong>de</strong>l experim<strong>en</strong>to, los peces alim<strong>en</strong>tados con <strong>la</strong> cepa Pdp13 no<br />

muestran esta respuesta. El efecto <strong>de</strong> <strong>la</strong> cepa Pdp13 se observa tras <strong>la</strong> infección<br />

experim<strong>en</strong>tal, ya que el grupo <strong>de</strong> peces alim<strong>en</strong>tados con esta cepa alcanza un porc<strong>en</strong>taje<br />

<strong>de</strong> superviv<strong>en</strong>cia más elevado tras <strong>la</strong> inocu<strong>la</strong>ción <strong>de</strong>l patóg<strong>en</strong>o P. damse<strong>la</strong>e subsp.<br />

piscicida.<br />

Aunque exist<strong>en</strong> numerosos trabajos <strong>en</strong> los que se muestra <strong>la</strong> inducción <strong>de</strong>l estallido<br />

respiratorio por probióticos (Nikoske<strong>la</strong>in<strong>en</strong> et al., 2003; Gullian et al., 2004; Aubin et al.,<br />

2005; Brunt y Austin, 2005), el que el pot<strong>en</strong>cial probiótico Pdp13 no haya increm<strong>en</strong>tado<br />

<strong>la</strong> producción <strong>de</strong> anión <strong>superóxido</strong>, no significa que no sea capaz <strong>de</strong> inducir algún otro<br />

parámetro inmunológico. De hecho, el porc<strong>en</strong>taje <strong>de</strong> superviv<strong>en</strong>cia, tras <strong>la</strong> infección<br />

experim<strong>en</strong>tal, sí se ve increm<strong>en</strong>tado. Varios autores han mostrado el efecto <strong>de</strong><br />

probióticos sobre parámetros inmunológicos difer<strong>en</strong>tes al estallido respiratorio, como<br />

<strong><strong>la</strong>s</strong> activida<strong>de</strong>s fagocítica (Irianto y Austin, 2003; Panigrahi et al., 2004; Brunt y Austin,<br />

2005; Salinas et al., 2005; Díaz-Rosales et al., 2006), <strong>de</strong>l complem<strong>en</strong>to (Panigrahi et al.,<br />

2004; Díaz-Rosales et al., 2006), <strong>de</strong> <strong>la</strong> lisozima (Irianto y Austin, 2003; Panigrahi et al.,<br />

2004) o <strong>la</strong> citotóxica (Salinas et al., 2005; Díaz-Rosales et al., 2006). A<strong>de</strong>más ha sido<br />

<strong>de</strong>scrito el efecto <strong>de</strong> los probióticos no sólo sobre <strong>la</strong> respuesta inmune inespecífica, sino<br />

también sobre <strong>la</strong> específica, increm<strong>en</strong>tando los niveles <strong>de</strong> inmunoglobulinas <strong>en</strong> el suero<br />

(Nikoske<strong>la</strong>in<strong>en</strong> et al., 2003; Aubin et al., 2005). Por estas razones, <strong>la</strong> cepa Pdp13 pue<strong>de</strong><br />

ser consi<strong>de</strong>rado también como probiótico, aunque sería necesaria <strong>la</strong> evaluación <strong>de</strong> otros<br />

parámetros inmunológicos.<br />

Por otro <strong>la</strong>do, <strong><strong>la</strong>s</strong> bacterias probióticas ti<strong>en</strong><strong>en</strong> que ser administradas a una dosis<br />

óptima, que <strong>de</strong>p<strong>en</strong><strong>de</strong>rá <strong>de</strong>l tamaño <strong>de</strong>l pez y <strong>de</strong> <strong>la</strong> cepa (Nikoske<strong>la</strong>in<strong>en</strong> et al., 2003), por<br />

esta razón pue<strong>de</strong> que el efecto <strong>de</strong> <strong>la</strong> cepa Pdp11 sea difer<strong>en</strong>te al <strong>de</strong> Pdp13, y que los<br />

55


RESULTADO S Y DISCUSIÓN<br />

resultados obt<strong>en</strong>idos con Pdp11 y l<strong>en</strong>guado sean difer<strong>en</strong>tes a los obt<strong>en</strong>idos previam<strong>en</strong>te<br />

con Pdp11 y dorada (Díaz-Rosales et al., 2006).<br />

Por último, a<strong>de</strong>más <strong>de</strong>l efecto inmunológico <strong>de</strong> los probióticos sobre <strong>la</strong> respuesta<br />

inmune <strong>de</strong> l<strong>en</strong>guado, se han evaluado posibles cambios <strong>en</strong> <strong>la</strong> microbiota intestinal<br />

provocados por los probióticos adicionados a <strong>la</strong> dieta. A pesar <strong>de</strong>l gran número <strong>de</strong><br />

trabajos publicados que estudian <strong><strong>la</strong>s</strong> comunida<strong>de</strong>s microbianas <strong>de</strong> peces (Spanggaard et<br />

al., 2000; Holb<strong>en</strong> et al., 2002; Sandaa et al., 2003; Al-Harbi y Naim Uddin, 2004; Hjelm et<br />

al., 2004; Huber et al., 2004; J<strong>en</strong>s<strong>en</strong> et al., 2004), ninguno evalúa los posibles cambios <strong>en</strong><br />

esa microbiota tras <strong>la</strong> administración <strong>de</strong> probióticos.<br />

En este trabajo se ha empleado <strong>la</strong> técnica <strong>de</strong> electroforesis <strong>en</strong> geles <strong>de</strong> gradi<strong>en</strong>te<br />

<strong>de</strong>snaturalizante (DGGE) (Muyzer et al., 1993) para estudiar <strong>la</strong> microbiota intestinal <strong>de</strong><br />

l<strong>en</strong>guados alim<strong>en</strong>tados con probióticos. Se <strong>en</strong>sayaron dos pares <strong>de</strong> cebadores<br />

universales (Nübel et al., 1996; J<strong>en</strong>s<strong>en</strong> et al., 2004), y tras el análisis <strong>de</strong>l patrón <strong>de</strong> bandas<br />

por el coefici<strong>en</strong>te <strong>de</strong> Pearson, el <strong>de</strong> Nübel et al. (1996) fue seleccionado como el mejor<br />

para el estudio <strong>de</strong> <strong><strong>la</strong>s</strong> comunida<strong>de</strong>s con <strong><strong>la</strong>s</strong> que se estaba trabajando.<br />

El patrón <strong>de</strong> bandas obt<strong>en</strong>ido fue muy simple, con pocas bandas predominantes, lo<br />

que podría concordar con lo <strong>de</strong>scrito por Muyzer et al. (1993) qui<strong>en</strong>es afirman que<br />

comunida<strong>de</strong>s con pocas especies dominantes producirán patrones más simples y que <strong><strong>la</strong>s</strong><br />

especies m<strong>en</strong>os abundantes no estarán repres<strong>en</strong>tadas a<strong>de</strong>cuadam<strong>en</strong>te <strong>en</strong> dicho patrón.<br />

A<strong>de</strong>más <strong>la</strong> técnica pres<strong>en</strong>ta limitaciones, y es posible que algunas bandas no repres<strong>en</strong>t<strong>en</strong><br />

especies individuales, como sería <strong>en</strong> teoría, sino que grupos <strong>de</strong> especies pue<strong>de</strong>n t<strong>en</strong>er el<br />

mismo cont<strong>en</strong>ido re<strong>la</strong>tivo <strong>de</strong> G+C, comigrando (Simpson et al., 1999; Temmerman et<br />

al., 2003). Estas limitaciones conducirían a un <strong>de</strong>sc<strong>en</strong>so <strong>en</strong> el número <strong>de</strong> bandas<br />

pres<strong>en</strong>tes, pudi<strong>en</strong>do t<strong>en</strong>er una influ<strong>en</strong>cia <strong>en</strong> <strong>la</strong> apar<strong>en</strong>te diversidad, así como <strong>en</strong> los<br />

valores <strong>de</strong> similitud (McCrak<strong>en</strong> et al., 2001).<br />

Los resultados obt<strong>en</strong>idos no <strong>de</strong>muestran que los probióticos induzcan cambios<br />

significativos <strong>en</strong> <strong>la</strong> microbiota intestinal, ya que <strong><strong>la</strong>s</strong> bandas que aparec<strong>en</strong> <strong>en</strong> los grupos<br />

que recib<strong>en</strong> el probiótico también están pres<strong>en</strong>tes <strong>en</strong> los grupos control.<br />

Por otro <strong>la</strong>do, no pue<strong>de</strong> confirmarse que <strong><strong>la</strong>s</strong> bandas pres<strong>en</strong>tes correspondan a <strong>la</strong><br />

cepa Pdp11 o a Pdp13, at<strong>en</strong>di<strong>en</strong>do simplem<strong>en</strong>te a <strong>la</strong> movilidad electroforética, por tanto,<br />

56


RESULTADO S Y DISCUSIÓN<br />

harían falta estudios <strong>de</strong> i<strong>de</strong>ntificación filog<strong>en</strong>ética, secu<strong>en</strong>ciación <strong>de</strong> los productos <strong>de</strong><br />

PCR. Lo que sí po<strong>de</strong>mos afirmar es que ninguna <strong>de</strong> <strong><strong>la</strong>s</strong> cepas es capaz, a <strong>la</strong> dosis (10 9 ufc<br />

g -1 ) y tiempo <strong>en</strong>sayados (dos meses), <strong>de</strong> inducir cambios significativos <strong>en</strong> <strong>la</strong> microbiota<br />

intestinal. De acuerdo con Ouwehand et al. (2002), para consi<strong>de</strong>rar una bacteria como<br />

probiótico no es necesario que induzca cambios <strong>en</strong> <strong>la</strong> microbiota intestinal, para ejercer<br />

un efecto local o durante el tránsito a través <strong>de</strong>l sistema gastrointestinal, <strong>de</strong> hecho, <strong>la</strong><br />

variación <strong>en</strong> <strong>la</strong> microbiota <strong>en</strong> peces es sustancial y fluctúa diariam<strong>en</strong>te (Spanggaard et<br />

al., 2000; Al-Harbi y Naim Uddin, 2004; Panigrahi et al., 2004).<br />

57


C ON C L U S I O N E S


CONCLUSIONES<br />

Tras los estudios realizados sobre el papel <strong>de</strong> <strong><strong>la</strong>s</strong> activida<strong>de</strong>s <strong>superóxido</strong> <strong>dismutasa</strong><br />

y cata<strong><strong>la</strong>s</strong>a <strong>en</strong> <strong>la</strong> virul<strong>en</strong>cia <strong>de</strong>l patóg<strong>en</strong>o Photobacterium damse<strong>la</strong>e subsp. piscicida, así<br />

como <strong>de</strong> <strong><strong>la</strong>s</strong> estrategias <strong>de</strong>sarrol<strong>la</strong>das <strong>en</strong> el control <strong>de</strong> dicho patóg<strong>en</strong>o, se obti<strong>en</strong><strong>en</strong> <strong><strong>la</strong>s</strong><br />

sigui<strong>en</strong>tes conclusiones:<br />

1. Photobacterium damse<strong>la</strong>e subsp. piscicida sintetiza una so<strong>la</strong> iso<strong>en</strong>zima con<br />

actividad <strong>superóxido</strong> <strong>dismutasa</strong>, caracterizada por <strong>la</strong> pres<strong>en</strong>cia <strong>de</strong> hierro <strong>en</strong> su<br />

c<strong>en</strong>tro activo.<br />

2. Photobacterium damse<strong>la</strong>e subsp. piscicida conti<strong>en</strong>e una so<strong>la</strong> iso<strong>en</strong>zima con<br />

actividad cata<strong><strong>la</strong>s</strong>a, con hierro <strong>en</strong> su c<strong>en</strong>tro activo.<br />

3. La actividad cata<strong><strong>la</strong>s</strong>a es <strong>de</strong> gran importancia <strong>en</strong> <strong>la</strong> resist<strong>en</strong>cia <strong>de</strong> P. damse<strong>la</strong>e<br />

subsp. piscicida fr<strong>en</strong>te al peróxido <strong>de</strong> hidróg<strong>en</strong>o, pues cuando <strong><strong>la</strong>s</strong> célu<strong><strong>la</strong>s</strong><br />

bacterianas pres<strong>en</strong>tan niveles elevados <strong>de</strong> esta actividad, resist<strong>en</strong> más<br />

efici<strong>en</strong>tem<strong>en</strong>te a estos radicales reactivos <strong>de</strong> oxíg<strong>en</strong>o.<br />

4. El hierro juega un importante papel <strong>en</strong> <strong>la</strong> superviv<strong>en</strong>cia <strong>de</strong> P. damse<strong>la</strong>e subsp.<br />

piscicida <strong>en</strong> pres<strong>en</strong>cia <strong>de</strong> radicales oxidantes ya que bajo condiciones<br />

limitantes <strong>de</strong> este metal se <strong>de</strong>tectan niveles más bajos <strong>de</strong> actividad tanto<br />

<strong>superóxido</strong> <strong>dismutasa</strong> como cata<strong><strong>la</strong>s</strong>a, así como mayor susceptibilidad al<br />

peróxido <strong>de</strong> hidróg<strong>en</strong>o.<br />

5. Photobacterium damse<strong>la</strong>e subsp. piscicida es capaz <strong>de</strong> sobrevivir como<br />

patóg<strong>en</strong>o intracelu<strong>la</strong>r <strong>en</strong> el interior <strong>de</strong> fagocitos <strong>de</strong> l<strong>en</strong>guado durante, al<br />

m<strong>en</strong>os, 5 h.<br />

6. La administración por vía oral <strong>de</strong> <strong>la</strong> microalga roja Porphyridium cru<strong>en</strong>tum, <strong>en</strong><br />

combinación con <strong>la</strong> inocu<strong>la</strong>ción intraperitoneal <strong>de</strong> una bacterina fr<strong>en</strong>te a P.<br />

damse<strong>la</strong>e subsp. piscicida, increm<strong>en</strong>ta el estallido respiratorio <strong>de</strong> los fagocitos<br />

<strong>de</strong> l<strong>en</strong>guado.<br />

7. La administración oral <strong>de</strong> <strong><strong>la</strong>s</strong> cepas <strong>de</strong> Shewanel<strong>la</strong> Pdp11 y Pdp13, propuestas<br />

como probióticos, increm<strong>en</strong>ta el estallido respiratorio <strong>de</strong> los fagocitos <strong>de</strong><br />

61


CONCLUSIONES<br />

l<strong>en</strong>guado y confiere protección fr<strong>en</strong>te a <strong>la</strong> infección experim<strong>en</strong>tal con P.<br />

damse<strong>la</strong>e subsp. piscicida, respectivam<strong>en</strong>te.<br />

8. La técnica DGGE no ha permitido <strong>de</strong>tectar posibles cambios que se hayan<br />

podido efectuar <strong>en</strong> <strong>la</strong> microbiota intestinal <strong>de</strong> l<strong>en</strong>guado, tras <strong>la</strong> administración<br />

oral <strong>de</strong> <strong><strong>la</strong>s</strong> cepas Shewanel<strong>la</strong> Pdp11 y Pdp13.<br />

62


FACULTAD DE CIENCIAS<br />

DEPARTAMENTO DE MICROBIOLOGÍA<br />

Role of superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e<br />

activities in Photobacterium damse<strong>la</strong>e subsp.<br />

piscicida virul<strong>en</strong>ce. Strategies for respiratory<br />

burst activity stimu<strong>la</strong>tion in sole phagocytes<br />

PATRICIA DÍAZ ROSALES<br />

Tesis doctoral<br />

2006


A B S T R A C T


ABSTRACT<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida is a gram negative bacterium, capable<br />

to survive as intracellu<strong>la</strong>r pathog<strong>en</strong> within sole phagocytes, thanks to the protective<br />

action of superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e activities. These <strong>en</strong>zymes confer the<br />

pathog<strong>en</strong> resistance against oxyg<strong>en</strong> reactive radicals produced within phagocytes during<br />

the respiratory burst. Therefore, both of these <strong>en</strong>zymes can be consi<strong>de</strong>red important<br />

virul<strong>en</strong>ce factors for P. damse<strong>la</strong>e subsp. piscicida, facilitating its invasion and disease<br />

establishm<strong>en</strong>t. Research on disease prev<strong>en</strong>tion has be<strong>en</strong> focused on the use of<br />

microorganisms capable to stimu<strong>la</strong>te the respiratory burst activity of sole phagocytes.<br />

Assayed microorganisms inclu<strong>de</strong> the microalga Porphyridium cru<strong>en</strong>tum and two<br />

pot<strong>en</strong>tial probiotic bacteria strains. Results obtained are promising, since the microalga<br />

and one strain of the assayed bacteria, Pdp11, are capable to stimu<strong>la</strong>te the respiratory<br />

burst activity and, therefore, confer resistance against the disease. A new research field<br />

is op<strong>en</strong>ed in the fight against pseudotuberculosis, applying substances from algae or<br />

bacterial cells that may be consi<strong>de</strong>red as probiotics.<br />

67


I N T R O D U C T I O N


INTRODUCTION<br />

1. AQUACULTURE. THE CULTURE OF SOLE<br />

(Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup, 1858)<br />

According to Food and Agriculture Organization of the United Nations (FAO) the<br />

Earth is inhabited by nearly 6.5 billion people and the popu<strong>la</strong>tion will increase to<br />

betwe<strong>en</strong> 9 and 10 billion by 2050. This concerns, particu<strong>la</strong>rly people p<strong>la</strong>nning on how to<br />

feed the future world (FAO, 2005<br />

).<br />

Fish is one of the most wi<strong>de</strong>ly used low-cost protein sources in many parts of the<br />

world. However, it is clear that the avai<strong>la</strong>bility of fish harvested from capture fisheries<br />

to support the growing <strong>de</strong>mand for fish protein will be ina<strong>de</strong>quate. Thus, the world<br />

needs to turn to producing fish, i.e. aquaculture. FAO <strong>de</strong>fines aquaculture as the<br />

culture of aquatic organisms, including fish, mollusks, crustaceans and aquatic p<strong>la</strong>nts.<br />

Nowadays aquaculture industry p<strong>la</strong>ys an ess<strong>en</strong>tial role in feeding future world.<br />

In southern European countries, aquaculture production is conc<strong>en</strong>trated on shore<br />

based cultivation of gilthead seabream (Sparus aurata, L.) and seabass (Dic<strong>en</strong>trarchus<br />

<strong>la</strong>brax, L.). Due to high production, markets have begun to be saturated. Investigation<br />

of pot<strong>en</strong>tial new species for aquaculture is one of the strategies to increase market<br />

opportunities. S<strong>en</strong>egalese sole (Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup 1858) is a common high-value<br />

f<strong>la</strong>tfish in Southern Europe, is well adapted to warm climates and is commonly raised in<br />

the ext<strong>en</strong>sive earth<strong>en</strong> ponds along the south coasts of Portugal and Spain (Dinis et al.,<br />

1999; JACUMAR, 2005).<br />

Regardless of the pot<strong>en</strong>tial economic importance of the culture of this fish species<br />

(Dinis et al., 1999; Ims<strong>la</strong>nd et al., 2003) data about the susceptibility of captive<br />

S<strong>en</strong>egalese sole to fish pathog<strong>en</strong>s are still scarce. The control and prev<strong>en</strong>tion of<br />

infectious diseases is a major goal in farmed sole. Several authors have reported<br />

differ<strong>en</strong>t diseases and pathog<strong>en</strong>ic microorganisms (Rodríguez et al., 1997; Zorril<strong>la</strong> et al.,<br />

1999; Magariños et al., 2003; Arijo et al., 2005). Although, some studies reported Vibrio<br />

harveyi and T<strong>en</strong>acibaculum maritimum iso<strong>la</strong>tion from diseased fish (Zorril<strong>la</strong> et al., 1999;<br />

Cepeda and Santos, 2003), pseudotuberculosis, caused by Photobacterium damse<strong>la</strong>e<br />

71


INTRODUCTION<br />

subsp. piscicida, is the disease responsible for higher mortalities (Zorril<strong>la</strong> et al., 1999),<br />

becoming the main limiting factor for sole production.<br />

2. Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida, an obligate halophilic bacterium, is the<br />

causal ag<strong>en</strong>t of psedotuberculosis (Kubota et al., 1970), because in chronic cases,<br />

affected fish show promin<strong>en</strong>t white tubercles in several internal organs. This disease<br />

was first <strong>de</strong>scribed in wild popu<strong>la</strong>tions of white perch (Morone americanus) and<br />

stripped bass (Morone saxatilis) in the United States (Snieszko et al., 1964). Curr<strong>en</strong>tly<br />

natural hosts of the pathog<strong>en</strong> inclu<strong>de</strong> a wi<strong>de</strong> variety of marine fish. This disease has<br />

great economic impact in Japan, where affects mainly yellowtail (Serio<strong>la</strong><br />

quinqueradiata) cultures (Kusuda and Sa<strong>la</strong>ti, 1993), in the United States and in the<br />

European Mediterranean area, causing important losses in gilthead seabream (Sparus<br />

aurata, L.) (Ceshia et al., 1991; Toranzo et al., 1991), stripped seabass (Hauwke et al.,<br />

1987), seabass (Dic<strong>en</strong>trarchus <strong>la</strong>brax, L.) (Baudin-Laur<strong>en</strong>cin et al., 1991; Balebona et<br />

al., 1992) and, rec<strong>en</strong>tly, in sole (Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup) (Zorril<strong>la</strong> et al., 1999;<br />

Magariños et al., 2003; Arijo et al., 2005).<br />

External pathological signs of the pseudotuberculosis are usually inconspicuous,<br />

surface lesions being usually abs<strong>en</strong>t in affected fish. Occasionally, diseased gilthead<br />

seabream and seabass disp<strong>la</strong>y abnormal skin pigm<strong>en</strong>tation or slight haemorrhagic areas<br />

in the head and gills and swelling of the abdominal cavity (Toranzo et al., 1991;<br />

Balebona et al. 1992; Fouz et al., 2000).<br />

Internally, diseased fish show haemorrhagic septicaemia and necrosis in the<br />

majority of the organs, disp<strong>la</strong>ying the typical tubercles consisting in accumu<strong>la</strong>tion of<br />

bacteria, necrotic phagocytes and granulomes. Moreover the necrosis and the exist<strong>en</strong>ce<br />

of granulomata in sple<strong>en</strong>, kidney and liver, where bacteria are visible in the sinusoids<br />

and within the hepatic vessels, have be<strong>en</strong> reported (Kubota et al., 1970; Wolke, 1975;<br />

Tung et al., 1985; Hawke et al., 1987; Toranzo et al., 1991; Balebona et al., 1992; Noya et<br />

al., 1995a).<br />

72


INTRODUCTION<br />

With regard to Solea s<strong>en</strong>egal<strong>en</strong>sis, diseased fish show no appar<strong>en</strong>t lesions except<br />

for dark skin pigm<strong>en</strong>tation and swelling in the abdominal cavity. In some cases,<br />

haemorrhagic exophthalmia, small ulcers on the skin and gill pal<strong>en</strong>ess have also be<strong>en</strong><br />

observed. Internally, affected specim<strong>en</strong>s show pal<strong>en</strong>ess of liver and kidney, and the<br />

typical white tubercles of 1-2 mm in diameter in the sple<strong>en</strong> (Zorril<strong>la</strong> et al., 1999).<br />

2.1. TRANSMISSION MODE<br />

P. damse<strong>la</strong>e subsp. piscicida is a highly pathog<strong>en</strong>ic bacterium appar<strong>en</strong>tly without<br />

host specificity. Therefore, pseudotuberculosis could be a risk for new fish species<br />

where the disease has not be<strong>en</strong> <strong>de</strong>scribed yet. Noya et al. (1995b) reported that the<br />

resistance in seabream and seabass is re<strong>la</strong>ted to the size and age of the fish. This maybe<br />

due to macrophage and neutrophyl functionality, since effici<strong>en</strong>t phagocytosis and killing<br />

of the bacteria have be<strong>en</strong> observed in ol<strong>de</strong>r seabream (Noya et al., 1995b; Skarmeta et<br />

al., 1995). Also, it is possible that some <strong>de</strong>fici<strong>en</strong>cies in serum compon<strong>en</strong>ts may have<br />

some influ<strong>en</strong>ce on phagocytosis and killing of P. damse<strong>la</strong>e subsp. piscicida by<br />

phagocytes, making younger seabream more s<strong>en</strong>sitive to infection.<br />

The transmission route of infection involved in these diseases is still uncertain<br />

(Magariños et al., 1995). Some authors suggest that Photobacterium may survive in the<br />

aquatic <strong>en</strong>vironm<strong>en</strong>t as unculturable viable cells and an increase in water temperature<br />

and salinity (20-30%) could contribute to the <strong>de</strong>velopm<strong>en</strong>t of the epizootic outbreak<br />

(Hawke et al., 1987; Toranzo et al., 1991; Magariños et al., 2001).<br />

The pathways of <strong>en</strong>try may vary <strong>de</strong>p<strong>en</strong>ding on the host. With some fish, infection<br />

may follow ingestion of the pathog<strong>en</strong> (Magariños et al., 1995). Studies to <strong>de</strong>termine the<br />

importance of skin as a portal of <strong>en</strong>try for P. damse<strong>la</strong>e subsp. piscicida have be<strong>en</strong><br />

carried out (Magariños et al., 1995), and the results obtained show that all iso<strong>la</strong>tes are<br />

s<strong>en</strong>sitive to the antibacterial action of turbot (Scophthalmus maximus) mucus but<br />

resistant to gilthead seabream and seabass skin mucus. These observations may exp<strong>la</strong>in<br />

the fact that all P. damse<strong>la</strong>e subsp. piscicida outbreaks <strong>de</strong>scribed in Europe affected<br />

seabream and seabass, but never turbot.<br />

73


INTRODUCTION<br />

2.2. VIRULENCE MECHANISMS<br />

Several virul<strong>en</strong>ce mechanisms have be<strong>en</strong> <strong>de</strong>scribed in P. damse<strong>la</strong>e subsp. piscicida<br />

that inclu<strong>de</strong> production of extracellu<strong>la</strong>r products (ECPs) with haemolytic, phospholipase<br />

and cytotoxic activities (Balebona et al., 1992; Magariños et al., 1992; Noya et al., 1995a<br />

and b; Romal<strong>de</strong>, 2002; Bakopoulos et al., 2004). In addition, virul<strong>en</strong>t strains constitutively<br />

synthesize a thin <strong>la</strong>yer of capsu<strong>la</strong>r material that confers resistance to serum killing and<br />

<strong>de</strong>creases macrophage phagocytosis (Magariños et al., 1996b; Arijo et al., 1998; Acosta<br />

et al., 2006).<br />

A close re<strong>la</strong>tionship has be<strong>en</strong> observed betwe<strong>en</strong> capsule production and iron<br />

avai<strong>la</strong>bility. Thus, do Vale et al. (2001) observed that cells grown un<strong>de</strong>r iron-limiting<br />

conditions always have significantly lower amounts of capsu<strong>la</strong>r material. This thinner<br />

capsule probably results in a better exposure of the adhesins and iron receptors at the<br />

bacterial surface during passage through circu<strong>la</strong>tory system. Once the microorganism<br />

reaches the differ<strong>en</strong>t host tissues, the amount of capsu<strong>la</strong>r material probably increases in<br />

response to host cellu<strong>la</strong>r <strong>de</strong>f<strong>en</strong>ce mechanisms such as phagocytosis<br />

3. SUPEROXIDE DISMUTASE AND CATALASE<br />

ACTIVITIES AS VIRULENCE FACTORS<br />

Bacterial inactivation within phagocytes takes p<strong>la</strong>ce by two mechanisms: oxyg<strong>en</strong><br />

in<strong>de</strong>p<strong>en</strong><strong>de</strong>nt mechanisms through phagocyte granule constitu<strong>en</strong>ts (lysosomal <strong>en</strong>zymes,<br />

catepsines, <strong>de</strong>f<strong>en</strong>sines, <strong>la</strong>ctoferrine, proteolytic <strong>en</strong>zymes) and oxyg<strong>en</strong> <strong>de</strong>p<strong>en</strong><strong>de</strong>nt<br />

mechanisms. In the <strong>la</strong>tter mechanisms oxyg<strong>en</strong>ic compounds such as hydrog<strong>en</strong> peroxi<strong>de</strong><br />

(H 2 O 2 ), superoxi<strong>de</strong> anion (O 2·- ) and hydroxyl radical (OH - ) takes p<strong>la</strong>ce. These products<br />

are g<strong>en</strong>erated during the called respiratory burst, due to the activation after phagocytosis<br />

of nicotinami<strong>de</strong>-a<strong>de</strong>nin-dinucleoti<strong>de</strong>-phosphate-hydrog<strong>en</strong> (NADPH) oxidase located in<br />

the membranes.<br />

74


INTRODUCTION<br />

3.1. RESPIRATORY BURST<br />

After phagocytosis, a process that involves the ingestion of microorganisms,<br />

phagocytic cells liberate the cont<strong>en</strong>t of their lysosomes and a phago-lysosome is<br />

formed. Lysosomes contain several cytotoxic factors, such as oxyg<strong>en</strong> metabolites and<br />

hydrolytic <strong>en</strong>zymes capable to kill and digest microorganisms.<br />

Production of these oxyg<strong>en</strong> metabolites occurs during the respiratory burst, within<br />

phagocytes in the pres<strong>en</strong>ce of bacteria, increasing oxyg<strong>en</strong> rate consumption.<br />

Extracellu<strong>la</strong>r oxyg<strong>en</strong> is used to g<strong>en</strong>erate reactive oxyg<strong>en</strong> species (ROS), O 2·- , H 2 O 2 , OH -<br />

in the cellu<strong>la</strong>r surface. The pres<strong>en</strong>ce of these free radicals is associated with cellu<strong>la</strong>r<br />

ageing; however, their toxicity is useful as a <strong>de</strong>f<strong>en</strong>ce mechanism against bacteria, due to<br />

their great microbiocidal activity.<br />

The respiratory burst starts by stimu<strong>la</strong>tion of the NADPH oxidase located in the<br />

phagocytic membrane. This <strong>en</strong>zymatic activity is able to reduce O 2 in superoxi<strong>de</strong> anion<br />

(O 2·- ) (Roos et al., 2003). Sequ<strong>en</strong>tially, by unival<strong>en</strong>t reduction of O 2 , highly toxig<strong>en</strong>ic<br />

reactive species, are g<strong>en</strong>erated. Within the phagosome, superoxi<strong>de</strong> is, spontaneously or<br />

by superoxi<strong>de</strong> dismutase (SOD), converted to hydrog<strong>en</strong> peroxi<strong>de</strong> (H 2 O 2 ), which may<br />

th<strong>en</strong> react with superoxi<strong>de</strong> to g<strong>en</strong>erate hydroxyl radicals (OH - ) and singlet oxyg<strong>en</strong> ( 1 O 2 ),<br />

both highly reactive and toxic compounds. Superoxi<strong>de</strong> can also react with nitrog<strong>en</strong><br />

oxi<strong>de</strong> (NO), g<strong>en</strong>erated by inducible NO synthase (NOS), to yield peroxynitrite, a very<br />

reactive nitrog<strong>en</strong> intermediate. There are ev<strong>en</strong> indications that single oxyg<strong>en</strong> may be<br />

converted to a ozone-like (O 3 ) compound in a reaction catalyzed by antibodies bound to<br />

microbes or neutrophils. H 2 O 2 may also, together with chlori<strong>de</strong>, be used as a substrate<br />

by myeloperoxidase released from granules to g<strong>en</strong>erate hypochlorous acid, a very toxic<br />

compound for almost all microbes. Subsequ<strong>en</strong>tly, the short-lived hypochlorous acid can<br />

react with secondary amines to form secondary chloramines, which are as microbiocidal<br />

as hypochlorous acid but more stable.<br />

The respiratory burst, due to the g<strong>en</strong>eration of a great amount of free radicals<br />

highly toxic, inactivating proteins and oxidizing nucleic acids and other ess<strong>en</strong>tial<br />

molecules, repres<strong>en</strong>ts an immune system strategy in the fight against infections.<br />

Pathog<strong>en</strong>ic microorganisms have had to <strong>de</strong>velop a fight against free radicals, in two<br />

75


INTRODUCTION<br />

si<strong>de</strong>s, on one hand, protection against free radicals that are g<strong>en</strong>erated by their own<br />

metabolism, and, on the other hand, <strong>de</strong>f<strong>en</strong>ce against the contact with phagocytic cells.<br />

Enzymes, such as superoxi<strong>de</strong> dismutases, cata<strong><strong>la</strong>s</strong>es and peroxidases, contribute to the<br />

resistance against ROS.<br />

These <strong>en</strong>zymes are consi<strong>de</strong>red as virul<strong>en</strong>ce factors; they are <strong>de</strong>f<strong>en</strong>sive weapons<br />

against phagocytic cell attack and, therefore, contribute to the virul<strong>en</strong>ce of pathog<strong>en</strong>s.<br />

3.2. SUPEROXIDE DISMUTASE ACTIVITY<br />

Superoxi<strong>de</strong> dismutase is the first <strong>de</strong>f<strong>en</strong>ce line of the cells against oxidative stress.<br />

This <strong>en</strong>zyme catalyzes the conversion of superoxi<strong>de</strong> anion radicals to hydrog<strong>en</strong><br />

peroxi<strong>de</strong> and oxyg<strong>en</strong> (equation 4).<br />

(4) O 2·- + 2H + H 2 O 2 + O 2<br />

Superoxi<strong>de</strong> dismutase activity has be<strong>en</strong> <strong>de</strong>tected in a wi<strong>de</strong> variety of living<br />

organisms, from bacteria to humans. Any cell that utilizes oxyg<strong>en</strong> has the capacity to<br />

produce superoxi<strong>de</strong> anion (O 2·- ) and so should contain some form of superoxi<strong>de</strong><br />

dismutase (Fridovich, 1974).<br />

Superoxi<strong>de</strong> dismutases constitute a family of metallo<strong>en</strong>zymes, c<strong><strong>la</strong>s</strong>sified into four<br />

groups, <strong>de</strong>p<strong>en</strong>ding on the metal cofactor: FeSOD, MnSOD, CuZnSOD and NiSOD,<br />

this <strong>la</strong>tter <strong>de</strong>scribed rec<strong>en</strong>tly in Streptomyces (Lynch and Kuramitsu, 2000).<br />

3.3. CATALASE ACTIVITY<br />

Cata<strong><strong>la</strong>s</strong>es participate in the <strong>de</strong>composition of hydrog<strong>en</strong> peroxi<strong>de</strong> into water (H 2 O)<br />

and oxyg<strong>en</strong> (O 2 ) (equation 5).<br />

(5) 2H 2 O 2 2H 2 O + O 2<br />

76


INTRODUCTION<br />

Some cata<strong><strong>la</strong>s</strong>es have also peroxidase activity and in this case an organic electron<br />

donor, or sometimes an hali<strong>de</strong> ion, is employed in the reduction of hydrog<strong>en</strong> peroxi<strong>de</strong><br />

(equation 6).<br />

(6) RH 2 + H 2 O 2 2H 2 O + R<br />

Cata<strong><strong>la</strong>s</strong>es have be<strong>en</strong> divi<strong>de</strong>d into three groups (Loew<strong>en</strong>, 1997): monofunctional<br />

cata<strong><strong>la</strong>s</strong>e with heme group (FeCat); bifunctional cata<strong><strong>la</strong>s</strong>e with heme group (cata<strong><strong>la</strong>s</strong>eperoxidase)<br />

and pseudocata<strong><strong>la</strong>s</strong>e without heme group (MnCat), referred to as<br />

pseudocata<strong><strong>la</strong>s</strong>e because they are not inhibited by the common catalytic inhibitors, azi<strong>de</strong><br />

and cyani<strong>de</strong>.<br />

Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e activities protect the cells also by prev<strong>en</strong>ting<br />

the g<strong>en</strong>eration of hydroxyl radical (OH·), a more toxic reactive species.<br />

The role of these <strong>en</strong>zymes can be ess<strong>en</strong>tial to protect pathog<strong>en</strong>ic bacteria during<br />

respiratory burst after phagocytosis, therefore superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e are<br />

re<strong>la</strong>ted to virul<strong>en</strong>ce mechanisms (Table 5). The ability of many microorganisms to<br />

infect the host <strong>de</strong>p<strong>en</strong>ds on their resistance to ROS production by cells, mainly<br />

monocytes, macrophages and polymorphonuclears. Ironically, evolution has selected<br />

organisms that use these cells as targets, so pres<strong>en</strong>ce of SOD and cata<strong><strong>la</strong>s</strong>e in bacteria<br />

will contribute to resistance against host and, therefore, infection establishm<strong>en</strong>t.<br />

77


INTRODUCTION<br />

Table 5 Examples of pathog<strong>en</strong>s in which a role in the virul<strong>en</strong>ce has be<strong>en</strong> <strong>de</strong>monstrated for<br />

SOD and cata<strong><strong>la</strong>s</strong>e activities<br />

Pathog<strong>en</strong> Virul<strong>en</strong>ce factor Refer<strong>en</strong>ce<br />

Listeria monocytog<strong>en</strong>es FeSOD Welch et al., 1979<br />

Shigel<strong>la</strong> flexneri FeSOD Franzon et al., 1990<br />

Pseudomonas syringae Cata<strong><strong>la</strong>s</strong>es (not<br />

<strong>de</strong>termined)<br />

Klotz and Hutcheson, 1992<br />

Caulobacter cresc<strong>en</strong>tus CuZnSOD Schnell and Steinman, 1995<br />

Aeromonas salmonicida FeSOD Barnes et al., 1996<br />

Pseudomonas aeruginosa MnSOD Po<strong>la</strong>ck et al., 1996<br />

Legionel<strong>la</strong> pneumophi<strong>la</strong> CuZnSOD St. John and Steinman,<br />

1996<br />

Aeromonas<br />

subsp. salmonicida<br />

salmonicida<br />

MnSOD and FeCata<strong><strong>la</strong>s</strong>e<br />

Barnes et al., 1999b<br />

Mycobacterium tuberculosis Cata<strong><strong>la</strong>s</strong>e-Peroxidase Manca et al., 1999<br />

Streptococcus pneumoniae MnSOD Yesilkaya et al., 2000<br />

Vibrio harveyi<br />

Monofunctional<br />

Vattanaviboon<br />

and<br />

cata<strong><strong>la</strong>s</strong>e<br />

Mongkolsuk, 2001<br />

Salmonel<strong>la</strong> <strong>en</strong>terica CuZnSOD Uzzau et al., 2002<br />

Vibrio shiloi SOD (not <strong>de</strong>termined) Banin et al., 2003<br />

3.4. SUPEROXIDE DISMUTASE AND CATALASE ACTIVITIES IN<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

Processes involved in the invasion and survival of P. damse<strong>la</strong>e subsp. piscicida<br />

insi<strong>de</strong> the host are still unknown and while authors have reported the pres<strong>en</strong>ce of intact<br />

bacteria insi<strong>de</strong> fish cells, suggesting the ability of the bacterium to survive as an<br />

intracellu<strong>la</strong>r pathog<strong>en</strong> (Noya et al., 1995a; López-Dóriga et al., 2000), others have<br />

observed that this pathog<strong>en</strong> is highly susceptible to oxidative radicals g<strong>en</strong>erated during<br />

the macrophage respiratory burst (Skarmeta et al., 1995; Barnes et al., 1999a). Due to the<br />

protective role attributed to SOD and cata<strong><strong>la</strong>s</strong>e activities in a variety of bacterial<br />

78


INTRODUCTION<br />

pathog<strong>en</strong>s, study of these activities in P. damse<strong>la</strong>e subsp. piscicida could contribute to<br />

the un<strong>de</strong>rstanding of the interactions betwe<strong>en</strong> this bacterium and its host.<br />

Barnes et al. (1999a) <strong>de</strong>termined the exist<strong>en</strong>ce of a perip<strong><strong>la</strong>s</strong>mic FeSOD and a<br />

citop<strong><strong>la</strong>s</strong>mic cata<strong><strong>la</strong>s</strong>e, not characterized. The SOD activity is repressed un<strong>de</strong>r iron<br />

restricted or low oxyg<strong>en</strong> conditions. Cata<strong><strong>la</strong>s</strong>e activity is constituvely expressed,<br />

although there are differ<strong>en</strong>ces in int<strong>en</strong>sity gel bands <strong>de</strong>p<strong>en</strong>ding on strains. In this PhD.<br />

Thesis we have tried to <strong>de</strong>ep more in the study of the role of superoxi<strong>de</strong> dismutase and<br />

cata<strong><strong>la</strong>s</strong>e activities in P. damseale subsp. piscicida virul<strong>en</strong>ce.<br />

4. STIMULATION OF RESPIRATORY BURST ACTIVITY BY<br />

DIFFERENT MICROORGANISMS AFTER Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida INFECTION<br />

4.1. PREVENTION AND TREATMENT OF PSEUDOTUBERCULOSIS<br />

Over the <strong><strong>la</strong>s</strong>t <strong>de</strong>ca<strong>de</strong>, inci<strong>de</strong>nce of drug-resistant strains, carrying a transferable R-<br />

p<strong><strong>la</strong>s</strong>mid have increased, making treatm<strong>en</strong>t with antimicrobial chemotherapeutics less<br />

successful. Moreover, a period of intracellu<strong>la</strong>r parasitism within macrophages has be<strong>en</strong><br />

<strong>de</strong>scribed for P. damse<strong>la</strong>e subsp. piscicida (Kusuda and Sa<strong>la</strong>ti, 1993); this finding can<br />

exp<strong>la</strong>in the ineffectiv<strong>en</strong>ess of chemotherapy in the treatm<strong>en</strong>t of some disease outbreaks.<br />

Therefore, immunoprophy<strong>la</strong>xis has become the best way to prev<strong>en</strong>t pseudotuberculosis.<br />

Throughout the <strong><strong>la</strong>s</strong>t 20 years, there have be<strong>en</strong> a variety of studies analyzing the<br />

effectiv<strong>en</strong>ess of immunization in prev<strong>en</strong>ting pseudotuberculosis (Romal<strong>de</strong> and<br />

Magariños, 1997). Most vaccine formu<strong>la</strong>tions tested consisted of heat- or formalin-killed<br />

cells (Fukuda and Kusuda, 1981; Kusuda and Hamaguchi, 1987; Kusuda and Hamaguchi,<br />

1988; Hamaguchi and Kusuda, 1989). Best results were obtained using formu<strong>la</strong>tions<br />

based on lipopolysacchari<strong>de</strong>s (LPS) and ribosomal fractions of the bacteria (Fukuda and<br />

Sukuda, 1985; Kusuda et al., 1988; Kawakami et al., 1997). However, these formu<strong>la</strong>tions<br />

pres<strong>en</strong>ted not only problems of reproducibility, but also difficulties on <strong>la</strong>rge scale<br />

production. Passive immunization has also be<strong>en</strong> evaluated (Fukuda and Kusuda, 1981),<br />

79


INTRODUCTION<br />

but the results showed short-term protection. The best protection against<br />

pseudotuberculosis was obtained with an ECP-<strong>en</strong>riched bacterin (Magariños et al., 1994,<br />

1997, 1999). This vaccine is curr<strong>en</strong>tly commercially avai<strong>la</strong>ble and has be<strong>en</strong> successfully<br />

employed in several European countries including Spain, Portugal and Greece. In<br />

addition, a dival<strong>en</strong>t vaccine with bacterin and formaline-inactivated ECPs of V. harveyi<br />

and P. damse<strong>la</strong>e subsp. piscicida has shown promising results in sole (Arijo et al.,<br />

2005).<br />

Future tr<strong>en</strong>ds in vaccine formu<strong>la</strong>tions against P. damse<strong>la</strong>e subsp. piscicida inclu<strong>de</strong><br />

the use of proteins from cellu<strong>la</strong>r <strong>en</strong>velope (Magariños et al., 1994) and iron-regu<strong>la</strong>ted<br />

OMPs as protective antig<strong>en</strong>s.<br />

The combination of vaccination and immunostimu<strong>la</strong>nts appears as the most<br />

effective strategy to prev<strong>en</strong>t and fight against infectious diseases in fish (Sakai, 1999).<br />

At pres<strong>en</strong>t, the use of immunostimu<strong>la</strong>nts, in addition to chemotherapeutic ag<strong>en</strong>ts and<br />

vaccines, has be<strong>en</strong> wi<strong>de</strong>ly accepted by fish farmers. However it is necessary search for<br />

new immunostimu<strong>la</strong>nt ag<strong>en</strong>ts effective against pathog<strong>en</strong>s and with reduced production<br />

costs.<br />

Finally, probiotics, microbial cells orally administered capable to induce positive<br />

effects on host health repres<strong>en</strong>t another alternative to combat diseases affecting farmed<br />

fish.<br />

4.2. IMMUNOMODULATION. IMMUNOSTIMULATION<br />

Immunomodu<strong>la</strong>tion is the ability of certain substances to regu<strong>la</strong>te the immune<br />

system, may be immunostimu<strong>la</strong>tion or immuno<strong>de</strong>pression, stimu<strong>la</strong>ting or <strong>de</strong>pressing the<br />

immune system, respectively. The main reason to search for new immunostimu<strong>la</strong>nt<br />

ag<strong>en</strong>ts is the great <strong>de</strong>velopm<strong>en</strong>t of the aquaculture and the increase of stress situations<br />

and diseases caused by int<strong>en</strong>sive cultures. Some studies have reported that the negative<br />

effects associated to immuno<strong>de</strong>pression were overcome by immunostimu<strong>la</strong>nts, since the<br />

immunostimu<strong>la</strong>nts increase resistance against infectious diseases, by <strong>en</strong>hancing nonspecific<br />

<strong>de</strong>f<strong>en</strong>ce mechanisms. Immunostimu<strong>la</strong>nts facilitate phagocytic cells function and<br />

80


INTRODUCTION<br />

increase their bactericidal activity, oxyg<strong>en</strong> <strong>de</strong>p<strong>en</strong><strong>de</strong>nt and in<strong>de</strong>p<strong>en</strong><strong>de</strong>nt mechanisms<br />

being involved (Siwicki et al., 1994; An<strong>de</strong>rson, 1996).<br />

Immunostimu<strong>la</strong>nts may be able to comp<strong>en</strong>sate some chemotherapeutic and vaccine<br />

limitations. Immunostimu<strong>la</strong>nts are safer than chemotherapeutics and their range of<br />

efficacy is wi<strong>de</strong>r than vaccination. However, we cannot expect the marked or long-term<br />

effects observed with vaccines to occur with immunostimu<strong>la</strong>nts because these<br />

substances act on non-specific immune system, without a memory compon<strong>en</strong>t<br />

(An<strong>de</strong>rson, 1996; Sakai, 1999). Sakai (1999) suggests that the most effective strategy to<br />

prev<strong>en</strong>t and combate possible infectious diseases in fish, is the combination of<br />

immuostimu<strong>la</strong>nts and vaccines. Thus, with a <strong>de</strong>tailed un<strong>de</strong>rstanding of the efficacy and<br />

limitations of immunostimu<strong>la</strong>nts, they may become powerful tools to control fish<br />

diseases.<br />

4.3. USE OF ALGAE AS IMMUNOSTIMULANTS<br />

During <strong><strong>la</strong>s</strong>t years searching for therapeutically active substances has focused on<br />

marine organisms. Ability of algae to produce secondary metabolites, such as<br />

antibiotics, antivirals, antitumorals and antiinf<strong>la</strong>mmatories, with pot<strong>en</strong>tial<br />

pharmaceutical interest, has be<strong>en</strong> well docum<strong>en</strong>ted (Scheuer, 1990; Faulkner, 1993;<br />

González <strong>de</strong>l Val et al., 2001). However, studies on immunomodu<strong>la</strong>tory properties of<br />

extracts and whole cells from algae are still scarce. In this Thesis we have studied the<br />

red microalga Porphyridium cru<strong>en</strong>tum as a possible source of immunostimu<strong>la</strong>nts in<br />

cultured sole.<br />

A great number of algae constitute an important source of polyunsaturated fatty<br />

acids (PUFAs), which are the ess<strong>en</strong>tial dietary requirem<strong>en</strong>ts for many marine teleosts<br />

(Bell et al., 1985; Kov<strong>en</strong> et al., 2001). Some of these fatty acids, such as the arachidonic<br />

acid, AA (20:4(n-6)) participate in eicosanoid synthesis, therefore, in prostag<strong>la</strong>ndin<br />

production, involved in stress through modu<strong>la</strong>tion of cortisol release and, therefore in<br />

cellu<strong>la</strong>r immunity (Vil<strong>la</strong>lta et al., 2005).<br />

Algae also contain carot<strong>en</strong>oids, β-carot<strong>en</strong>e, astaxanthin, cataxanthin or<br />

xanthofilins. Amar et al. (2004) <strong>de</strong>monstrated that β-carot<strong>en</strong>e, iso<strong>la</strong>ted from Dunaliel<strong>la</strong><br />

81


INTRODUCTION<br />

salina, is able to modu<strong>la</strong>te, after oral administration, some compon<strong>en</strong>ts of the innate<br />

<strong>de</strong>f<strong>en</strong>ce mechanisms in rainbow trout (Oncorhynchus mykiss) such as the complem<strong>en</strong>t<br />

alternative way, serum lysozyme and phagocytosis. The carot<strong>en</strong>oids increase the<br />

phagocytic activity and citoquine production (B<strong>en</strong>dich, 1989; Chew, 1993).<br />

Algae are also a natural source of vitamins, some of them have possible<br />

immunostimu<strong>la</strong>nt effects on fish immune system, such as vitamin C (Hardie et al., 1991;<br />

Cuesta et al., 2002; J<strong>en</strong>ey and J<strong>en</strong>ey, 2002; Lin and Shiau, 2005), vitamin E (Hardie et al.,<br />

1990; Cuesta et al., 2001) and vitamins B (Miles et al., 2001).<br />

The use of polysacchari<strong>de</strong>s as immunostimu<strong>la</strong>nts is wi<strong>de</strong>ly ext<strong>en</strong><strong>de</strong>d in aquaculture<br />

(Kumar et al., 2005), the most studied in fish are the glucans. β-glucans are polyglucoses<br />

that consist in series of residues of β-1,3-glucopiranosyl <strong>de</strong>rived from yeast and fungus<br />

micellium. These sugars seem to have a pot<strong>en</strong>t immunostimu<strong>la</strong>nt effect, mainly on<br />

unspecific <strong>de</strong>f<strong>en</strong>ce mechanisms, inducing resistance against infections. Numerous<br />

studies confirm the use of β,1-3,1-6 glucans from yeasts and fungus cell walls as<br />

immunostimu<strong>la</strong>nts in aquaculture. Greater part of these studies has focused on β-<br />

glucans from the yeast specie Saccharomyces cerevisiae (Santarém et al., 1997; Castro<br />

et al., 1999; Kumari and Sahoo, 2006; Marqués et al., 2006).<br />

The use of these polysacchari<strong>de</strong>s as immunostimu<strong>la</strong>nts in aquaculture industry is<br />

wi<strong>de</strong>ly ext<strong>en</strong><strong>de</strong>d and there are commercial products avai<strong>la</strong>ble (Siwicki et al., 1994; Cook<br />

et al., 2003; Couso et al., 2003; Bagni et al., 2005).<br />

Another pot<strong>en</strong>tial immunostimu<strong>la</strong>nt polysacchari<strong>de</strong> <strong>de</strong>rived from brown<br />

macroalgae and microalgae, is the alginic acid. The alginate is known in aquaculture as<br />

stabilizer of the structure of pellet diets. The immunostimu<strong>la</strong>nt properties were<br />

<strong>de</strong>termined in phyophaecaetes extracts of species such as Laminaria digitata (Dalmo et<br />

al., 1998; Gabriels<strong>en</strong> and Austr<strong>en</strong>g, 1998) and others (Miles et al., 2001; Peddie et al.,<br />

2002; Skjermo and Bergh, 2004; Bagni et al., 2005).<br />

82


INTRODUCTION<br />

4.3.1. Porphyridium cru<strong>en</strong>tum<br />

Porphyridium cru<strong>en</strong>tum is a red microalga belonging to Rodophyta family and<br />

Porphyridiales or<strong>de</strong>r, with spherical cells that <strong>la</strong>ck of cell wall. This alga accumu<strong>la</strong>tes<br />

<strong>la</strong>rge amounts of fatty acids (9-14% dry weight), specially araquidonic acid (36%) and<br />

noticeable amounts of eicosap<strong>en</strong>ta<strong>en</strong>oic acid. The protein cont<strong>en</strong>t ranges from 28 to 39%,<br />

and avai<strong>la</strong>ble carbohydrates vary betwe<strong>en</strong> 40 and 57%. The biomass cont<strong>en</strong>ts tocopherol,<br />

vitamin K and a <strong>la</strong>rge amount of carot<strong>en</strong>es (Rebolloso et al., 2000).<br />

P. cru<strong>en</strong>tum cells are capable to excrete a sulphated polysacchari<strong>de</strong>, an acidic<br />

heteropolymer composed of xylose, glucose, ga<strong>la</strong>ctose and sulphate esters (You and<br />

Barneu, 2004). This polysacchari<strong>de</strong> is commercially used as thick<strong>en</strong>er, stabilizer and<br />

emulsifier (Arad et al., 1985, 1988; Adda et al., 1986).<br />

Substances such as araquidonic acid (Kov<strong>en</strong> et al., 2001), carbohydrates (Kumar et<br />

al., 2005), vitamins (Hardie et al., 1990, 1991; Ortuño et al., 1999, 2003; J<strong>en</strong>ey and J<strong>en</strong>ey,<br />

2002), carot<strong>en</strong>oids (Amar et al., 2004) and polysacchari<strong>de</strong>s (Siwicki et al., 1994;<br />

Santarém et al., 1997; Castro et al., 1999; Bagni et al., 2000, 2005; Esteban et al., 2001;<br />

J<strong>en</strong>ey and J<strong>en</strong>ey, 2002; Cook et al., 2003; Couso et al., 2003) pres<strong>en</strong>t in differ<strong>en</strong>t<br />

organisms, have be<strong>en</strong> <strong>de</strong>monstrated their immunostimu<strong>la</strong>nt effects on fish. All of these<br />

compounds have be<strong>en</strong> <strong>de</strong>termined in P. cru<strong>en</strong>tum.<br />

In addition, the fact that P. cru<strong>en</strong>tum culture is not costly makes this alga a good<br />

candidate as a source of immunostimu<strong>la</strong>nt active substances. However, the<br />

polysacchari<strong>de</strong> extraction is a <strong>la</strong>borious process; moreover intraperitoneal<br />

administration is not advisable due to stress by handling. For this reason it is conv<strong>en</strong>i<strong>en</strong>t<br />

to simplify the immunostimu<strong>la</strong>nt administration, providing whole and oral,<br />

supplem<strong>en</strong>ting feed. Last years the number of works, that study whole organisms is<br />

increasing, such as yeasts (Siwicki et al., 1994; Ortuño et al., 2002; Rodríguez et al.,<br />

2003), fungus (Rodríguez et al., 2004) and probiotics (Verschuere et al., 2000; Irianto and<br />

Austin, 2003; Salinas et al., 2005; Díaz-Rosales et al., 2006). However, in spite of the<br />

<strong>la</strong>rge number of studies carried out with extracts or compounds <strong>de</strong>rived from algae<br />

(Kov<strong>en</strong> et al., 2001; Castro et al., 2004; Skjermo and Bergh, 2004; Díaz-Rosales et al.,<br />

83


INTRODUCTION<br />

2005; Hou and Ch<strong>en</strong>, 2005; Vil<strong>la</strong>lta et al., 2005), the works using whole alga cells are still<br />

scarce (Blinkova et al., 2001; Val<strong>en</strong>te et al., 2006).<br />

As <strong>de</strong>scribed above, the combination of vaccination and immunostimu<strong>la</strong>nt<br />

administration could increase vaccine pot<strong>en</strong>cy. Thus, one objective is to evaluate a<br />

possible fish immunostimu<strong>la</strong>tion by administration of the alga P. cru<strong>en</strong>tum jointly with<br />

a vaccine formu<strong>la</strong>tion, evaluating a possible synergetic effect of both prophy<strong>la</strong>ctic<br />

methods against P. damse<strong>la</strong>e subsp. piscicida infection.<br />

4.4. IMMUNOSTIMULANT EFFECT OF POTENTIAL PROBIOTIC BACTERIA<br />

Definition of probiotics has changed along time. Thus, Salmin<strong>en</strong> et al. (1999)<br />

consi<strong>de</strong>r probiotics as “every microbiane preparation (not alive necessary) or microbial<br />

cellu<strong>la</strong>r compounds that have b<strong>en</strong>eficial effect on host health”. According to FAO<br />

probiotics consist of a microbial complem<strong>en</strong>t that affects b<strong>en</strong>eficially to host physiology<br />

by modu<strong>la</strong>tion of local and systemic immunity, moreover to improve microbial ba<strong>la</strong>nce<br />

by prev<strong>en</strong>tion of gastrointestinal colonization by non <strong>de</strong>sired bacteria. The advances in<br />

probiotic employm<strong>en</strong>t in cattle and human medicine have lead to consi<strong>de</strong>r their<br />

application in aquaculture, as an alternative in the fight against microbial infection<br />

(Sakai, 1999).<br />

Aquatic animals are very differ<strong>en</strong>t to terrestrial animals, therefore probiotic<br />

concept changes in aquaculture application (Verschuere et al., 2000). In aquatic animals<br />

there is a constant interaction betwe<strong>en</strong> the intestinal microbiota and <strong>en</strong>vironm<strong>en</strong>t. For<br />

this reason, in aquaculture systems the immediate <strong>en</strong>vironm<strong>en</strong>t has <strong>la</strong>rger influ<strong>en</strong>ce on<br />

the health status than in the case of terrestrial animals or humans. Due to the exist<strong>en</strong>ce<br />

of a continuous flux of water trough digestive tract, the fish intestinal microbiota is<br />

highly <strong>de</strong>p<strong>en</strong><strong>de</strong>nt on external <strong>en</strong>vironm<strong>en</strong>t.<br />

Verschuere et al. (2000) proposed a modified <strong>de</strong>finition: “as a live microbial<br />

adjunct which has a b<strong>en</strong>eficial effect on the host by modifying the host-associated or<br />

ambi<strong>en</strong>t microbial community, by <strong>en</strong>suring improved use of the feed or <strong>en</strong>hancing its<br />

nutritional value, by <strong>en</strong>hancing the host response towards disease, or by improving the<br />

quality of its ambi<strong>en</strong>t <strong>en</strong>vironm<strong>en</strong>t”.<br />

84


INTRODUCTION<br />

Differ<strong>en</strong>t mechanisms have be<strong>en</strong> proposed to exp<strong>la</strong>in the types of interactions<br />

betwe<strong>en</strong> probiotics and pathog<strong>en</strong>s: (1) Competitive exclussion, production of<br />

antimicrobial compounds such as bacteriocines, lysozimes and proteases (Austin et al.,<br />

1995; Sugita et al., 1997; Gatesoupe, 1999; Gram et al., 1999; Verschuere et al., 2000); (2)<br />

competition for avai<strong>la</strong>ble <strong>en</strong>ergy and nutri<strong>en</strong>ts (Smith and Davey, 1993; Pybus et al.,<br />

1994; Gatesoupe et al., 1997; Gram et al., 1999); (3) Adhesive interfer<strong>en</strong>ce in the host<br />

(Olsson et al., 1992; Jöborn et al., 1997; Nikoske<strong>la</strong>in<strong>en</strong> et al., 2001; Chabrillón et al.,<br />

2005a and b). Rec<strong>en</strong>tly, research have focused also on the immunomodu<strong>la</strong>tory properties<br />

of probiotic microorganisms (Irianto and Austin, 2003; Nikoske<strong>la</strong>in<strong>en</strong> et al., 2003;<br />

Panigrahi et al., 2004; Salinas et al., 2005, 2006; Díaz-Rosales, 2006) (Table 6).<br />

The gastrointestinal microbiota p<strong>la</strong>ys an important role in host nutrition and<br />

health. Therefore, probiotics could perform an interesting function, modifying<br />

gastrointestinal microbiota to induce favourable effects, such as improvem<strong>en</strong>t of<br />

growth, digestion, immunity or resistance against a pathog<strong>en</strong>. There are numerous<br />

authors that have characterized gastrointestinal microbiota of differ<strong>en</strong>t farmed fish,<br />

fundam<strong>en</strong>tally salmonids (Spanggaard et al., 2000; Huber et al., 2004, J<strong>en</strong>s<strong>en</strong> et al., 2004;<br />

Burr et al., 2005), however studies on gastrointestinal microbiota characterization or<br />

evaluation of possible effects of probiotics are null in fish from Mediterranean area.<br />

These studies are very interesting since could provi<strong>de</strong> information for a better<br />

application of microorganisms in prophy<strong>la</strong>ctic strategies and diseases biocontrol.<br />

85


INTRODUCTION<br />

Table 6 B<strong>en</strong>eficial effects of probiotics on fish immune system<br />

PROBIOTIC HOST INCREASE OF IMMUNE<br />

REFERENCE<br />

RESPONSE<br />

Bacteria Gram Oncorhynchus Erythrocytes and leucocytes number, Irianto and Austin,<br />

positive, not mykiss (rainbow lysozyme activity, phagocytosis 2003<br />

i<strong>de</strong>ntified<br />

trout)<br />

Vibrio fluvialis Oncorhynchus Erythrocytes and leucocytes number, Irianto and Austin,<br />

mykiss<br />

lysozyme activity, phagocytosis 2003<br />

Aeromonas<br />

Oncorhynchus Erythrocytes and leucocytes number, Irianto and Austin,<br />

hydrophi<strong>la</strong><br />

mykiss<br />

lysozyme activity, phagocytosis 2003<br />

Carnobacterium Oncorhynchus Erythrocytes and leucocytes number, Irianto and Austin,<br />

mykiss<br />

lysozyme activity, phagocytosis 2003<br />

Lactobacillus<br />

rhamnosus<br />

Oncorhynchus<br />

mykiss<br />

Respiratory burst, serum bactericidal<br />

activity, Ig serum levels<br />

Nikoske<strong>la</strong>in<strong>en</strong> et al.,<br />

2003<br />

Bacillus P<strong>en</strong>aeus vannamei Immune in<strong>de</strong>x (hemograme, Gullian et al., 2004<br />

superoxi<strong>de</strong> anion production,<br />

ph<strong>en</strong>oloxidase activity, antibacterial<br />

activity, p<strong><strong>la</strong>s</strong>ma protein conc<strong>en</strong>tration)<br />

Lactobacillus Oncorhynchus Lysozyme, serum complem<strong>en</strong>t and Panigrahi et al., 2004<br />

rhamnosus<br />

mykiss<br />

phagocytic activities<br />

Lactobacillus Sparus aurata Phagocytosis, cytotoxic activity Salinas et al., 2005<br />

<strong>de</strong>lbrüeckii subsp. (gilthead<br />

<strong>la</strong>ctis<br />

seabream)<br />

Bacillus subtilis Sparus aurata Phagocytosis, cytotoxic activity Salinas et al., 2005<br />

Aeromonas sobria<br />

Alteromonadaceae,<br />

G. Shewanel<strong>la</strong><br />

(Pdp11)<br />

Alteromonadaceae,<br />

G. Shewanel<strong>la</strong><br />

(51M6)<br />

Oncorhynchus Leucocytes number, phagocytosis,<br />

mykiss<br />

respiratory burst<br />

Sparus aurata Serum peroxidase, complem<strong>en</strong>t<br />

activity, phagocytosis<br />

Sparus aurata Serum peroxidase, complem<strong>en</strong>t<br />

activity, phagocytosis, cytotoxic<br />

activity<br />

Brunt and Austin,<br />

2005<br />

Díaz-Rosales et al.,<br />

2006<br />

Díaz-Rosales et al.,<br />

2006<br />

86


A<br />

I M S


AIMS<br />

The work pres<strong>en</strong>ted in this Thesis contributes to the knowle<strong>de</strong>ge of<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida virul<strong>en</strong>ce, and <strong>de</strong>velops new strategies for<br />

prev<strong>en</strong>tion of the disease caused by this pathog<strong>en</strong>. The aims proposed are the following:<br />

1. Study of the role of superoxi<strong>de</strong> dimutase and cata<strong><strong>la</strong>s</strong>e <strong>en</strong>zymatic activities in<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida, evaluating the pot<strong>en</strong>tial resistance<br />

of the pathog<strong>en</strong> against bactericidal action of sole phagocytes.<br />

2. Evaluation of possible immunostimu<strong>la</strong>nt effect on respiratory burst activity of<br />

sole phagocytes, that could be exert the use of the microalgae Porphyridium<br />

cru<strong>en</strong>tum and probiotics microorganisms.<br />

89


M<br />

A T E R I A L S A N D M E T H O D S


MATERIA L AND METHODS<br />

Materials and methodology followed to carry out the experim<strong>en</strong>ts inclu<strong>de</strong>d in this<br />

PhD. Thesis are <strong>de</strong>tailed in the papers attached in Article section.<br />

93


R<br />

E S U L T S A N D D I S C U S S I O N


RESULTS AND DISCUSSION<br />

The first objective of this PhD. Thesis consisted in the study of the contribution of<br />

superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e activities to Photobacterium damse<strong>la</strong>e subsp.<br />

piscicida resistance against oxyg<strong>en</strong>ic radicals g<strong>en</strong>erated during respiratory burst in sole<br />

phagocytes and, therefore, their possible role as virul<strong>en</strong>ce factors (articles 1.1. and 1.2.,<br />

Article section).<br />

Previously, Barnes et al. (1999a) <strong>de</strong>monstrated in vitro that this microorganism<br />

contains <strong>en</strong>ough superoxi<strong>de</strong> dismutase activity to disproportionate photochemically<br />

g<strong>en</strong>erated superoxi<strong>de</strong> anions, and that the bacterial susceptibility is due to the action of<br />

hydrog<strong>en</strong> peroxi<strong>de</strong>. In fact, the addition of exog<strong>en</strong>ous cata<strong><strong>la</strong>s</strong>e to the medium protected<br />

the bacteria from inactivation by superoxi<strong>de</strong> anions. The role of cata<strong><strong>la</strong>s</strong>e and superoxi<strong>de</strong><br />

dismutase activities in P. damse<strong>la</strong>e subsp. piscicida virul<strong>en</strong>ce has be<strong>en</strong> studied in this<br />

work and results are inclu<strong>de</strong>d in articles 1.1. and 1.2. (Article section).<br />

In vitro role of cata<strong><strong>la</strong>s</strong>e activity in P. damse<strong>la</strong>e subsp. piscicida protection against<br />

exog<strong>en</strong>ous hydrog<strong>en</strong> peroxi<strong>de</strong> has be<strong>en</strong> evaluated in the first article. Results obtained<br />

show that resistance to hydrog<strong>en</strong> peroxi<strong>de</strong> increases wh<strong>en</strong> bacterial cultures are pulsed<br />

with hydrog<strong>en</strong> peroxi<strong>de</strong>. On the contrary, survival perc<strong>en</strong>tages <strong>de</strong>crease wh<strong>en</strong> bacteria<br />

grow un<strong>de</strong>r iron-limiting conditions. Quantification of cata<strong><strong>la</strong>s</strong>e activity in a set of P.<br />

damse<strong>la</strong>e subsp. piscicida strains shows that highest survival perc<strong>en</strong>tages are pres<strong>en</strong>t in<br />

bacterial cultures with higher cata<strong><strong>la</strong>s</strong>e activity levels. Moreover, resistance to oxidative<br />

stress varied <strong>de</strong>p<strong>en</strong>ding on the virul<strong>en</strong>ce, being higher in more virul<strong>en</strong>t strains. Thus, the<br />

virul<strong>en</strong>t strain Lg h41/01 shows higher resistance to respiratory burst of sole phagocytes<br />

than the non virul<strong>en</strong>t strain EPOY-8803-II, and hydrog<strong>en</strong> peroxi<strong>de</strong> addition into cultures<br />

increases survival. The <strong>la</strong>ck of cell capsule could contribute to the <strong>de</strong>crease of survival<br />

against reactive oxyg<strong>en</strong> species, but the low levels of cata<strong><strong>la</strong>s</strong>e activity obtained in<br />

EPOY-8803-II, suggest that its abs<strong>en</strong>ce of virul<strong>en</strong>ce could be <strong>de</strong>termined, in great part,<br />

by low cata<strong><strong>la</strong>s</strong>e activity. Therefore, cata<strong><strong>la</strong>s</strong>e p<strong>la</strong>ys an important role in P. damse<strong>la</strong>e<br />

subsp. piscicida virul<strong>en</strong>ce. It has be<strong>en</strong> <strong>de</strong>monstrated, in a great number of bacteria, that<br />

previous exposition to an oxidant in sublethal conc<strong>en</strong>trations can induce protection<br />

against lethal conc<strong>en</strong>trations of the oxidant (Mongkolsuk et al., 1996). Barnes et al.<br />

(1999b) reported that after being pulsed with hydrog<strong>en</strong> peroxi<strong>de</strong> A. salmonicida is able to<br />

97


RESULTS AND DISCUSSION<br />

resist 100 mM of peroxi<strong>de</strong>, a lethal conc<strong>en</strong>tration without peroxi<strong>de</strong> pretreatm<strong>en</strong>t. In the<br />

case of P. damse<strong>la</strong>e subsp. piscicida, it is interesting to note that a significant increase<br />

in survival rates of the non-virul<strong>en</strong>t strain was observed wh<strong>en</strong> cultures were pulsed with<br />

hydrog<strong>en</strong> peroxi<strong>de</strong> compared to cells cultured until stationary phase. In contrast, this<br />

increase has not be<strong>en</strong> observed for the virul<strong>en</strong>t strain, which always showed higher<br />

survival regardless of the growth phase, or the pulse with hydrog<strong>en</strong> peroxi<strong>de</strong>.<br />

On the other hand, culture un<strong>de</strong>r iron-restricted conditions results in a significant<br />

<strong>de</strong>crease in survival of both virul<strong>en</strong>t and avirul<strong>en</strong>t strains. The fact that this bacterial<br />

species contains a ferric cata<strong><strong>la</strong>s</strong>e (article 1.2., Article section), whose activity is reduced<br />

un<strong>de</strong>r iron limiting conditions, may exp<strong>la</strong>in this result.<br />

Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e are metallo<strong>en</strong>zymes that can possess differ<strong>en</strong>t<br />

metals in their active c<strong>en</strong>tre. Microorganisms capable to produce differ<strong>en</strong>t superoxi<strong>de</strong><br />

dismutase and cata<strong><strong>la</strong>s</strong>e iso<strong>en</strong>zymes, <strong>de</strong>p<strong>en</strong>ding on culture conditions, have be<strong>en</strong><br />

<strong>de</strong>scribed. These culture conditions inclu<strong>de</strong> oxyg<strong>en</strong> levels, low iron levels or growth<br />

until stationary phase (Storz et al., 1990; Privalle and Fridovich, 1992; Crockford et al.,<br />

1995; Schnell and Steinman, 1995; Barnes et al., 1996; Po<strong>la</strong>ck et al., 1996; St. John and<br />

Steinman, 1996; Lynch and Kuramitsu, 2000; Yesilkaya et al., 2000; Geslin et al., 2001;<br />

Vattanaviboon and Mongkolsuk, 2001).<br />

Results obtained in the pres<strong>en</strong>t work show that P. damse<strong>la</strong>e subsp. piscicida does<br />

not synthetize a new form of superoxi<strong>de</strong> dismutase or cata<strong><strong>la</strong>s</strong>e wh<strong>en</strong> cultured un<strong>de</strong>r<br />

assayed conditions. Thus, all strains show only one band of superoxi<strong>de</strong> dismutase<br />

activity, with simi<strong>la</strong>r electrophoretic mobility to ferric superoxi<strong>de</strong> dismutase <strong>de</strong>scribed<br />

by Barnes et al. (1999a). Ev<strong>en</strong> oxidative stress, by hydrog<strong>en</strong> peroxi<strong>de</strong> or paraquat (an<br />

oxyg<strong>en</strong>ic radical g<strong>en</strong>erator) addition, did not induce the synthesis of a differ<strong>en</strong>t<br />

iso<strong>en</strong>zyme, unlike CuZnSOD and MnSOD <strong>de</strong>scribed in Escherichia coli (Hassan and<br />

Fridovich, 1977; Privalle and Fridovich, 1992; B<strong>en</strong>ov and Fridovich, 1994; Geslin et al.,<br />

2001), MnSOD in A. salmonicida (Barnes et al., 1996; Barnes et al., 1999b),<br />

Pseudomonas aeruginosa (Po<strong>la</strong>ck et al., 1996) and Streptococcus pneumoniae<br />

(Yesilkaya et al., 2000). Neither restrictive iron conditions induce MnSOD synthesis<br />

(Privalle and Fridovich, 1992; Barnes et al., 1999b). Although further studies would be<br />

98


RESULTS AND DISCUSSION<br />

necessary, this <strong>la</strong>ck of a new superoxi<strong>de</strong> dismutase induction could be due to the<br />

pres<strong>en</strong>ce of only one sod g<strong>en</strong>e, sodB, <strong>en</strong>coding ferric superoxi<strong>de</strong> dismutase (Lynch and<br />

Kuramitsu, 2000).<br />

In the same way all strains, un<strong>de</strong>r all assayed culture conditions, show only one<br />

band of cata<strong><strong>la</strong>s</strong>e activity, with simi<strong>la</strong>r electrophoretic mobility to the band <strong>de</strong>scribed by<br />

Barnes et al. (1999a). Treatm<strong>en</strong>t of cata<strong><strong>la</strong>s</strong>e gels with inhibitors indicates that this<br />

bacterium contains an iron-cofactored <strong>en</strong>zyme, because cata<strong><strong>la</strong>s</strong>es with manganese retain<br />

its activity after treatm<strong>en</strong>t with azida and cyani<strong>de</strong>, but they are inhibited with mercuric<br />

chlori<strong>de</strong> (Kono and Fridovich, 1983; Allgood and Perry, 1986; Barnes et al., 1999b).<br />

Despite none assayed culture condition induced synthesis of more than one<br />

superoxi<strong>de</strong> dismutase or cata<strong><strong>la</strong>s</strong>e iso<strong>en</strong>zyme, differ<strong>en</strong>ces in the int<strong>en</strong>sity of the bands<br />

and activity levels, after spectrophotometrically quantification, are observed. These<br />

results are in agreem<strong>en</strong>t with those obtained by Barnes et al. (1999a), who also <strong>de</strong>tected<br />

differ<strong>en</strong>ces in cultures carried out un<strong>de</strong>r iron replete and <strong>de</strong>pleted conditions and highand<br />

low- aerated broths. The quantification of both superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e<br />

activities carried out in this study corroborated that differ<strong>en</strong>t band int<strong>en</strong>sities<br />

correspon<strong>de</strong>d to variations in the levels of activity. The lowest levels of superoxi<strong>de</strong><br />

dismutase activity and cata<strong><strong>la</strong>s</strong>e are <strong>de</strong>tected in bacteria grown un<strong>de</strong>r iron-restricted<br />

conditions, attributable to the ferric nature of P. damse<strong>la</strong>e subsp. piscicida superoxi<strong>de</strong><br />

dismutase and cata<strong><strong>la</strong>s</strong>e. Un<strong>de</strong>r iron-limiting conditions the virul<strong>en</strong>t strain shows higher<br />

activity levels of superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e, than the non virul<strong>en</strong>t strain. This<br />

result indicates the relevant role of iron uptake mechanisms for superoxi<strong>de</strong> dismutase<br />

and cata<strong><strong>la</strong>s</strong>e activity. Thus, a microorganism capable to obtain iron from the host would<br />

be able to express higher levels of antioxidant <strong>en</strong>zymes and could <strong>de</strong>compose<br />

superoxi<strong>de</strong> and hydrog<strong>en</strong> peroxi<strong>de</strong> radicals g<strong>en</strong>erated by the host. The importance of<br />

superoxi<strong>de</strong> dismutase as antioxidant <strong>en</strong>zyme and its contribution to bacterial virul<strong>en</strong>ce<br />

have be<strong>en</strong> <strong>de</strong>monstrated in several bacterial species such as Listeria monocytog<strong>en</strong>es<br />

(Welch et al., 1979), Shigel<strong>la</strong> flexneri (Franzon et al., 1990) or A. salmonicida (Barnes et<br />

al., 1999a), however its role in P. damse<strong>la</strong>e subsp. piscicida is not very clear and in the<br />

99


RESULTS AND DISCUSSION<br />

pres<strong>en</strong>t work we have observed that the non virul<strong>en</strong>t strain, EPOY-8803-II, shows<br />

activity levels simi<strong>la</strong>r to the virul<strong>en</strong>t strain.<br />

As <strong>de</strong>scribed before, information concerning mechanisms involved in the invasion<br />

and survival of P. damse<strong>la</strong>e subsp. piscicida insi<strong>de</strong> the host is scarce and results<br />

regarding interaction of this pathog<strong>en</strong> with phagocytes have be<strong>en</strong> contradictory. For this<br />

reason, pathog<strong>en</strong> survival after contact with sole phagocytes was evaluated. Results<br />

inclu<strong>de</strong>d in article 1.2. (Article section) show that P. damse<strong>la</strong>e subsp. piscicida is able to<br />

survive insi<strong>de</strong> sole phagocytes at least for five hours, survival rates being higher for the<br />

virul<strong>en</strong>t strain (62%) than the non virul<strong>en</strong>t strain (19%). Also, higher survival rates were<br />

observed in cultures with higher cata<strong><strong>la</strong>s</strong>e activity. These results suggest that bacterial<br />

inactivation could be due to the accumu<strong>la</strong>tion of hydrog<strong>en</strong> peroxi<strong>de</strong>, the precursor of<br />

hydroxyl radicals, after <strong>de</strong>composition of superoxi<strong>de</strong> radicals by bacterial superoxi<strong>de</strong><br />

dismutase. Both virul<strong>en</strong>t and non-virul<strong>en</strong>t strains assayed by Barnes et al. (1999a)<br />

showed high susceptibility to cell-free g<strong>en</strong>erated superoxi<strong>de</strong> radicals, in contrast, we<br />

have observed that a non-virul<strong>en</strong>t strain, EPOY-8803-II, is significantly more<br />

susceptible to killing by sole phagocytes than a virul<strong>en</strong>t strain (Lg h41/01 ). Besi<strong>de</strong>s the<br />

lower cata<strong><strong>la</strong>s</strong>e activity pres<strong>en</strong>t in the non-virul<strong>en</strong>t strain, the <strong>la</strong>ck of a capsule in cells of<br />

EPOY-8803-II could contribute to the high inactivation rates observed. Thus, the capsule<br />

could protect bacterial cells from oxidative radicals or ev<strong>en</strong> prev<strong>en</strong>t activation of<br />

phagocytes (Miller and Britigan, 1997; Arijo et al., 1998).<br />

Finally, the important role of iron in microbial infections has be<strong>en</strong> pointed out by<br />

several authors (Miller and Britigan, 1997; Weinberg, 2000). P. damse<strong>la</strong>e subsp.<br />

piscicida is more susceptible to killing by sole phagocytes wh<strong>en</strong> bacterial cells have<br />

be<strong>en</strong> cultured un<strong>de</strong>r iron-<strong>de</strong>pleted conditions. Bacteria require iron for growth and<br />

replication and synthesize SOD and cata<strong><strong>la</strong>s</strong>e to <strong>de</strong>al with oxidizing anions. P. damse<strong>la</strong>e<br />

subsp. piscicida posses a high-affinity iron uptake system, a sy<strong>de</strong>rophore (Magariños et<br />

al. 1994; Naka et al., 2005). However, <strong>de</strong>spite its ability to obtain iron from high-affinity<br />

systems, several authors have reported that cells grown un<strong>de</strong>r iron-limited conditions<br />

have reduced amounts of capsu<strong>la</strong>r material covering the cells (do Vale et al., 2001).<br />

These cells with reduced capsule would be more susceptible to phagocytosis and<br />

100


RESULTS AND DISCUSSION<br />

oxidative stress. Results obtained (articles 1.1. and 1.2., Article section) show that iron<br />

p<strong>la</strong>ys an important role in survival of P. damse<strong>la</strong>e subsp. piscicida in contact with sole<br />

phagocytes; whether this is attributable to its contribution to capsu<strong>la</strong>r material or SOD<br />

and cata<strong><strong>la</strong>s</strong>e synthesis by the bacterium needs to be investigated. In conclusion, P.<br />

damse<strong>la</strong>e subsp. piscicida is able to survive in contact with sole phagocytes, survival<br />

rates being higher for a virul<strong>en</strong>t strain. The increased levels of cata<strong><strong>la</strong>s</strong>e activity <strong>de</strong>tected<br />

in the virul<strong>en</strong>t strain indicate a possible role for this <strong>en</strong>zyme in bacterial survival.<br />

Once <strong>de</strong>termined the role of superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e activities in P.<br />

damse<strong>la</strong>e subsp. piscicida protection against respiratory burst of sole phagocyes, the<br />

following topic to study was the search for prev<strong>en</strong>tion tools such as immunostimu<strong>la</strong>nt<br />

application. This work has focused on the respiratory burst activity of sole phagocytes<br />

to evaluate the possible immunostimu<strong>la</strong>nt effect of two types of microorganisms: a red<br />

microalga, Porphyridium cru<strong>en</strong>tum, and two pot<strong>en</strong>tially probiotic bacteria strains,<br />

whose immunostimu<strong>la</strong>nt activity has be<strong>en</strong> reported in mammals (Morris et al., 2000) and<br />

gilthead seabream (Díaz-Rosales et al., 2006; Salinas et al., 2006) phagocytes,<br />

respectively.<br />

Evaluation of the pot<strong>en</strong>tial stimu<strong>la</strong>nt activity of aqueous and ethanolic extracts<br />

from P. cru<strong>en</strong>tum indicated that none of them stimu<strong>la</strong>ted superoxi<strong>de</strong> anion production,<br />

while the positive control, commercial β-glucan from alga Eugl<strong>en</strong>a gracilis, is able to<br />

increase respiratory burst after 30 min in contact with phagocytes, but only at the highest<br />

conc<strong>en</strong>tration assayed (10 mg ml -1 ). These results are in agreem<strong>en</strong>t with data reported by<br />

Castro et al. (1999), who observed increases of the respiratory burst activity of head<br />

kidney phagocytes of turbot (Psetta maxima) phagocytes and gilthead seabream with<br />

differ<strong>en</strong>t conc<strong>en</strong>trations of β-glucans obtained from fungus and yeasts. On the other<br />

hand, Castro et al. (2004) found great variations in the stimu<strong>la</strong>tive capacities of algal<br />

extracts <strong>de</strong>p<strong>en</strong>ding not only on their origin, but on the conc<strong>en</strong>trations used and time of<br />

incubation.<br />

P. cru<strong>en</strong>tum culture has several advantages, such as fast growth and low cost. On<br />

the other hand P. cru<strong>en</strong>tum could be a natural immunostimu<strong>la</strong>nt, which is<br />

biocompatible, bio<strong>de</strong>gradable and safe for the <strong>en</strong>vironm<strong>en</strong>t and human health. For this<br />

101


RESULTS AND DISCUSSION<br />

reason, once aqueous and ethanolic extracts were assayed in vitro, oral administration of<br />

whole alga cells was performed. In fish, as in other aquatic organisms, administration of<br />

whole microorganisms has focused mainly on bacterial species, such as probiotics<br />

(Verschuere et al., 2000; Nikoske<strong>la</strong>in<strong>en</strong> et al., 2001; Irianto and Austin, 2003; Salinas et<br />

al., 2005; Balcázar et al., 2006; Díaz-Rosales et al., 2006; Salinas et al., 2006), but studies<br />

about whole algae are still very scarce. On the other hand, P. cru<strong>en</strong>tum acumu<strong>la</strong>tes <strong>la</strong>rge<br />

amounts of lipids, specially arachidonic acid and noticeable amounts of<br />

eicosap<strong>en</strong>ta<strong>en</strong>oic acid (Kinsel<strong>la</strong> et al., 1990; Kov<strong>en</strong> et al., 2001); carbohydrates (Fujiki et<br />

al., 1992; Santarém et al., 1997; Bagni et al., 2000; Morris et al., 2000; Esteban et al.,<br />

2001; J<strong>en</strong>ey and J<strong>en</strong>ey, 2002; Cook et al., 2003; Couso et al., 2003; Castro et al., 2004;<br />

Bagni et al., 2005; Kumar et al., 2005); carot<strong>en</strong>es (Tachinaba et al., 1997; Amar et al.,<br />

2004); vitamins (Hardie et al., 1990, 1991; Ortuño et al., 1999; J<strong>en</strong>ey and J<strong>en</strong>ey, 2002).<br />

Due to the fact that this alga contains differ<strong>en</strong>t immunostimu<strong>la</strong>nt substances, its use<br />

could g<strong>en</strong>erate a more g<strong>en</strong>eral immune response as has be<strong>en</strong> proposed for other<br />

microorganisms such as yeasts (Ortuño et al., 2002; Rodríguez et al., 2003).<br />

Thus, three groups of sole specim<strong>en</strong>s received daily for four weeks one of the<br />

differ<strong>en</strong>t diets assayed on a daily basis: commercial diet supplem<strong>en</strong>ted with lyophilized<br />

alga, diet consisting on non-supplem<strong>en</strong>ted commercial diet (control group) or diet<br />

composed of commercial diet containing immunostimu<strong>la</strong>nt, Sanostim. Besi<strong>de</strong>s, to<br />

evaluate the possible synergic effect of immunostimu<strong>la</strong>nt with a vaccine, two weeks<br />

after the beginning of the feeding trial, a group of fish per treatm<strong>en</strong>t were<br />

intraperitoneally inocu<strong>la</strong>ted with a bacterin of P. damse<strong>la</strong>e subsp. piscicida, a formalinkilled<br />

aqueous vaccine. Results obtained show that after four weeks of algal<br />

administration, the superoxi<strong>de</strong> anion production increases in immunized fish. This<br />

increase is statistically significant, not only compared to fish fed with normal diet, but<br />

also compared to fish fed with commercial immunostimu<strong>la</strong>nt. The combined action of<br />

immunostimu<strong>la</strong>nt and vaccine has be<strong>en</strong> <strong>de</strong>scribed by numerous authors, who conclu<strong>de</strong>d<br />

that combination of vaccination and immunostimu<strong>la</strong>nt administration increases vaccine<br />

pot<strong>en</strong>cy (J<strong>en</strong>ey and An<strong>de</strong>rson, 1993; RØsrstad et al., 1993; Aakre et al., 1994; Sakai et al.,<br />

1995; Baulny et al., 1996; Sakai, 1999).<br />

102


RESULTS AND DISCUSSION<br />

Once immunostimu<strong>la</strong>nt effect of algal cells was <strong>de</strong>monstrated, the pot<strong>en</strong>tial effect<br />

of the extracellu<strong>la</strong>r polysaccharidic fraction of P. cru<strong>en</strong>tum on the respiratory burst<br />

activity of sole phagocytes was evaluated (article 2.2., Article section).<br />

Results obtained indicate that in vitro none of the assayed conc<strong>en</strong>trations of the<br />

extracellu<strong>la</strong>r polysacchari<strong>de</strong> from P. cru<strong>en</strong>tum stimu<strong>la</strong>te the respiratory burst of sole<br />

phagocytes, after 30 min contact with fish cells. These results are not in agreem<strong>en</strong>t with<br />

the data obtained by Castro et al. (2004, 2006), who suggest that stimu<strong>la</strong>tion of<br />

respiratory burst activity in turbot (Psetta maxima) phagocytes incubated with algal<br />

extracts, is due to algal polysacchari<strong>de</strong>s. On the other hand, according to Castro et al.<br />

(2004) the modu<strong>la</strong>tory ability of the respiratory burst activity of fish phagocytes varies<br />

greatly among algal species. Therefore, the non stimu<strong>la</strong>tion of respiratory burst in vitro<br />

by P. cru<strong>en</strong>tum polysacchari<strong>de</strong>s could be due to the abs<strong>en</strong>ce of immunostimu<strong>la</strong>nt<br />

activity in this fraction, pres<strong>en</strong>ce in low conc<strong>en</strong>tration or short incubation time with<br />

phagocytes. Whereas, the positive control, a commercial β-glucan, induced an increase<br />

in the respiratory burst, activity wh<strong>en</strong> applied at 10 mg ml -1 .<br />

Additionally, fish were intraperitoneally inocu<strong>la</strong>ted with 500 µg of extracellu<strong>la</strong>r<br />

polysaccharidic fraction. Later, fish were immunized with a bacterin, composed by P.<br />

damse<strong>la</strong>e subsp. piscicida formol-inactivated cells. Sampling time was carried out at 24<br />

h and sev<strong>en</strong> days post-vaccination. Results obtained indicate that the conc<strong>en</strong>tration and<br />

time assayed, 1 and 7 days after polysaccharidic fraction inocu<strong>la</strong>tion, do not produce an<br />

increase in the respiratory burst activity of sole phagocytes, not ev<strong>en</strong> immunized fish.<br />

Moreover, 24 h post-inocu<strong>la</strong>tion, the respiratory burst <strong>de</strong>creases in phagocytes from fish<br />

inocu<strong>la</strong>ted with polysaccharidic fraction or with the bacterin. This <strong>de</strong>crease may be due<br />

to an immunosupression by stress after handling (Thompson et al., 1993; Pulsford et al.,<br />

1995) as it is not observed after 7 days of the inocu<strong>la</strong>tion.<br />

To sum up, the polysaccharidic fraction of P. cru<strong>en</strong>tum, in assayed conditions,<br />

does not <strong>en</strong>hance the respiratory burst activity in sole phagocytes. These results suggest<br />

that stimu<strong>la</strong>tion observed after oral administration of alga cells would be due to other<br />

compounds with immunostimu<strong>la</strong>nt properties. However, we cannot rule out the<br />

possibility that the polysacchari<strong>de</strong> stimu<strong>la</strong>te another immunological parameter. Thus, a<br />

103


RESULTS AND DISCUSSION<br />

great number of works point out the immunostimu<strong>la</strong>nt capacity of polysacchari<strong>de</strong>s in<br />

fish, increasing serum lysozyme, complem<strong>en</strong>t, cytotoxic or phagocytic activities<br />

(Santarém et al., 1997; Esteban et al., 2001; Chang et al., 2003; Bagni et al., 2005; Kumari<br />

and Sahoo, 2006).<br />

Results obtained after oral administration of pot<strong>en</strong>tial probiotic bacteria are<br />

inclu<strong>de</strong>d in article 2.3. (Article section). In this work, the respiratory burst activity was<br />

evaluated and, in or<strong>de</strong>r to <strong>de</strong>termine the protection <strong>de</strong>gree that probiotics could provi<strong>de</strong>,<br />

a chall<strong>en</strong>ge with P. damse<strong>la</strong>e subsp. piscicida was carried out. On the other hand,<br />

intestinal microbiota of fish fed with probiotics was studied in or<strong>de</strong>r to <strong>de</strong>tect possible<br />

changes due to feeding treatm<strong>en</strong>t.<br />

The selected bacterial strains, Pdp11 and Pdp13, iso<strong>la</strong>ted from gilthead seabream<br />

skin (Chabrillón, 2003), belong to Alteromonadaceae family, Shewanel<strong>la</strong> g<strong>en</strong>us.<br />

Although this is the first assay in vivo with strain Pdp13, several works have be<strong>en</strong><br />

carried out previously with strain Pdp11. Thus, Chabrillón et al. (2005a) studied<br />

interactions with the pathog<strong>en</strong> Vibrio harveyi, showing Pdp11 capacity to adhere to<br />

gilthead seabream intestinal mucus, the antagonist effect against a pathog<strong>en</strong>ic strain of<br />

V. harveyi, the capacity to inhibit the pathog<strong>en</strong> union and confer protection against an<br />

experim<strong>en</strong>tal infection. With regard to interactions betwe<strong>en</strong> strain Pdp11 and P.<br />

damse<strong>la</strong>e subsp. piscicida, Chabrillón et al. (2005b) <strong>de</strong>monstrated the antagonistic effect<br />

of Pdp11 against one strain of P. damse<strong>la</strong>e subsp. piscicida and the inhibition of the<br />

adhesion to intestinal mucus of this pathog<strong>en</strong>. These results lead the authors to consi<strong>de</strong>r<br />

the Pdp11 strain as a good candidate to be used as probiotic.<br />

In the pres<strong>en</strong>t work, it has be<strong>en</strong> observed that superoxi<strong>de</strong> anion production is<br />

significantly increased in fish fed with strain Pdp11 after two months from the<br />

beginning of the feeding trial, but fish fed with strain Pdp13 do not show modify<br />

phagocyte respiratory burst. However, fish fed with strain Pdp13 showed higher survival<br />

perc<strong>en</strong>tages after inocu<strong>la</strong>tion of the pathog<strong>en</strong> P. damse<strong>la</strong>e subsp. piscicida.<br />

Although there are numerous works in which respiratory burst activity induction<br />

by probiotics is <strong>de</strong>monstrated (Nikoske<strong>la</strong>in<strong>en</strong> et al., 2003; Gullian et al., 2004; Aubin et<br />

al., 2005; Brunt and Austin, 2005) the fact that pot<strong>en</strong>tial probiotic strain Pdp13 does not<br />

104


RESULTS AND DISCUSSION<br />

increase superoxi<strong>de</strong> anion production, does not mean that this bacterial strains cannot<br />

stimu<strong>la</strong>te another immunological parameter. In fact, survival rates, after experim<strong>en</strong>tal<br />

infection, increased in fish fed with strain Pdp13. Several authors have shown that<br />

probiotics may stimu<strong>la</strong>te differ<strong>en</strong>t immunological parameters, such as phagocytic<br />

activity (Irianto and Austin, 2003; Panigrahi et al., 2004; Brunt and Austin, 2005; Salinas<br />

et al., 2005; Díaz-Rosales et al., 2006), complem<strong>en</strong>t activity (Panigrahi et al., 2004; Díaz-<br />

Rosales et al., 2006), lysozyme activity (Irianto and Austin, 2003; Panigrahi et al., 2004)<br />

or cytotoxic activity (Salinas et al., 2005; Díaz-Rosales et al., 2006). Moreover, effects of<br />

probiotics have be<strong>en</strong> <strong>de</strong>scribed on specific immune response, increasing serum<br />

immunoglobulins levels (Nikoske<strong>la</strong>in<strong>en</strong> et al., 2003; Aubin et al., 2005). For these<br />

reasons, strain Pdp13 can be consi<strong>de</strong>red as a probiotic also, although evaluation of other<br />

immunological parameters would be necessary.<br />

On the other hand, probiotic bacteria have to be administered at optimal doses,<br />

<strong>de</strong>p<strong>en</strong>ding on fish size and bacterial strain (Nikoske<strong>la</strong>in<strong>en</strong> et al., 2003), for this reason<br />

Pdp11 effect is differ<strong>en</strong>t to Pdp13 and the results obtained with Pdp11 and sole are<br />

differ<strong>en</strong>t to results previously obtained with Pdp11 and gilthead seabream (Díaz-Rosales<br />

et al., 2006).<br />

Finally, apart from the immunological effects of probiotics in sole immune<br />

response, possible changes in intestinal microbiota due to probiotics were evaluated. In<br />

spite of the great number of published works concerning microbial communities in fish<br />

(Spanggaard et al., 2000; Holb<strong>en</strong> et al., 2002; Sandaa et al., 2003; Al-Harbi and Naim<br />

Uddin, 2004; Hjelm et al., 2004; Huber et al., 2004; J<strong>en</strong>s<strong>en</strong> et al., 2004), none of them try<br />

to evaluate possible shifts in microbiota after probiotic administration.<br />

In this work DGGE, D<strong>en</strong>aturing Gradi<strong>en</strong>t Gel Electrophoresis, (Muyzer et al.,<br />

1993), was used to study the intestinal microbiota of soles fed with probiotics. Two sets<br />

of primers were evaluated (Nübel et al., 1996; J<strong>en</strong>s<strong>en</strong> et al., 2004). Primers <strong>de</strong>scribed by<br />

Nübel et al. (1996) being selected as the best to study of bacterial communities in the<br />

pres<strong>en</strong>t work after analysis of banding pattern by Pearson coeffici<strong>en</strong>t.<br />

The band pattern obtained was very simple, with few predominant bands, results<br />

alike those <strong>de</strong>scribed by Muyzer et al. (1993), who reported that communities with a few<br />

105


RESULTS AND DISCUSSION<br />

dominant species will produce simpler patterns and the less abundant species may not<br />

a<strong>de</strong>quately repres<strong>en</strong>t in the community pattern. Moreover, the technique has limitations,<br />

and it is possible that some of these bands may not be individual species, as<br />

theoretically is <strong>de</strong>fined, but rather groups which have the same re<strong>la</strong>tive G+C cont<strong>en</strong>t and<br />

have comigrated (Simpson et al., 1999; Temmerman et al., 2003). These limitations may<br />

account in part for the <strong>de</strong>creased band number and may also have influ<strong>en</strong>ced the<br />

appar<strong>en</strong>t diversity and simi<strong>la</strong>rity values (McCrak<strong>en</strong> et al., 2001).<br />

The obtained results do not <strong>de</strong>monstrate that probiotics induce significant shifts in<br />

intestinal microbiota, since bands that appear in groups fed with probiotics are also<br />

pres<strong>en</strong>t in control groups.<br />

On the other hand, it is not possible to confirm that observed bands correspond to<br />

Pdp11 or Pdp13, strains only att<strong>en</strong>ding to electrophoretic mobility, therefore,<br />

phylog<strong>en</strong>etic i<strong>de</strong>ntification or PCR products sequ<strong>en</strong>cing studies will be necessary. After<br />

this work it is possible to affirm that Pdp11 and Pdp13 strains are not capable, at doses<br />

(10 9 ufc g -1 ) and time assayed (two months), to induce significant shifts in intestinal<br />

microbiota. However to exert a local effect during transit through gastrointestinal<br />

system it is not necessary colonization to induce shifts on intestinal microbiota<br />

(Ouwehand et al., 2002). In fact, variation of fish microbiota is substantial and fluctuates<br />

daily (Spanggaard et al., 2000; Al-Harbi and Naim Uddin, 2004; Panigrahi et al., 2004).<br />

106


C ON C L U S I O N S


CONCLUSIONS<br />

Studies carried out on the role of superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e activities in<br />

the virul<strong>en</strong>ce of Photobacterium damse<strong>la</strong>e subsp. piscicida, and the use of<br />

microorganisms for the control of this pathog<strong>en</strong>, have yiel<strong>de</strong>d the following<br />

conclusions:<br />

1. Photobacterium damse<strong>la</strong>e subsp. piscicida synthetizes only one iso<strong>en</strong>zyme<br />

with superoxi<strong>de</strong> dismutase activity, characterized by the pres<strong>en</strong>ce of iron in<br />

its active c<strong>en</strong>tre.<br />

2. Photobacterium damse<strong>la</strong>e subsp. piscicida contains only one iso<strong>en</strong>zyme with<br />

cata<strong><strong>la</strong>s</strong>e activity, with iron in its active c<strong>en</strong>tre.<br />

3. Cata<strong><strong>la</strong>s</strong>e activity p<strong>la</strong>ys an important role in P. damse<strong>la</strong>e subsp. piscicida<br />

resistance against hydrog<strong>en</strong> peroxi<strong>de</strong>. Thus, bacterial cells with higher<br />

cont<strong>en</strong>ts of this activity, are able to resist effici<strong>en</strong>tly to hydrog<strong>en</strong> peroxi<strong>de</strong>.<br />

4. Iron p<strong>la</strong>ys a significant role in P. damse<strong>la</strong>e subsp. piscicida survival in the<br />

pres<strong>en</strong>ce of oxidant radicals, because un<strong>de</strong>r iron limiting conditions, lower<br />

levels of superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e activities are <strong>de</strong>tected, and higher<br />

susceptibility to hydrog<strong>en</strong> peroxi<strong>de</strong>.<br />

5. Photobacterium damse<strong>la</strong>e subsp. piscicida is able to survive as intracellu<strong>la</strong>r<br />

pathog<strong>en</strong> within sole phagocytes, at least for 5 h.<br />

6. Oral administration of red microalga Porphyridium cru<strong>en</strong>tum, in combination<br />

with intraperitoneal inocu<strong>la</strong>tion of a bacterin containing P. damse<strong>la</strong>e subsp.<br />

piscicida cells, increases respiratory burst activity.<br />

7. Oral administration of Shewanel<strong>la</strong> strains Pdp11 and Pdp13, proposed as<br />

probiotics, increases respiratory burst activity and confers protection against<br />

experim<strong>en</strong>tal infection with P. damse<strong>la</strong>e subsp. piscicida, respectively.<br />

109


CONCLUSIONS<br />

8. The technique DGGE has not allowed to <strong>de</strong>tect possible shifts of sole intestinal<br />

microbiota after oral administration of Shewanel<strong>la</strong> strains Pdp11 and Pdp13.<br />

110


R<br />

R<br />

E F E R E N C I A S<br />

E F E R E N C E S


REFERENCIAS / REFEREN CES<br />

Aakre, R, Werge<strong>la</strong>nd, HI, Aasjord, PM & En<strong>de</strong>rs<strong>en</strong>, C (1994). Enhanced antibody response<br />

in At<strong>la</strong>ntic salmon (Salmo sa<strong>la</strong>r L.) to Aeromonas salmonicida cell wall antig<strong>en</strong>s using<br />

a bacterin containing β-1,3-M-glucan as adjuvant. Fish & Shellfish Immunology 4, 47-<br />

61.<br />

Acosta, F, Real, F, Ruíz <strong>de</strong> Ga<strong>la</strong>rreta, CM, Díaz, R, Padil<strong>la</strong>, D & Ellis, AE (2003). Toxicity<br />

of nitric oxi<strong>de</strong> and peroxynitrite to Photobacterium damse<strong>la</strong>e subsp. piscicida. Fish &<br />

Shellfish Immunology 15, 241-248.<br />

Acosta, F, Ellis, AE, Vivas, J, Padil<strong>la</strong>, D, Acosta, B, Déniz, S, Bravo, J & Real, F (2006).<br />

Complem<strong>en</strong>t consumption by Photobacterium damse<strong>la</strong>e subsp. piscicida in seabream,<br />

red porgy and seabass normal and immune serum. Effect of the capsule on the<br />

bactericidal effect. Fish & Shellfish Immunology 20, 709-717.<br />

Adda, M, Merehuk, JC & Arad, S (1986). Effect of nitrate on growth and production of cell<br />

wall polysacchari<strong>de</strong> by the unicellu<strong>la</strong>r red alga Porphyridium cru<strong>en</strong>tum. Biomass 10,<br />

131-140.<br />

Al-Harbi, AH & Naim Uddin, M (2004). Seasonal variation in the intestinal bacterial flora of<br />

Irbid ti<strong>la</strong>pia (Oreochromis niloticus x Oreochromis aureus) cultured in earth<strong>en</strong> ponds<br />

in Saudi Arabia. Aquaculture 2004; 229:37-44.<br />

Allgood, GS & Perry, JJ (1986). Characterization of a manganese-containing cata<strong><strong>la</strong>s</strong>e from<br />

the obligate thermophile Thermoleophilum album. Journal of Bacteriology 168, 563-<br />

567.<br />

Amar, EC, Kiron, V, Satho, S & Watanabe, T (2004). Enhancem<strong>en</strong>t of innate immunity in<br />

rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of<br />

carot<strong>en</strong>oids from natural products. Fish & Shellfish Immunology 16, 527-537.<br />

An<strong>de</strong>rson, DP (1992). Immunostimu<strong>la</strong>nts, adjuvants, and vaccine carriers in fish:<br />

applications to aquaculture. Annual Review of Fish Diseases 281-307.<br />

An<strong>de</strong>rson, DP Moritomo, T & <strong>de</strong> Grooth, R (1992). Neutrophil, g<strong><strong>la</strong>s</strong>s-adher<strong>en</strong>t, nitroblue<br />

tetrazolium assay gives early indication of immunization effectiv<strong>en</strong>ess in rainbow<br />

trout. Veterinary Immunology & Immunopathology 30, 419-429.<br />

An<strong>de</strong>rson, DP (1996). Environm<strong>en</strong>tal factors in fish health: immunological aspects. In: The<br />

Fish Immune System: Organism, Pathog<strong>en</strong> and Environm<strong>en</strong>t (Iwana, G & Nakanishi,<br />

T, eds), 289-310. Aca<strong>de</strong>mic Press. San Diego, California, USA.<br />

113


REFERENCIAS / REFEREN CES<br />

Aoki, T, Kitao, T & Kawano, K (1981). Changes in drug resistance of Vibrio anguil<strong>la</strong>rum in<br />

cultured ayu, Plecoglossus altivelis Temminck and Schlegel, in Japan. Journal of Fish<br />

Diseases 4, 223-230.<br />

Arad, S, Adda, M & Coh<strong>en</strong>, E (1985). The pot<strong>en</strong>tial of production of sulphated<br />

polysacchari<strong>de</strong>s from Porphyridium. P<strong>la</strong>nt & Soil 89, 117-127.<br />

Arad, S, Friedman, DO & Rotem, A (1988). Effect of nitrog<strong>en</strong> on polysacchari<strong>de</strong> production<br />

in Porphyridium sp. Applied & Environm<strong>en</strong>tal Microbiology 54, 2411-2414.<br />

Arijo, S, Borrego, JJ, Zorril<strong>la</strong>, I, Balebona, MC & Moriñigo, MA (1998). Role of the capsule<br />

of Photobacterium damse<strong>la</strong>e subsp. piscicida in protection against phagocytosis and<br />

killing by gilt-head seabream (Sparus aurata, L.) macrophages. Fish & Shellfish<br />

Immunology 8, 63-72.<br />

Arijo, S, Chabrillón, M, Díaz-Rosales, P, Rico, RM, Martínez-Manzanares, E, Balebona,<br />

MC, Toranzo, AE & Moriñigo, MA (2005). Bacteria iso<strong>la</strong>ted from outbreaks affecting<br />

cultured sole, Solea s<strong>en</strong>egal<strong>en</strong>sis (Kaup). Bulletin of European Association of Fish<br />

Pathologists 25, 148-154.<br />

Aubin, J, Gatesoupe, FJ, Labbé, L & Lebrun, L (2005). Trial of probiotics to prev<strong>en</strong>t the<br />

vertebral column compression syndrome in rainbow trout (Oncorhynchus mykiss<br />

Walbaum). Aquaculture Research 36, 758-767.<br />

Austin, B, Stuckey, LF, Robertson, PAW, Eff<strong>en</strong>di, I & Griffith, DRW (1995). A probiotic<br />

strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas<br />

salmonicida, Vibrio anguil<strong>la</strong>rum and Vibrio ordalii. Journal of Fish Diseases 18, 93-96.<br />

Bagni, M, Archetti, L, Amadori, M & Marino, G (2000). Effect on long-term oral<br />

administration of an immunostimu<strong>la</strong>nt diet on innate immunity in sea bass<br />

(Dic<strong>en</strong>trarchus <strong>la</strong>brax). Journal of Veterinary Medicine 47, 745-751.<br />

Bagni, M, Romano, N, Finoia, MG, Abelli, L, Scapigliati, G, Tiscard, PG, Sarti, M &<br />

Marino, G (2005). Short- and long- term effects of a dietary yeast β-glucan<br />

(Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass<br />

(Dic<strong>en</strong>trarchus <strong>la</strong>brax). Fish & Shellfish Immunology 18, 311-325.<br />

Bakopoulos, V, Adams, A & Richards, RH (1995). Some biochemical properties and<br />

antibiotic s<strong>en</strong>sitivities of Pasteurel<strong>la</strong> piscicida iso<strong>la</strong>ted in Greece, and comparisons<br />

with strains from Japan, France and Italy. Journal of Fish Diseases 18, 1-7.<br />

114


REFERENCIAS / REFEREN CES<br />

Bakopoulos, V, Adams, A & Richards, RH (1997). The effect of iron limitation growth<br />

conditions on the cell and extracellu<strong>la</strong>r compon<strong>en</strong>ts of the fish pathog<strong>en</strong> Pasteurel<strong>la</strong><br />

piscicida. Journal of Fish Diseases 20, 297-305.<br />

Bakopoulos, V, Hanif, A, Poulos, K, Galeotti, M, Adams, A & Dimitriadis, GJ (2004). The<br />

effect of in vivo growth on the cellu<strong>la</strong>r and extracellu<strong>la</strong>r compon<strong>en</strong>ts of the marine<br />

bacterial pathog<strong>en</strong> Photobacterium damse<strong>la</strong>e subsp. piscicida. Journal of Fish Diseases<br />

27, 1-13.<br />

Balcázar, JL, <strong>de</strong> B<strong><strong>la</strong>s</strong>, I, Ruíz-Zarzue<strong>la</strong>, I, Cunningham, D, V<strong>en</strong>drell, D & Múzquiz, JL<br />

(2006). The role of probiotics in aquaculture. Veterinary Microbiology 114, 173-184.<br />

Balebona, MC, Moriñigo, MA, Sedano, J, Martínez-Manzanares, E, Vidaurreta, A, Borrego,<br />

JJ & Toranzo, AE (1992). Iso<strong>la</strong>tion of Pasteurel<strong>la</strong> piscicida from sea bass in<br />

southwestern Spain. Bulletin European Association of Fish Pathologists 12, 168-170.<br />

Banin, E, Vassi<strong>la</strong>kos, D, Orr, E, Martínez, RJ & Ros<strong>en</strong>berg, E (2003). Superoxi<strong>de</strong> dismutase<br />

is a virul<strong>en</strong>ce factor produced by the coral bleaching pathog<strong>en</strong> Vibrio shiloi. Curr<strong>en</strong>t<br />

Microbiology 46, 418-422.<br />

Barnes, AC, Horne, MT & Ellis, AE (1996). Effect of iron on expression of superoxi<strong>de</strong><br />

dismutase by Aeromonas salmonicida and associated resistance to superoxi<strong>de</strong> anion.<br />

FEMS Microbiology Letters 142, 19-26.<br />

Barnes, AC, Balebona, MC, Horne, MT & Ellis, AE (1999a). Superoxi<strong>de</strong> dismutase and<br />

cata<strong><strong>la</strong>s</strong>e in Photobacterium damse<strong>la</strong>e subsp. piscicida and their roles in resistance to<br />

reactive oxyg<strong>en</strong> species. Microbiology 145, 483-494.<br />

Barnes, AC, Bow<strong>de</strong>n, TJ, Horne, MT & Ellis, AE (1999b). Peroxi<strong>de</strong>-inducible cata<strong><strong>la</strong>s</strong>e in<br />

Aeromonas salmonicida subsp. salmonicida protects against exog<strong>en</strong>ous hydrog<strong>en</strong><br />

peroxi<strong>de</strong> and killing by activated rainbow trout, Oncorhynchus mykiss L.,<br />

macrophages. Microbial Pathog<strong>en</strong>esis 26, 149-158.<br />

Baudin-Laur<strong>en</strong>cin, F, Pepin, JF & Raymond, JC (1991). First observation of an epizootic of<br />

pasteurellosis in farmed and wild fish of the Fr<strong>en</strong>ch Mediterranean coasts. Abstract 5 th<br />

International Confer<strong>en</strong>ce of European Association of Fish Pathologists, Budapest,<br />

Hungary, 17.<br />

Baulny, MOD, Qu<strong>en</strong>tel, C, Fournier, V, Lamour, F & Gouvello, RL (1996). Effect of longterm<br />

oral administration of β-glucan as an immunostimu<strong>la</strong>nt or an adjuvant on some<br />

non-specific parameters of the immune response of turbot Scophthalmus maximus.<br />

Diseases of Aquatic Organisms 26, 139-147.<br />

115


REFERENCIAS / REFEREN CES<br />

Bell, MV, H<strong>en</strong><strong>de</strong>rson, RJ, Pirie, BJS & Sarg<strong>en</strong>t, JR (1985). Effects of dietary<br />

polyunsaturated fatty acid <strong>de</strong>fici<strong>en</strong>cies on mortality, growth and gill structure in the<br />

turbot (Scophthalmus maximus, Linnaeus). Journal of Fish Biology 26, 181-191.<br />

B<strong>en</strong>dich, A (1989). Carot<strong>en</strong>oids and the immune response. Journal of Nutrition 119, 112-115.<br />

B<strong>en</strong>ov, LT & Fridovich, I (1994). Escherichia coli expresses a copper- and zinc- containing<br />

superoxi<strong>de</strong> dismutase. The Journal of Biological Chemistry 269, 25310-25314.<br />

Blinkova, LP, Gorobets, CB & Barturo, AP (2001). Biological activity of Spirulina. Zhurnal<br />

Mikrobiologii, Epi<strong>de</strong>miologii, i immunobiologi 2, 114-118.<br />

Bonet, R, Magariños, B, Romal<strong>de</strong>, JL, Simon-Pujol, MD, Toranzo, AE & Congregado, F<br />

(1994). Capsu<strong>la</strong>r polysacchari<strong>de</strong> expressed by Pasteurel<strong>la</strong> piscicida grown in vitro.<br />

FEMS Microbiology Letters 124, 285-289.<br />

Brunt, J & Austin, B (2005). Use of a probiotic to control <strong>la</strong>ctococcosis and streptococcosis<br />

in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases 28, 693-<br />

701.<br />

Burr, G, Gathin, D & Ricke, S (2005). Microbial ecology of the gastrointestinal tract of fish<br />

and the pot<strong>en</strong>tial application of prebiotics and probiotics in finfish aquaculture. Journal<br />

of the World Aquaculture Society 36, 425-436.<br />

Castro, R, Couso, N, Obach, A & Lamas, J (1999). Effect of differ<strong>en</strong>t β-glucans on the<br />

respiratory burst of turbot (Psetta maxima) and gilthead seabream (Sparus aurata)<br />

phagocytes. Fish & Shellfish Immunology 9, 529-541.<br />

Castro, R, Zarra, I & Lamas, J (2004). Watersoluble seaweed extracts modu<strong>la</strong>te the<br />

respiratory burst activity of turbot phagocytes. Aquaculture 229, 67-78.<br />

Castro, R, Piazzon, MC, Zarra, I, Leiro, J, Noya, M & Lamas, J (2006). Stimu<strong>la</strong>tion of turbot<br />

phagocytes by Ulva rigida C. Agardh polysacchari<strong>de</strong>s. Aquaculture 254, 9-20.<br />

Cepeda, C & Santos, Y (2003). First iso<strong>la</strong>tion of Flexibacter maritimus from farmed<br />

S<strong>en</strong>egalese sole (Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup) in Spain. Bulletin of the European<br />

Association of Fish Pathologists 22, 388-392.<br />

Ceshia, G, Quaglio, F, Giogertti, G, Bertoja, G & Bovo, G (1991). Serious outbreak of<br />

pasteurellosis (Pasteurel<strong>la</strong> piscicida) in euryhaline species along the Italian coasts.<br />

Abstract 5 th Internacional Confer<strong>en</strong>ce of European Association of Fish Pathologists,<br />

Budapest, Hungary, 26.<br />

116


REFERENCIAS / REFEREN CES<br />

Chabrillón, M. Estudio <strong>de</strong> <strong>la</strong> interacción <strong>de</strong> patóg<strong>en</strong>os piscíco<strong><strong>la</strong>s</strong> y pot<strong>en</strong>ciales bacterias<br />

probióticas con <strong><strong>la</strong>s</strong> superficies mucosas <strong>de</strong> dorada (Sparus aurata L.). PhD thesis 2003.<br />

University of Má<strong>la</strong>ga, Spain.<br />

Chabrillón, M, Rico, RM, Arijo, S, Díaz-Rosales, P, Balebona, MC & Moriñigo, MA<br />

(2005a). Interactions of microorganisms iso<strong>la</strong>ted from gilthead sea bream, Sparus<br />

aurata L., on Vibrio harveyi, a pathog<strong>en</strong> of farmed S<strong>en</strong>egalese sole, Solea s<strong>en</strong>egal<strong>en</strong>sis<br />

(Kaup). Journal of Fish Diseases 28, 531-537.<br />

Chabrillón, M, Rico, RM, Balebona, MC & Moriñigo, MA (2005b). Adhesion to sole, Solea<br />

s<strong>en</strong>egal<strong>en</strong>sis Kaup, mucus of microorganisms iso<strong>la</strong>ted from farmed fish, and their<br />

interaction with Photobacterium damse<strong>la</strong>e subsp. piscicida. Journal of Fish Diseases<br />

28, 229-237.<br />

Chang, CF, Su, MS, Ch<strong>en</strong>, HY & Liao, IC (2003). Dietary β-1,3-glucan effectively improves<br />

immunity and survival of P<strong>en</strong>aeus monodon chall<strong>en</strong>ged with white spot syndrome<br />

virus. Fish & Shellfish Immunology 15, 297-310.<br />

Chew, BP (1993). Role of carot<strong>en</strong>oids in the immune response. Journal of Dairy Sci<strong>en</strong>ce 76,<br />

2804-2811.<br />

Cook, MT, Hayball, P, Hutchinson, W, Nowak, BF & Hayball, JD (2003). Administration of<br />

a commercial immunostimu<strong>la</strong>nt preparation, EcoActiva, as feed supplem<strong>en</strong>t<br />

<strong>en</strong>hances macrophage respiratory burst and the growth rate of snapper (Pagrus<br />

auratus, Sparidae (Bloch and Schnei<strong>de</strong>r)) in winter. Fish & Shellfish Immunology 14,<br />

333-345.<br />

Couso, N, Castro, R, Magariños, B, Obach, A & Lamas, J (2003). Effect of oral<br />

administration of glucans on the resistance of gilthead seabream to pasteurellosis.<br />

Aquaculture 219, 99-109.<br />

Crockford, AJ, Davis, GA & Williams, HD (1995). Evi<strong>de</strong>nce for cell-<strong>de</strong>p<strong>en</strong><strong>de</strong>nt regu<strong>la</strong>tion<br />

of cata<strong><strong>la</strong>s</strong>e activity in Rhizobium leguminosarum bv. phaseoli. Microbiology 141, 843-<br />

851.<br />

Cuesta, A, Esteban, MA, Ortuño, J & Meseguer, J (2001). Vitamin E increases natural<br />

cytotoxic activity in seabream (Sparus aurata L.). Fish & Shellfish Immunology 11,<br />

293-302.<br />

Cuesta, A, Esteban, MA & Meseguer, J (2002). Natural cytotoxic activity in seabream<br />

(Sparus aurata L.) and its modu<strong>la</strong>tion by vitamin C. Fish & Shellfish Immunology 13,<br />

97-109.<br />

117


REFERENCIAS / REFEREN CES<br />

Dalmo, RA, Martins<strong>en</strong>, B, Horsberg, TE, Ramstad, A, Syverts<strong>en</strong>, C, Seljelid, R &<br />

Ingebrigst<strong>en</strong>, K (1998). Prophy<strong>la</strong>ctic effect of β(1,3)-D-glucan (<strong>la</strong>minaran) against<br />

experim<strong>en</strong>tal Aeromonas salmonicida and Vibrio salmonicida infections. Journal of<br />

Fish Diseases 21, 459-462.<br />

Díaz-Rosales, P, Burmeister, A, Aguilera, J, Korbee, N, Moriñigo, MA, Figueroa, FL,<br />

Chabrillón, M, Arijo, S, Lin<strong>de</strong>squit, U & Balebona, MC (2005). Scre<strong>en</strong>ing of algal<br />

extracts as pot<strong>en</strong>tial stimu<strong>la</strong>nts of chemotaxis and respiratory burst activity of<br />

phagocytes from sole (Solea s<strong>en</strong>egal<strong>en</strong>sis). Bulletin of European Association of Fish<br />

Pathologists 25, 9-19.<br />

Díaz-Rosales, P, Salinas, I, Rodríguez, A, Cuesta, A, Chabrillón, M, Balebona, MC,<br />

Moriñigo, MA, Esteban, MA & Meseguer, J (2006). Gilthead seabream (Sparus aurata<br />

L.) innate immune response after dietary administration of heat-inactivated pot<strong>en</strong>tial<br />

probiotics. Fish & Shellfish Immunology 20, 482-492.<br />

Dinis, MT & Reis, J (1995). Culture of Solea spp. Cahiers Options Mediterranees, Marine<br />

Aquaculture Finfish Species Diversification 16, 9-19.<br />

Dinis, MT, Ribeiro, L, Soares, F & Sarasquete, C (1999). A review on the cultivation<br />

pot<strong>en</strong>tial of Solea s<strong>en</strong>egal<strong>en</strong>sis in Spain and in Portugal. Aquaculture 176, 27-38.<br />

Elkamel, AA, Hawke, JP, H<strong>en</strong>k, WG & Thune, RL (2003). Photobacterium damse<strong>la</strong>e subsp.<br />

piscicida is capable of replicating in hybrid striped bass macrophages. Journal of<br />

Aquatic Animal Health 15, 175-183.<br />

Elkamel, AA & Thune, RL (2003). Invasion and replication of Photobacterium damse<strong>la</strong>e<br />

subsp. piscicida in fish cell lines. Journal of Aquatic Animal Health 15, 167-174.<br />

Esteban, MA, Cuesta, A, Ortuño, J & Meseguer, J (2001). Immunomodu<strong>la</strong>tory effects of<br />

dietary intake of chitin on gilthead seabream (Sparus aurata L.) innate immune<br />

system. Fish & Shellfish Immunology 11, 303-315.<br />

Faulkner, DJ (1993). Marine natural products chemistry: introduction. Chemical Reviews 93,<br />

1671-1673.<br />

Fouz, B, Toranzo, AE, Mi<strong>la</strong>n, M & Amaro, C (2000). Evi<strong>de</strong>nce that water transmits the<br />

disease caused by the fish pathog<strong>en</strong> Photobacterium damse<strong>la</strong>e subsp. piscicida.<br />

Journal of Applied Microbiology 88, 531-535.<br />

Franzon, VL, Aron<strong>de</strong>l, J & Sansonetti, PJ (1990). Contribution of superoxi<strong>de</strong> dismutase and<br />

cata<strong><strong>la</strong>s</strong>e activities to Shigel<strong>la</strong> flexneri pathog<strong>en</strong>esis. Infection & Immunity 58, 529-535.<br />

118


REFERENCIAS / REFEREN CES<br />

Frerichs, GN & Roberts, RJ (1989). The bacteriology of teleosts. In: Fish Pathology.<br />

(Roberts, RJ, ed.), 289-319. London: Bailliere Tindal.<br />

Fridovich, I (1974). Superoxi<strong>de</strong> dismutases. In: Advances in Enzymology (Meister, A, ed.),<br />

35-97. John Wiley & Sons, Hobok<strong>en</strong>, New Jersey, USA.<br />

Fujiki, K, Matsuyama, H & Yano, T (1992). Effect of hot-water extracts from marine algae<br />

on resistance of carp and yellowtail against bacterial infections. Sci<strong>en</strong>ce Bulletin,<br />

Faculty of Agriculture, Kyushu University 47, 137-141.<br />

Fukuda, Y & Kusuda, R (1981). Efficacy of vaccination for pseudotuberculosis in cultured<br />

yellowtail by various routes of administration. Bulletin of Japanese Society of<br />

Sci<strong>en</strong>tific Fisheries 47, 147-150.<br />

Fukuda, Y & Kusuda, R (1985). Vaccination of yellowtail against pseudotuberculosis. Fish<br />

Pathology 20, 421-425.<br />

Gabriels<strong>en</strong>, BO & Austr<strong>en</strong>g, E (1998). Growth, product quality and immune status of<br />

At<strong>la</strong>ntic salmon, Salmo sa<strong>la</strong>r L., fed wet feed with alginate. Aquaculture Research 29,<br />

397-401.<br />

Gatesoupe, FJ, Zambonino Infante, JL, Cahu, C & Quazuguel, P (1997). Early weaning of<br />

seabass <strong>la</strong>rvae, Dic<strong>en</strong>trarchus <strong>la</strong>brax: the effect on microbiota, with particu<strong>la</strong>r<br />

att<strong>en</strong>tion to iron supply and exo<strong>en</strong>zymes. Aquaculture 158, 117-127.<br />

Gatesoupe, FJ (1999). The use of probiotics in aquaculture. Aquaculture 180, 147-165.<br />

Geslin, C, L<strong>la</strong>nos, J, Prieur, D & Jeanthon, C (2001). The manganese and iron superoxi<strong>de</strong><br />

dismutases protect Escherichia coli from heavy metal toxicity. Research in<br />

Microbiology 152, 901-905.<br />

González <strong>de</strong>l Val, A, P<strong>la</strong>tas, G, Basilio, A, Cabello, A, Gorrochategui, J, Suay, I, Vic<strong>en</strong>te, F,<br />

Portillo, E, Jiménez <strong>de</strong>l Río, M, García-Reina, G & Peláez, F (2001). Scre<strong>en</strong>ing of<br />

antimicrobial activities in red, gre<strong>en</strong> and brown macroalgae from Gran Canaria<br />

(Canary Is<strong>la</strong>nds, Spain). International Microbiology 4, 35-40.<br />

Gram, L, Melchiors<strong>en</strong>, J, Spanggaard, B, Huber, I & Niels<strong>en</strong>, TF (1999). Inhibition of Vibrio<br />

anguil<strong>la</strong>rum by Pseudomonas fluoresc<strong>en</strong>s AH2, a possible treatm<strong>en</strong>t of fish. Applied<br />

& Environm<strong>en</strong>tal Microbiology 65, 969-973.<br />

Gullian, M, Thompson, F & Rodríguez, J (2004). Selection of probiotic bacteria and study of<br />

their immunostimu<strong>la</strong>tory effect in P<strong>en</strong>aeus vannamei. Aquaculture 233, 1-14.<br />

119


REFERENCIAS / REFEREN CES<br />

Hamaguchi, M & Kusuda, R (1989). Field testing of Pasteurel<strong>la</strong> piscicida formalin killed<br />

bacteria against pseudotuberculosis in cultured yellowtail, Serio<strong>la</strong> quinqueradiata.<br />

Bulletin Marine Sci<strong>en</strong>ce Fish, Kochi University 11, 11-16.<br />

Hardie, LJ, Fletcher, TC & Secombes, CJ (1990). The effect of vitamin E on the immune<br />

response of the At<strong>la</strong>ntic Salmon (Salmo sa<strong>la</strong>r L.). Aquaculture 87, 1-13.<br />

Hardie, LJ, Fletcher, TC & Secombes, CJ (1991). The effect of dietary vitamin C on the<br />

immune response of the At<strong>la</strong>ntic Salmon (Salmo sa<strong>la</strong>r L.). Aquaculture 95, 201-214.<br />

Hassan, HM & Fridovich, I. (1977). Regu<strong>la</strong>tion of synthesis of superoxi<strong>de</strong> dismutase in<br />

E.coli: induction by methyl violog<strong>en</strong>. Journal of Biological Chemistry 252, 7667-7672.<br />

Hawke, JP, P<strong>la</strong>kas, SM, Minton, RV, McPherson, RM, Zin<strong>de</strong>r, TG & Guarino, AM (1987).<br />

Fish pasteurellosis of cultured striped bass, Morone saxatilis, in coastal A<strong>la</strong>bama.<br />

Aquaculture 65, 193-204.<br />

Hjelm, M, Bergh, Ø, Riaza, A, Niels<strong>en</strong>, J, Melchiors<strong>en</strong>, J, J<strong>en</strong>s<strong>en</strong>, S, Duncan, H, Ahr<strong>en</strong>s, P,<br />

Birkbeck, H & Gram, L (2004). Selection and i<strong>de</strong>ntification of autochthonous pot<strong>en</strong>tial<br />

probiotic bacteria from turbot <strong>la</strong>rvae (Scophthalmus maximus) rearing units.<br />

Systematic & Applied Microbiology 27, 360-371.<br />

Holb<strong>en</strong>, WE, Williams, P, Saarin<strong>en</strong>, M, Särki<strong>la</strong>hti, LK & Apaja<strong>la</strong>hti, JHA<br />

(2002).Phylog<strong>en</strong>etic analysis of intestinal microflora indicates a novel Mycop<strong><strong>la</strong>s</strong>ma<br />

phylotype in farmed and wild salmon. Microbial Ecology 44, 175-185.<br />

Hou, WY & Ch<strong>en</strong>, JC (2005). The immunostimu<strong>la</strong>tory effect of hot-water extract of<br />

Graci<strong>la</strong>ria t<strong>en</strong>uistipitata on the white shrimp Litop<strong>en</strong>aeus vannamei and its resistance<br />

against Vibrio alginolyticus. Fish & Shellfish Immunology 19, 127-138.<br />

Huber, I, Spanggaard, B, Appel, KF, Ross<strong>en</strong>, L, Niels<strong>en</strong>, T & Gram, L (2004). Phylog<strong>en</strong>etic<br />

analysis and in situ i<strong>de</strong>ntification of the intestinal microbial community of rainbow<br />

trout (Oncorhynchus mykiss, Walbaum). Journal of Applied Microbiology 96, 117-132.<br />

Irianto, A & Austin, B (2003). Use of <strong>de</strong>ad probiotic cells to control furunculosis in rainbow<br />

trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases 26, 59-62.<br />

Iso<strong>la</strong>uri, E, Kirjavain<strong>en</strong>, PV & Salmin<strong>en</strong>, S (2002). Probiotics - a role in the treatm<strong>en</strong>t of<br />

intestinal infection and inf<strong>la</strong>mmation. Gut 50, 54-59.<br />

JACUMAR 2005. Junta Nacional Asesora <strong>de</strong> Cultivos Marinos.<br />

120


REFERENCIAS / REFEREN CES<br />

J<strong>en</strong>ey, G & An<strong>de</strong>rson, DP (1993). Enhanced immune response and protection in rainbow<br />

trout to Aeromonas salmonicida bacterin following prior immersion in<br />

immunostimu<strong>la</strong>nts. Fish & Shellfish Immunology 3, 51-8.<br />

J<strong>en</strong>ey, G & J<strong>en</strong>ey, Zs (2002). Application of immunostimu<strong>la</strong>nts for modu<strong>la</strong>tion of the nonspecific<br />

<strong>de</strong>f<strong>en</strong>se mechanisms in sturgeon hybrid: Acip<strong>en</strong>ser ruth<strong>en</strong>us x A. baerii.<br />

Journal of Applied Ichthyology 18, 416-419.<br />

J<strong>en</strong>s<strong>en</strong>, S, Øvreas, L, Bergh, Ø & Torsvik, V (2004). Phylog<strong>en</strong>etic analysis of bacterial<br />

communities associated with <strong>la</strong>rvae of the at<strong>la</strong>ntic halibut propose succession from a<br />

uniform normal flora. Systematic & Applied Microbiology 27, 728-736.<br />

Jöborn, A, Olsson, JC, Westerdhal, A, Conway, PL & Kjelleberg, S (1997). Colonization in<br />

the fish intestinal tract and production of inhibitory substances in intestinal mucus and<br />

faecal extracts by Carnobacterium sp. Strain K1. Journal of Fish Diseases 20, 383-392.<br />

Juíz-Río, S, Osorio, CR, <strong>de</strong> Lor<strong>en</strong>zo, V & Lemos, ML (2005). Substractive hybridization<br />

reveals a high g<strong>en</strong>etic diversity in the fish pathog<strong>en</strong> Photobacterium damse<strong>la</strong>e subsp.<br />

piscicida: evi<strong>de</strong>nce of a SXT-like elem<strong>en</strong>t. Microbiology 151, 2659-2669.<br />

Juíz-Río, S (2006). Caracterización molecu<strong>la</strong>r <strong>de</strong> los sistemas <strong>de</strong> transporte <strong>de</strong> hierro <strong>en</strong><br />

Photobacterium damse<strong>la</strong>e, análisis <strong>de</strong> <strong>la</strong> variabilidad g<strong>en</strong>ética y pres<strong>en</strong>cia <strong>de</strong> elem<strong>en</strong>tos<br />

móviles. PhD Thesis, University of Santiago <strong>de</strong> Composte<strong>la</strong>, Spain.<br />

Kautsky, N, Rönnbäck, P, Te<strong>de</strong>ngr<strong>en</strong>, M & Troell, M (2000). Ecosystem perspectives on<br />

managem<strong>en</strong>t of disease in shrimp pond farming. Aquaculture 191, 145-161.<br />

Kawakami, H, Shinohara, N, Fukuda, Y, Yamashita, H, Kihara, H & Sakai, M (1997). The<br />

efficacy of lipopolysacchari<strong>de</strong> mixed chloroform-killed cell (LPS-ckc) bacterin of<br />

Pasteurel<strong>la</strong> piscicida of yellowtail, Serio<strong>la</strong> quinqueradiata. Aquaculture 154, 95-105.<br />

Kim, FJ, Kim, HP, Hah, YC & Roe, JH (1996). Differ<strong>en</strong>tial expression of superoxi<strong>de</strong><br />

dismutases containing Ni and Fe/Zn in Streptomyces coelicolor. European Journal of<br />

Biochemistry 241, 178-185.<br />

Kinsel<strong>la</strong>, JE, Lokesh, B, Broughton, S & Whe<strong>la</strong>n, J (1990). Dietary polyunsaturated fatty<br />

acids and eicosanoids: pot<strong>en</strong>tial effects on the modu<strong>la</strong>tion of inf<strong>la</strong>mmatory and<br />

immune cells: an overview. Nutrition 6, 24-44.<br />

Klotz, MG & Hutcheson, SW (1992). Multiple perip<strong><strong>la</strong>s</strong>mic cata<strong><strong>la</strong>s</strong>es in phytopathog<strong>en</strong>ic<br />

strains of Pseudomonas syringae. Applied & Environm<strong>en</strong>tal Microbiology 58, 2468-<br />

2473.<br />

121


REFERENCIAS / REFEREN CES<br />

Kono, Y & Fridovich, I (1983). Iso<strong>la</strong>tion and characterization of the pseudocata<strong><strong>la</strong>s</strong>e of<br />

Lactobacillus p<strong>la</strong>ntarum. Journal of Biological Chemistry 258, 6015-6019.<br />

Kov<strong>en</strong>, W, Barr, Y, Lutzky, S, B<strong>en</strong>-Atia, I, Weiss, R, Harel, M, Behr<strong>en</strong>s, P & Tandler, A<br />

(2001). The effect of dietary arachidonic acid (20:4n-6) on growth, survival and<br />

resistance to handling stress in gilthead seabream (Sparus aurata) <strong>la</strong>rvae. Aquaculture<br />

195, 107-122.<br />

Kubota, SS, Kimura, M & Egusa, S (1970). Studies of a bacterial tuberculoidosis of the<br />

yellowtail I. Symptomatology and histopathology. Fish Pathology 4, 11-18.<br />

Kumar, S, Sahu, NP, Pal, AK, Choudhury, D, Y<strong>en</strong>gkokpam, S & Mukherjee, SC (2005).<br />

Effect of dietary carbohydrate on haematology, respiratory burst activity and<br />

histological changes in L. rohita juv<strong>en</strong>iles. Fish & Shellfish Immunology 19, 331-344.<br />

Kumari, J & Sahoo, PK (2006). Dietary β-1,3 glucan pot<strong>en</strong>tiates innate immunity and<br />

disease resistance of Asian catfish, C<strong>la</strong>rias batrachus (L.). Journal of Fish Diseases 29,<br />

95-101.<br />

Kusuda, R & Hamaguchi, M (1987). A comparative study on efficacy of immersion and a<br />

combination of immersion and oral vaccination methods against pseudotuberculosis in<br />

yellowtail. Nippon Suisan Gakkaishi 53, 1005-1008.<br />

Kusuda, R & Hamaguchi, M (1988). The efficacy of att<strong>en</strong>uated live bacterin of Pasteurel<strong>la</strong><br />

piscicida against pseudotuberculosis in yellowtail. Bulletin of European Association of<br />

Fish Pathologists 8, 51-53.<br />

Kusuda, R, Ninomiya, M, Hamaguchi, M & Muraoka, A (1988). The efficacy of ribosomal<br />

vaccine prepared from Pasteurel<strong>la</strong> piscicida against pseudotuberculosis in cultured<br />

yellowtail. Fish Pathology 23, 191-196.<br />

Kusuda, R & Sa<strong>la</strong>ti, F (1993). Major bacterial diseases affecting mariculture in Japan.<br />

Annual Review of Fish Diseases 3, 69-85.<br />

Kvitt, H, Ucko, M, Colorni, A, Batargias, C, Zlotkin, A & Knibb, W (2002). Photobacterium<br />

damse<strong>la</strong>e ssp. piscicida: <strong>de</strong>tection by direct amplification of 16S rRNA g<strong>en</strong>e<br />

sequ<strong>en</strong>ces and g<strong>en</strong>otypic variation as <strong>de</strong>termined by amplified fragm<strong>en</strong>t l<strong>en</strong>ght<br />

polymorphism (AFLP). Diseases of Aquatic Organisms 48, 187-195.<br />

Lin, MF & Shiau, SY (2005). Dietary L-ascorbic acid affects growth, non-specific immune<br />

responses and disease resistance in juv<strong>en</strong>ile grouper, Epinephelus ma<strong>la</strong>baricus.<br />

Aquaculture 244, 215-221.<br />

122


REFERENCIAS / REFEREN CES<br />

Loew<strong>en</strong>, PC (1997). Bacterial cata<strong><strong>la</strong>s</strong>es. In: Oxidative Stress and the Molecu<strong>la</strong>r Biology of<br />

Antioxidants Def<strong>en</strong>ses. (Scandalios, JG, ed.), 273-308. Cold Spring Harbor Laboratory<br />

Press, Woodbury, New York, USA.<br />

López-Dóriga, MV, Barnes, AC, dos Santos, NMS & Ellis, AE (2000). Invasion of fish<br />

epithelial cells by Photobacterium damse<strong>la</strong>e subsp. piscicida: evi<strong>de</strong>nce for receptor<br />

specificity, and effect of capsule and serum. Microbiology 146, 21-30.<br />

Lynch, M & Kuramitsu, H (2000). Expression and role of superoxi<strong>de</strong> dismutases (SOD) in<br />

pathog<strong>en</strong>ic bacteria. Microbes & Infection 2, 1245-1255.<br />

Magalhaes, N & Dinis, MT (1996). The effect of starvation and feeding regimes on the<br />

RNA, DNA and protein cont<strong>en</strong>t of Solea s<strong>en</strong>egal<strong>en</strong>sis <strong>la</strong>rvae. Book of Abstracts<br />

World Aquaculture, Bangkok, 242.<br />

Magariños, B, Romal<strong>de</strong>, JL, Bandín, I, Fouz, B & Toranzo, AE (1992). Ph<strong>en</strong>otypic,<br />

antig<strong>en</strong>ic, and molecu<strong>la</strong>r characterization of Pasteurel<strong>la</strong> piscicida strains iso<strong>la</strong>ted from<br />

fish. Applied & Environm<strong>en</strong>tal Microbiology 58, 3316-3322.<br />

Magariños, B, Pazos, F, Santos, Y, Romal<strong>de</strong>, JL & Toranzo, AE (1994). Iron uptake by<br />

Pasteurel<strong>la</strong> piscicida and its role in pathog<strong>en</strong>icity for fish. Applied & Environm<strong>en</strong>tal<br />

Microbiology 60, 2990-2998.<br />

Magariños, B, Romal<strong>de</strong>, JL, Lemos, ML, Barja, JL & Toranzo, AE (1995). Response of<br />

Pasteurel<strong>la</strong> piscicida and Flexibacter maritimus to skin mucus of marine fish.<br />

Diseases of Aquatic Organisms 21, 103-108.<br />

Magariños, B, Romal<strong>de</strong>, JL, Noya, M, Barja, JL & Toranzo, AE (1996a). Adher<strong>en</strong>ce and<br />

invasive capacities of the fish pathog<strong>en</strong> Pasteurel<strong>la</strong> piscicida. FEMS Microbiology<br />

Letters 138, 29-34.<br />

Magariños, B, Bonet, R, Romal<strong>de</strong>, JL, Martínez, MJ, Congregado, F & Toranzo, AE<br />

(1996b). Influ<strong>en</strong>ce of the capsu<strong>la</strong>r <strong>la</strong>yer on the virul<strong>en</strong>ce of Pasteurel<strong>la</strong> piscicida.<br />

Microbial Pathog<strong>en</strong>esis 21, 289-297.<br />

Magariños, B, Toranzo, AE & Romal<strong>de</strong>, JL (1996c). Ph<strong>en</strong>otypic and pathobiological<br />

characteristics of Pasteurel<strong>la</strong> piscicida. Annual Review of Fish Diseases 6, 41-46.<br />

Magariños, B, Osorio, CR, Toranzo, AE & Romal<strong>de</strong>, JL (1997). Applicability of ribotyping<br />

for intraspecific c<strong><strong>la</strong>s</strong>sification and epi<strong>de</strong>miological studies of Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida. Systematic & Applied Microbiology 20, 634-639.<br />

123


REFERENCIAS / REFEREN CES<br />

Magariños, B, Romal<strong>de</strong>, JL, Barja, JL, Núñez, S & Toranzo, AE & (1999). Protection of<br />

gilthead seabream against pasteurellosis at the <strong>la</strong>rval stages. Bulletin of European<br />

Association of Fish Pathologists 19, 159-161.<br />

Magariños, B, Toranzo, AE, Barja, JL & Romal<strong>de</strong>, JL (2000). Exist<strong>en</strong>ce of two<br />

geographically-linked clonal lineages in the bacterial fish pathog<strong>en</strong> Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida evi<strong>de</strong>nced by random amplified polymorphic DNA analysis.<br />

Epi<strong>de</strong>miological of Infections 125, 213-219.<br />

Magariños, B, Couso, N, Noya, M, Merino, P, Toranzo, AE & Lamas, J (2001). Effect of<br />

temperature on the <strong>de</strong>velopm<strong>en</strong>t of pasteurellosis in carrier gilthead seabream (Sparus<br />

aurata). Aquaculture 195, 17-21.<br />

Magariños, B, Romal<strong>de</strong>, JL, López-Romal<strong>de</strong>, S, Moriñigo, MA & Toranzo, AE (2003).<br />

Pathobiological characterization of Photobacterium damse<strong>la</strong>e subsp. piscicida strains<br />

iso<strong>la</strong>ted from cultured sole (Solea s<strong>en</strong>egal<strong>en</strong>sis). Bulletin of European Association of<br />

Fish Pathologists 23, 183-190.<br />

Manca, C, Paul, S, Barry III, CE, Freedman, VH & Kap<strong>la</strong>n, G (1999). Mycobacterium<br />

tuberculosis cata<strong><strong>la</strong>s</strong>e and peroxidase activities and resistance to oxidative killing in<br />

human monocytes in vitro. Infection & Immunity 67, 74-79.<br />

Marqués, A, Dhont, J, Sorgeloos, P & Bossier, P (2006). Immunostimu<strong>la</strong>tory nature of β-<br />

glucans and baker´s yeast in gnotobiotic Artemia chall<strong>en</strong>ge tests. Fish & Shellfish<br />

Immunology 20, 682-692.<br />

McCrak<strong>en</strong>, VJ, Simpson, JM, Mackie, RI & Gaskins, HR (2001). Molecu<strong>la</strong>r ecological<br />

analysis of dietary and antibiotic-induced alterations of the mouse intestinal<br />

microbiota. Journal of Nutrition 131, 1862-1870.<br />

Miles, DJC, Polchana, J, Lilley, JH, Kanchanakhan, S, Thompson, KD & Adams, A (2001).<br />

Immunostimu<strong>la</strong>tion of striped snakehead Channa striata against epizootic ulcerative<br />

syndrome. Aquaculture 195, 1-15.<br />

Miller, RA & Britigan, BF (1997). Role of oxidants in microbial pathophysiology. Clinical<br />

Microbiology Reviews 10, 1-18.<br />

Miranda, CD & Zemelman, R (2001). Antibiotic resistant bacteria in fish from the<br />

Concepcion Bay, Chile. Marine Pollution Bulletin 42, 1096-1102.<br />

Mongkolsuk, S, Loprasert, S, Vattanaviboon, P, Chanvanichayachal, C, Chamnongpol, S &<br />

Supsamran, N (1996). Heterologous growth phase- and temperature- <strong>de</strong>p<strong>en</strong><strong>de</strong>nt<br />

expression and H 2 O 2 toxicity protection of a superoxi<strong>de</strong>-inducible monofunctional<br />

124


REFERENCIAS / REFEREN CES<br />

cata<strong><strong>la</strong>s</strong>e g<strong>en</strong>e from Xanthomonas oryzae pv. oryzae. Journal of Bacteriology 178, 3578-<br />

3584.<br />

Morris, HJ, Martínez, CE, Abda<strong>la</strong>, RT & Cobas, G (2000). Evi<strong>de</strong>ncias preliminares <strong>de</strong> <strong>la</strong><br />

actividad inmunomodu<strong>la</strong>dora <strong>de</strong> <strong>la</strong> fracción polisacarídica <strong>de</strong> orig<strong>en</strong> marino PC-1.<br />

Revista Cubana <strong>de</strong> Oncología 16, 171-176.<br />

Muyzer, G, <strong>de</strong> Waal, EC & Uitterlin<strong>de</strong>n, AG (1993). Profiling of complex microbial<br />

popu<strong>la</strong>tions by <strong>de</strong>naturing gel electrophoresis analysis of polymerase chain reactionamplified<br />

g<strong>en</strong>es coding for 16S rRNA. Applied & Environm<strong>en</strong>tal Microbiology 59,<br />

695-700.<br />

Naka, H, Hirono, I & Aoki, T (2005). Molecu<strong>la</strong>r cloning and functional analysis of<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida haem receptor g<strong>en</strong>e. Journal of Fish<br />

Diseases 28, 81-88.<br />

Nikoske<strong>la</strong>in<strong>en</strong>, S, Ouwehand, AC, Salmin<strong>en</strong>, S & Bylund, G (2001). Protection of rainbow<br />

trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus.<br />

Aquaculture 198, 229-236.<br />

Nikoske<strong>la</strong>in<strong>en</strong>, S, Ouwehand, AC, Bylund, G, Salmin<strong>en</strong>, S & Lilius EM (2003). Immune<br />

<strong>en</strong>hancem<strong>en</strong>t in rainbow trout (Oncorhynchus mykiss) by pot<strong>en</strong>tial probiotic bacteria<br />

(Lactobacillus rhamnosus). Fish & Shellfish Immunology 15, 443-452.<br />

Noya, M, Magariños, B, Toranzo, AE & Lamas, J (1995a). Sequ<strong>en</strong>tial pathology of<br />

experim<strong>en</strong>tal pasteurellosis in gilthead seabream Sparus aurata. A light- and electronmicroscopic<br />

study. Diseases of Aquatic Organisms 21, 177-186.<br />

Noya, M, Magariños, B & Lamas, J (1995b). Interactions betwe<strong>en</strong> peritoneal exudate cells<br />

(PECs) of gilthead seabream (Sparus aurata) and Pasteurel<strong>la</strong> piscicida. A<br />

morphological study. Aquaculture 131, 11-21.<br />

Nübel, U, Engel<strong>en</strong>, B, Felske, A, Snaidr, J, Wieshuber, A, Amann, RI, Ludwig, W &<br />

Backhaus, H (1996). Sequ<strong>en</strong>ce heterog<strong>en</strong>eities of g<strong>en</strong>es <strong>en</strong>coding 16S rRNAs in<br />

Pa<strong>en</strong>ibacillus polymyxa <strong>de</strong>tected by temperature gradi<strong>en</strong>t gel electrophoresis. Journal<br />

of Bacteriology 178, 5636-5643.<br />

Olsson, JC, Westerdhal, A, Conway, PL & Kjelleberg, S (1992). Intestinal colonization<br />

pot<strong>en</strong>tial of turbot (Scophthalmus maximus) and dab (Limanda limanda) associated<br />

bacteria with inhibitory effects against Vibrio anguil<strong>la</strong>rum. Applied & Environm<strong>en</strong>tal<br />

Microbiology 58, 551-556.<br />

125


REFERENCIAS / REFEREN CES<br />

Ortuño, J, Esteban, MA & Meseguer, J (1999). Effect of high dietary intake of vitamin C on<br />

non-specific immune response of gilthead seabream (Sparus aurata L.). Fish &<br />

Shellfish Immunology 9, 429-443.<br />

Ortuño, J, Cuesta, A, Rodríguez, A, Esteban, MA & Meseguer, J (2002). Oral administration<br />

of yeast Saccharomyces cerevisiae, <strong>en</strong>hances the cellu<strong>la</strong>r innate immune response in<br />

gilthead seabream (Sparus aurata L.). Veterinary Immunology & Immunopathology<br />

85, 41-50.<br />

Ortuño, J, Esteban, MA & Meseguer, J (2003). The effect of dietary intake of vitamins C and<br />

E on the stress response of gilthead seabream (Sparus aurata L.). Fish & Shellfish<br />

Immunology 14, 145-156.<br />

Ouwehand, AC & Salmin<strong>en</strong>, S (1998). The health effects of cultured milk products with<br />

viable and non-viable bacteria. International Dairy Journal 8, 749-758.<br />

Ouwehand, AC, Salmin<strong>en</strong>, S & Iso<strong>la</strong>uri, E (2002). Probiotics: an overview of b<strong>en</strong>eficial<br />

effects. Antoine van Leeuw<strong>en</strong>hoek 82, 279-289.<br />

Panigrahi, A, Kiron, V, Kobayashi, T, Puangkaew, J, Satoh, S & Sugita, H (2004). Immune<br />

responses in rainbow trout Oncorhynchus mykiss induced by a pot<strong>en</strong>tial probiotic<br />

bacteria Lactobacillus rhamnosus JCM 1136. Veterinary Immunology &<br />

Immunopathology 102, 379-388.<br />

Peddie, S, Zou, J & Secombes, C (2002). Immunostimu<strong>la</strong>tion in the rainbow trout<br />

(Oncorhynchus mykiss) following intraperitoneal administration of Ergosan.<br />

Veterinary Immunology & Immunopathology 86, 101-113.<br />

Po<strong>la</strong>ck, B, Dacheux, D, Delic-Attree, I, Toussaint, B & Vignais, PM (1996). Role of<br />

manganese superoxi<strong>de</strong> dismutase in a mucoid iso<strong>la</strong>te of Pseudomonas aeruginosa:<br />

adaptation to oxidative stress. Infection & Immunity 64, 2216-2219.<br />

Privalle, CT & Fridovich, I (1992). Transcriptional and maturational effects of manganese<br />

and iron on the biosynthesis of manganese-superoxi<strong>de</strong> dismutase in Escherichia coli.<br />

The Journal of Biological Chemistry 267, 9140-9145.<br />

Pulsford, AL, Crampe, M, Langston, A & Glynn, PJ (1995). Modu<strong>la</strong>tory effects of disease,<br />

stress, copper, TBT and vitamin E on the immune system of f<strong>la</strong>tfish. Fish & Shellfish<br />

Immunology 5, 631-643.<br />

Pybus, V, Loutit, MW, Lamont, IL & Tagg, JR (1994). Growth inhibition of the salmon<br />

pathog<strong>en</strong> Vibrio ordalii by a si<strong>de</strong>rophore produced by Vibrio anguil<strong>la</strong>rum strain<br />

VL4355. Journal of Fish Diseases 17, 311-324.<br />

126


REFERENCIAS / REFEREN CES<br />

Radu, S, Ahmad, N, Ling, FH & Reeza, A (2003). Preval<strong>en</strong>ce and resistance to antibiotics<br />

for Aeromonas species from retail fish in Ma<strong>la</strong>ysia. International Journal of Food<br />

Microbiology 81, 261-266.<br />

Rebolloso, MM, Acién, GG, Sánchez, JA & Guil, JL (2000). Biomass nutri<strong>en</strong>t profiles of the<br />

microalga Porphyridium cru<strong>en</strong>tum. Food Chemistry 70, 345-353.<br />

Rodríguez, S, Vi<strong><strong>la</strong>s</strong>, MP, Gutiérrez, MC, Pérez-Prieto, SI, Sarasquete, MC & Rodríguez, RB<br />

(1997). Iso<strong>la</strong>tion and preliminary characterization of a birnavirus from the sole Solea<br />

s<strong>en</strong>egal<strong>en</strong>sis in Southwest Spain. Journal of Aquatic Animal Health 9, 295-300.<br />

Rodríguez, A, Cuesta, A, Ortuño, J, Esteban, MA & Meseguer, J (2003). Immunostimu<strong>la</strong>nt<br />

properties of a cell wall-modified whole Saccharomyces cerevisiae strain administered<br />

by diet to seabream (Sparus aurata L.). Veterinary Immunology & Immunopathology<br />

96, 183-192.<br />

Rodríguez, A, Cuesta, A, Esteban, MA & Meseguer, J (2004). The effect of dietary<br />

administration of the fungu Mucor circinelloi<strong>de</strong>s on non-specific immune responses of<br />

gilthead seabream. Fish & Shellfish Immunology 16, 241.<br />

Romal<strong>de</strong>, JL & Magariños, B (1997). Immunization with bacterial antig<strong>en</strong>s: pasteurellosis.<br />

In: Fish Vaccinology (Gudding, R, Lillehaug, A, Midtlyng, PJ & Brown, F, eds.), 167-<br />

177. Karger, Basel, Switzer<strong>la</strong>nd.<br />

Romal<strong>de</strong>, JL (2002). Photobacterium damse<strong>la</strong>e subsp. piscicida: an integrated review of a<br />

bacterial fish pathog<strong>en</strong>. International Microbiology 5, 3-9.<br />

Reeves, EP, Lu, H, Jacobs, HL, Messina, CG, Bolsover, S, Gabel<strong>la</strong>, G, Potma, EO, Warley,<br />

A, Roes, J & Segal, AW (2002). Killing activity of neutrophils is mediated through<br />

activation of proteases by K + flux. Nature 416, 291–297.<br />

Roos, D, van Brugg<strong>en</strong>, R & Meischl, C (2003). Oxidative killing of microbes by neutrophils.<br />

Microbes & Infection 5, 1307-1315.<br />

RØsrstad, G, Aasjord, PM & Roberts<strong>en</strong>, B (1993). Adjuvant effect of a yeast glucan in<br />

vaccines against furunculosis in At<strong>la</strong>ntic salmon (Salmo sa<strong>la</strong>r L.) Fish & Shellfish<br />

Immunology 3, 170-190.<br />

Sakai, M, Yoshida, T & Kobayashi, M (1995). Influ<strong>en</strong>ce of the immunostimu<strong>la</strong>nt, EF203, on<br />

the immune responses of rainbow trout, Oncorhynchus mykiss, to R<strong>en</strong>ibacterium<br />

salmoninarum. Aquaculture 138, 61-67.<br />

Sakai, M (1999). Curr<strong>en</strong>t research status of fish immunostimu<strong>la</strong>nts. Aquaculture 172, 63-92.<br />

127


REFERENCIAS / REFEREN CES<br />

Salinas, I, Cuesta, A, Esteban, MA & Meseguer, J (2005). Dietary administration of<br />

Lactobacillus <strong>de</strong>lbrüeckii and Bacillus subtilis, single or combined, on gilthead<br />

seabream cellu<strong>la</strong>r innate immune responses. Fish & Shellfish Immunology 19, 67-77.<br />

Salinas, I, Díaz-Rosales, P, Cuesta, A, Meseguer, J, Chabrillón, M, Moriñigo, MA &<br />

Esteban, MA (2006). Effect of heat-inactivated fish and non-fish <strong>de</strong>rived probiotics on<br />

the innate immune parameters of a teleost fish (Sparus aurata L.). Veterinary<br />

Immunology & Immunopathology 111, 279-286.<br />

Salmin<strong>en</strong> S, Ouwehand AC, B<strong>en</strong>no Y & Lee YK (1999). Probiotics: how should they be<br />

<strong>de</strong>fined Tr<strong>en</strong>ds in Food Sci<strong>en</strong>ce Technology 10, 107-110.<br />

Sandaa, RA, Magnes<strong>en</strong>, T, Torkilds<strong>en</strong>, L & Bergh, Ø (2003). Characterisation of the<br />

bacterial community associated with early stages of great scallop (Pect<strong>en</strong> maximus),<br />

using <strong>de</strong>naturing gradi<strong>en</strong>t gel electrophoresis (DGGE). Systematic & Applied<br />

Microbiology 26, 302-311.<br />

Santarém, M, Novoa, B & Figueras, A (1997). Effects of β-glucans on the non-specific<br />

immune responses of turbot (Scophthalmus maximus L.). Fish & Shellfish<br />

Immunology 7, 429-437.<br />

Scheuer, PJ (1990). Some marine ecological ph<strong>en</strong>om<strong>en</strong>a: chemical basis and biomedical<br />

pot<strong>en</strong>tial. Sci<strong>en</strong>ce 248, 173-177.<br />

Schnell, S & Steinman, HM (1995). Function and stationary-phase induction of perip<strong><strong>la</strong>s</strong>mic<br />

copper-zinc superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e/peroxidase in Caulobacter cresc<strong>en</strong>tus.<br />

Journal of Bacteriology 177, 5924-5929.<br />

Schrez<strong>en</strong>meir J & <strong>de</strong> Vrese M (2001). Probiotics, prebiotics and synbiotics-approaching a<br />

<strong>de</strong>finition. American Journal of Clinical Nutrition 73, 361-364.<br />

Simpson, JM, McCrack<strong>en</strong>, VJ, White, BA, Gaskins, HR & Mackie, RI (1999). Application<br />

of <strong>de</strong>naturant gradi<strong>en</strong>t gel electrophoresis for the analysis of the porcine<br />

gastrointestinal microbiota. Journal of Microbiological Methods 36, 167-179.<br />

Sivaram, C, Babu, MM, Immanuel, G, Murugadass, S, Citarasu, T & Marian, MP (2004).<br />

Growth and immune response of juv<strong>en</strong>ile greasy groupers (Epinephellus tauvina) fed<br />

with herbal antibacterial active principle supplem<strong>en</strong>ted diets against Vibrio harveyi<br />

infections. Aquaculture 237, 9-20.<br />

128


REFERENCIAS / REFEREN CES<br />

Siwicki, AK, An<strong>de</strong>rson, DP & Rumsey, GL (1994). Dietary intake of immunostimu<strong>la</strong>nts by<br />

rainbow trout affects non-specific immunity and protection against furunculosis.<br />

Veterinary Immunology & Immunopathology 41, 125-139.<br />

Skarmeta, AM, Bandín, I, Santos, Y & Toranzo, AE (1995). In vitro killing of Pasteurel<strong>la</strong><br />

piscicida by fish macrophages. Diseases of Aquatic Organisms 23, 51-57.<br />

Skjermo, J & Bergh, Ø (2004). High M-alginate immunostimu<strong>la</strong>tion of At<strong>la</strong>ntic halibut<br />

(Hippoglossus hippoglossus L.) <strong>la</strong>rvae using Artemia for <strong>de</strong>livery, increases resistance<br />

against vibriosis. Aquaculture 238, 107-114.<br />

Smith, P & Davey, S (1993). Evi<strong>de</strong>nce for the competitive exclusion of Aeromonas<br />

salmonicida from fish with stress-inducible furunculosis by a fluoresc<strong>en</strong>t<br />

pseudomonas. Journal of Fish Diseases 16, 521-524.<br />

Snieszko, SF, Bullock, GL, Hollis, E & Boone, JG (1964). Pasteurel<strong>la</strong> sp. from an epizootic<br />

of white perch (Roccus americanus) in Chesapeake Bay ti<strong>de</strong>water areas. Journal of<br />

Bacteriology 88, 1814-1815.<br />

Spanggaard, B, Huber, I, Niels<strong>en</strong>, T & Gram, L (2000). Proliferation and location of Vibrio<br />

anguil<strong>la</strong>rum during infection of rainbow trout, Oncorhynchus mykiss (Walbaum).<br />

Journal of Fish Diseases 23, 423-427.<br />

St. John, G & Steinman, HM (1996). Perip<strong><strong>la</strong>s</strong>mic copper-zinc superoxi<strong>de</strong> dismutase of<br />

Legionel<strong>la</strong> pneumophi<strong>la</strong>: role in stationary-phase survival. Journal of Bacteriology 178,<br />

1578-1584.<br />

Storz, G, Tartaglia, LA, Farr, SB & Ames, BN (1990). Bacterial <strong>de</strong>f<strong>en</strong>ces against oxidative<br />

stress. Tr<strong>en</strong>ds in G<strong>en</strong>etics 6, 363-368.<br />

Sugita, H, Matsuo, N, Hirose, Y, Iwato, M & Deguchi, Y (1997). Vibrio sp. strain NM10,<br />

iso<strong>la</strong>ted from the intestine of a Japanese coastal fish, has an inhibitory effect against<br />

Pasteurel<strong>la</strong> piscicida. Applied & Environm<strong>en</strong>tal Microbiology 63, 4986-4989.<br />

Tachinaba, K, Yagi, M, Hara, K, Mishima, T & Tsuchimoto, M (1997). Effects of feeding<br />

β-carot<strong>en</strong>e supplem<strong>en</strong>ted rotifers on survival and lymphocyte proliferation reaction of<br />

fish <strong>la</strong>rvae of Japanese parrotfish (Oplegnathus fasciatus) and Spotted parrot fish<br />

(Oplegnathus punctatus): preliminary trials. Hydrobiology 358, 313-316.<br />

Temmerman, R, Scheirlinck, I, Huys, G & Swings, J (2003). Culture-in<strong>de</strong>p<strong>en</strong><strong>de</strong>nt analysis of<br />

probiotic products by <strong>de</strong>naturing gradi<strong>en</strong>t gel electrophoresis. Applied &<br />

Environm<strong>en</strong>tal Microbiology 69, 220-226.<br />

129


REFERENCIAS / REFEREN CES<br />

Thompson, I, White, A, Fletcher, TC, Houlihan, DF & Secombes, CJ (1993). The effect of<br />

stress on the immune response of At<strong>la</strong>ntic salmon (Salmo sa<strong>la</strong>r L.) fed diets containing<br />

differ<strong>en</strong>t amounts of vitamin C. Aquaculture 114, 1-18.<br />

Thyss<strong>en</strong>, A, Goris, J, Pe<strong>de</strong>rs<strong>en</strong>, K, Swings, J, Lars<strong>en</strong>, JL & Ollevier, F (1999). Ph<strong>en</strong>otypic<br />

and g<strong>en</strong>otypic characterization of Photobacterium damse<strong>la</strong>e subsp. piscicida.<br />

Proceedings of the 9 th International Confer<strong>en</strong>ce on Diseases of Fish and Shellfish.<br />

European Association of Fish Pathologists, Rho<strong>de</strong>s, Greece. O-153.<br />

Toranzo, AE, Barreiro, S, Casal, JF, Figueras, A, Magariños, B & Barja, JL (1991).<br />

Pasteurellosis in cultured gilthead seabream (Sparus aurata): first report in Spain.<br />

Aquaculture 99, 1-15.<br />

Tung, MC, Tsai, SS, Ho, LF, Huang, ST & Ch<strong>en</strong>, SC (1985). An acute septicemic infection<br />

of Pasteurel<strong>la</strong> organism in pond-cultured Formosa snake-head fish (Channa macu<strong>la</strong>ta<br />

Lacepe<strong>de</strong>) in Taiwan. Fish Pathology 25, 143-148.<br />

Uzzau, S, Bossi, L & Figueroa-Bossi, N (2002). Differ<strong>en</strong>tial accumu<strong>la</strong>tion of Salmonel<strong>la</strong><br />

[Cu, Zn] superoxi<strong>de</strong> dismutases SodCI and SodCII in intracellu<strong>la</strong>r bacteria: corre<strong>la</strong>tion<br />

with their re<strong>la</strong>tive contribution to pathog<strong>en</strong>icity. Molecu<strong>la</strong>r Microbiology 46, 147-156.<br />

do Vale, A, Ellis, AE & Silva, MT (2001). Electron microscopic evi<strong>de</strong>nce that expression of<br />

capsu<strong>la</strong>r polysaccarhi<strong>de</strong> by Photobacterium damse<strong>la</strong>e subsp. piscicida is <strong>de</strong>p<strong>en</strong><strong>de</strong>nt on<br />

iron avai<strong>la</strong>bility and growth phase. Diseases of Aquatic Organisms 44, 237-240.<br />

do Vale, A, Silva, MT, dos Santos, NMS, Nascim<strong>en</strong>to, DS, Reis-Rodrigues, P, Costa-<br />

Ramos, C, Ellis, AE & Azevedo, JE (2005). API56, a novel p<strong><strong>la</strong>s</strong>mid-<strong>en</strong>co<strong>de</strong>d virul<strong>en</strong>ce<br />

factor of Photobacterium damse<strong>la</strong>e subsp. piscicida with apoptog<strong>en</strong>ic activity against<br />

sea bass macrophages and neutrophils. Molecu<strong>la</strong>r Microbiology 58, 1025-1038.<br />

Val<strong>en</strong>te, LMP, Gouveia, A, Rema, P, Matos, J, Gomes, GF, & Pinto, IS (2006). Evaluation<br />

of three seaweeds Graci<strong>la</strong>ria bursa-pastoris, Ulva rigida and Graci<strong>la</strong>ria cornea as<br />

dietary ingredi<strong>en</strong>ts in European sea bass (Dicecntrarchus <strong>la</strong>brax) juv<strong>en</strong>iles.<br />

Aquaculture 252, 85-91.<br />

Vattanaviboon, P & Mongkolsuk, S (2001). Unusual adaptative, cross protection responses<br />

and growth phase resistance against peroxi<strong>de</strong> killing in a bacterial shrimp pathog<strong>en</strong>,<br />

Vibrio harveyi. FEMS Microbiology Letters 200, 111-116.<br />

Verschuere, L, Rombaut, G, Sorgeloos, P & Verstraete, W (2000). Probiotic bacteria as<br />

biological control ag<strong>en</strong>ts. Aquaculture 64, 1092-2172.<br />

130


REFERENCIAS / REFEREN CES<br />

Vil<strong>la</strong>lta, M, Estévez, A & Brans<strong>de</strong>n, MP (2005). Arachidonic acid <strong>en</strong>riched live prey induces<br />

albinism S<strong>en</strong>egal sole (Solea s<strong>en</strong>egal<strong>en</strong>sis) <strong>la</strong>rvae. Aquaculture 245, 193-209.<br />

Weinberg, ED (2000). Modu<strong>la</strong>tion of intramacrophage iron metabolism during microbial cell<br />

invasion. Microbes & Infection 2, 85-89.<br />

Welch, DF, Sword, CP, Brehm, S & Dusanic, D (1979). Re<strong>la</strong>tionship betwe<strong>en</strong> superoxi<strong>de</strong><br />

dismutase and pathog<strong>en</strong>ic mechanisms of Listeria monocytog<strong>en</strong>es. Infection &<br />

Immunity 23, 863-872.<br />

Wolke, RE (1975). Pathology of bacterial and fungal diseases affecting fish. In: The<br />

pathology of fishes (Rubelin, W & Wigaki, G, eds.), 33-116. University of Wisconsin<br />

Press, Madison, Wisconsin, USA.<br />

Yesilkaya, H, Kadioglu, A, Gingles, N, Alexan<strong>de</strong>r, JE, Mitchell, TJ & Andrew, PW (2000).<br />

Role of manganese-containing superoxi<strong>de</strong> dismutase in oxidative stress and virul<strong>en</strong>ce<br />

of Streptococcus pneumoniae. Infection & Immunity 68, 2819-2826.<br />

You, T & Barneu, SM (2004). Effect of light quality on production of extracellu<strong>la</strong>r<br />

polysacchari<strong>de</strong>s and growth rate of Porphyridium cru<strong>en</strong>tum. Biochemical Engineering<br />

Journal 19, 251-258.<br />

Zorril<strong>la</strong>, I, Balebona, MC, Moriñigo, MA, Sarasquete, C & Borrego, JJ (1999). Iso<strong>la</strong>tion and<br />

characterization of the causative ag<strong>en</strong>t of pasteurellosis, Photobacterium damse<strong>la</strong>e ssp.<br />

piscicida, from sole, Solea s<strong>en</strong>egal<strong>en</strong>sis (Kaup). Journal of Fish Diseases 22, 167-172.<br />

Zorril<strong>la</strong>, I, Chabrillón, M, Arijo, S, Díaz-Rosales, P, Martínez-Manzanares, E, Balebona,<br />

MC and Moriñigo, MA (2003). Bacteria recovered from diseased cultured gilthead sea<br />

bream (Sparus aurata L.) in southwestern Spain. Aquaculture 218, 11-20.<br />

131


S<br />

E C C I Ó N D E A R T Í C U L O S<br />

A<br />

R T I C L E S E C T I O N


SECCIÓN D E ARTÍCU LOS / ARTICLE SECTION<br />

1.1. Díaz-Rosales, P, Chabrillón, M, Moriñigo, MA & Balebona, MC. Survival<br />

against exog<strong>en</strong>ous hydrog<strong>en</strong> peroxi<strong>de</strong> of Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

un<strong>de</strong>r differ<strong>en</strong>t culture conditions. Journal of Fish Diseases 2003; 26, 305–308.<br />

1.2. Díaz-Rosales, P, Chabrillón, M, Arijo, S, Martínez-Manzanares, E, Moriñigo,<br />

MA, Balebona & MC. Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e activities in Photobacterium<br />

damse<strong>la</strong>e ssp. piscicida. Journal of Fish Diseases 2006; 29, 355–364.<br />

2.1. Díaz-Rosales, P, Felices, C, Chabrillón, M, Abda<strong>la</strong>, RT, Figueroa, FL,<br />

Balebona, MC & Moriñigo, MA. Effect of dietary administration of Porphyridium<br />

cru<strong>en</strong>tum on the respiratory burst activity of sole (Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup 1858)<br />

phagocytes. S<strong>en</strong>d to: Fish & Shellfish Immunology.<br />

2.2. Díaz-Rosales, P, Abda<strong>la</strong>, RT, Decara, J, Arijo, A, Figueroa, FL, Moriñigo,<br />

MA & Balebona, MC. Effect of the extracellu<strong>la</strong>r polysaccharidic fraction from the red<br />

microalga Porphyridium cru<strong>en</strong>tum on the respiratory burst activity of sole (Solea<br />

s<strong>en</strong>egal<strong>en</strong>sis, Kaup 1858) phagocytes. Manuscript in preparation.<br />

2.3. Díaz-Rosales, P, Chabrillón, M, Smidt, H, Arijo, A, León-Rubio, JM, Rico,<br />

RM, A<strong>la</strong>rcón, FJ, Sá<strong>en</strong>z <strong>de</strong> Rodrigáñez, MA, Balebona, MC & Moriñigo, MA. Effect of<br />

dietary administration of probiotics on respiratory burst activity of phagocytes and<br />

intestinal microbiota of S<strong>en</strong>egalese sole (Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup 1858). Manuscript in<br />

preparation.<br />

135


A RTÍCULO 1.1.<br />

A RTICLE 1.1.


Journal of Fish Diseases 2003, 26, 305–308<br />

Short communication<br />

Survival against exog<strong>en</strong>ous hydrog<strong>en</strong> peroxi<strong>de</strong> of<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida un<strong>de</strong>r differ<strong>en</strong>t<br />

culture conditions<br />

P Díaz-Rosales, M Chabrillón, M A Moriæigo and M C Balebona<br />

Departm<strong>en</strong>t of Microbiology, Faculty of Sci<strong>en</strong>ces, University of Má<strong>la</strong>ga, Spain<br />

Keywords: culture, hydrog<strong>en</strong> peroxi<strong>de</strong>, Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida, survival.<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida is a fish<br />

pathog<strong>en</strong> responsible for important losses in aquaculture<br />

world-wi<strong>de</strong>. Several studies on its virul<strong>en</strong>ce<br />

mechanisms have be<strong>en</strong> carried out and outer<br />

membrane proteins involved in the acquisition of<br />

iron or production of extracellu<strong>la</strong>r products have<br />

be<strong>en</strong> suggested as the main <strong>de</strong>terminants of its<br />

virul<strong>en</strong>ce for fish (Magariños, Santos, Romal<strong>de</strong>,<br />

Rivas, Barja & Toranzo 1992; Magariños, Romal<strong>de</strong>,<br />

Lemos, Barja & Toranzo 1994). However, the actual<br />

methods of invasion and survival insi<strong>de</strong> the host are<br />

still unknown and while some authors have reported<br />

the pres<strong>en</strong>ce of intact bacteria insi<strong>de</strong> fish cells,<br />

suggesting the ability of the bacterium to survive<br />

as an intracellu<strong>la</strong>r pathog<strong>en</strong> (Noya, Magariños,<br />

Toranzo & Lamas 1995; López-Dóriga, Barnes,<br />

dos Santos & Ellis 2000), others have observed that<br />

this pathog<strong>en</strong> is highly susceptible to oxidative<br />

radicals g<strong>en</strong>erated during the macrophage respiratory<br />

burst (Skarmeta, Bandín, Santos & Toranzo<br />

1995; Barnes, Balebona, Horne & Ellis 1999a).<br />

Reactive oxyg<strong>en</strong> species (ROS) such as hydrog<strong>en</strong><br />

peroxi<strong>de</strong> and superoxi<strong>de</strong> are g<strong>en</strong>erated during the<br />

macrophage respiratory burst in response to microbial<br />

infection. Bacterial pathog<strong>en</strong>s must overcome<br />

the toxic effects of ROS to establish infections.<br />

Correspon<strong>de</strong>nce Dr M C Balebona, Departm<strong>en</strong>t of Microbiology,<br />

Faculty of Sci<strong>en</strong>ces, University of Ma<strong>la</strong>ga, Campus<br />

Teatinos, 29071 Ma<strong>la</strong>ga, Spain<br />

1 (e-mail: balebona@uma.es)<br />

Production of superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e<br />

<strong>en</strong>zymes, which <strong>de</strong>compose superoxi<strong>de</strong> and peroxi<strong>de</strong><br />

radicals, respectively, have be<strong>en</strong> reported to<br />

contribute to the virul<strong>en</strong>ce of a number of<br />

pathog<strong>en</strong>s (Franzon, Aron<strong>de</strong>l & Sansonetti 1990;<br />

Lefebre & Valvano 2001; Uzzau, Bossi & Figueroa-<br />

Bossi 2002). Thus, the ability of cata<strong><strong>la</strong>s</strong>e to<br />

<strong>de</strong>compose peroxi<strong>de</strong> radicals increases survival of<br />

bacteria in the pres<strong>en</strong>ce of peroxi<strong>de</strong>.<br />

In addition, increased levels of cata<strong><strong>la</strong>s</strong>e activity<br />

wh<strong>en</strong> bacteria are cultured un<strong>de</strong>r certain conditions,<br />

such as the pres<strong>en</strong>ce of peroxi<strong>de</strong> radicals or until<br />

the stationary phase, have be<strong>en</strong> reported (Stortz,<br />

Tartaglia & Ames 1990; Loew<strong>en</strong> 1997). Moreover,<br />

the fact that most cata<strong><strong>la</strong>s</strong>es are iron-cofactored<br />

suggests that growth un<strong>de</strong>r differ<strong>en</strong>t iron conc<strong>en</strong>trations<br />

may have some effect on this <strong>en</strong>zyme activity.<br />

Cata<strong><strong>la</strong>s</strong>e activity has be<strong>en</strong> reported in P. damse<strong>la</strong>e<br />

subsp. piscicida (Barnes et al. 1999a), however, the<br />

role of this <strong>en</strong>zyme in the protection against<br />

peroxi<strong>de</strong> has not yet be<strong>en</strong> <strong>de</strong>termined. For this<br />

reason, the resistance to peroxi<strong>de</strong> radicals of<br />

P. damse<strong>la</strong>e subsp. piscicida cells grown un<strong>de</strong>r iron<br />

limited and replete conditions, and pulsed with<br />

hydrog<strong>en</strong> peroxi<strong>de</strong>, has be<strong>en</strong> evaluated in this study.<br />

Two strains of P. damse<strong>la</strong>e subsp. piscicida have<br />

be<strong>en</strong> inclu<strong>de</strong>d in this study. The virul<strong>en</strong>t strain<br />

(Lg41/01) (LD 50 ¼ 2.2 · 10 4 CFU g )1 ) was iso<strong>la</strong>ted<br />

from diseased sole, Solea s<strong>en</strong>egal<strong>en</strong>sis Kaup,<br />

showing typical signs of pseudotuberculosis, and<br />

the non-virul<strong>en</strong>t strain (Epoy) (LD 50 ><br />

1.0 · 10 8 CFU g )1 ; Magariños, Bonet, Romal<strong>de</strong>,<br />

Martínez, Congregado & Toranzo 1996) kindly<br />

supplied by Dr K. Muroga (Faculty of Applied<br />

Ó 2003<br />

B<strong>la</strong>ckwell Publishing Ltd<br />

305


Journal of Fish Diseases 2003, 26, 305–308<br />

PDíaz-Rosales et al. Resistance of Photobacterium damse<strong>la</strong>e to hydrog<strong>en</strong> peroxi<strong>de</strong><br />

Biological Sci<strong>en</strong>ce, Hiroshima University, Japan).<br />

Iso<strong>la</strong>tes were cultured in 250-mL f<strong><strong>la</strong>s</strong>ks containing<br />

100 mL of tryptic soya broth supplem<strong>en</strong>ted with 2%<br />

NaCl (TSBS) at 22° C until the early stationary<br />

phase (O.D. 600 nm ¼ 1.0). The effect of iron<br />

conc<strong>en</strong>tration on the cultures was evaluated in cells<br />

grown in TSBS supplem<strong>en</strong>ted with 2,2-dipyridyl<br />

(100 lm) or ferric chlori<strong>de</strong> (100 lm) according to the<br />

methodology <strong>de</strong>scribed by Barnes et al. (1999a).<br />

Bacterial survival against peroxi<strong>de</strong> after a pot<strong>en</strong>tial<br />

induction of cata<strong><strong>la</strong>s</strong>e by hydrog<strong>en</strong> peroxi<strong>de</strong> was tested<br />

according to Barnes, Bow<strong>de</strong>n, Horne & Ellis (1999b)<br />

by adding 20 lm hydrog<strong>en</strong> peroxi<strong>de</strong> to mid-expon<strong>en</strong>tial<br />

phase cultures and 2 mm hydrog<strong>en</strong> peroxi<strong>de</strong><br />

to early stationary phase cultures.<br />

Cells were harvested, washed and resusp<strong>en</strong><strong>de</strong>d in<br />

phosphate-buffered saline (PBS) to a <strong>de</strong>nsity of<br />

10 9 CFU mL )1 (O.D. 600 nm ¼ 1.00). Aliquots of<br />

100 lL were used to inocu<strong>la</strong>te 9.9 mL PBS containing<br />

hydrog<strong>en</strong> peroxi<strong>de</strong> at conc<strong>en</strong>trations of 0, 0.05,<br />

0.1, 0.5, 1 and 10 mm. Samples were incubated for<br />

1 h at 22° C and surviving bacteria were <strong>en</strong>umerated<br />

by viable counts on tryptic soya agar with 2% NaCl<br />

3 (TSAS) p<strong>la</strong>tes. The survival of H 2 O 2 -treated bacteria<br />

was expressed as the perc<strong>en</strong>tage of colony forming<br />

units recovered compared with untreated samples.<br />

An ANOVA test was performed to compare the<br />

results of the experim<strong>en</strong>ts.<br />

Previous studies with P. damse<strong>la</strong>e subsp. piscicida<br />

exposed to photochemically g<strong>en</strong>erated superoxi<strong>de</strong><br />

radicals show that bacterial inactivation is overcome<br />

wh<strong>en</strong> cata<strong><strong>la</strong>s</strong>e is ad<strong>de</strong>d to the medium (Barnes et al.<br />

1999b), thus indicating the important effect of<br />

hydrog<strong>en</strong> peroxi<strong>de</strong> on the inactivation of this<br />

bacterium. Results obtained in this study indicate<br />

that P. damse<strong>la</strong>e subsp. piscicida shows increased<br />

survival wh<strong>en</strong> exposed to peroxi<strong>de</strong> radicals wh<strong>en</strong><br />

cells have previously be<strong>en</strong> in contact with hydrog<strong>en</strong><br />

peroxi<strong>de</strong>. Both the virul<strong>en</strong>t and non-virul<strong>en</strong>t strains<br />

were inactivated after 1 h incubation with 10 mm<br />

H 2 O 2 , however, wh<strong>en</strong> <strong>de</strong>creasing conc<strong>en</strong>trations of<br />

peroxi<strong>de</strong> were used, a higher <strong>de</strong>gree of resistance to<br />

peroxi<strong>de</strong> was observed in the virul<strong>en</strong>t strain compared<br />

with the non-virul<strong>en</strong>t strain (Fig. 1).<br />

(a)<br />

Perc<strong>en</strong>tage of survival<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

(b)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Perc<strong>en</strong>tage of survival<br />

0 0.05 0.1 0.5 1 10<br />

Peroxi<strong>de</strong> conc<strong>en</strong>tration (m M)<br />

Figure 1 Survival of Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida, strains Epoy (a)<br />

and Lg41/01 (b) to exog<strong>en</strong>ous peroxi<strong>de</strong>.<br />

( )Stationary phase cultures; ( ) cultures<br />

treated at the mid-expon<strong>en</strong>tial phase with<br />

20 lm peroxi<strong>de</strong> followed by 2 mm peroxi<strong>de</strong><br />

in the early stationary phase; ( ) cells grown<br />

in TSBS with 100 lm 2,2-dypiridyl; ( )<br />

cells grown in TSBS with 100 lm ferric<br />

chlori<strong>de</strong>.<br />

Ó 2003<br />

B<strong>la</strong>ckwell Publishing Ltd<br />

306


Journal of Fish Diseases 2003, 26, 305–308<br />

PDíaz-Rosales et al. Resistance of Photobacterium damse<strong>la</strong>e to hydrog<strong>en</strong> peroxi<strong>de</strong><br />

A significant (P < 0.05) increase in the survival<br />

rates of the non-virul<strong>en</strong>t strain was observed wh<strong>en</strong><br />

cultures were pulsed with hydrog<strong>en</strong> peroxi<strong>de</strong><br />

compared with cells cultured until the stationary<br />

phase. In contrast, this increase has not be<strong>en</strong><br />

observed for the virul<strong>en</strong>t strain, which always<br />

showed higher survival regardless of the growth<br />

phase or the pulse with hydrog<strong>en</strong> peroxi<strong>de</strong>.<br />

Peroxi<strong>de</strong> induction of cata<strong><strong>la</strong>s</strong>e and increased cell<br />

survival have be<strong>en</strong> reported for several bacterial<br />

4 pathog<strong>en</strong>s (Loew<strong>en</strong>, Swita<strong>la</strong> & Triggs-Raine 1985;<br />

Barnes et al. 1999b; Vattanaviboon & Mongkolsuk<br />

2001). Results obtained in this study suggest that<br />

peroxi<strong>de</strong>-<strong>de</strong>composing <strong>en</strong>zymes induced in the<br />

strain Epoy only by peroxi<strong>de</strong> treatm<strong>en</strong>t could<br />

protect these cells from oxidation, whilst <strong>de</strong>creasing<br />

survival rates observed in cells grown in other<br />

conditions could be attributable to lower levels of<br />

cata<strong><strong>la</strong>s</strong>e and peroxidase activities. In contrast, the<br />

high survival rates observed in the virul<strong>en</strong>t strain in<br />

stationary phase cultures, and in cells cultured in<br />

the pres<strong>en</strong>ce of iron or pulsed with hydrog<strong>en</strong><br />

peroxi<strong>de</strong> suggest the pres<strong>en</strong>ce of higher levels of<br />

cata<strong><strong>la</strong>s</strong>e activity in the cells grown un<strong>de</strong>r these<br />

conditions, although a possible re<strong>la</strong>tionship with<br />

virul<strong>en</strong>ce remains to be <strong>de</strong>monstrated. Furthermore,<br />

the pres<strong>en</strong>ce of a capsule in the virul<strong>en</strong>t strain<br />

may have an important role in the protection of<br />

P. damse<strong>la</strong>e subsp. piscicida cells against peroxi<strong>de</strong>.<br />

This capsule would partially contribute to<br />

the increased survival of the virul<strong>en</strong>t strain compared<br />

with strain Epoy, a non-capsu<strong>la</strong>ted strain<br />

(Magariños et al. 1996).<br />

Wh<strong>en</strong> bacteria were cultured un<strong>de</strong>r iron limited<br />

conditions, a significant <strong>de</strong>crease (P < 0.05) in<br />

survival was observed for both strains compared<br />

with cells grown un<strong>de</strong>r iron replete conditions or<br />

pulsed with peroxi<strong>de</strong>. The <strong>de</strong>crease in bacterial<br />

survival in cultures grown un<strong>de</strong>r iron limited<br />

conditions suggests the pres<strong>en</strong>ce of an ironcofactored<br />

cata<strong><strong>la</strong>s</strong>e in P. damse<strong>la</strong>e subsp. piscicida.<br />

In this way, the ability to obtain iron from the<br />

host would <strong>de</strong>termine the ability to cope with the<br />

radicals g<strong>en</strong>erated during the respiratory burst. It<br />

should also be noted that <strong>de</strong>composition of<br />

superoxi<strong>de</strong> anions primarily g<strong>en</strong>erated during the<br />

phagocytic respiratory burst <strong>de</strong>p<strong>en</strong>ds on the activity<br />

of a ferric superoxi<strong>de</strong> dismutase in P. damse<strong>la</strong>e<br />

subsp. piscicida (Barnes et al. 1999a). Additional<br />

studies to <strong>de</strong>monstrate the pres<strong>en</strong>ce of iron as a<br />

cofactor in the cata<strong><strong>la</strong>s</strong>e, and the s<strong>en</strong>sitivity of<br />

P. damse<strong>la</strong>e subsp. piscicida to the radicals<br />

g<strong>en</strong>erated during the macrophage respiratory burst,<br />

are in progress.<br />

Refer<strong>en</strong>ces<br />

Barnes A.C., Balebona M.C., Horne M.T. & Ellis A.E. (1999a)<br />

Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e in Photobacterium damse<strong>la</strong>e<br />

subsp. piscicida and their roles in resistance to reactive oxyg<strong>en</strong><br />

species. Microbiology 145, 483–494.<br />

Barnes A.C., Bow<strong>de</strong>n T.J., Horne M.T. & Ellis A.E. (1999b)<br />

Peroxi<strong>de</strong>-inducible cata<strong><strong>la</strong>s</strong>e in Aeromonas salmonicida subsp.<br />

salmonicida protects against exog<strong>en</strong>ous hydrog<strong>en</strong> peroxi<strong>de</strong> and<br />

killing by activated rainbow trout, Oncorhynchus mykiss, L.,<br />

macrophages. Microbial Pathog<strong>en</strong>esis 26, 149–158.<br />

Franzon V.L., Aron<strong>de</strong>l I. & Sansonetti P.I. (1990) Contribution<br />

of superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e activities to<br />

Shigel<strong>la</strong> flexneri pathog<strong>en</strong>esis. Infection and Immunity 58,<br />

529–535.<br />

Lefebre M.D. & Valvano M.A. (2001) In vitro resistance of<br />

Burkhol<strong>de</strong>ria cepacia complex iso<strong>la</strong>tes to reactive oxyg<strong>en</strong><br />

species in re<strong>la</strong>tion to cata<strong><strong>la</strong>s</strong>e and superoxi<strong>de</strong> dismutase<br />

production. Microbiology 147, 97–109.<br />

Loew<strong>en</strong> P.C. (1997) Bacterial cata<strong><strong>la</strong>s</strong>es. In: Oxidative Stress and<br />

the Molecu<strong>la</strong>r Biology of Antioxidant Def<strong>en</strong>ses (ed. by J.G.<br />

Scandalios ), pp. 273–308. Cold Spring Harbor Press,<br />

5 Woodbury, NY, USA.<br />

Loew<strong>en</strong> P.C., Swita<strong>la</strong> J. & Triggs-Raine B.L. (1985) Cata<strong><strong>la</strong>s</strong>es<br />

HPI and HPII in Escherichia coli are induced in<strong>de</strong>p<strong>en</strong><strong>de</strong>ntly.<br />

Archives in Biochemistry and Biophysics 243, 144–149.<br />

López-Dóriga M.V., Barnes A.C., dos Santos N.M.S. & Ellis<br />

A.E. (2000) Invasion of fish epithelial cells by Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida : evi<strong>de</strong>nce for receptor specificity, and<br />

effect of capsule and serum. Microbiology 146, 21–30.<br />

Magariños B., Santos Y., Romal<strong>de</strong> J.L., Rivas C., Barja J.L. &<br />

Toranzo A.E. (1992) Pathog<strong>en</strong>ic activities of live cells and<br />

extracellu<strong>la</strong>r products of the fish pathog<strong>en</strong> Pasteurel<strong>la</strong> piscicida.<br />

Journal of G<strong>en</strong>eral Microbiology 138, 2491–2498.<br />

Magariños B., Romal<strong>de</strong> J.L., Lemos M.L., Barja J.L. & Toranzo<br />

A.E. (1994) Iron uptake by Pasteurel<strong>la</strong> piscicida and its role in<br />

pathog<strong>en</strong>icity for fish. Applied and Environm<strong>en</strong>tal Microbiology<br />

60, 2990–2998.<br />

Magariños B., Bonet R., Romal<strong>de</strong> J.L., Martínez M.J.,<br />

Congregado F. & Toranzo A.E. (1996) Influ<strong>en</strong>ce of the<br />

capsu<strong>la</strong>r <strong>la</strong>yer on the virul<strong>en</strong>ce of Pasteurel<strong>la</strong> piscicida for fish.<br />

Microbial Pathog<strong>en</strong>esis 21, 289–297.<br />

Noya M., Magariños B., Toranzo A.E. & Lamas J. (1995)<br />

Sequ<strong>en</strong>tial pathology of experim<strong>en</strong>tal pasteurellosis in gilthead<br />

sea bream, Sparus aurata. A light-and electron microscopic<br />

study. Diseases of Aquatic Organisms 21, 177–186.<br />

Skarmeta A.M., Bandín I., Santos Y. & Toranzo A.E. (1995)<br />

In vitro killing of Pasteurel<strong>la</strong> piscicida by fish macrophages.<br />

Diseases of Aquatic Organisms 23, 51–57.<br />

Stortz G., Tartaglia L.A. & Ames B.N. (1990) Transcriptional<br />

regu<strong>la</strong>tion of oxidative stress inducible g<strong>en</strong>es: direct activation<br />

by oxidation. Sci<strong>en</strong>ce 248, 189–194.<br />

Uzzau S., Bossi L. & Figueroa-Bossi N. (2002) Differ<strong>en</strong>tial<br />

accumu<strong>la</strong>tion of Salmonel<strong>la</strong> (Cu, Zn) superoxi<strong>de</strong> dismutases<br />

Ó 2003<br />

B<strong>la</strong>ckwell Publishing Ltd<br />

307


Journal of Fish Diseases 2003, 26, 305–308<br />

PDíaz-Rosales et al. Resistance of Photobacterium damse<strong>la</strong>e to hydrog<strong>en</strong> peroxi<strong>de</strong><br />

SodCI and SodCII in intracellu<strong>la</strong>r bacteria: corre<strong>la</strong>tion with<br />

their re<strong>la</strong>tive contribution to pathog<strong>en</strong>icity. Molecu<strong>la</strong>r Microbiology<br />

46, 147–156.<br />

Vattanaviboon P. & Mongkolsuk S. (2001) Unusual adaptive,<br />

cross protection responses and growth phase resistance against<br />

peroxi<strong>de</strong> killing in a bacterial shrimp pathog<strong>en</strong>, Vibrio harveyi.<br />

FEMS Microbiology Letters 200, 111–116.<br />

Received: 18 November 2002<br />

Accepted: 23 January 2003<br />

Ó 2003<br />

B<strong>la</strong>ckwell Publishing Ltd<br />

308


A RTÍCULO 1.2.<br />

A RTICLE 1.2.


Journal of Fish Diseases 2006, 29, 355–364<br />

Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e activities<br />

in Photobacterium damse<strong>la</strong>e ssp. piscicida<br />

P Díaz-Rosales, M Chabrillón, S Arijo, E Martinez-Manzanares, M A MoriÇigo<br />

and M C Balebona<br />

Departm<strong>en</strong>t of Microbiology, Faculty of Sci<strong>en</strong>ces, University of Má<strong>la</strong>ga, Ma<strong>la</strong>ga, Spain<br />

Abstract<br />

The ability of a set of Photobacterium damse<strong>la</strong>e ssp.<br />

piscicida strains iso<strong>la</strong>ted from differ<strong>en</strong>t fish species to<br />

produce differ<strong>en</strong>t superoxi<strong>de</strong> dismutase (SOD) and<br />

cata<strong><strong>la</strong>s</strong>e <strong>en</strong>zymes was <strong>de</strong>termined. Unlike other bacterial<br />

pathog<strong>en</strong>s, P. damse<strong>la</strong>e ssp. piscicida is not able<br />

to produce differ<strong>en</strong>t isoforms of SOD or cata<strong><strong>la</strong>s</strong>e<br />

containing differ<strong>en</strong>t metal cofactors wh<strong>en</strong> cultured<br />

un<strong>de</strong>r oxidative stress induced by hydrog<strong>en</strong> peroxi<strong>de</strong><br />

or methyl violog<strong>en</strong>, or un<strong>de</strong>r iron <strong>de</strong>pleted conditions.<br />

However, iron cont<strong>en</strong>t of the growth medium<br />

influ<strong>en</strong>ced the levels of SOD and cata<strong><strong>la</strong>s</strong>e activity in<br />

cells, these levels <strong>de</strong>creasing with iron avai<strong>la</strong>bility of<br />

the medium. Comparison of virul<strong>en</strong>t and non-virul<strong>en</strong>t<br />

strains of P. damse<strong>la</strong>e ssp. piscicida showed simi<strong>la</strong>r<br />

cont<strong>en</strong>ts of SOD, but higher levels of cata<strong><strong>la</strong>s</strong>e<br />

were <strong>de</strong>tected in cells of the virul<strong>en</strong>t strain. Incubation<br />

of bacteria with sole, Solea s<strong>en</strong>egal<strong>en</strong>sis (Kaup),<br />

phagocytes has shown that survival rates range from<br />

19% to 62%, these rates being higher for the virul<strong>en</strong>t<br />

strain. The increased levels of cata<strong><strong>la</strong>s</strong>e activity<br />

<strong>de</strong>tected in the virul<strong>en</strong>t strain indicates a possible role<br />

for this <strong>en</strong>zyme in bacterial survival.<br />

Keywords: cata<strong><strong>la</strong>s</strong>e, phagocyte, Photobacterium<br />

damse<strong>la</strong>e subsp, Solea s<strong>en</strong>egal<strong>en</strong>sis, superoxi<strong>de</strong><br />

dismutase, virul<strong>en</strong>ce.<br />

Introduction<br />

Photobacterium damse<strong>la</strong>e ssp. piscicida is a pathog<strong>en</strong><br />

responsible for important losses in fish<br />

Correspon<strong>de</strong>nce Prof. M C Balebona, Departm<strong>en</strong>t of<br />

Microbiology, Faculty of Sci<strong>en</strong>ces, University of Ma<strong>la</strong>ga, 29071<br />

Ma<strong>la</strong>ga, Spain<br />

(e-mail: balebona@uma.es)<br />

aquaculture worldwi<strong>de</strong>. The importance of extracellu<strong>la</strong>r<br />

products, the pres<strong>en</strong>ce of iron uptake<br />

mechanisms and the capsu<strong>la</strong>r material as virul<strong>en</strong>ce<br />

factors in P. damse<strong>la</strong>e ssp. piscicida are well<br />

docum<strong>en</strong>ted (Magariños, Romal<strong>de</strong>, Bandín, Fouz<br />

& Toranzo 1992; Magariños, Pazos, Santos,<br />

Romal<strong>de</strong> & Toranzo 1994; Magariños, Romal<strong>de</strong>,<br />

Lemos, Barja & Toranzo 1995; Arijo, Borrego,<br />

Zorril<strong>la</strong>, Balebona & Moriñigo 1998). However,<br />

information concerning mechanisms involved in<br />

the invasion and survival insi<strong>de</strong> the host is scarce<br />

and results regarding interaction of P. damse<strong>la</strong>e<br />

ssp. piscicida with phagocytes have be<strong>en</strong> contradictory.<br />

While some authors have reported the<br />

pres<strong>en</strong>ce of intact bacteria insi<strong>de</strong> fish cells,<br />

suggesting the ability of P. damse<strong>la</strong>e to survive as<br />

an intracellu<strong>la</strong>r pathog<strong>en</strong> (Kubota, Kimura &<br />

Egusa 1970; Nelson, Kawahara, Kawai & Kusuda<br />

1981; Kusuda & Sa<strong>la</strong>ti 1993; Noya, Magariños &<br />

Lamas 1995a; Noya, Magariños, Toranzo &<br />

Lamas 1995b), others have observed that this<br />

pathog<strong>en</strong> is highly susceptible to oxidative radicals<br />

g<strong>en</strong>erated during the macrophage respiratory burst<br />

(Skarmeta, Bandín, Santos & Toranzo 1995; Arijo<br />

et al. 1998).<br />

The reactive oxyg<strong>en</strong> species (ROS), such as<br />

hydrog<strong>en</strong> peroxi<strong>de</strong> (H 2 O 2 ) and superoxi<strong>de</strong> anion<br />

(O 2 ), are produced by phagocytes in response to<br />

microbial infection. ROS constitute an important<br />

compon<strong>en</strong>t of the innate active <strong>de</strong>f<strong>en</strong>ce response<br />

against invading microorganisms by fish phagocytic<br />

cells. Therefore, bacterial pathog<strong>en</strong>s must<br />

overcome the toxic effects of ROS to establish<br />

infections. Microorganisms have evolved systems<br />

to protect themselves from these highly toxic<br />

radicals. One of these protective pathways involves<br />

the production of <strong>de</strong>toxifying <strong>en</strong>zymes such as<br />

Ó 2006<br />

B<strong>la</strong>ckwell Publishing Ltd<br />

355


Journal of Fish Diseases 2006, 29, 355–364<br />

PDíaz-Rosales et al. Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e in P. damse<strong>la</strong>e ssp. piscicida<br />

superoxi<strong>de</strong> dismutases (SODs) and cata<strong><strong>la</strong>s</strong>es. Production<br />

of SOD and cata<strong><strong>la</strong>s</strong>e <strong>en</strong>zymes, which<br />

<strong>de</strong>compose superoxi<strong>de</strong> and peroxi<strong>de</strong> radicals,<br />

respectively, have be<strong>en</strong> reported to contribute to<br />

the virul<strong>en</strong>ce of a great number of pathog<strong>en</strong>s<br />

(Franzon, Aron<strong>de</strong>l & Sansonetti 1990; Lynch &<br />

Kuramitsu 2000; Lefebre & Valvano 2001; Uzzau,<br />

Bossi & Figueroa-Bossi 2002).<br />

Superoxi<strong>de</strong> dismutases are a family of metallo<strong>en</strong>zymes<br />

including four types <strong>de</strong>p<strong>en</strong>ding on the<br />

metal cofactor, copper-zinc (Cu/Zn-SOD), manganese<br />

(Mn-SOD), iron (Fe-SOD) and nickel<br />

(Ni-SOD) (Lynch & Kuramitsu 2000). Three<br />

types of cata<strong><strong>la</strong>s</strong>e have be<strong>en</strong> <strong>de</strong>scribed: monofunctional<br />

cata<strong><strong>la</strong>s</strong>es, bifunctional cata<strong><strong>la</strong>s</strong>es or cata<strong><strong>la</strong>s</strong>e/<br />

peroxidase and pseudocata<strong><strong>la</strong>s</strong>es or non-haeme<br />

cata<strong><strong>la</strong>s</strong>es, with manganese as a metal cofactor<br />

(Loew<strong>en</strong> 1997).<br />

Microorganisms produce differ<strong>en</strong>t SOD and<br />

cata<strong><strong>la</strong>s</strong>e isozymes inducible un<strong>de</strong>r certain culture<br />

conditions such as high oxyg<strong>en</strong> t<strong>en</strong>sion, low levels<br />

of iron or stationary growth phase (Crockford,<br />

Davis & Williams 1995; Schnell & Steinman 1995;<br />

Barnes, Horne & Ellis 1996; Po<strong>la</strong>ck, Dacheux,<br />

Delic-Attree, Toussaint & Vignais 1996; St John &<br />

Steinman 1996; Lynch & Kuramitsu 2000; Vattanaviboon<br />

& Mongkolsuk 2001). However, information<br />

on the SOD and cata<strong><strong>la</strong>s</strong>e activities of<br />

P. damse<strong>la</strong>e ssp. piscicida is scarce.<br />

The aim of this work was to <strong>de</strong>termine whether<br />

P. damse<strong>la</strong>e ssp. piscicida can express differ<strong>en</strong>t SOD<br />

and cata<strong><strong>la</strong>s</strong>e activities wh<strong>en</strong> cultured un<strong>de</strong>r differ<strong>en</strong>t<br />

conditions, and whether these <strong>en</strong>zymatic activities<br />

may protect the bacterium in vitro from oxyg<strong>en</strong><br />

radicals g<strong>en</strong>erated during the macrophage respiratory<br />

burst.<br />

Materials and methods<br />

Bacteria<br />

Strains of P. damse<strong>la</strong>e ssp. piscicida used in this<br />

study are listed in Table 1. Strains B180, D 26/98 ,<br />

Pp8H, R45, R46, B51 and Lg h41/01 were iso<strong>la</strong>ted in<br />

our <strong>la</strong>boratory (Departm<strong>en</strong>t of Microbiology, Faculty<br />

of Sci<strong>en</strong>ces, University of Má<strong>la</strong>ga, Spain).<br />

Strains MT 1415, MT 1375, MT 1376 and MT<br />

1379 were kindly provi<strong>de</strong>d by Dr A.C. Barnes<br />

(Marine Laboratory, Aber<strong>de</strong><strong>en</strong>, UK); strain DI-21S<br />

by Dr A.E. Toranzo (Departm<strong>en</strong>t of Microbiology<br />

and Parasitology, Faculty of Chemistry, University<br />

of Santiago <strong>de</strong> Composte<strong>la</strong>, Spain) and EPOY-<br />

8803-II by Dr K. Muroga (Faculty of Applied<br />

Biological Sci<strong>en</strong>ces, Hiroshima University, Hiroshima,<br />

Japan). Strains 17911 and 29690 were<br />

obtained from the American Type Culture Collection<br />

(ATCC).<br />

Virul<strong>en</strong>ce assays were carried out with two<br />

selected strains: Lg h41/01 and EPOY-8803-II. Assays<br />

to <strong>de</strong>termine the lethal dose 50% (LD 50 ) for sole,<br />

Solea s<strong>en</strong>egal<strong>en</strong>sis (Kaup), were carried out following<br />

the methodology <strong>de</strong>scribed by Santos (1991).<br />

Groups of five fish (10–15 g body weight) maintained<br />

in tanks at 24 °C, were intraperitoneally<br />

inocu<strong>la</strong>ted with 0.1 mL of serial bacterial dilutions<br />

containing 10 3 –10 8 cfu. The same number of fish<br />

was inocu<strong>la</strong>ted with phosphate-buffered saline<br />

(PBS) and used as a control. Inocu<strong>la</strong>ted fish were<br />

observed daily for 14 days, and all mortalities were<br />

recor<strong>de</strong>d. Mortalities were consi<strong>de</strong>red to be due to<br />

the inocu<strong>la</strong>tion wh<strong>en</strong> the bacterial strain was<br />

iso<strong>la</strong>ted in pure culture from internal organs of<br />

<strong>de</strong>ad fish. Lethal dose 50% (LD 50 ) repres<strong>en</strong>ts the<br />

Strain Host Source<br />

17911 Roccus americanus ATCC<br />

29690 Serio<strong>la</strong> quinqueradiata ATCC<br />

B51 Dic<strong>en</strong>trarchus <strong>la</strong>brax UMA, Spain<br />

B180 Sparus aurata UMA, Spain<br />

D 26/98 S. aurata UMA, Spain<br />

Pp8H S. aurata UMA, Spain<br />

R45 S. aurata UMA, Spain<br />

R46 S. aurata UMA, Spain<br />

DI-21S S. aurata USC, Spain<br />

EPOY-8803-II Epinephelus akaara Japan<br />

Lg h41/01 Solea s<strong>en</strong>egal<strong>en</strong>sis UMA, Spain<br />

MT1415 D. <strong>la</strong>brax Marine Laboratory, Aber<strong>de</strong><strong>en</strong>, UK<br />

MT1375 D. <strong>la</strong>brax Marine Laboratory, Aber<strong>de</strong><strong>en</strong>, UK<br />

MT1376 S. aurata Marine Laboratory, Aber<strong>de</strong><strong>en</strong>, UK<br />

MT1379 S. aurata Marine Laboratory, Aber<strong>de</strong><strong>en</strong>, UK<br />

Table 1 Photobacterium damse<strong>la</strong>e subsp.<br />

piscicida strains used in this study<br />

ATCC, American Type Culture Collection; UMA, University of Má<strong>la</strong>ga; USC, University of<br />

Santiago <strong>de</strong> Composte<strong>la</strong>.<br />

Ó 2006<br />

B<strong>la</strong>ckwell Publishing Ltd<br />

356


Journal of Fish Diseases 2006, 29, 355–364<br />

PDíaz-Rosales et al. Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e in P. damse<strong>la</strong>e ssp. piscicida<br />

number of bacteria nee<strong>de</strong>d to kill 50% of the<br />

inocu<strong>la</strong>ted fish (Reed & Mü<strong>en</strong>ch 1938). Strain<br />

Lg h41/01 with an LD 50 ¼ 2.8 · 10 4 cfu g )1 fish<br />

was consi<strong>de</strong>red virul<strong>en</strong>t for sole and strain EPOY-<br />

8803-II with LD 50 > 7.7 · 10 6 cfu g )1 fish was<br />

consi<strong>de</strong>red non-virul<strong>en</strong>t.<br />

Bacterial growth conditions<br />

Bacteria were stored at )80 °C in tryptic soy broth<br />

(TSB; Oxoid Ltd., Basingstoke, UK) containing<br />

2% NaCl and 20% glycerol. Bacteria were cultured<br />

on tryptic soy agar (TSA; Oxoid) containing 2%<br />

NaCl and incubated at 22 °C for 48 h. One colony<br />

was used to inocu<strong>la</strong>te 5 mL TSBs and incubated for<br />

18 h at 22 °C with shaking. Aliquots (25 lL) of<br />

these cultures were used to inocu<strong>la</strong>te 250 mL TSBs<br />

which was incubated at 22 °C with shaking. The<br />

incubation time varied <strong>de</strong>p<strong>en</strong>ding on the culture<br />

condition and strain to be assayed.<br />

Differ<strong>en</strong>t growth conditions were assayed to<br />

<strong>de</strong>termine the pot<strong>en</strong>tial induction of SOD and<br />

cata<strong><strong>la</strong>s</strong>e activities. Thus, 250-mL culture f<strong><strong>la</strong>s</strong>ks were<br />

supplem<strong>en</strong>ted with an iron che<strong>la</strong>nt, dipyridyl<br />

(100 lm), FeCl 3 Æ6H 2 O (100 lm) or MnSO 4 Æ2H 2 O<br />

(250 lm) to <strong>de</strong>termine the influ<strong>en</strong>ce of iron and<br />

manganese avai<strong>la</strong>bility on <strong>en</strong>zymatic activity. In<br />

or<strong>de</strong>r to induce oxidative stress, methyl violog<strong>en</strong><br />

(0.2 mm), which g<strong>en</strong>erates superoxi<strong>de</strong> radicals, was<br />

ad<strong>de</strong>d to mid-expon<strong>en</strong>tial cultures, which were th<strong>en</strong><br />

incubated for 8 h before c<strong>en</strong>trifugation. The<br />

pot<strong>en</strong>tial induction of <strong>en</strong>zymatic activities by<br />

hydrog<strong>en</strong> peroxi<strong>de</strong> was tested in cultures after the<br />

addition of two pulses of hydrog<strong>en</strong> peroxi<strong>de</strong>, one of<br />

20 lm in the mid-expon<strong>en</strong>tial phase, and another of<br />

2mm in the early stationary phase. Cells were<br />

harvested after 1-h incubation. The influ<strong>en</strong>ce of the<br />

growth phase was investigated with bacteria harvested<br />

from mid-expon<strong>en</strong>tial (OD 600 ¼ 0.4–0.6) and<br />

early stationary (OD 600 ¼ 1–1.2) phase cultures.<br />

Preparation of cru<strong>de</strong> extracts<br />

Bacteria were harvested from cultures grown as<br />

<strong>de</strong>scribed above by c<strong>en</strong>trifugation at 2000 g for<br />

20 min at 4 °C and washing twice in 25 mm<br />

potassium phosphate buffer containing 1 mm disodium<br />

ethyl<strong>en</strong>e diamine tetraacetic acid (EDTA;<br />

Sigma-Aldrich, St. Louis, MO, USA), pH 7.2 and<br />

0.5 mm ph<strong>en</strong>yl methylsulphonyl fluori<strong>de</strong> (Sigma)<br />

followed by re-susp<strong>en</strong>sion in 1 mL of the same<br />

buffer. Susp<strong>en</strong>sions were sonicated on ice for 120 s<br />

(four pulses of 30 s with 15 s cooling betwe<strong>en</strong><br />

bursts). Lysates were c<strong>la</strong>rified twice by c<strong>en</strong>trifugation<br />

at 10 000 g for 20 min at 4 °C. Supernatants<br />

were assayed for the <strong>de</strong>tection of SOD and cata<strong><strong>la</strong>s</strong>e<br />

and quantification of <strong>en</strong>zymatic activity on acry<strong>la</strong>mi<strong>de</strong><br />

gels. Total protein conc<strong>en</strong>tration was <strong>de</strong>termined<br />

by the method of Bradford (1976) using<br />

bovine serum albumin as standard.<br />

Polyacry<strong>la</strong>mi<strong>de</strong> gel electrophoresis<br />

Electrophoresis was performed in non-<strong>de</strong>naturing<br />

discontinuous polyacry<strong>la</strong>mi<strong>de</strong> mini-gels using the<br />

Bio-Rad Mini Protean II System (Bio-Rad Laboratories,<br />

Richmond, CA, USA) with a 10% acry<strong>la</strong>mi<strong>de</strong>/bis<br />

separating gel (1.5 m Tris–HCl, pH 8.8)<br />

and a 4% acry<strong>la</strong>mi<strong>de</strong>/bis stacking gel (0.5 m Tris–<br />

HCl, pH 8.3). The extracts in the sample buffer<br />

were applied to the gel at a conc<strong>en</strong>tration of<br />

20–24 lg protein per <strong>la</strong>ne. Gels were th<strong>en</strong> stained<br />

for SOD or cata<strong><strong>la</strong>s</strong>e and peroxidase activities.<br />

Detection and quantification of SOD activity<br />

Superoxi<strong>de</strong> dismutase activity was visualized on gels<br />

by nitroblue tetrazolium (NBT; Sigma) negative<br />

staining (Beauchamp & Fridovich 1971). Briefly,<br />

gels were washed in distilled water, soaked in a<br />

solution of 2.45 mm NBT for 20 min, followed by<br />

10-min incubation in darkness in a solution<br />

containing 50 mm potassium phosphate buffer<br />

(pH 7.2), 0.028 mm ribof<strong>la</strong>vin (Sigma) and<br />

28 mm tetramethylethyl<strong>en</strong>ediamine (TEMED;<br />

Sigma). Gels were illuminated on a light box to<br />

<strong>de</strong>velop a dark background with achromatic bands<br />

corresponding to SOD activity, due to inhibition of<br />

the photochemical reduction of NBT to formazan<br />

blue.<br />

The method employed to quantify SOD activity<br />

is based on the ability of SOD to inhibit the<br />

reduction of NBT by superoxi<strong>de</strong> (Winterbourn,<br />

Hawkins, Brian & Correll 1975; Worthington<br />

Enzyme Manual 1993). One unit is <strong>de</strong>fined as the<br />

amount of <strong>en</strong>zyme causing half the maximum<br />

inhibition of NBT reduction. Differ<strong>en</strong>t volumes of<br />

extracts were ad<strong>de</strong>d to cuvettes containing 0.2 mL<br />

of a solution of 0.1 m EDTA, 0.3 mm sodium<br />

cyani<strong>de</strong> (NaCN; Sigma) and 0.1 mL of 1.5 mm<br />

NBT. Th<strong>en</strong>, 0.05 mL of 0.12 mm ribof<strong>la</strong>vin was<br />

ad<strong>de</strong>d at zero time and at timed intervals. All<br />

cuvettes were incubated in a light box for 12 min<br />

and absorbance at 560 nm was read at timed<br />

Ó 2006<br />

B<strong>la</strong>ckwell Publishing Ltd<br />

357


Journal of Fish Diseases 2006, 29, 355–364<br />

PDíaz-Rosales et al. Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e in P. damse<strong>la</strong>e ssp. piscicida<br />

intervals by a spectrophotometer (Hitachi U-2000:<br />

Hitachi, Tokyo, Japan). The amount of <strong>en</strong>zyme<br />

resulting in 50% of maximum inhibition of NBT<br />

reduction was <strong>de</strong>termined.<br />

Detection, characterization and quantification<br />

of cata<strong><strong>la</strong>s</strong>e activity<br />

Cata<strong><strong>la</strong>s</strong>e activity was visualized on non-<strong>de</strong>naturing<br />

acry<strong>la</strong>mi<strong>de</strong> gels following the methodology of<br />

Woodbury, Sp<strong>en</strong>cer & Stahmann (1971). After<br />

electrophoresis, gels were washed three times in<br />

distilled water for 20 min and soaked in a solution<br />

of 0.015% H 2 O 2 (30%) (Merck, Darmstadt,<br />

Germany). Th<strong>en</strong>, the activity was visualized by<br />

transferring the gels to a solution of 1% (w/v)<br />

ferric chlori<strong>de</strong> (Panreac Quimica, Barcelona,<br />

Spain) and 1% (w/v) potassium ferricyani<strong>de</strong><br />

(Sigma). Regions corresponding to cata<strong><strong>la</strong>s</strong>e activity<br />

were i<strong>de</strong>ntified as clear yellow bands on a dark<br />

gre<strong>en</strong> background.<br />

The metal cofactor of the cata<strong><strong>la</strong>s</strong>e produced by<br />

P. damse<strong>la</strong>e ssp. piscicida was <strong>de</strong>termined by<br />

<strong>en</strong>zymatic inhibition studies according to Barnes,<br />

Bow<strong>de</strong>n, Horne & Ellis (1999b). Lysates of<br />

P. damse<strong>la</strong>e ssp. piscicida strains were incubated<br />

for 1 h with either 100 and 50 mm potassium<br />

cyani<strong>de</strong> (KCN; Sigma), 1 and 0.5 mm mercuric<br />

chlori<strong>de</strong> (HgCl 2 ; Sigma), 25 and 12.5 mm sodium<br />

azi<strong>de</strong> (NaN 3 ; Sigma) or 50 mm phosphate buffer as<br />

control. Equal volumes of treated extracts were<br />

electrophoresed and gels stained for cata<strong><strong>la</strong>s</strong>e activity<br />

(Woodbury et al. 1971). Cata<strong><strong>la</strong>s</strong>es with manganese<br />

as metal cofactor are resistant against sodium azi<strong>de</strong><br />

and potassium cyani<strong>de</strong> and s<strong>en</strong>sitive to mercuric<br />

chlori<strong>de</strong> (Kono & Fridovich 1983; Allgood &<br />

Perry 1986; Barnes et al. 1999b). Control wells<br />

inocu<strong>la</strong>ted with extracts of Escherichia coli (ATCC<br />

13706) containing a ferric cata<strong><strong>la</strong>s</strong>e retained the<br />

activity after treatm<strong>en</strong>t with mercuric chlori<strong>de</strong> but<br />

not with sodium azi<strong>de</strong>.<br />

Cata<strong><strong>la</strong>s</strong>e activity was measured spectrophotometrically<br />

by monitoring the <strong>de</strong>crease in absorbance at<br />

240 nm due to <strong>de</strong>composition of hydrog<strong>en</strong> peroxi<strong>de</strong>.<br />

One unit of cata<strong><strong>la</strong>s</strong>e was <strong>de</strong>fined as the activity<br />

causing the hydrolysis of 1 lmol of hydrog<strong>en</strong><br />

peroxi<strong>de</strong> per minute (Aebi 1984). Briefly, bacterial<br />

extracts were diluted (1:100) in 50 mm potassium<br />

phosphate buffer, pH 7.0 and the absorbance of<br />

the sample containing 660 lL of lysate and<br />

340 lL of H 2 O 2 was measured against a b<strong>la</strong>nk<br />

with buffer. The <strong>de</strong>crease in absorbance at 240 nm<br />

(Hitachi U-2000) was monitored during a 10-min<br />

period.<br />

Bactericidal activity of sole phagocytes<br />

Mono<strong>la</strong>yers of sole phagocytes were prepared<br />

following the methodology of Secombes (1990).<br />

Briefly, the kidneys of 100–300 g sole were dissected<br />

and pressed through a 100 lm nylon mesh with<br />

L-15 medium (Gibco, Gaithersburg, MD, USA)<br />

containing 2% fetal calf serum (FCS; Sigma), 1%<br />

p<strong>en</strong>icillin/streptomycin (Sigma), 0.1% g<strong>en</strong>tamicin<br />

sulphate (50 mg mL )1 distilled water; Sigma) and<br />

10 U mL )1 sodium heparin. The resultant susp<strong>en</strong>sion<br />

was <strong>la</strong>yered onto a 30–51% (v/v) Percoll<br />

(Amersham Pharmacia, Piscataway, NJ, USA) <strong>de</strong>nsity<br />

gradi<strong>en</strong>t and the band of cells lying at the 30–<br />

51% interface was collected. The cell susp<strong>en</strong>sion<br />

was washed and adjusted to 10 7 cells mL )1 in L-15<br />

medium with antibiotics. The viability was <strong>de</strong>termined<br />

by the exclusion test with trypan blue<br />

(Sigma) (0.5% in PBS). A volume of 100 lL per<br />

well was ad<strong>de</strong>d to 96-well microtitre p<strong>la</strong>tes.<br />

Mono<strong>la</strong>yers were maintained at 22 °C overnight<br />

until bactericidal assays were performed.<br />

Bacterial culture conditions to <strong>de</strong>termine the<br />

ability to resist the bactericidal activity of phagocytes<br />

inclu<strong>de</strong>d growth until stationary phase, addition<br />

of two hydrog<strong>en</strong> peroxi<strong>de</strong> pulses and growth in<br />

replete or reduced iron medium as previously<br />

<strong>de</strong>scribed. The bacterial conc<strong>en</strong>tration was adjusted<br />

to 1 OD 600 , corresponding to 10 8 bacteria per mL.<br />

The methodology employed to test bacterial survival<br />

after contact with phagocytes was according to<br />

Secombes (1990).<br />

Phagocyte mono<strong>la</strong>yers were washed twice with<br />

L-15 and the cells were th<strong>en</strong> supplem<strong>en</strong>ted with<br />

100 lL L-15, 5% FCS per well. Bacterial susp<strong>en</strong>sions<br />

(20 lL) were ad<strong>de</strong>d to triplicate wells containing<br />

macrophages. The microtitre p<strong>la</strong>te was shak<strong>en</strong><br />

and c<strong>en</strong>trifuged at 150 g for 5 min to bring the<br />

bacteria into contact with cells and subsequ<strong>en</strong>tly<br />

incubated at 22 °C for 0 and 5 h. At the <strong>en</strong>d of the<br />

incubation period, the supernatants were removed<br />

and the killing stopped by lysing the phagocytes with<br />

50 lL of cold sterile distilled water. Subsequ<strong>en</strong>tly,<br />

100 lL of TSBs was ad<strong>de</strong>d to support the growth of<br />

the surviving bacteria for 18–20 h at 22 °C.<br />

The number of surviving bacteria was quantified<br />

colorimetrically following the methodology of Peck<br />

(1985) as modified by Graham, Jeffries &<br />

Secombes (1988). Briefly, 10 lL of 3 [4,5-di-<br />

Ó 2006<br />

B<strong>la</strong>ckwell Publishing Ltd<br />

358


Journal of Fish Diseases 2006, 29, 355–364<br />

PDíaz-Rosales et al. Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e in P. damse<strong>la</strong>e ssp. piscicida<br />

methylthiazoyl-2-yl] 2,5-diph<strong>en</strong>yltetrazolium bromi<strong>de</strong><br />

(MTT, Sigma) (5 mg mL )1 distilled water)<br />

was ad<strong>de</strong>d to the wells, p<strong>la</strong>tes were shak<strong>en</strong> and<br />

absorbance at 550 nm was read after 15-min<br />

incubation on a multiscan spectrophotometer<br />

(Microp<strong>la</strong>te Rea<strong>de</strong>r 2001; Whittaker Bioproducts<br />

Inc., Walkersville, MD, USA). The perc<strong>en</strong>tage of<br />

surviving bacteria was calcu<strong>la</strong>ted by dividing the<br />

absorbance obtained from the wells incubated with<br />

bacteria for 5 h by the values obtained from wells<br />

incubated with bacteria for 0 h.<br />

Statistical analysis<br />

Quantification of <strong>en</strong>zymatic activities was carried<br />

out in three in<strong>de</strong>p<strong>en</strong><strong>de</strong>nt experim<strong>en</strong>ts. Fish experim<strong>en</strong>ts<br />

were performed in triplicate, data corresponding<br />

to measurem<strong>en</strong>ts were carried out with<br />

phagocytes from three differ<strong>en</strong>t fish and three<br />

replicate wells for each fish. An anova test was<br />

performed to compare the results obtained.<br />

P < 0.05 was consi<strong>de</strong>red significant.<br />

Results<br />

(a)<br />

1 2 3 4 5 6 7 8 9 10<br />

(b)<br />

1 2 3 4 5 6 7 8 9 10<br />

Figure 1 Detection of superoxi<strong>de</strong> dismutase (a) and cata<strong><strong>la</strong>s</strong>e<br />

activity (b) in extracts of differ<strong>en</strong>t strains of Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida grown until stationary phase. Lane 1:<br />

ATCC 17911; 2: B51; 3: B180; 4: DI-21S; 5: D 26/98 ; 6: Pp8H;<br />

7: R45; 8: Lg h41/01 ; 9: MT 1415 and 10: MT 1379.<br />

All the extracts of the strains of P. damse<strong>la</strong>e ssp.<br />

piscicida inclu<strong>de</strong>d in this study produced simi<strong>la</strong>r<br />

SOD and cata<strong><strong>la</strong>s</strong>e activity bands (Fig. 1). Thus, a<br />

single band with i<strong>de</strong>ntical mobility in native polyacry<strong>la</strong>mi<strong>de</strong><br />

gel electrophoresis gels was observed for<br />

all iso<strong>la</strong>tes and culture conditions assayed (Fig. 2).<br />

Simi<strong>la</strong>r protein conc<strong>en</strong>trations were loa<strong>de</strong>d in the<br />

gel <strong>la</strong>nes. However, differ<strong>en</strong>ces in the int<strong>en</strong>sity of<br />

the SOD and cata<strong><strong>la</strong>s</strong>e bands were observed. Thus,<br />

SOD and cata<strong><strong>la</strong>s</strong>e activity bands showed lower<br />

int<strong>en</strong>sity in the extracts from cultures carried out<br />

un<strong>de</strong>r iron-limiting conditions, whilst increased<br />

int<strong>en</strong>sity of SOD bands was observed in extracts<br />

from cultures un<strong>de</strong>r iron-supplem<strong>en</strong>ted conditions<br />

and in the pres<strong>en</strong>ce of the cytop<strong><strong>la</strong>s</strong>mic superoxi<strong>de</strong><br />

radical g<strong>en</strong>erator, methyl violog<strong>en</strong> (Fig. 2).<br />

Two iso<strong>la</strong>tes with differ<strong>en</strong>t <strong>de</strong>grees of virul<strong>en</strong>ce<br />

for sole were selected for further characterization:<br />

one virul<strong>en</strong>t, Lg h41/01 (LD 50 ¼ 2.8 · 10 4 cfu g )1<br />

fish) and one non-virul<strong>en</strong>t, EPOY-8803-II<br />

(LD 50 > 7 · 10 6 cfu g )1 fish).<br />

Cultures carried out until the early stationary<br />

phase of the non-virul<strong>en</strong>t iso<strong>la</strong>te contained significantly<br />

(P < 0.05) lower amounts of SOD than<br />

cultures of the virul<strong>en</strong>t strain. However, wh<strong>en</strong> iron<br />

was ad<strong>de</strong>d to the growth broth, EPOY-8803-II<br />

contained significantly higher amounts of SOD<br />

(Fig. 3).<br />

There was no significant hydrog<strong>en</strong> peroxi<strong>de</strong><br />

induction of SOD in any of the strains, and in<strong>de</strong>ed<br />

a <strong>de</strong>crease in activity in strain Lg h41/01 was <strong>de</strong>tected<br />

(Fig. 3). In contrast, cells of both strains cultured<br />

un<strong>de</strong>r iron limiting or replete conditions contained<br />

significantly differ<strong>en</strong>t amounts of SOD activity. In<br />

all the cases, growth un<strong>de</strong>r iron-limiting conditions<br />

resulted in a significant <strong>de</strong>crease in SOD activity<br />

compared with iron replete conditions, this <strong>de</strong>crease<br />

being more important in the non-virul<strong>en</strong>t strain<br />

than in the virul<strong>en</strong>t strain.<br />

Unlike SOD, cata<strong><strong>la</strong>s</strong>e activity in cultures of the<br />

non-virul<strong>en</strong>t strain was lower than in the virul<strong>en</strong>t<br />

strain (Fig. 4). Moreover, whilst no significant<br />

differ<strong>en</strong>ces were observed in cata<strong><strong>la</strong>s</strong>e cont<strong>en</strong>ts of<br />

Lg h41/01 cultures grown until stationary phase and<br />

those pulsed with hydrog<strong>en</strong> peroxi<strong>de</strong>, strain EPOY-<br />

8803-II showed a consi<strong>de</strong>rably greater amount of<br />

cata<strong><strong>la</strong>s</strong>e activity wh<strong>en</strong> cultures were pulsed with<br />

hydrog<strong>en</strong> peroxi<strong>de</strong>. A significant <strong>de</strong>crease of activity<br />

was also observed for cultures of both strains carried<br />

out un<strong>de</strong>r iron-limiting conditions compared with<br />

iron-overloa<strong>de</strong>d broths.<br />

Cata<strong><strong>la</strong>s</strong>e activity could not be <strong>de</strong>tected in the gels<br />

following exposure to 100 mm sodium azi<strong>de</strong> and<br />

treatm<strong>en</strong>t with potassium cyani<strong>de</strong> resulted in a<br />

slight reduction of activity, suggesting that this<br />

bacterium contains an iron-cofactored <strong>en</strong>zyme.<br />

Ó 2006<br />

B<strong>la</strong>ckwell Publishing Ltd<br />

359


Journal of Fish Diseases 2006, 29, 355–364<br />

PDíaz-Rosales et al. Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e in P. damse<strong>la</strong>e ssp. piscicida<br />

(a)<br />

(b)<br />

1 2 3 4 5 6 1 2 3 4 5 6<br />

Figure 2 Detection of superoxi<strong>de</strong> dismutase<br />

(a) and cata<strong><strong>la</strong>s</strong>e activity (b) in extracts of<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

(strain EPOY-8803-II) grown un<strong>de</strong>r differ<strong>en</strong>t<br />

conditions. Lane 1: growth until expon<strong>en</strong>tial<br />

phase; 2: stationary growth phase;<br />

3: exposure to hydrog<strong>en</strong> peroxi<strong>de</strong> (20 lm<br />

H 2 O 2 mid-expon<strong>en</strong>tial phase and 2 mm<br />

H 2 O 2 early stationary phase); 4: addition of<br />

methyl violog<strong>en</strong> (0.2 mm) to the culture<br />

medium; 5: addition of 2,2¢-dipyridyl<br />

(100 lm) to the culture medium; 6: addition<br />

of FeCl 3 Æ6H 2 O (100 lm) to the culture<br />

medium.<br />

U SOD/mg prot.<br />

20<br />

15<br />

10<br />

5<br />

0<br />

EPOY-8803-II<br />

Lgh41/01<br />

Figure 3 Superoxi<strong>de</strong> dismutase activity (U mg )1 protein) of<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida strains grown un<strong>de</strong>r<br />

differ<strong>en</strong>t culture conditions. ( ) Growth until stationary phase;<br />

( ) exposure to hydrog<strong>en</strong> peroxi<strong>de</strong> (20 lm mid-expon<strong>en</strong>tial<br />

phase and 2 mm early stationary phase); ( ) culture supplem<strong>en</strong>ted<br />

with FeCl 3 Æ6H 2 O 100 lm and (h) culture supplem<strong>en</strong>ted<br />

with the iron che<strong>la</strong>nt 2,2¢-dipyridyl 100 lm. Data repres<strong>en</strong>t the<br />

mean (SD) of three in<strong>de</strong>p<strong>en</strong><strong>de</strong>nt <strong>de</strong>terminations.<br />

U cat./mg prot.<br />

140000<br />

120 000<br />

100000<br />

80000<br />

60000<br />

40000<br />

20 000<br />

0<br />

EPOY<br />

Lgh41/01<br />

Figure 4 Cata<strong><strong>la</strong>s</strong>e activity (U mg )1 protein) of Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida strains grown un<strong>de</strong>r differ<strong>en</strong>t culture<br />

conditions. ( ) Growth until stationary phase; ( ) exposure to<br />

hydrog<strong>en</strong> peroxi<strong>de</strong> (20 lm mid-expon<strong>en</strong>tial phase and 2 mm<br />

early stationary phase); ( ) culture supplem<strong>en</strong>ted with FeCl 3 Æ<br />

6H 2 O 100 lm and (h) culture supplem<strong>en</strong>ted with the iron<br />

che<strong>la</strong>nt 2,2¢-dipyridyl 100 lm. Data repres<strong>en</strong>t the mean (SD)<br />

of three in<strong>de</strong>p<strong>en</strong><strong>de</strong>nt <strong>de</strong>terminations.<br />

In or<strong>de</strong>r to <strong>de</strong>termine the influ<strong>en</strong>ce of the levels<br />

of SOD and cata<strong><strong>la</strong>s</strong>e activity on the resistance to the<br />

bactericidal activity of sole phagocytes, killing assays<br />

were carried out with a virul<strong>en</strong>t and non-virul<strong>en</strong>t<br />

strain of P. damse<strong>la</strong>e ssp. piscicida. The perc<strong>en</strong>tages<br />

of surviving bacteria after 5 h contact with sole<br />

phagocytes are shown in Fig. 5. It can be observed<br />

that survival of the virul<strong>en</strong>t strain in contact with<br />

phagocytes was significantly higher (P < 0.05) in<br />

all cases compared with the non-virul<strong>en</strong>t strain.<br />

Despite this differ<strong>en</strong>t survival rate, both strains<br />

showed a simi<strong>la</strong>r behaviour <strong>de</strong>p<strong>en</strong>ding on the<br />

bacterial culture condition with highest rates<br />

corresponding in both cases to growth in ironreplete<br />

broths and lowest to growth un<strong>de</strong>r ironlimiting<br />

conditions. In addition, a significant<br />

increase in the survival perc<strong>en</strong>tages was observed<br />

%Survival<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

EPOY-8803-II<br />

Lgh41/01<br />

Figure 5 Survival perc<strong>en</strong>tage of Photobacterium damse<strong>la</strong>e subsp.<br />

piscicida after 5 h in contact with sole phagocytes. ( ) Growth<br />

until stationary phase; ( ) exposure to hydrog<strong>en</strong> peroxi<strong>de</strong> (20 lm<br />

mid-expon<strong>en</strong>tial phase and 2 mm early stationary phase); ( )<br />

culture supplem<strong>en</strong>ted with FeCl 3 Æ6H 2 O 100 lm and (h) culture<br />

supplem<strong>en</strong>ted with 2,2¢-dipyridyl 100 lm. Data repres<strong>en</strong>t the<br />

mean (SD) of nine wells containing phagocytes from three fish<br />

specim<strong>en</strong>s.<br />

Ó 2006<br />

B<strong>la</strong>ckwell Publishing Ltd<br />

360


Journal of Fish Diseases 2006, 29, 355–364<br />

PDíaz-Rosales et al. Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e in P. damse<strong>la</strong>e ssp. piscicida<br />

in both strains pulsed with hydrog<strong>en</strong> peroxi<strong>de</strong><br />

compared with stationary phase cultures.<br />

Discussion<br />

Enzymes such as SOD and cata<strong><strong>la</strong>s</strong>e, which neutralize<br />

ROS produced during aerobic metabolism or<br />

during respiratory burst in fish phagocytes are<br />

important virul<strong>en</strong>ce factors in many pathog<strong>en</strong>s<br />

(Barnes et al. 1996, 1999b; Yesilkaya, Kadioglu,<br />

Gingles, Alexan<strong>de</strong>r, Mitchell & Andrew 2000;<br />

Vattanaviboon & Mongkolsuk 2001; Uzzau et al.<br />

2002; Banin, Vassi<strong>la</strong>kos, Orr, Martínez & Ros<strong>en</strong>berg<br />

2003). In this study, all the strains of<br />

P. damse<strong>la</strong>e ssp. piscicida assayed showed a single<br />

band of SOD activity with i<strong>de</strong>ntical mobility on<br />

acry<strong>la</strong>mi<strong>de</strong> gels. A unique band simi<strong>la</strong>r in all the<br />

strains was also observed on cata<strong><strong>la</strong>s</strong>e activity gels.<br />

Simi<strong>la</strong>rly, Barnes, Balebona, Horne & Ellis<br />

(1999a), in a study that inclu<strong>de</strong>d a collection of<br />

P. damse<strong>la</strong>e ssp. piscicida strains iso<strong>la</strong>ted from<br />

gilthead seabream, Sparus aurata (L.), reported<br />

only one SOD located in the perip<strong><strong>la</strong>s</strong>mic space and<br />

one cytop<strong><strong>la</strong>s</strong>mic cata<strong><strong>la</strong>s</strong>e.<br />

Several studies have reported that microorganisms<br />

contain differ<strong>en</strong>t SOD and cata<strong><strong>la</strong>s</strong>e isozymes<br />

inducible un<strong>de</strong>r certain growth conditions (Storz,<br />

Tartaglia, Farr & Ames 1990; Privalle & Fridovich<br />

1992; Barnes et al. 1996; Yesilkaya et al. 2000;<br />

Geslin, L<strong>la</strong>nos, Prieur & Jeanthon 2001; Vattanaviboon<br />

& Mongkolsuk 2001). However, culture<br />

conditions assayed in this work have not induced<br />

new SOD or cata<strong><strong>la</strong>s</strong>e isozymes in P. damse<strong>la</strong>e ssp.<br />

piscicida. Mn-SOD activity has be<strong>en</strong> reported to be<br />

modu<strong>la</strong>ted by oxidative stress and iron-limiting<br />

conditions (Privalle & Fridovich 1992; Barnes<br />

et al. 1999b) but in the case of P. damse<strong>la</strong>e ssp.<br />

piscicida neither production of intracellu<strong>la</strong>r superoxi<strong>de</strong><br />

by methyl violog<strong>en</strong> nor culture un<strong>de</strong>r ironrestricted<br />

conditions induced the production of a<br />

differ<strong>en</strong>t type of SOD. Although further studies are<br />

necessary, this <strong>la</strong>ck of induction of a new SOD<br />

could be due to the pres<strong>en</strong>ce of only one sod g<strong>en</strong>e,<br />

i.e. sod B <strong>en</strong>coding Fe-SOD (Lynch & Kuramitsu<br />

2000).<br />

In contrast, differ<strong>en</strong>ces in the int<strong>en</strong>sity of the<br />

bands were observed in extracts obtained un<strong>de</strong>r<br />

differ<strong>en</strong>t culture conditions for both SOD and<br />

cata<strong><strong>la</strong>s</strong>e activities. As the amount of protein loa<strong>de</strong>d<br />

in the electrophoretic <strong>la</strong>nes was simi<strong>la</strong>r in all cases,<br />

the differ<strong>en</strong>t int<strong>en</strong>sities suggest variations in the<br />

levels of activity in the extracts <strong>de</strong>p<strong>en</strong>ding on the<br />

culture condition. These results are in agreem<strong>en</strong>t<br />

with those obtained by Barnes, Balebona, Horne &<br />

Ellis (1999a), who also <strong>de</strong>tected differ<strong>en</strong>ces in<br />

cultures carried out un<strong>de</strong>r iron replete and <strong>de</strong>pleted<br />

conditions and high- and low-aerated broths.<br />

The quantification of both SOD and cata<strong><strong>la</strong>s</strong>e<br />

activities carried out in this study corroborated that<br />

differ<strong>en</strong>t band int<strong>en</strong>sities correspon<strong>de</strong>d to variations<br />

in the levels of activity. The lowest levels of SOD<br />

activity were <strong>de</strong>tected wh<strong>en</strong> bacteria were grown<br />

un<strong>de</strong>r iron-restricted conditions. The ferric nature<br />

of P. damse<strong>la</strong>e ssp. piscicida SOD <strong>de</strong>scribed by<br />

Barnes et al. (1999a) could exp<strong>la</strong>in this lower<br />

activity in the pres<strong>en</strong>ce of an iron che<strong>la</strong>nt.<br />

Iron also influ<strong>en</strong>ced the levels of cata<strong><strong>la</strong>s</strong>e activity<br />

in P. damse<strong>la</strong>e ssp. piscicida. The role of iron as<br />

cofactor in this <strong>en</strong>zyme has be<strong>en</strong> <strong>de</strong>monstrated with<br />

inhibition studies. Thus, cata<strong><strong>la</strong>s</strong>e activity could not<br />

be <strong>de</strong>tected in the gels following exposure to<br />

sodium azi<strong>de</strong> and it was slightly reduced after<br />

treatm<strong>en</strong>t with potassium cyani<strong>de</strong>. These results<br />

suggest that the <strong>en</strong>zyme is an iron cofactored<br />

cata<strong><strong>la</strong>s</strong>e, as Mn-containing cata<strong><strong>la</strong>s</strong>es retain activity<br />

after treatm<strong>en</strong>t with azi<strong>de</strong> and cyani<strong>de</strong> and are<br />

inhibited by mercuric chlori<strong>de</strong> (Kono & Fridovich<br />

1983; Allgood & Perry 1986; Barnes et al. 1999b).<br />

This ferric nature of the cata<strong><strong>la</strong>s</strong>e may exp<strong>la</strong>in the<br />

lower cata<strong><strong>la</strong>s</strong>e activity observed in cultures with<br />

ad<strong>de</strong>d iron che<strong>la</strong>nt and lower survival with H 2 O 2<br />

observed by Díaz-Rosales, Chabrillón, Moriñigo &<br />

Balebona (2003).<br />

Lower survival of P. damse<strong>la</strong>e ssp. piscicida in sole<br />

phagocytes has be<strong>en</strong> observed for strain EPOY-<br />

8803-II compared with the virul<strong>en</strong>t strain. Contradictory<br />

results have be<strong>en</strong> reported on the ability of<br />

P. damse<strong>la</strong>e ssp. piscicida to survive insi<strong>de</strong> macrophages<br />

from several fish species. In a study using<br />

macrophages from sea bass, gilthead sea bream and<br />

rainbow trout, Skarmeta et al. (1995) conclu<strong>de</strong>d<br />

that head kidney macrophages from these fish<br />

species were able to kill the pathog<strong>en</strong>. However,<br />

Noya et al. (1995b) reported that whilst bacteria<br />

within granulocytes and macrophages from <strong>la</strong>rge<br />

gilthead sea bream were morphologically altered,<br />

bacteria insi<strong>de</strong> small fish remained unaffected. In<br />

addition, data on the ability of P. damse<strong>la</strong>e to<br />

survive insi<strong>de</strong> fish macrophages have be<strong>en</strong> reported<br />

by several authors who observed that bacteria can<br />

multiply insi<strong>de</strong> fish macrophages (Kubota et al.<br />

1970; Hawke, P<strong>la</strong>kas, Minton, McPherson, Zin<strong>de</strong>r<br />

& Guarino 1987; Noya et al. 1995a; Elkamel,<br />

Hawke, H<strong>en</strong>k & Thune 2003).<br />

Ó 2006<br />

B<strong>la</strong>ckwell Publishing Ltd<br />

361


Journal of Fish Diseases 2006, 29, 355–364<br />

PDíaz-Rosales et al. Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e in P. damse<strong>la</strong>e ssp. piscicida<br />

Multiplication of P. damse<strong>la</strong>e ssp. piscicida insi<strong>de</strong><br />

several fish cell lines has also be<strong>en</strong> reported. Elkamel<br />

& Thune (2003) observed that the bacteria multiply<br />

in EPC, CCO, and FHM cells and López-<br />

Dóriga, Barnes, dos Santos & Ellis (2000) using<br />

EPC cells observed that both virul<strong>en</strong>t and avirul<strong>en</strong>t<br />

iso<strong>la</strong>tes were able to adhere to and inva<strong>de</strong> cells.<br />

Results obtained from this study show that<br />

P. damse<strong>la</strong>e ssp. piscicida is able to survive insi<strong>de</strong><br />

sole phagocytes at least for 5 h, the survival rates<br />

being higher for the virul<strong>en</strong>t iso<strong>la</strong>te. Although the<br />

bacterium was able to survive, the rates obtained<br />

always indicated a certain <strong>de</strong>gree of bacterial<br />

inactivation insi<strong>de</strong> phagocytes.<br />

Survival of the non-virul<strong>en</strong>t strain in contact with<br />

sole phagocytes was significantly lower compared<br />

with the virul<strong>en</strong>t strain. The non-virul<strong>en</strong>t strain also<br />

showed lower cata<strong><strong>la</strong>s</strong>e activity. These results suggest<br />

that bacterial inactivation could be due to the<br />

accumu<strong>la</strong>tion of hydrog<strong>en</strong> peroxi<strong>de</strong>, the precursor<br />

of hydroxyl radicals, after <strong>de</strong>composition of superoxi<strong>de</strong><br />

radicals by bacterial SOD. This accumu<strong>la</strong>tion<br />

would not take p<strong>la</strong>ce to such an ext<strong>en</strong>t in the virul<strong>en</strong>t<br />

strain, as levels of cata<strong><strong>la</strong>s</strong>e are higher. The important<br />

role of cata<strong><strong>la</strong>s</strong>e in the protection against oxidative<br />

damage in P. damse<strong>la</strong>e ssp. piscicida has be<strong>en</strong> pointed<br />

out by Barnes et al. (1999a), who observed that the<br />

addition of exog<strong>en</strong>ous cata<strong><strong>la</strong>s</strong>e to the medium<br />

protected the bacteria from inactivation by photochemically<br />

g<strong>en</strong>erated superoxi<strong>de</strong> anions.<br />

Both virul<strong>en</strong>t and non-virul<strong>en</strong>t strains assayed by<br />

Barnes et al. (1999a) showed high susceptibility to<br />

cell-free g<strong>en</strong>erated superoxi<strong>de</strong> radicals. In contrast,<br />

we have observed that a non-virul<strong>en</strong>t strain, EPOY-<br />

8803-II, is significantly more susceptible to killing<br />

by sole phagocytes than a virul<strong>en</strong>t strain (Lg h41/01 ).<br />

Besi<strong>de</strong>s the lower cata<strong><strong>la</strong>s</strong>e activity pres<strong>en</strong>t in the<br />

non-virul<strong>en</strong>t strain, the <strong>la</strong>ck of a capsule in cells of<br />

EPOY-8803-II could contribute to the high inactivation<br />

rates observed. Thus, the capsule could<br />

protect bacterial cells from oxidative radicals or ev<strong>en</strong><br />

prev<strong>en</strong>t activation of phagocytes (Miller & Britigan<br />

1997; Arijo et al. 1998).<br />

The important role of iron in microbial infections<br />

has be<strong>en</strong> pointed out by several authors<br />

(Miller & Britigan 1997; Weinberg 2000). The<br />

pathog<strong>en</strong> needs to obtain iron from the host, where<br />

this metal is linked to high-affinity proteins and<br />

iron avai<strong>la</strong>bility is very low; also, a transition metal<br />

catalyst such as iron p<strong>la</strong>ys an important role in the<br />

g<strong>en</strong>eration of hydroxyl radicals in vivo. In<strong>de</strong>ed, at<br />

physiological pH, g<strong>en</strong>eration of hydroxyl radical<br />

from hydrog<strong>en</strong> peroxi<strong>de</strong> and superoxi<strong>de</strong> anions is of<br />

little biological importance unless a metal such as<br />

ferric iron is pres<strong>en</strong>t (Haber–Weiss reaction) (Miller<br />

& Britigan 1997). Photobacterium damse<strong>la</strong>e ssp.<br />

piscicida is more susceptible to killing by sole<br />

phagocytes wh<strong>en</strong> bacterial cells have be<strong>en</strong> cultured<br />

un<strong>de</strong>r iron-<strong>de</strong>pleted conditions. This could be due<br />

to the lower levels of cata<strong><strong>la</strong>s</strong>e <strong>de</strong>tected in both the<br />

virul<strong>en</strong>t and avirul<strong>en</strong>t cells, the lowest rates corresponding<br />

to strain EPOY-8803-II. Thus, although<br />

the pres<strong>en</strong>ce of iron in <strong>en</strong>vironm<strong>en</strong>ts where superoxi<strong>de</strong><br />

and hydrog<strong>en</strong> peroxi<strong>de</strong> are g<strong>en</strong>erated, such as<br />

in phagocytes, may promote the g<strong>en</strong>eration of<br />

highly toxic hydroxyl radicals, it is also true that<br />

bacteria require iron for growth and replication and<br />

synthesize SOD and cata<strong><strong>la</strong>s</strong>e to <strong>de</strong>al with the<br />

oxidizing anions. Thus, the ability to obtain iron<br />

from the host seems to be crucial for P. damse<strong>la</strong>e<br />

ssp. piscicida. In<strong>de</strong>ed, it has be<strong>en</strong> <strong>de</strong>monstrated that<br />

immune-activated macrophages modify intracellu<strong>la</strong>r<br />

distribution and damp<strong>en</strong> iron influx in or<strong>de</strong>r to<br />

diminish iron avai<strong>la</strong>bility for inva<strong>de</strong>rs (Weinberg<br />

2000).<br />

Photobacterium damse<strong>la</strong>e ssp. piscicida posses a<br />

high-affinity iron uptake system (Magariños et al.<br />

1994; Naka, Hirono & Aoki 2005). However,<br />

<strong>de</strong>spite its ability to obtain iron from high-affinity<br />

systems, several authors have reported that cells<br />

grown un<strong>de</strong>r iron-limited conditions have a<br />

reduced amount of capsu<strong>la</strong>r material covering the<br />

cells (Do Vale, Ellis & Silva 2001). These cells with<br />

reduced capsule would be more susceptible to<br />

phagocytosis and oxidative stress. Our results show<br />

that iron p<strong>la</strong>ys an important role in survival of<br />

P. damse<strong>la</strong>e ssp. piscicida in contact with sole<br />

phagocytes; whether this is attributable to its<br />

contribution to capsu<strong>la</strong>r material or SOD and<br />

cata<strong><strong>la</strong>s</strong>e synthesis by the bacterium needs to be<br />

investigated.<br />

In conclusion, we have shown that P. damse<strong>la</strong>e<br />

ssp. piscicida is able to survive in contact with sole<br />

phagocytes, survival rates being higher for a virul<strong>en</strong>t<br />

strain. The increased levels of cata<strong><strong>la</strong>s</strong>e activity<br />

<strong>de</strong>tected in the virul<strong>en</strong>t strain indicate a possible<br />

role for this <strong>en</strong>zyme in bacterial survival.<br />

Acknowledgem<strong>en</strong>ts<br />

P. Díaz-Rosales thanks the Ministerio Español <strong>de</strong><br />

Educación y Ci<strong>en</strong>cia for a F.P.U. scho<strong>la</strong>rship. This<br />

research has be<strong>en</strong> supported in part by the Research<br />

Project AGL-2002-01488 and PETRI 95-0657.01.<br />

Ó 2006<br />

B<strong>la</strong>ckwell Publishing Ltd<br />

362


Journal of Fish Diseases 2006, 29, 355–364<br />

PDíaz-Rosales et al. Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e in P. damse<strong>la</strong>e ssp. piscicida<br />

Refer<strong>en</strong>ces<br />

Aebi H. (1984) Cata<strong><strong>la</strong>s</strong>e in vitro. Methods in Enzymology 105,<br />

121–126. Aca<strong>de</strong>mic Press, New York.<br />

Allgood G.S. & Perry J.J. (1986) Characterization of a manganese-containing<br />

cata<strong><strong>la</strong>s</strong>e from the obligate thermophile Thermoleophilum<br />

album. Journal of Bacteriology 168, 563–567.<br />

Arijo S., Borrego J.J., Zorril<strong>la</strong> I., Balebona M.C. & Moriñigo<br />

M.A. (1998) Role of the capsule of Photobacterium damse<strong>la</strong>e<br />

subsp. piscicida in protection against phagocytosis and killing<br />

by gilt-head seabream (Sparus aurata, L.) macrophages. Fish<br />

and Shellfish Immunology 8, 63–72.<br />

Banin E., Vassi<strong>la</strong>kos D., Orr E., Martínez R.J. & Ros<strong>en</strong>berg E.<br />

(2003) Superoxi<strong>de</strong> dismutase is a virul<strong>en</strong>ce factor produced by<br />

the coral bleaching pathog<strong>en</strong> Vibrio shiloi. Curr<strong>en</strong>t Microbiology<br />

46, 418–422.<br />

Barnes A.C., Horne M.T. & Ellis A.E. (1996) Effect of iron on<br />

expression of superoxi<strong>de</strong> dismutase by Aeromonas salmonicida<br />

and associated resistance to superoxi<strong>de</strong> anion. FEMS Microbiology<br />

Letters 142, 19–26.<br />

Barnes A.C., Balebona M.C., Horne M.T. & Ellis A.E. (1999a)<br />

Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e in Photobacterium damse<strong>la</strong>e<br />

subsp. piscicida and their roles in resistance to reactive oxyg<strong>en</strong><br />

species. Microbiology 145, 483–494.<br />

Barnes A.C., Bow<strong>de</strong>n T.J., Horne M.T. & Ellis A.E. (1999b)<br />

Peroxi<strong>de</strong>-inducible cata<strong><strong>la</strong>s</strong>e in Aeromonas salmonicida subsp.<br />

salmonicida protects against exog<strong>en</strong>ous hydrog<strong>en</strong> peroxi<strong>de</strong> and<br />

killing by activated rainbow trout, Oncorhynchus mykiss L.,<br />

macrophages. Microbial Pathog<strong>en</strong>esis 26, 149–158.<br />

Beauchamp C. & Fridovich I. (1971) Superoxi<strong>de</strong> dismutase:<br />

improved assays, and an assay applicable to acry<strong>la</strong>mi<strong>de</strong> gels.<br />

Analytical Biochemistry 44, 276–287.<br />

Bradford M.M. (1976) A rapid and s<strong>en</strong>sitive method for the<br />

quantitation of microgram quantities of protein utilizing the<br />

principle of protein-dye binding. Analytical Biochemistry 72,<br />

248–254.<br />

Crockford A.J., Davis G.A. & Williams H.D. (1995) Evi<strong>de</strong>nce<br />

for cell-<strong>de</strong>p<strong>en</strong><strong>de</strong>nt regu<strong>la</strong>tion of cata<strong><strong>la</strong>s</strong>e activity in Rhizobium<br />

leguminosarum bv phaseoli. Microbiology 141, 843–851.<br />

Díaz-Rosales P., Chabrillón M., Moriñigo M.A. & Balebona<br />

M.C. (2003) Survival against exog<strong>en</strong>ous hydrog<strong>en</strong> peroxi<strong>de</strong> of<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida un<strong>de</strong>r differ<strong>en</strong>t culture<br />

conditions. Journal of Fish Diseases 26, 305–308.<br />

Do Vale A., Ellis A.E. & Silva M.T. (2001) Electron microscopic<br />

evi<strong>de</strong>nce that expression of capsu<strong>la</strong>r polysaccarhi<strong>de</strong> by Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida is <strong>de</strong>p<strong>en</strong><strong>de</strong>nt on iron<br />

avai<strong>la</strong>bility and growth phase. Diseases of Aquatic Organisms<br />

44, 237–240.<br />

Elkamel A.A. & Thune R.L. (2003) Invasion and replication of<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida in fish cell lines.<br />

Journal of Aquatic Animal Health 15, 167–174.<br />

Elkamel A.A., Hawke J.P., H<strong>en</strong>k W.G. & Thune R.L. (2003).<br />

Photobacterium damse<strong>la</strong>e subsp. piscicida is capable of<br />

replicating in hybrid striped bass macrophages. Journal of<br />

Aquatic Animal Health 15, 175–183.<br />

Franzon V.L., Aron<strong>de</strong>l J. & Sansonetti P.J. (1990) Contribution<br />

of superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e activities to<br />

Shigel<strong>la</strong> flexneri pathog<strong>en</strong>esis. Infection and Immunity 58,<br />

529–535.<br />

Geslin C., L<strong>la</strong>nos J., Prieur D. & Jeanthon C. (2001) The<br />

manganese and iron superoxi<strong>de</strong> dismutases protect Escherichia<br />

coli from heavy metal toxicity. Research in Microbiology 152,<br />

901–905.<br />

Graham S., Jeffries A.H. & Secombes C.J. (1988) A novel assay<br />

to <strong>de</strong>tect macrophage bactericidal activity in fish: factors<br />

influ<strong>en</strong>cing the killing of Aeromonas salmonicida. Journal of<br />

Fish Diseases 11, 389–396.<br />

Hawke J.P., P<strong>la</strong>kas S.M., Minton R.V., McPherson R.M.,<br />

Zin<strong>de</strong>r T.G. & Guarino A.M. (1987) Fish pasteurellosis of<br />

cultured striped bass, Morone saxatilis, in coastal A<strong>la</strong>bama.<br />

Aquaculture 65, 193–204.<br />

Kono Y. & Fridovich I. (1983) Iso<strong>la</strong>tion and characterization of<br />

the pseudocata<strong><strong>la</strong>s</strong>e of Lactobacillus p<strong>la</strong>ntarum. Journal of Biological<br />

Chemistry 258, 6015–6019.<br />

Kubota S., Kimura M. & Egusa S. (1970). Studies of a bacterial<br />

tuberculoidosis of the yellowtail. I. Symptomatology and<br />

histopathology. Fish Pathology 4, 11–18.<br />

Kusuda R. & Sa<strong>la</strong>ti F. (1993) Major bacterial diseases affecting<br />

mariculture in Japan. Annual Review of Fish Diseases 3, 69–85.<br />

Lefebre M.D. & Valvano M.A. (2001) In vitro resistance of<br />

Burkhol<strong>de</strong>ria cepacia complex iso<strong>la</strong>tes to reactive oxyg<strong>en</strong> species<br />

in re<strong>la</strong>tion to cata<strong><strong>la</strong>s</strong>e and superoxi<strong>de</strong> dismutase production.<br />

Phatog<strong>en</strong>icity and Medical Microbiology 147, 97–109.<br />

Loew<strong>en</strong> P.C. (1997) Bacterial cata<strong><strong>la</strong>s</strong>es. In: Oxidative Stress and<br />

the Molecu<strong>la</strong>r Biology of Antioxidants Def<strong>en</strong>ses (ed. by J.G.<br />

Scandalios), pp. 273–308. Cold Spring Harbor Laboratory<br />

Press, Woodbury, New York.<br />

López-Dóriga M.V., Barnes A.C., dos Santos N.M.S. & Ellis<br />

A.E. (2000) Invasion of fish epithelial cells by Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida: evi<strong>de</strong>nce for receptor specificity, and<br />

effect of capsule and serum. Microbiology 146, 21–30.<br />

Lynch M. & Kuramitsu H. (2000) Expression and role of<br />

superoxi<strong>de</strong> dismutases (SOD) in pathog<strong>en</strong>ic bacteria. Microbes<br />

and Infection 2, 1245–1255.<br />

Magariños B., Romal<strong>de</strong> J.L., Bandín I., Fouz B. & Toranzo A.E.<br />

(1992) Ph<strong>en</strong>otypic, antig<strong>en</strong>ic, and molecu<strong>la</strong>r characterization<br />

of Pasteurel<strong>la</strong> piscicida strains iso<strong>la</strong>ted from fish. Applied and<br />

Environm<strong>en</strong>tal Microbiology 58, 3316–3322.<br />

Magariños B., Pazos F., Santos Y., Romal<strong>de</strong> J.L. & Toranzo A.E.<br />

(1994) Iron uptake by Pasteurel<strong>la</strong> piscicida and its role in<br />

pathog<strong>en</strong>icity for fish. Applied and Environm<strong>en</strong>tal Microbiology<br />

60, 2990–2998.<br />

Magariños B., Romal<strong>de</strong> J.L., Lemos M.L., Barja J.L. & Toranzo<br />

A.E. (1995) Response of Pasteurel<strong>la</strong> piscicida and Flexibacter<br />

maritimus to skin mucus of marine fish. Diseases of Aquatic<br />

Organisms 21, 103–108.<br />

Miller R.A. & Britigan B.F. (1997) Role of oxidants in microbial<br />

pathophysiology. Clinical Microbiology Reviews 10, 1–18.<br />

Naka H., Hirono I. & Aoki T. (2005) Molecu<strong>la</strong>r cloning and<br />

functional analysis of Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

haem receptor g<strong>en</strong>e. Journal of Fish Diseases 28, 81–88.<br />

Nelson J.S., Kawahara E., Kawai K. & Kusuda R. (1981)<br />

Macrophage infiltration in pseudotuberculosis of yellowtail,<br />

Ó 2006<br />

B<strong>la</strong>ckwell Publishing Ltd<br />

363


Journal of Fish Diseases 2006, 29, 355–364<br />

PDíaz-Rosales et al. Superoxi<strong>de</strong> dismutase and cata<strong><strong>la</strong>s</strong>e in P. damse<strong>la</strong>e ssp. piscicida<br />

Serio<strong>la</strong> quinqueradiata. Bulletin of Marine Sci<strong>en</strong>ce Fish Kochi<br />

University 11, 17–22.<br />

Noya M., Magariños B. & Lamas J. (1995a) Interactions<br />

betwe<strong>en</strong> peritoneal exudate cells (PECs) of gilthead seabream<br />

(Sparus aurata) and Pasteurel<strong>la</strong> piscicida. A morphological<br />

study. Aquaculture 131, 11–21.<br />

Noya M., Magariños B., Toranzo A.E. & Lamas J. (1995b)<br />

Sequ<strong>en</strong>tial pathology of experim<strong>en</strong>tal pasteurellosis in gilthead<br />

seabream Sparus aurata. A light- and electron-microscopic<br />

study. Diseases of Aquatic Organisms 21, 177–186.<br />

Peck R. (1985) A one-p<strong>la</strong>te assay for macrophage bactericidal<br />

activity. Journal of Immunological Methods 82, 131–140.<br />

Po<strong>la</strong>ck B., Dacheux D., Delic-Attree I., Toussaint B. & Vignais<br />

P.M. (1996) Role of manganese superoxi<strong>de</strong> dismutase in a<br />

mucoid iso<strong>la</strong>te of Pseudomonas aeruginosa: adaptation to oxidative<br />

stress. Infection and Immunity 64, 2216–2219.<br />

Privalle C.T. & Fridovich I. (1992) Transcriptional and<br />

maturational effects of manganese and iron on the biosynthesis<br />

of manganese-superoxi<strong>de</strong> dismutase in Escherichia coli. Journal<br />

of Biological Chemistry 267, 9140–9145.<br />

Reed L.J. & Mü<strong>en</strong>ch M. (1938) A simple method of estimating<br />

fifty perc<strong>en</strong>t <strong>en</strong>d points. American Journal of Hygi<strong>en</strong>e 27,<br />

493–497.<br />

Santos Y. (1991) Factores <strong>de</strong> virul<strong>en</strong>cia y características antigénicas<br />

<strong>de</strong> Vibrio anguil<strong>la</strong>rum y Aeromonas móviles. PhD<br />

thesis, University of Santiago <strong>de</strong> Composte<strong>la</strong>, Santiago <strong>de</strong><br />

Composte<strong>la</strong>, Spain.<br />

Schnell S. & Steinman H.M. (1995) Function and stationaryphase<br />

induction of perip<strong><strong>la</strong>s</strong>mic copper-zinc superoxi<strong>de</strong> dismutase<br />

and cata<strong><strong>la</strong>s</strong>e/peroxidase in Caulobacter cresc<strong>en</strong>tus.<br />

Journal of Bacteriology 177, 5924–5929.<br />

Secombes C.J. (1990) Iso<strong>la</strong>tion of salmonid macrophages and<br />

analysis of their killing activity. In: Techniques in Fish<br />

Immunology (ed. by J.S. Stol<strong>en</strong>, T.C. Fletcher, D.P. An<strong>de</strong>rson,<br />

B.S. Roberson & W.B. van Muiswinkel), pp. 137–154, SOS<br />

Publications, Fair Hav<strong>en</strong>, NJ, USA.<br />

Skarmeta A.M., Bandín I., Santos Y. & Toranzo A.E. (1995)<br />

In vitro killing of Pasteurel<strong>la</strong> piscicida by fish macrophages.<br />

Diseases of Aquatic Organisms 23, 51–57.<br />

St John G. & Steinman H.M. (1996) Perip<strong><strong>la</strong>s</strong>mic copper-zinc<br />

superoxi<strong>de</strong> dismutase of Legionel<strong>la</strong> pneumophi<strong>la</strong>: role in<br />

stationary-phase survival. Journal of Bacteriology 178,<br />

1578–1584.<br />

Storz G., Tartaglia L.A., Farr S.B. & Ames B.N. (1990) Bacterial<br />

<strong>de</strong>f<strong>en</strong>ces against oxidative stress. Tr<strong>en</strong>ds in G<strong>en</strong>etics, 6,<br />

363–368.<br />

Uzzau S., Bossi L. & Figueroa-Bossi N. (2002) Differ<strong>en</strong>tial<br />

accumu<strong>la</strong>tion of Salmonel<strong>la</strong> [Cu, Zn] superoxi<strong>de</strong> dismutases<br />

SodCI and SodCII in intracellu<strong>la</strong>r bacteria: corre<strong>la</strong>tion with<br />

their re<strong>la</strong>tive contribution to pathog<strong>en</strong>icity. Molecu<strong>la</strong>r Microbiology<br />

46, 147–156.<br />

Vattanaviboon P. & Mongkolsuk S. (2001) Unusual adaptative,<br />

cross protection responses and growth phase resistance against<br />

peroxi<strong>de</strong> killing in a bacterial shrimp pathog<strong>en</strong>, Vibrio harveyi.<br />

FEMS Microbiology Letters 200, 111–116.<br />

Weinberg E.D. (2000) Modu<strong>la</strong>tion of intramacrophage iron<br />

metabolism during microbial cell invasion. Microbes and<br />

Infection 2, 85–89.<br />

Winterbourn C., Hawkins R.E., Brian M. & Correll R.W.<br />

(1975) The estimation of red cell superoxi<strong>de</strong> dismutase<br />

activity. Journal of Laboratory and Clinical Medicine 85,<br />

337–341.<br />

Woodbury W., Sp<strong>en</strong>cer A.K. & Stahmann M.A. (1971) An<br />

improved procedure using ferricyani<strong>de</strong> for <strong>de</strong>tecting cata<strong><strong>la</strong>s</strong>e<br />

isozymes. Analytical Biochemistry 44, 301–305.<br />

Worthington Enzyme Manual. (1993) Superoxi<strong>de</strong> Dismutase.<br />

Worthington Biochemical Corp., Freehold, NJ, pp. 368–369.<br />

Yesilkaya H., Kadioglu A., Gingles N., Alexan<strong>de</strong>r J.E., Mitchell<br />

T.J. & Andrew P.W. (2000) Role of manganese-containing<br />

superoxi<strong>de</strong> dismutase in oxidative stress and virul<strong>en</strong>ce of<br />

Streptococcus pneumoniae. Infection and Immunity 68,<br />

2819–2826.<br />

Received: 17 November 2005<br />

Revision received: 20 March 2006<br />

Accepted: 23 March 2006<br />

Ó 2006<br />

B<strong>la</strong>ckwell Publishing Ltd<br />

364


A RTÍCULO 2.1.<br />

A RTICLE 2.1.


Effect of dietary administration of Porphyridium cru<strong>en</strong>tum on the respiratory burst<br />

activity of sole (Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup 1858) phagocytes<br />

Patricia Díaz-Rosales a , Carm<strong>en</strong> Felices b , Mariana Chabrillón a , Roberto T. Abda<strong>la</strong> b ,<br />

Félix L. Figueroa b , M. Carm<strong>en</strong> Balebona a and M. Ángel Moriñigo a*<br />

a. Departm<strong>en</strong>t of Microbiology, Faculty of Sci<strong>en</strong>ces, University of Má<strong>la</strong>ga. 29071<br />

Má<strong>la</strong>ga. Spain<br />

b. Departm<strong>en</strong>t of Ecology and Geology, Group of Photobiology and Biotechnology of<br />

algae, Faculty of Sci<strong>en</strong>ces, University of Má<strong>la</strong>ga. 29071 Má<strong>la</strong>ga. Spain<br />

* Corresponding author. Tel. +34 952131862 ; fax: +34 952131889<br />

E-mail address: morinigo@uma.es (M. Ángel Moriñigo)<br />

1


Abstract<br />

The stimu<strong>la</strong>tory effect of the red microalga Porphyridium cru<strong>en</strong>tum on<br />

respiratory burst activity of sole phagocytes was evaluated in vitro and in vivo. Sole<br />

phagocytes incubated in vitro with aqueous and ethanolic extracts (10, 5, 2 and 1 mg ml -<br />

1 ) iso<strong>la</strong>ted from P. cru<strong>en</strong>tum did not show increased superoxi<strong>de</strong> anion production. By<br />

contrast, incubation of phagocytes with β-glucan from Eugl<strong>en</strong>a gracilis (10 mg ml -1 )<br />

increased respiratory burst activity. However, oral administration of a diet supplem<strong>en</strong>ted<br />

with lyophilized P. cru<strong>en</strong>tum cells (10 g kg -1 ) stimu<strong>la</strong>ted respiratory burst activity after<br />

4 weeks feeding only in sole vaccinated with Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

bacterin. Results obtained are discussed in terms of the usefulness of the administration<br />

route of immunostimu<strong>la</strong>nt and synergistic effect with a vaccine.<br />

Keywords: Immunostimu<strong>la</strong>nts; Porphyridium cru<strong>en</strong>tum; Respiratory burst; Phagocytes;<br />

Sole (Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup 1858); Teleosts.<br />

2


1. Introduction<br />

Fish aquaculture is an expanding industry worldwi<strong>de</strong>. Marine aquaculture in<br />

southern Europe has focused on species such as gilthead seabream (Sparus aurata, L.)<br />

and sea bass (Dic<strong>en</strong>trarchus <strong>la</strong>brax, L.). However, the diversification of the species<br />

farmed is required and S<strong>en</strong>egalese sole (Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup) is a species with a<br />

high economic value, which is farmed in Portugal and Spain [1]. Diseases of bacterial<br />

origin constitute the most significant cause of economic losses suffered in the<br />

aquaculture industry [2]. The most frequ<strong>en</strong>tly iso<strong>la</strong>ted pathog<strong>en</strong> from outbreaks <strong>de</strong>tected<br />

in farmed S<strong>en</strong>egalese sole is Photobacterium damse<strong>la</strong>e subsp. piscicida, which is<br />

responsible for high mortalities in cultured fish [3]. Antibiotic treatm<strong>en</strong>t of bacterial<br />

diseases affecting farmed fish has be<strong>en</strong> applied for many years. However, the<br />

occurr<strong>en</strong>ce of antibiotic resistance in pathog<strong>en</strong>ic bacteria is limiting the usefulness of<br />

these substances [4-6] and therefore, several alternative strategies to the use of<br />

antimicrobials have be<strong>en</strong> proposed, including the use of immunostimu<strong>la</strong>nts which<br />

repres<strong>en</strong>t a promising tool in aquaculture. In<strong>de</strong>ed, many authors have reported that the<br />

injection of immunostimu<strong>la</strong>nts, such as glucans, <strong>en</strong>hances the function of leucocytes<br />

and protection against pathog<strong>en</strong>s [7-10]. Several authors have observed that P.<br />

damse<strong>la</strong>e subsp. piscicida is highly susceptible to oxidative radicals g<strong>en</strong>erated during<br />

the macrophage respiratory burst [11, 12]. However, other authors have reported the<br />

pres<strong>en</strong>ce of intact cells of this pathog<strong>en</strong> insi<strong>de</strong> fish cells, suggesting the ability of the<br />

bacterium to survive as an intracellu<strong>la</strong>r pathog<strong>en</strong> [13-17]. For this reason, the<br />

stimu<strong>la</strong>tion of the respiratory burst activity of the phagocytes of S<strong>en</strong>egalese sole could<br />

facilitate a more effective <strong>de</strong>struction of P. damse<strong>la</strong>e subsp. piscicida.<br />

Marine organisms constitute a pot<strong>en</strong>tial alternative source of substances for the<br />

prev<strong>en</strong>tion and treatm<strong>en</strong>t of infectious diseases [18]. In this connection, algae have be<strong>en</strong><br />

studied as dietary ingredi<strong>en</strong>ts for fish nutrition [19] and as a source of bioactive<br />

compounds such as pharmaceutical [20, 21] and immunostimu<strong>la</strong>nt [22-25] ag<strong>en</strong>ts.<br />

Several authors [26] have suggested a possible stimu<strong>la</strong>tion of the metabolic and<br />

functional action of phagocytic system cells from Balb/c mice after intraperitoneal<br />

administration of polysacchari<strong>de</strong>s iso<strong>la</strong>ted from cultures in the stationary phase of red<br />

3


alga Porphyridium cru<strong>en</strong>tum. For this reason, this alga has be<strong>en</strong> selected in this work to<br />

evaluate its pot<strong>en</strong>tial immunostimu<strong>la</strong>nt effect on farmed fish. However, most studies<br />

performed to examine the immunostimu<strong>la</strong>nt ability of algae have be<strong>en</strong> carried out by in<br />

vitro incubation of immune cells with algal extracts, and information on the in vivo<br />

effects of whole algal cells is still scarce [27]. In addition, algal extracts are inocu<strong>la</strong>ted<br />

intraperitoneally in theses studies. This route of administration, although very effective,<br />

is also very <strong>la</strong>borious, time-consuming, stressful for fish and difficult to apply to<br />

fingerlings [28, 29]. Oral administration of immunostimu<strong>la</strong>nts is a non-stressful method<br />

with minimum economic cost and effort and <strong>en</strong>ables mass administration regardless of<br />

the fish size [7], but studies addressing this route of administration are scarce and<br />

usually inclu<strong>de</strong> only algal extracts instead of whole cells [22].<br />

In this study the pot<strong>en</strong>tial immunostimu<strong>la</strong>nt effect of aqueous and ethanolic<br />

extracts obtained from P. cru<strong>en</strong>tum on the respiratory burst activity of S<strong>en</strong>egalese sole<br />

phagocytes has be<strong>en</strong> <strong>de</strong>termined. In addition, the pot<strong>en</strong>tial stimu<strong>la</strong>tion of the respiratory<br />

burst activity of phagocytes iso<strong>la</strong>ted from fish fed with a commercial diet supplem<strong>en</strong>ted<br />

with P. cru<strong>en</strong>tum cells has be<strong>en</strong> studied. In this case, pot<strong>en</strong>tial synergetic or antagonic<br />

effects resulting from the alga diet and vaccination against P. damse<strong>la</strong>e subsp. piscicida<br />

have be<strong>en</strong> evaluated.<br />

Materials and Methods<br />

2.1. Microorganisms<br />

The virul<strong>en</strong>t strain Lg h41/01 of Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

iso<strong>la</strong>ted from diseased S<strong>en</strong>egalese sole [16] was selected to test the respiratory burst<br />

activity of sole phagocytes. The bacterial strain was cultured on tryptic soy agar (Oxoid)<br />

supplem<strong>en</strong>ted with 1.5% NaCl (TSAs) for 24 h at 22 ºC. Bacterial susp<strong>en</strong>sions for<br />

respiratory burst assays were obtained from tubes containing tryptic soy broth (Oxoid)<br />

ad<strong>de</strong>d with 1.5% NaCl (TSBs) inocu<strong>la</strong>ted with one colony from a TSAs p<strong>la</strong>te and<br />

incubated at 22 ºC for 24 h. Th<strong>en</strong>, the cultures were c<strong>en</strong>trifuged at 6000 xg for 15 min at<br />

4 ºC, and pellets were resusp<strong>en</strong><strong>de</strong>d in L-15 medium at an optical <strong>de</strong>nsity (600 nm) equal<br />

to 1(10 8 cells ml -1 ).<br />

4


2.2. Alga culture<br />

The red microalga Porphyridium cru<strong>en</strong>tum (S.F. Gray) Näegli was obtained<br />

from the collection at the C<strong>en</strong>tro <strong>de</strong> Investigaciones Marinas <strong>de</strong> Cádiz, Cádiz, Spain. It<br />

was grown in Porphyridium medium [30] in batch culture at 25ºC, with a 12h<br />

photoperiod for 7 days. The algal biomass was c<strong>en</strong>trifuged at 3000 xg, 15 min at 4ºC<br />

and the pellet was lyophilized.<br />

2.3. Obt<strong>en</strong>tion of aqueous and ethanolic extracts<br />

The preparation of water-soluble extract, aqueous extract, was carried out as<br />

follows: 10 g of lyophilized alga was resusp<strong>en</strong><strong>de</strong>d in 100 ml of HBSS (Hank’s Ba<strong>la</strong>nced<br />

Salt Solution) using a mortar and pestle. The extract was sonicated for 20 min and<br />

c<strong>en</strong>trifuged at 3000 xg, 5 min. The supernatant was separated from the pellet and<br />

lyophilized and 10 mg of the lyophilized extract was resusp<strong>en</strong><strong>de</strong>d in 1 ml of HBSS.<br />

Extraction of the non-soluble fraction of the alga, ethanolic extract, was carried out as<br />

<strong>de</strong>scribed above, but instead of HBSS, ethanol was used. Dilutions from both extracts<br />

were prepared in HBSS to achieve conc<strong>en</strong>trations of 10 mg ml -1 of lyophilized extract, 5<br />

mg ml -1 , 2 mg ml -1 and 1 mg ml -1 .<br />

Commercial β-1,3-glucan from Eugl<strong>en</strong>a gracilis (BioChemika Fluka, Sigma)<br />

was used as a positive control of stimu<strong>la</strong>tion of respiratory burst activity. β-1,3-glucan<br />

(10 mg) was dissolved following commercial instructions, and diluted in HBSS to<br />

achieve conc<strong>en</strong>trations of 10 mg ml -1 , 5 mg ml -1 , 2 mg ml -1 and 1 mg ml -1 .<br />

2.4. Fish and experim<strong>en</strong>tal <strong>de</strong>sign<br />

Experim<strong>en</strong>ts to test the in vitro effect of P. cru<strong>en</strong>tum on the respiratory burst<br />

activity of sole phagocytes were carried out. Sole of 200 g body weight, stocked in 250 l<br />

tanks with recircu<strong>la</strong>ting, aerated seawater at 20 ºC, 35‰ salinity, were used to iso<strong>la</strong>te<br />

kidney phagocytes and <strong>de</strong>termine the production of anion radicals in contact with<br />

aqueous and ethanolic extracts from P. cru<strong>en</strong>tum and the commercial β-1,3-glucan.<br />

5


Feeding assays were carried out with soles of 80 g mean body weight, which<br />

were randomly separated into six experim<strong>en</strong>tal groups, and stocked in six 250 l tanks<br />

(20 fish per tank) with simi<strong>la</strong>r culture conditions to those <strong>de</strong>scribed above.<br />

The diet assayed was prepared in the <strong>la</strong>boratory from the commercial pellet diet<br />

routinely used in fish farms (Skreeting, Trouw España, Nutreco, Burgos, Spain).<br />

Briefly, the commercial pellet diet was crushed and mixed with tap water before adding<br />

the lyophilized alga Porphyridium cru<strong>en</strong>tum at the <strong>de</strong>sired conc<strong>en</strong>tration (10 g kg -1 ), and<br />

th<strong>en</strong> ma<strong>de</strong> into pellets again. The re-ma<strong>de</strong> pellets were allowed to dry and stored at 4 ºC<br />

until use.<br />

The commercial pellet Sanostim (Skreeting, Trouw España, Nutreco, Burgos,<br />

Spain), containing β-glucans, was used to test the response of sole phagocytes. Two<br />

groups of fish received daily one of the differ<strong>en</strong>t diets assayed: diet consisting of nonsupplem<strong>en</strong>ted<br />

commercial diet (control group); diet composed of the commercial diet<br />

containing immunostimu<strong>la</strong>nt Sanostim; and finally, a commercial diet supplem<strong>en</strong>ted<br />

with lyophilized alga (1%). Fish were fed at a rate of 20 g dry diet kg -1 biomass (2 %)<br />

per day for 4 weeks. The biomass of the fish in each aquarium was measured before the<br />

experim<strong>en</strong>t and daily ration, being adjusted accordingly. No mortality was observed<br />

during the experim<strong>en</strong>t.<br />

2.5. Immunization assay<br />

Two weeks after beginning the feeding trial, fish from one tank per treatm<strong>en</strong>t<br />

were intraperitoneally inocu<strong>la</strong>ted with a bacterin of P. damse<strong>la</strong>e subsp. piscicida. The<br />

formalin-killed aqueous vaccine was prepared with a virul<strong>en</strong>t strain of P. damse<strong>la</strong>e<br />

subsp. piscicida (Lg h411/01 ) iso<strong>la</strong>ted from diseased sole [16] according to the following<br />

protocol. Briefly, bacteria were cultured on TSAs for 24 h and one colony was<br />

inocu<strong>la</strong>ted in tubes containing 5 ml of TSBs. After 18 h incubation at 22 ºC, an aliquot<br />

of the culture, 50 μl, was inocu<strong>la</strong>ted in f<strong><strong>la</strong>s</strong>ks with 50 ml TSBs and incubated at 22ºC<br />

with continuous shaking. After 18 h incubation the culture achieved O.D. 600 of 1.2.<br />

The total bacterial number was counted, obtaining a bacterial conc<strong>en</strong>tration of 6 x 10 8<br />

bacteria ml -1 . Th<strong>en</strong> bacterial cells were killed by addition of formal<strong>de</strong>hy<strong>de</strong> to achieve<br />

1% final conc<strong>en</strong>tration, and overnight incubation. Sterility tests were performed by<br />

6


spreading an aliquot of the bacterin on TSA p<strong>la</strong>tes and incubation for 2 days at 22 ºC.<br />

The vaccine was administered by intraperitoneal injection (0.1 ml per fish). Control fish<br />

were injected with phosphate buffer saline (PBS, pH 7.2).<br />

2.6. Iso<strong>la</strong>tion of head kidney phagocytes<br />

Sole phagocytes were iso<strong>la</strong>ted from the kidney following the technique<br />

<strong>de</strong>scribed by Secombes [31]. Briefly, the kidney was removed aseptically and pushed<br />

through a 100 μm nylon mesh with Leibovitz medium (L-15) containing 2% foetal calf<br />

serum (FCS, Sigma), 1% p<strong>en</strong>icillin-streptomycin (Sigma), 0.1 % (5 mg ml -1 )<br />

g<strong>en</strong>tamicine (Sigma) (P/S/G) and 10 U heparine ml -1 . This cell susp<strong>en</strong>sion was <strong>la</strong>yered<br />

on a 30 to 51% Percoll (Amersham) gradi<strong>en</strong>t and c<strong>en</strong>trifuged at 600 xg for 30 min.<br />

Th<strong>en</strong> the bands separated at the interface were resusp<strong>en</strong><strong>de</strong>d in L-15 medium<br />

supplem<strong>en</strong>ted with P/S/G. The viable cell conc<strong>en</strong>tration was <strong>de</strong>termined after staining<br />

with trypan blue and microscope counting. Aliquots of 100 μl containing 1x10 7 cells ml -<br />

1 in L-15 medium supplem<strong>en</strong>ted with P/S/G were ad<strong>de</strong>d to 96-well microtitre p<strong>la</strong>tes.<br />

After 3 h incubation at 22 ºC, non-adher<strong>en</strong>t cells were removed and medium was<br />

substituted by L-15 and P/S/G supplem<strong>en</strong>ted with 2% FCS. Mono<strong>la</strong>yers were incubated<br />

overnight at 22 ºC.<br />

2.7. Respiratory burst activity<br />

The g<strong>en</strong>eration of intracellu<strong>la</strong>r superoxi<strong>de</strong> radicals by sole phagocytes was<br />

<strong>de</strong>termined by the reduction of nitro-blue tetrazolium (NBT) according to the technique<br />

<strong>de</strong>scribed by Secombes [31] and Boes<strong>en</strong> et al. [32]. Phagocyte mono<strong>la</strong>yers were washed<br />

with L-15 medium and HBSS (Hank´s Ba<strong>la</strong>nced Salt Solution) to remove any trace of<br />

the antibiotic.<br />

In or<strong>de</strong>r to test the in vitro effects of algal extracts on the production of<br />

superoxi<strong>de</strong> radicals by sole phagocytes, a volume of 20 μl of the extracts (aqueous,<br />

ethanolic or β-glucan) were ad<strong>de</strong>d to the wells (15 wells from 5 fish) containing<br />

phagocyte mono<strong>la</strong>yers prepared as above. Th<strong>en</strong>, 100 μl of NBT dissolved at 1 mg ml -1<br />

in HBSS was ad<strong>de</strong>d to the wells and the phagocytes incubated at 22 ºC for 30 min.<br />

Wells containing phagocytes were infected with 20 μl of P. damse<strong>la</strong>e subsp. piscicida<br />

7


(10 8 bacterias ml -1 ) and used to <strong>de</strong>termine the response of the phagocytes to the fish<br />

pathog<strong>en</strong>. As a positive control phorbol myristate acetate (PMA, Sigma) (1 μg ml -1 ) was<br />

used to stimu<strong>la</strong>te the respiratory burst activity of non-infected phagocytes (data not<br />

shown). The specificity of the reaction was tested by adding superoxi<strong>de</strong> dismutase<br />

(SOD) (300 I.U. per well) to some wells containing PMA-stimu<strong>la</strong>ted phagocytes (data<br />

not shown). After incubation, cells were fixed in 70% methanol and the reduced<br />

formazan within phagocytes was solubilised by adding 120 μl 2M KOH and 140 μl<br />

dimethyl sulfoxi<strong>de</strong> (DMSO, Sigma). Finally, absorbance was read at 630 nm in a<br />

multiscan spectrophotometer (UV-1601 Spectrophotometer, Whitakker Bioproducts).<br />

In the P. cru<strong>en</strong>tum feeding experim<strong>en</strong>ts, the effect of oral administration of the<br />

alga or Sanostim was <strong>de</strong>termined on phagocyte mono<strong>la</strong>yers as <strong>de</strong>scribed above, but<br />

algal extracts or bacteria were not ad<strong>de</strong>d to the wells.<br />

2.8. Statistical analysis<br />

Results are expressed as the stimu<strong>la</strong>tion in<strong>de</strong>x (mean + standard error, SE),<br />

obtained by dividing each sample value by the mean control value. Values higher than 1<br />

reflect an increase and lower than 1 a <strong>de</strong>crease in each parameter compared to the<br />

control. Data were statistically analysed by one-way analysis of variance (ANOVA) and<br />

Tukey’s comparison of means using SPSS for Windows. Differ<strong>en</strong>ces were consi<strong>de</strong>red<br />

statistically significant wh<strong>en</strong> P< 0.05.<br />

3. Results<br />

3.1. In vitro assays<br />

Results have be<strong>en</strong> expressed as the ratio of the absorbance at 630 nm of treated<br />

phagocytes to the absorbance of non-treated phagocytes. The treatm<strong>en</strong>t of phagocytes<br />

consisted of incubation with aqueous (Figure 1a) or ethanolic (Figure 1b) algal extracts<br />

or β-glucan (Figure 1c), in the pres<strong>en</strong>ce or abs<strong>en</strong>ce of P. damse<strong>la</strong>e subsp. piscicida.<br />

Therefore the data repres<strong>en</strong>ted in the Figures are the result of a corre<strong>la</strong>tion betwe<strong>en</strong><br />

phagocytes incubated with the algal extract or β-glucan, with or without bacteria, and<br />

phagocytes incubated without the pot<strong>en</strong>tial immunostimu<strong>la</strong>nt (algal extract or β-glucan).<br />

8


The results obtained show that extract from P. cru<strong>en</strong>tum is not able to<br />

significantly increase the respiratory burst activity of sole phagocytes, both incubated<br />

with and without bacteria (Figures 1a and 1b). Only the commercial β-glucan (10 mg<br />

ml -1 ) significantly <strong>en</strong>hanced (P


are in agreem<strong>en</strong>t with the data reported by Castro et al. [35], who observed increases in<br />

the respiratory burst activity of the head kidney phagocytes of turbot and gilthead<br />

seabream incubated with differ<strong>en</strong>t conc<strong>en</strong>trations of β-glucans obtained from fungi and<br />

yeasts. The fact that several authors found significant variations in the stimu<strong>la</strong>tory<br />

capacities of algal extracts <strong>de</strong>p<strong>en</strong>ding not only on their origin, but on the conc<strong>en</strong>trations<br />

used and time of incubation [23] does not rule out a pot<strong>en</strong>tial in vitro modu<strong>la</strong>tion of<br />

respiratory burst activity by P. cru<strong>en</strong>tum extracts. Thus, higher conc<strong>en</strong>trations and<br />

longer incubation times need to be assayed.<br />

The results obtained in the in vivo assays showed that fish immunized with a<br />

bacterin against P. damse<strong>la</strong>e subsp. piscicida and receiving the diet supplem<strong>en</strong>ted with<br />

the alga P. cru<strong>en</strong>tum significantly increased the respiratory burst activity of their<br />

phagocytes after four weeks of the feeding treatm<strong>en</strong>t. This increase was higher than that<br />

obtained in the group of fish fed with the diet supplem<strong>en</strong>ted with Sanostim for four<br />

weeks. These stimu<strong>la</strong>ted phagocytes may be more effici<strong>en</strong>t in the inactivation of<br />

intracellu<strong>la</strong>r pathog<strong>en</strong>s such as P. damse<strong>la</strong>e subsp. piscicida than other phagocytes<br />

which had not be<strong>en</strong> in contact with the compon<strong>en</strong>ts of the alga assayed. However,<br />

experim<strong>en</strong>ts to test the bactericidal activity of phagocytes from sole specim<strong>en</strong>s fed with<br />

this diet should be consi<strong>de</strong>red in or<strong>de</strong>r to confirm this hypothesis.<br />

Evi<strong>de</strong>nce is increasing to support the ess<strong>en</strong>tiality of nutri<strong>en</strong>ts for maintaining a<br />

normal immune system in fish [22, 36]. These nutri<strong>en</strong>ts are proteins, ess<strong>en</strong>tial fatty<br />

acids, polysacchari<strong>de</strong>s, vitamins C and E, and some oligoelem<strong>en</strong>ts such as Se and Zn<br />

[37, 38]. P. cru<strong>en</strong>tum is a red microalga member of Rodophyta, of the or<strong>de</strong>r of<br />

Porphyridiales, with spherical cells that <strong>la</strong>ck a rigid cell wall. This alga accumu<strong>la</strong>tes<br />

<strong>la</strong>rge amounts of lipids, specially arachidonic acid and noticeable amounts of<br />

eicosap<strong>en</strong>ta<strong>en</strong>oic acid, these being substances which have be<strong>en</strong> reported as<br />

immunostimu<strong>la</strong>nts [39, 40]. The avai<strong>la</strong>ble carbohydrates ranged from 40 to 57% [41].<br />

Differ<strong>en</strong>t carbohydrates have be<strong>en</strong> reported previously as immunostimu<strong>la</strong>nt active on<br />

fish phagocytes [7, 23, 33, 40-48]. Morris et al. [26] suggested a pot<strong>en</strong>tial<br />

immunostimu<strong>la</strong>nt activity of the polysacchari<strong>de</strong>s iso<strong>la</strong>ted from cultures of P. cru<strong>en</strong>tum<br />

on the metabolic and functional action of mice phagocytes. This alga also contains <strong>la</strong>rge<br />

amounts of carot<strong>en</strong>es [41] and several studies have reported that the carot<strong>en</strong>oids<br />

10


increase the resistance to diseases [49] and they modu<strong>la</strong>te some of the innate <strong>de</strong>f<strong>en</strong>se<br />

mechanisms in fish such as rainbow trout [22]. Other substances pres<strong>en</strong>t in this alga are<br />

vitamins such as tocopherol, vitamins K and C, the <strong>la</strong>tter having be<strong>en</strong> reported as a very<br />

important immunostimu<strong>la</strong>nt [44, 50-52]. Due to the fact that this alga contains differ<strong>en</strong>t<br />

immunostimu<strong>la</strong>nt substances, its use could g<strong>en</strong>erate a more g<strong>en</strong>eral immune response as<br />

has be<strong>en</strong> proposed for other microorganisms such as yeasts [8, 53].<br />

Castro et al. [23] reported that wh<strong>en</strong> turbot phagocytes were pre-incubated with<br />

water–soluble extracts of Chondrus crispus and th<strong>en</strong> incubated with PMA, the extracts<br />

had a priming effect on fish cells. Supplem<strong>en</strong>tation of the diet with whole cells of P.<br />

cru<strong>en</strong>tum fed to the fish during a four-week period did not show a pot<strong>en</strong>tial priming<br />

effect on the respiratory burst activity of sole phagocytes. This finding could indicate<br />

that this alga does not have the ability to induce the priming effect reported for C.<br />

crispus or that the oral administration of the alga did not supply the phagocytes with<br />

levels of immunostimu<strong>la</strong>nt capable of facilitating this priming effect.<br />

Val<strong>en</strong>te et al. [19] suggested that the inclusion of dry pellet of the red<br />

macroalga Graci<strong>la</strong>ria bursa-pastoris and the gre<strong>en</strong> macroalga Ulva rigida, up to 10%<br />

can be consi<strong>de</strong>red as very interesting ingredi<strong>en</strong>ts in diets for sea bass juv<strong>en</strong>iles, as no<br />

negative consequ<strong>en</strong>ces on growth performance, nutri<strong>en</strong>t utilization or body composition<br />

were observed. On the other hand, the inclusion of the red macroalga Graci<strong>la</strong>ria cornea<br />

should be limited to 5% of the diet.<br />

The stimu<strong>la</strong>tion of sole phagocytes has be<strong>en</strong> observed only wh<strong>en</strong> fish with P.<br />

cru<strong>en</strong>tum were immunized with the P. damse<strong>la</strong>e subsp. piscicida bacterin. Sakai [28]<br />

indicates that the combination of vaccination and immunostimu<strong>la</strong>nt administration may<br />

increase the pot<strong>en</strong>cy of vaccines. J<strong>en</strong>ey and An<strong>de</strong>rson [54] reported that rainbow trout<br />

bathed in A. salmonicida O-antig<strong>en</strong> in combination with immunostimu<strong>la</strong>nts (levamisole,<br />

quaternary ammonium compound –QAC- and a polypepti<strong>de</strong> <strong>de</strong>rived from fish products<br />

–ISK-) <strong>en</strong>hanced phagocytosis by leucocytes and antibody titers against A. salmonicida,<br />

and showed adjuvant effects with vaccination. Sakai et al. [55] reported that R.<br />

salmoninarum-vaccinated rainbow trout receiving EF203, the ferm<strong>en</strong>ted product of<br />

chick<strong>en</strong> eggs, showed higher phagocytic activities and NBT responses in kidney<br />

leucocytes wh<strong>en</strong> compared to vaccinated fish without EF203 treatm<strong>en</strong>t or to<br />

11


unvaccinated fish. However, the serum agglutinating antibody titers of vaccinated fish<br />

did not show a significant increase compared to control groups, and vaccinated fish<br />

treated with EF203 showed slightly increased survival in comparison with the other<br />

groups following R. salmoninarum chall<strong>en</strong>ge. The adjuvant effects of yeast glucan have<br />

also be<strong>en</strong> <strong>de</strong>monstrated. Injection of the A. salmonicida vaccine and yeast glucan in<br />

At<strong>la</strong>ntic salmon <strong>en</strong>hanced antibody responses [56] and induced significantly increased<br />

protection against furunculosis over vaccines without yeast glucan [57]. The injection of<br />

yeast glucan alone did not afford protection. Baulny et al. [58] reported that oral<br />

administration of yeast glucan to turbot immersed in the V. anguil<strong>la</strong>rum bacterin also<br />

increased protection compared to the bacterin alone, but simi<strong>la</strong>r to the results obtained<br />

in this work with β-glucan from Eugl<strong>en</strong>a gracilis, yeast glucan alone did not <strong>en</strong>hance<br />

protection against V. anguil<strong>la</strong>rum infection.<br />

P. cru<strong>en</strong>tum has advantages in its culture, such as fast growth and low cost.<br />

This makes it easier to work with at known conc<strong>en</strong>tration, compared with using soluble<br />

substances such as vitamins, which exist as micronutri<strong>en</strong>ts in feed and are very s<strong>en</strong>sitive<br />

to differ<strong>en</strong>t factors (light, humidity, temperature). On the other hand P. cru<strong>en</strong>tum could<br />

be a natural immunostimu<strong>la</strong>nt, which is biocompatible, bio<strong>de</strong>gradable and safe for the<br />

<strong>en</strong>vironm<strong>en</strong>t and human health. In this way, these algae could be inclu<strong>de</strong>d in the groups<br />

of differ<strong>en</strong>t whole microorganisms, alive or not, such as yeast [8, 53], fungi [59] and<br />

bacteria [60-62] which increase disease resistance in mammals and fish. In fish, as in<br />

other aquatic organisms, the whole microorganisms administered have be<strong>en</strong> mainly<br />

bacterial species, such as probiotics [60-66], but algae can repres<strong>en</strong>t another promising<br />

alternative [18, 25], although studies about whole algae are still very scarce.<br />

In conclusion, this study provi<strong>de</strong>s a <strong>de</strong>scription of the stimu<strong>la</strong>tion of the<br />

respiratory burst activity of phagocytes from sole vaccinated with a bacterin against P.<br />

damse<strong>la</strong>e subsp. piscicida and fed with cells from P. cru<strong>en</strong>tum.<br />

Acknowledgem<strong>en</strong>ts<br />

This study has be<strong>en</strong> supported by a grant from the Spanish Governm<strong>en</strong>t<br />

(AGL2002-01488). P. Díaz-Rosales thanks the Ministerio Español <strong>de</strong> Educación y<br />

12


Ci<strong>en</strong>cia for a F.P.U. scho<strong>la</strong>rship. The authors thank the PROMAN (Promotora<br />

Alpujarreña <strong>de</strong> Negocios, S.L., Motril, Granada, Spain) fishery for its help and<br />

participation in this study; J.M. León-Rubio for his help in fish diet preparation and<br />

Tracey Coffey for her help in the English revision of the manuscript.<br />

5. Refer<strong>en</strong>ces<br />

[1] Dinis, MT, Ribeiro, L, Soares, F and Sarasquete, C. A review on the cultivation<br />

pot<strong>en</strong>tial of Solea s<strong>en</strong>egal<strong>en</strong>sis in Spain and in Portugal. Aquaculture 1999; 176:<br />

27-38.<br />

[2] Austin, B and Austin, DA. Bacterial fish pathog<strong>en</strong>s: disease of farmed and wild fish.<br />

3 rd ed. Godalming: Springer-Praxis; 1999.<br />

[3] Arijo, S, Chabrillón, M, Díaz-Rosales, P, Rico, RM, Martínez-Manzanares, E,<br />

Balebona, MC, Toranzo, AE and Moriñigo, MA. Bacteria iso<strong>la</strong>ted from outbreaks<br />

affecting cultured sole, Solea s<strong>en</strong>egal<strong>en</strong>sis (Kaup). Bulletin of European<br />

Association of Fish Pathologists 2005; 25: 148-54.<br />

[4] Miranda, CD and Zemelman, R. Antibiotic resistant bacteria in fish from the<br />

Concepcion Bay, Chile. Marine Pollution Bulletin 2001; 42: 1096-102.<br />

[5] Radu, S, Ahmad, N, Ling, FH and Reeza, A. Preval<strong>en</strong>ce and resistance to antibiotics<br />

for Aeromonas species from retail fish in Ma<strong>la</strong>ysia. International Journal of Food<br />

Microbiology 2003; 81: 261-6.<br />

[6] Zorril<strong>la</strong>, I, Chabrillón, M, Arijo, S, Díaz-Rosales, P, Martínez-Manzanares, E,<br />

Balebona, MC and Moriñigo, MA. Bacteria recovered from diseased cultured<br />

gilthead sea bream (Sparus aurata L.) in southwestern Spain. Aquaculture 2003;<br />

218: 11-20.<br />

[7] Esteban, MA, Cuesta, A, Ortuño, J and Meseguer, J. Immunomodu<strong>la</strong>tory effects of<br />

dietary intake of chitin on gilthead seabream (Sparus aurata L.) innate immune<br />

system. Fish & Shellfish Immunology 2001; 11: 303-15.<br />

[8] Ortuño, J, Cuesta, A, Rodríguez, A, Esteban, MA and Meseguer, J. Oral<br />

administration of yeast, Saccharomyces cerevisiae, <strong>en</strong>hances the cellu<strong>la</strong>r innate<br />

13


immune response of gilthead seabream (Sparus aurata, L.). Veterinary<br />

Immunology & Immunopathology 2002; 85: 41-50.<br />

[9] Cuesta, A, Esteban, MA and Meseguer, J. Tumoricidal activity of gilthead seabream<br />

(Sparus aurata, L.) natural cytotoxic cells role p<strong>la</strong>yed in vitro and in vivo by<br />

retinol acetate. Fish & Shellfish Immunology 2003; 14: 133-44.<br />

[10] Kumari, J and Sahoo, PK. Dietary β-1,3 glucan pot<strong>en</strong>tiates innate immunity and<br />

disease resistance of Asian catfish, C<strong>la</strong>rias batrachus (L.). Journal of Fish<br />

Diseases 2006; 29: 95-101.<br />

[11] Skarmeta, AM, Bandín, L, Santos, Y and Toranzo, AE. In vitro killing of<br />

Pasteurel<strong>la</strong> piscicida by fish macrophages. Diseases of Aquatic Organisms 1995;<br />

23: 51-7.<br />

[12] Barnes, AC, Balebona, MC, Horne, M and Ellis, AE. Superoxi<strong>de</strong> dismutase and<br />

cata<strong><strong>la</strong>s</strong>e in Photobacterium damse<strong>la</strong>e subsp. piscicida and their roles in resistance<br />

to reactive oxyg<strong>en</strong> species. Microbiology 1999; 145: 483-94.<br />

[13] Noya, M, Magariños, B, Toranzo, AE and Lamas, J. Sequ<strong>en</strong>tial pathology of<br />

experim<strong>en</strong>tal pasteurellosis in gilthead sea bream, Sparus aurata. A light and<br />

electron microscopic study. Diseases of Aquatic Organisms 1995; 21: 177-86.<br />

[14] López-Dóriga, MV, Barnes, AC, dos Santos, NMS and Ellis, AE. Invasion of fish<br />

epithelial cells by Photobacterium damse<strong>la</strong>e subsp. piscicida: evi<strong>de</strong>nce for<br />

receptor specificity, and effect of capsule and serum. Microbiology 2000; 146: 21-<br />

30.<br />

[15] Romal<strong>de</strong>, JL. Photobacterium damse<strong>la</strong>e subsp. piscicida: an integrated view of a<br />

bacterial fish pathog<strong>en</strong>. International Microbiology 2002; 5: 3-11.<br />

[16] Díaz-Rosales, P, Chabrillón, M, Moriñigo, MA and Balebona, MC. Survival of<br />

exog<strong>en</strong>ous hydrog<strong>en</strong> peroxi<strong>de</strong> of Photobacterium damse<strong>la</strong>e subsp. piscicida un<strong>de</strong>r<br />

differ<strong>en</strong>t culture conditions. Journal of Fish Diseases 2003; 26: 305-8.<br />

[17] Elkamel, AA, Hawke, JP, H<strong>en</strong>k, WG and Thune, RL. Photobacterium damse<strong>la</strong>e<br />

subsp. piscicida is capable of replicating in hybrid striped bass macrophages.<br />

Journal of Aquatic Animal Health 2003; 15: 175-83.<br />

14


[18] Bansemir, A, Blume, M, Schrö<strong>de</strong>r, S and Lin<strong>de</strong>quist, U. Scre<strong>en</strong>ing of cultivated<br />

seaweeds for antibacterial activity against fish pathog<strong>en</strong>ic bacteria. Aquaculture<br />

2006; 252: 79-84.<br />

[19] Val<strong>en</strong>te, LMP, Gouveia, A, Rema, P, Matos, J, Gomes, EF and Pinto, IS.<br />

Evaluation of three seaweeds Graci<strong>la</strong>ria bursa-pastoris, Ulva rigida and<br />

Graci<strong>la</strong>ria cornea as dietary ingredi<strong>en</strong>ts in European sea bass (Dic<strong>en</strong>trarchus<br />

<strong>la</strong>brax) juv<strong>en</strong>iles. Aquaculture, 2006; 252: 85-91.<br />

[20] Lin<strong>de</strong>quist, U and Schwe<strong>de</strong>r, T. Marine biotechnology. In: Rehm, HJ, Reed, G,<br />

editors, Biotechnology, Wiley-VHC, Weinheim; 2001, p. 441-84.<br />

[21] Newman, DJ, Cragg, GM and Sna<strong>de</strong>r, KM. Natural products as source of new<br />

drugs over the period 1981-2002. Journal of Natural Products 2003; 66: 1022-37.<br />

[22] Amar, EC, Kiron, V, Satho, S and Watanabe, T. Enhancem<strong>en</strong>t of innate immunity<br />

in rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake<br />

of carot<strong>en</strong>oids from natural products. Fish & Shellfish Immunology 2004; 16: 527-<br />

37.<br />

[23] Castro, R, Zarra, I and Lamas, J. Watersoluble seaweed extracts modu<strong>la</strong>te the<br />

respiratory burst activity of turbot phagocytes. Aquaculture 2004; 229: 67-78.<br />

[24] Díaz-Rosales, P, Burmeister, A, Aguilera, J, Korbee, N, Moriñigo, MA, Figueroa,<br />

FL, Chabrillón, M, Arijo, S, Lin<strong>de</strong>squit, U and Balebona, MC. Scre<strong>en</strong>ing of algal<br />

extracts as pot<strong>en</strong>tial stimu<strong>la</strong>nts of chemotaxis and respiratory burst activity of<br />

phagocytes from sole (Solea s<strong>en</strong>egal<strong>en</strong>sis). Bulletin of European Association of<br />

Fish Pathologists 2005; 25: 9-19.<br />

[25] Hou, WY and Ch<strong>en</strong>, JC. The immunostimu<strong>la</strong>tory effect of hot-water extract of<br />

Graci<strong>la</strong>ria t<strong>en</strong>uistipitata on the white shrimp Litop<strong>en</strong>aeus vannamei and its<br />

resistance against Vibrio alginolyticus. Fish & Shellfish Immunology 2005; 19:<br />

127-38.<br />

[26] Morris, HJ, Martínez, CE, Abda<strong>la</strong>, RT and Cobas, G. Evi<strong>de</strong>ncias preliminares <strong>de</strong> <strong>la</strong><br />

actividad inmunomodu<strong>la</strong>dora <strong>de</strong> <strong>la</strong> fracción polisacarídica <strong>de</strong> orig<strong>en</strong> marino PC-1.<br />

Revista Cubana <strong>de</strong> Oncología 2000; 16: 171-6 [in Spanish].<br />

15


[27] Duncan, PL and Klesius, PH. Effects of feeding Spirulina on specific and<br />

nonspecific immune responses of channel catfish. Journal of Aquatic Animal<br />

Health 1996; 8: 308-13.<br />

[28] Sakai, M. Curr<strong>en</strong>t research status of fish immunostimu<strong>la</strong>nts. Aquaculture 1999;<br />

172: 63-92.<br />

[29] Smith, V, Brown, JH and Hauton, C. Immunostimu<strong>la</strong>tion in crustaceans: does it<br />

really protect against infection Fish & Shellfish Immunology, 2003; 15: 71-90.<br />

[30] Vonshak, A. Porphyridium. In: Borowitzka MA, Borowitzka L, editors.<br />

Microalgal Biotechnology, Cambridge University Press; 1988, p. 122-35.<br />

[31] Secombes, CJ. Iso<strong>la</strong>tion of salmonid macrophages and analysis of their killing<br />

activity. In: Stol<strong>en</strong> JS, Fletcher DP, An<strong>de</strong>rson BS, Roberson, van Muiswinkel<br />

WB, editors. Techniques in Fish Immunology, Fair Hav<strong>en</strong>, NJ, SOS Publication;<br />

1990, p. 137-54.<br />

[32] Boes<strong>en</strong>, HT, Lars<strong>en</strong>, MH, Lars<strong>en</strong>, LH and Ellis, AE. In vitro interactions betwe<strong>en</strong><br />

rainbow trout (Oncorhynchus mykiss) macrophages and Vibrio anguil<strong>la</strong>rum<br />

serogroup O2a. Fish & Shellfish Immunology 2001; 11: 415-31.<br />

[33] Fujiki, K, Matsuyama, H and Yano, T. Effect of hot-water extracts from marine<br />

algae on resistance of carp and yellowtail against bacterial infections. Sci<strong>en</strong>ce<br />

Bulletin, Faculty of Agriculture, Kyushu University 1992; 47: 137-41.<br />

[34] Castro, R, Piazzon, MC, Zarra, I, Leiro, J, Noya, M and Lamas, J. Stimu<strong>la</strong>tion of<br />

turbot phagocytes by Ulva rigida C. Agardh polysacchari<strong>de</strong>s. Aquaculture 2006;<br />

254: 9-20.<br />

[35] Castro, R, Couso, N, Obach, A and Lamas, J. Effect of differ<strong>en</strong>t β-glucans on the<br />

respiratory burst of turbot (Psetta maxima) and gilthead seabream (Sparus aurata)<br />

phagocytes. Fish & Shellfish Immunology 1999; 9: 529-41.<br />

[36] Landolt, ML. The re<strong>la</strong>tionship betwe<strong>en</strong> diet and the immune response. Aquaculture<br />

1989; 79: 193-206.<br />

[37] Kiron, V, Fukuda, H, Takeuchi, T and Watanabe, T. Ess<strong>en</strong>tial fatty acid nutrition<br />

and <strong>de</strong>f<strong>en</strong>se mechanisms in rainbow trout Oncorhynchus mykiss. Comparative<br />

Biochemical Physiology 1995; 111: 361-7.<br />

16


[38] Sealey, WM and Gatlin, DM III. Overview of nutritional strategies affecting health<br />

of marine fish. Journal of Applied Aquaculture 1999; 9: 11-25.<br />

[39] Kinsel<strong>la</strong>, JE, Lokesh, B, Broughton, S and Whe<strong>la</strong>n, J. Dietary polyunsaturated fatty<br />

acids and eicosanoids: pot<strong>en</strong>tial effects on the modu<strong>la</strong>tion of inf<strong>la</strong>mmatory and<br />

immune cells: an overview. Nutrition 1990; 6: 24-44.<br />

[40] Kov<strong>en</strong>, W, Barr, Y, Lutzky, S, B<strong>en</strong>-Atia, I, Weiss, R, Harel, M, Behr<strong>en</strong>s, P and<br />

Tandler, A. The effect of dietary arachidonic acid (20:4n-6) on growth, survival<br />

and resistance to handling stress in gilthead seabream (Sparus aurata) <strong>la</strong>rvae.<br />

Aquaculture 2001; 195: 107-22.<br />

[41] Rebolloso, MM, Acién, GG, Sánchez, JA and Guil, JL. Biomass nutri<strong>en</strong>t profiles of<br />

the microalga Porphyridium cru<strong>en</strong>tum. Food Chemistry 2000; 70: 345-53.<br />

[42] Santarém, M, Novoa, B and Figueras, A. Effects of β-glucans on the non-specific<br />

immune responses of turbot (Scophthalmus maximus L.). Fish & Shellfish<br />

Immunology 1997; 7: 429-37.<br />

[43] Bagni, M, Archetti, L, Amadori, M and Marino, G. Effect on long-term oral<br />

administration of an immunostimu<strong>la</strong>nt diet on innate immunity in sea bass<br />

(Dic<strong>en</strong>trarchus <strong>la</strong>brax). Journal of Veterinary Medicine 2000; 47: 745-51.<br />

[44] J<strong>en</strong>ey, G and J<strong>en</strong>ey, Zs. Application of immunostimu<strong>la</strong>nts for modu<strong>la</strong>tion of the<br />

non-specific <strong>de</strong>f<strong>en</strong>se mechanisms in sturgeon hybrid: Acip<strong>en</strong>ser ruth<strong>en</strong>us x A.<br />

baerii. Journal of Applied Ichthyology 2002; 18: 416-9.<br />

[45] Cook, MT, Hayball, P, Hutchinson, W, Nowak, BF and Hayball, JD.<br />

Administration of a commercial immunostimu<strong>la</strong>nt preparation, EcoActiva, as<br />

feed supplem<strong>en</strong>t <strong>en</strong>hances macrophage respiratory burst and the growth rate of<br />

snapper (Pagrus auratus, Sparidae (Bloch and Schnei<strong>de</strong>r)) in winter. Fish &<br />

Shellfish, 2003; 14: 333-45.<br />

[46] Couso, N, Castro, R, Magariños, B, Obach, A and Lamas, J. Effect of oral<br />

administration of glucans on the resistance of gilthead seabream to pasteurellosis.<br />

Aquaculture 2003; 219: 99-109.<br />

[47] Bagni, M, Romano, N, Finoia, MG, Abelli, L, Scapigliati, G, Tiscard, PG, Sarti, M<br />

and Marino, G. Short- and long- term effects of a dietary yeast β-glucan<br />

17


(Macrogard) and alginic acid (Ergosan) preparation on immune response in sea<br />

bass (Dic<strong>en</strong>trarchus <strong>la</strong>brax). Fish & Shellfish Immunology 2005; 18: 311-25.<br />

[48] Kumar, S, Sahu, NP, Pal, AK, Choudhury, D, Y<strong>en</strong>gkokpam, S and Mukherjee, SC.<br />

Effect of dietary carbohydrate on haematology, respiratory burst activity and<br />

histological changes in L. rohita juv<strong>en</strong>iles. Fish & Shellfish Immunology 2005;<br />

19: 331-44.<br />

[49] Tachinaba, K, Yagi, M, Hara, K, Mishima, T and Tsuchimoto, M. Effects of<br />

feeding β-carot<strong>en</strong>e supplem<strong>en</strong>ted rotifers on survival and lymphocyte proliferation<br />

reaction of fish <strong>la</strong>rvae of Japanese parrotfish (Oplegnathus fasciatus) and Spotted<br />

parrot fish (Oplegnathus punctatus): preliminary trials. Hydrobiologia 1997; 358:<br />

313-6.<br />

[50] Hardie, LJ, Fletcher, TC and Secombes, CJ. The effect of vitamin E on the immune<br />

response of the At<strong>la</strong>ntic Salmon (Salmo sa<strong>la</strong>r L.). Aquaculture 1990; 87: 1-13.<br />

[51] Hardie, LJ, Fletcher, TC and Secombes, CJ. The effect of dietary vitamin C on the<br />

immune response of the At<strong>la</strong>ntic Salmon (Salmo sa<strong>la</strong>r L.). Aquaculture 1991; 95:<br />

201-14.<br />

[52] Ortuño, J, Esteban, MA and Meseguer, J. Effect of high dietary intake vitamin C on<br />

non-specific immune response of gilthead seabream (Sparus aurata L.). Fish &<br />

Shellfish Immunology 1999; 9: 429-43<br />

[53] Rodríguez, A, Cuesta, A, Ortuño, J, Esteban, MA and Meseguer, J.<br />

Immunostimu<strong>la</strong>nt properties of a cell wall-modified whole Saccharomyces<br />

cerevisiae strain administered by diet to seabream (Sparus aurata L.). Veterinary<br />

Immunology & Immunopathology 2003; 96: 183-92.<br />

[54] J<strong>en</strong>ey, G and An<strong>de</strong>rson, DP. Enhanced immune response and protection in rainbow<br />

trout to Aeromonas salmonicida bacterin following prior immersion in<br />

immunostimu<strong>la</strong>nts. Fish & Shellfish Immunology 1993; 3: 51-8.<br />

[55] Sakai, M, Yoshida, T and Kobayashi, M. Influ<strong>en</strong>ce of the immunostimu<strong>la</strong>nt,<br />

EF203, on the immune responses of rainbow trout, Oncorhynchus mykiss, to<br />

R<strong>en</strong>ibacterium salmoninarum. Aquaculture 1995; 138:61-7.<br />

[56] Aakre, R, Werge<strong>la</strong>nd, HI, Aasjord, PM and En<strong>de</strong>rs<strong>en</strong>, C. Enhanced antibody<br />

response in At<strong>la</strong>ntic salmon (Salmo sa<strong>la</strong>r L.) to Aeromonas salmonicida cell wall<br />

18


antig<strong>en</strong>s using a bacterin containing β-1,3-M-glucan as adjuvant. Fish & Shellfish<br />

Immunology 1994; 4: 47-61.<br />

[57] RØsrstad, G, Aasjord, PM and Roberts<strong>en</strong>, B. Adjuvant effect of a yeast glucan in<br />

vaccines against furunculosis in At<strong>la</strong>ntic salmon (Salmo sa<strong>la</strong>r L.) Fish & Shellfish<br />

Immunology 1993; 3: 170-90.<br />

[58] Baulny, MOD, Qu<strong>en</strong>tel, C, Fournier, V, Lamour, F and Gouvello, RL. Effect of<br />

long-term oral administration of β-glucan as an immunostimu<strong>la</strong>nt or an adjuvant<br />

on some non-specific parameters of the immune response of turbot Scophthalmus<br />

maximus. Diseases of Aquatic Organisms 1996; 26: 139-47.<br />

[59] Rodríguez, A, Cuesta, A, Esteban, MA and Meseguer, J. The effect of dietary<br />

administration of the fungu Mucor circinelloi<strong>de</strong>s on non-specific immune<br />

responses of gilthead seabream. Fish & Shellfish Immunology 2004; 16: 241-9.<br />

[60] Verschuere, L, Rombaut, G, Sorgeloos, P and Verstraete, W. Probiotic bacteria as<br />

biological control ag<strong>en</strong>ts. Aquaculture 2000; 64: 1092-2172.<br />

[61] Irianto, A and Austin, B. Use of <strong>de</strong>ad probiotic cells to control furunculosis in<br />

rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases 2003;<br />

26: 59:62.<br />

[62] Díaz-Rosales, P, Salinas, I, Rodríguez, A, Cuesta, A, Chabrillón, M, Balebona,<br />

MC, Moriñigo, MA, Esteban, MA and Meseguer, J. Gilthead seabream (Sparus<br />

aurata L.) innate immune response after dietary administration of heat-inactivated<br />

pot<strong>en</strong>tial probiotics. Fish & Shellfish Immunology 2006; 20: 482-92.<br />

[63] Nikoske<strong>la</strong>in<strong>en</strong>, S, Salmin<strong>en</strong>, S, Bylund, G and Ouwehand, AC. Characterization of<br />

the properties of human- and dairy- <strong>de</strong>rived probiotics for prev<strong>en</strong>tion of infectious<br />

diseases in fish. Applied and Environm<strong>en</strong>tal Microbiology 2001; 67: 2430-5.<br />

[64] Salinas, I, Cuesta, A, Esteban, MA and Meseguer, J. Dietary administration of<br />

Lactobacillus <strong>de</strong>lbrüeckii and Bacillus subtilis, single or combined, on gilthead<br />

seabream cellu<strong>la</strong>r innate immune responses. Fish & Shellfish Immunology 2005;<br />

19: 67-77.<br />

[65] Balcázar, JL, <strong>de</strong> B<strong><strong>la</strong>s</strong>, I, Ruíz-Zarzue<strong>la</strong>, I, Cunningham, D, V<strong>en</strong>drell, D and<br />

Múzquiz, JL. The role of probiotics in aquaculture. Veterinary Microbiology 2006;<br />

114: 173-84.<br />

19


[66] Salinas, I, Díaz-Rosales, P, Cuesta, A, Meseguer, J, Chabrillón, M, Moriñigo, MA<br />

and Esteban, MA. Effect of heat-inactivated fish and non-fish <strong>de</strong>rived probiotics<br />

on the innate immune parameters of a teleost fish (Sparus aurata L.). Veterinary<br />

Immunology &s Immunopathology 2006; 111: 279-89.<br />

20


Figure leg<strong>en</strong>ds<br />

Figure 1. Respiratory burst activity of sole phagocytes incubated with aqueous<br />

(a) or ethanolic (b) extracts of Porphyridium cru<strong>en</strong>tum (1, 2, 5, 10 mg ml -1 ) or β-glucan<br />

(c) in abs<strong>en</strong>ce ( ) or pres<strong>en</strong>ce ( ) of Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

(2x10 6 cells per well). Results are expressed as stimu<strong>la</strong>tion in<strong>de</strong>x (mean ± SE; n=15)<br />

obtained by dividing each sample value by its mean control value (HBSS or P.<br />

damse<strong>la</strong>e subsp. piscicida cells). The symbol * <strong>de</strong>notes statistically significant<br />

differ<strong>en</strong>ces (P


Figure 1a<br />

3<br />

2.5<br />

Stimu<strong>la</strong>tion in<strong>de</strong>x<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

1 2 5 10 mg ml -1<br />

23


Figure 1b<br />

3<br />

2.5<br />

Stimu<strong>la</strong>tion in<strong>de</strong>x<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

1 2 5 10 mg ml -1<br />

25


Figure 1c<br />

Stimu<strong>la</strong>tion in<strong>de</strong>x<br />

3<br />

2.5<br />

2<br />

1. 5<br />

1<br />

0.5<br />

*<br />

*<br />

0<br />

1 2 5 10 mg ml -1<br />

27


Figure 2a<br />

Stimu<strong>la</strong>tion in<strong>de</strong>x<br />

3<br />

2.5<br />

2<br />

1. 5<br />

1<br />

0.5<br />

0<br />

2 weeks 3 weeks 4 weeks<br />

29


Figure 2b<br />

Stimu<strong>la</strong>tion in<strong>de</strong>x<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

*<br />

3 weeks 4 weeks<br />

31


A RTÍCULO 2.2.<br />

A RTICLE 2.2.


Effect of the extracellu<strong>la</strong>r polysaccharidic fraction from the red microalga<br />

Porphyridium cru<strong>en</strong>tum on the respiratory burst activity of sole (Solea s<strong>en</strong>egal<strong>en</strong>sis,<br />

Kaup 1858) phagocytes<br />

Patricia Díaz-Rosales a , Roberto T. Abda<strong>la</strong> b , Juan Decara b , Salvador Arijo a , Félix L.<br />

Figueroa b , M. Ángel Moriñigo a and M. Carm<strong>en</strong> Balebona a*<br />

a Departm<strong>en</strong>t of Microbiology, Faculty of Sci<strong>en</strong>ces. University of Má<strong>la</strong>ga. 29071<br />

Má<strong>la</strong>ga. Spain<br />

b Departm<strong>en</strong>t of Ecology and Geology, Group of Photobiology and Biotechnology of<br />

algae, Faculty of Sci<strong>en</strong>ces. University of Má<strong>la</strong>ga. 29071 Má<strong>la</strong>ga. Spain<br />

* Corresponding author. Tel. +34 952134233 ; fax: +34 952131889<br />

E-mail address: balebona@uma.es (M. Carm<strong>en</strong> Balebona)<br />

1


Abstract<br />

The pot<strong>en</strong>tial effect of extracellu<strong>la</strong>r polysacchari<strong>de</strong> fraction of the red microalga<br />

Porphyridium cru<strong>en</strong>tum on respiratory burst activity of sole phagocytes was evaluated.<br />

In vitro assays were carried out and no immunostimu<strong>la</strong>tory effects were obtained. In in<br />

vivo assays, fish were intraperitoneally injected with 500 μg of polysacchari<strong>de</strong> fraction<br />

and sampled after 24 h and 7 days. These fish were divi<strong>de</strong>d in two groups, immunized<br />

and not immunized with a bacterin against Photobacterium damse<strong>la</strong>e subsp. piscicida.<br />

The results obtained from in vivo assays did not show increase on respiratory burst, on<br />

the contrary, the only significant differ<strong>en</strong>ces were obtained from sole inocu<strong>la</strong>ted with<br />

polysaccharidic fraction or with bacterin, both of them showed a <strong>de</strong>crease on respiratory<br />

burst, 24 h post-inocu<strong>la</strong>tion.<br />

Keywords: Porphyridium cru<strong>en</strong>tum; Photobacterium damse<strong>la</strong>e subsp. piscicida;<br />

Polysacchari<strong>de</strong>s; Immunostimu<strong>la</strong>nts; Respiratory burst; Phagocytes; Sole (Solea<br />

s<strong>en</strong>egal<strong>en</strong>sis, Kaup 1858).<br />

2


1. Introduction<br />

Solea s<strong>en</strong>egal<strong>en</strong>sis (Kaup, 1858) is one of the new candidate species for<br />

aquaculture in the Portuguese and Spanish coasts [1]. One of the main limiting factors<br />

in its production is pseudotuberculosis, due to the bacterial pathog<strong>en</strong> Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida [2-4]. There are several means of protection against this<br />

microorganism, including antibiotherapy, although the use of antibiotics leads to the<br />

appearance of resistant strains [5]. Vaccination is another option which has be<strong>en</strong><br />

<strong>de</strong>monstrated effective protection against pseudotuberculosis in sole [4].<br />

Since immunostimu<strong>la</strong>nts mainly facilitate the function of phagocytic cells and<br />

increase their bactericidal activities, it may be possible that immunostimu<strong>la</strong>nts<br />

administration to fish increase the respiratory burst activity of the phagocytes and<br />

<strong>en</strong>hance the protection against pseudotuberculosis. Several authors have reported that P.<br />

damse<strong>la</strong>e subsp. piscicida has the ability to survive as an intracellu<strong>la</strong>r pathog<strong>en</strong> [6-10].<br />

The search for new immunostimu<strong>la</strong>nt ag<strong>en</strong>ts is mainly due to the great <strong>de</strong>velopm<strong>en</strong>t of<br />

fish farming and the stress situations and diseases, which arise from int<strong>en</strong>sive culture<br />

[11].<br />

Several polysacchari<strong>de</strong>s, such as chitin, chitosan and β-glucans obtained from<br />

crustaceans and yeasts have be<strong>en</strong> used in fish and shellfish as immunostimu<strong>la</strong>nts [11-<br />

18]. Due to their cont<strong>en</strong>t in polysacchari<strong>de</strong>s, algae could be an alternative source to<br />

obtain polysacchari<strong>de</strong>s easily. Polysacchari<strong>de</strong>s from Spirulina p<strong>la</strong>t<strong>en</strong>sis and Chlorel<strong>la</strong><br />

have be<strong>en</strong> <strong>de</strong>monstrated their immunomodu<strong>la</strong>ting capacity in mammalian mo<strong>de</strong>ls [19-<br />

21]. However, few studies have be<strong>en</strong> focused on the immunostimu<strong>la</strong>nt properties of<br />

algal polysacchari<strong>de</strong>s in farmed fish [22, 23, 24]. The red microalga Porphyridium<br />

cru<strong>en</strong>tum excrete a sulphurized polysacchari<strong>de</strong>, commercially used in the industry as<br />

thick<strong>en</strong>er, stabilizer and emulsifier for its gelling properties [25-28]. This<br />

polysacchari<strong>de</strong> is an acidic heteropolymer composed of xylose, glucose, ga<strong>la</strong>ctose and<br />

sulphate esters [29]. In a previous study, Morris et al. [30] suggested a possible<br />

stimu<strong>la</strong>tion of the metabolic and functional action of phagocytic cells of Balb/c mice<br />

after an intraperitoneal administration of polysacchari<strong>de</strong>s iso<strong>la</strong>ted from cultures of P.<br />

cru<strong>en</strong>tum in stationary phase.<br />

3


The aim of this work is to evaluate the immunomodu<strong>la</strong>tory capacity of the<br />

extracellu<strong>la</strong>r polysaccharidic fraction iso<strong>la</strong>ted from P. cru<strong>en</strong>tum on respiratory burst<br />

activity of sole phagocytes against P. damse<strong>la</strong>e subsp. piscicida.<br />

2. Materials and Methods<br />

2.1. Microorganisms<br />

The virul<strong>en</strong>t strain of Photobacterium damse<strong>la</strong>e subsp. piscicida Lg h41/01 iso<strong>la</strong>ted<br />

from diseased sole [17] was selected to test the respiratory burst activity of phagocytes<br />

from S<strong>en</strong>egalese sole treated with and without polysaccharidic fraction of P. cru<strong>en</strong>tum.<br />

The bacterial strain was cultured on tryptic soy agar (Oxoid) supplem<strong>en</strong>ted with 1.5%<br />

NaCl (TSAs) for 24 h at 22 ºC. Bacterial susp<strong>en</strong>sions were obtained from one colony of<br />

the previous culture on TSAs, inocu<strong>la</strong>ted in culture in tryptic soy broth (Oxoid) ad<strong>de</strong>d<br />

with 1.5% NaCl (TSBs) and incubated at 22ºC for 24 h. Th<strong>en</strong>, the cultures were<br />

c<strong>en</strong>trifuged at 2000 xg for 20 min at 4ºC, and pellets resusp<strong>en</strong><strong>de</strong>d in L-15 medium at an<br />

optical <strong>de</strong>nsity (600 nm) equal to 1(10 8 cells ml -1 ).<br />

2.2. Iso<strong>la</strong>tion of the extracellu<strong>la</strong>r polysaccharidic fraction from Porphyridium cru<strong>en</strong>tum<br />

The red microalga P. cru<strong>en</strong>tum (S.F. Gray) Nägeli obtained from the collection<br />

of C<strong>en</strong>tro <strong>de</strong> Investigaciones Marinas <strong>de</strong> Cádiz, Cádiz, Spain was grown in<br />

Porphyridium medium [31] in batch culture at 25 ºC, with 12 h photoperiod for 7 days.<br />

Th<strong>en</strong>, the algal culture was c<strong>en</strong>trifuged at 10000 xg for 10 min.<br />

The polysaccharidic fraction was obtained by selective precipitation of the<br />

exocellu<strong>la</strong>r polysacchari<strong>de</strong>s from the culture supernatant with N-cetylpyridinium<br />

bromi<strong>de</strong> (Cetavlon) 2% (p/v), following the method <strong>de</strong>scribed by Morris et al. [30]. The<br />

pellet was redissolved with 4 M NaCl, and the polysacchari<strong>de</strong> was floccu<strong>la</strong>ted again<br />

with ethanol (96%), c<strong>en</strong>trifuged (10000 xg, 10 min), dialyzed against 2M NaCl and<br />

finally lyophilized. Dilutions from the lyophilised extract were prepared in HBSS to<br />

achieve conc<strong>en</strong>trations of 10 mg of lyophilised per ml, 5 mg ml -1 , 2 mg ml -1 and 1 mg<br />

ml -1 .<br />

4


On the other hand, β-1,3-glucan from Eugl<strong>en</strong>a gracilis (BioChemika Fluka,<br />

Sigma) was used as a positive control. T<strong>en</strong> mg of this compound were dissolved<br />

according to the manufacturer instructions, and diluted in HBSS to achieve<br />

conc<strong>en</strong>trations of 10 mg ml -1 , 5 mg ml -1 , 2 mg ml -1 and 1 mg ml -1 .<br />

2.3. Inocu<strong>la</strong>tion with the polysaccharidic fraction and immunization assay<br />

Specim<strong>en</strong>s of S<strong>en</strong>egalese sole of 50 g mean weight were randomly separated into<br />

groups of 20 fish each, and stocked into six 2500 l tanks with recircu<strong>la</strong>ting, aerated<br />

seawater at 22 ºC, 35‰ salinity and fed daily with a commercial pellet diet (Skreeting,<br />

Skreeting, Trouw España, Nutreco, Burgos, Spain).<br />

Two groups of 20 fish were intraperitoneally injected with a dose of 500 μg of the<br />

extracellu<strong>la</strong>r polysaccharidic fraction from P. cru<strong>en</strong>tum per fish. Phagocytes from two<br />

groups of sole were sampled at 2 and 8 days from algal extract administration. One<br />

group of them was intraperitoneally inocu<strong>la</strong>ted with bacterin of P. damse<strong>la</strong>e subsp.<br />

piscicida, 24 h after the administration by intraperitoneal injection of the<br />

polyssachari<strong>de</strong>. The formalin-killed aqueous vaccine was prepared according to the<br />

following <strong>de</strong>scription. Briefly, the selected strain of P. damse<strong>la</strong>e subsp. piscicida<br />

iso<strong>la</strong>ted from diseased sole in Spain was cultured on TSAs, and one colony was<br />

transferred to one tube containing 5 ml of TSBs for 18 h at 22 ºC. After incubation at 22<br />

ºC for 18 h, an aliquot of the culture, 50 μl, was inocu<strong>la</strong>ted in a f<strong><strong>la</strong>s</strong>k containing 50 ml<br />

TSBs and incubated at 22 ºC for 18 h with continuous shaking. Wh<strong>en</strong> the culture<br />

achieved O.D.600 of 1.2, corresponding to 6 x 10 8 bacteria ml -1 , the cells were killed by<br />

addition of formal<strong>de</strong>hy<strong>de</strong> (1% final conc<strong>en</strong>tration) and incubated overnight. Sterility<br />

trials were performed by spreading an aliquot of the vaccine preparation on TSAs p<strong>la</strong>tes<br />

and incubating for 2 days at 22 ºC. The vaccine was administered by intraperitoneal<br />

injection (0.1 ml per fish). The other two groups of fish were used as the controls and<br />

phosphate buffer saline (PBS, pH 7.2) was inocu<strong>la</strong>ted instead of the algal<br />

polysacchari<strong>de</strong>. One of these groups was vaccinated with a bacterin against P. damse<strong>la</strong>e<br />

subsp. piscicida as <strong>de</strong>scribed above.<br />

5


2.4. Iso<strong>la</strong>tion of head kidney phagocytes<br />

Five specim<strong>en</strong>s of soles of 200 g mean weight were sacrificed by an overdose of<br />

c<strong>la</strong>ve oil and head kidney phagocytes to test respiratory burst activity were iso<strong>la</strong>ted<br />

following the technique <strong>de</strong>scribed by Secombes [32]. Briefly, the kidney was removed<br />

aseptically and pushed through a 100 μm nylon mesh with Leibovitz medium (L-15)<br />

containing 2% foetal bovine serum (FBS, Sigma), 1% p<strong>en</strong>icillin-streptomycin (Sigma),<br />

0.1% (5 mg ml -1 ) g<strong>en</strong>tamicine sulfate (Sigma) (P/S/G) and 10 U heparine ml -1 . This cell<br />

susp<strong>en</strong>sion was <strong>la</strong>yered on a 30 to 51% Percoll (Amersham) gradi<strong>en</strong>t and c<strong>en</strong>trifuged at<br />

600 xg for 30 min, without brake. Th<strong>en</strong>, the bands separated at the interface were<br />

collected, c<strong>en</strong>trifuged for 15 min at 500 xg and resusp<strong>en</strong><strong>de</strong>d in L-15 medium<br />

supplem<strong>en</strong>ted with P/S/G. The viable cell conc<strong>en</strong>tration was <strong>de</strong>termined after staining<br />

with trypan blue and microscope counting. Aliquots of 100 μl containing 1x10 7 cells ml -<br />

1 in L-15 medium supplem<strong>en</strong>ted with P/S/G were ad<strong>de</strong>d to 96-well microtitre p<strong>la</strong>tes.<br />

After 3 h incubation at 22ºC, non-adher<strong>en</strong>t cells were removed and medium was<br />

substituted by L-15 and P/S/G supplem<strong>en</strong>ted with 2%FBS. Mono<strong>la</strong>yers were incubated<br />

overnight at 22ºC, before use.<br />

2.5. Respiratory burst activity<br />

The g<strong>en</strong>eration of intracellu<strong>la</strong>r superoxi<strong>de</strong> radicals by sole phagocytes, in<br />

response to in vitro contact with algal polysacchari<strong>de</strong>, was <strong>de</strong>termined by the reduction<br />

of nitro-blue tetrazolium (NBT) according to the technique <strong>de</strong>scribed by Secombes [32]<br />

and Boes<strong>en</strong> et al. [33]. Volumes of 20 μl containing 1, 2, 5 and 10 mg ml -1 of the<br />

lyophilized polysaccharidic fraction from P. cru<strong>en</strong>tum were ad<strong>de</strong>d to the wells<br />

containing phagocyte mono<strong>la</strong>yers obtained as <strong>de</strong>scribed above. The response of sole<br />

phagocytes to β-glucan from Eugl<strong>en</strong>a gracilis was also evaluated and 20 μl of serial<br />

dilutions containing 1, 2, 5 and 10 mg ml -1 to 12 wells with sole phagocyte mono<strong>la</strong>yers.<br />

Response of sole phagocytes to the infection with P. damse<strong>la</strong>e subsp. piscicida was<br />

<strong>de</strong>termined after inocu<strong>la</strong>tion of algal polysacchari<strong>de</strong> or β-glucan treated mono<strong>la</strong>yers<br />

with 20μl of bacterial susp<strong>en</strong>sions containing 10 8 bacteria ml -1 . Phorbol myristate<br />

acetate (PMA, Sigma) (1 μg ml -1 ) was used as a positive control to stimu<strong>la</strong>te the<br />

respiratory burst activity of sole phagocytes (data not shown). The specifity of the<br />

6


eaction was tested by adding superoxi<strong>de</strong> dismutase (SOD) (300 I.U. per well) to some<br />

wells containing PMA-stimu<strong>la</strong>ted phagocytes (data not shown).<br />

The effect of inocu<strong>la</strong>tion of polysaccharidic fraction to unvaccinated and<br />

vaccinated soles against P. damse<strong>la</strong>e subsp. piscicida on the production of superoxi<strong>de</strong><br />

anions by sole phagocytes was also <strong>de</strong>termined. In this case, phagocytes from control<br />

fish, fish inocu<strong>la</strong>ted with algal polysacchari<strong>de</strong>, and fish inocu<strong>la</strong>ted first with the algal<br />

polysacchari<strong>de</strong> and with the bacterin were iso<strong>la</strong>ted and mono<strong>la</strong>yers prepared. In all the<br />

cases, NBT (100 μl) dissolved at 1 mg ml -1 in HBSS was ad<strong>de</strong>d to the wells and<br />

phagocytes incubated at 22 ºC for 30 min. After incubation, cells were fixed in 70%<br />

methanol and the reduced formazan within phagocytes was solubilised by adding 120 μl<br />

2M KOH and 140 μl dimethyl sulfoxi<strong>de</strong> (DMSO, Sigma). Finally, absorbance was read<br />

at 630 nm in a multiscan spectrophotometer (UV-1601 Spectrophotometer, Whitakker<br />

Bioproducts).<br />

2.6. Statistical analysis<br />

Results are expressed as phagocyte stimu<strong>la</strong>tion in<strong>de</strong>x, calcu<strong>la</strong>ted by dividing each<br />

sample value by the mean control value. Values above 1 reflect an increase and un<strong>de</strong>r 1<br />

a <strong>de</strong>crease in each parameter. Data were statistically analysed by one-way analysis of<br />

variance (ANOVA) and Tukey’s comparison of means using SPSS for Windows.<br />

Differ<strong>en</strong>ces were consi<strong>de</strong>red statistically significant wh<strong>en</strong> P< 0.05.<br />

3. Results<br />

Results obtained in vitro after incubation of phagocytes with algal extracts are<br />

shown in Figure 1a. The data are expressed as a phagocytic stimu<strong>la</strong>tion in<strong>de</strong>x obtained<br />

by dividing superoxi<strong>de</strong> anion produced by phagocytes incubated with algal<br />

polysacchari<strong>de</strong> or with algal polysacchari<strong>de</strong> plus bacteria by the values of phagocytes<br />

incubated without the algal polysaccharidic fraction. Data obtained after incubation with<br />

β-glucan instead of algal polysacchari<strong>de</strong> are expressed in Figure 1b. Results obtained<br />

show that only at the commercial β-glucan significantly <strong>en</strong>hanced the respiratory burst<br />

activity of sole phagocytes at the highest conc<strong>en</strong>tration (10 mg ml -1 ), compared to non<br />

7


treated and algal extract treated phagocytes. Thus, the polysaccharidic fraction from P.<br />

cru<strong>en</strong>tum did not show ability to increase the respiratory burst activity of sole<br />

phagocytes, neither alone or in the pres<strong>en</strong>ce of P. damse<strong>la</strong>e subsp. piscicida, being<br />

stimu<strong>la</strong>tion in<strong>de</strong>x obtained 1.042 ± 0.069.<br />

Superoxi<strong>de</strong> anion production of phagocytes iso<strong>la</strong>ted from sole inocu<strong>la</strong>ted with<br />

P. cru<strong>en</strong>tum polysacchari<strong>de</strong> and P. damse<strong>la</strong>e subsp. piscicida bacterin are shown in<br />

Figure 2. Inocu<strong>la</strong>tion of the polysacchari<strong>de</strong> or the bacterin alone resulted in a significant<br />

<strong>de</strong>crease (P


Intraperitoneal inocu<strong>la</strong>tion of the polysaccharidic fraction of P. cru<strong>en</strong>tum to<br />

sole specim<strong>en</strong>s did not induce an increase of the respiratory burst activity. On the<br />

contrary, the respiratory burst activity <strong>de</strong>creased in fish inocu<strong>la</strong>ted with polysacchari<strong>de</strong><br />

fraction or with bacterin within 24 h post-inocu<strong>la</strong>tion. This <strong>de</strong>crease in respiratory burst<br />

activity may be due to a immunosupression caused by stress after handling [39, 40] as it<br />

is not observed after 7 days of the inocu<strong>la</strong>tion.<br />

In short, the results obtained in vivo indicate that the polysaccharidic fraction<br />

from P. cru<strong>en</strong>tum does not <strong>en</strong>hance the respiratory burst activity compared to non<br />

inocu<strong>la</strong>ted fish.<br />

Acknowledgem<strong>en</strong>ts<br />

Financial support was provi<strong>de</strong>d by the Ministry of Education and Sci<strong>en</strong>ce Spain<br />

(AGL2002-01488 and AGL 2005-02655) and Junta <strong>de</strong> Andalucía (RNM-295). The<br />

authors are grateful to Au<strong>la</strong> <strong>de</strong>l Mar of Má<strong>la</strong>ga (Spain) and PROMAN (Motril, Granada,<br />

Spain) for their help and participation in this study. P. Díaz-Rosales thanks Ministerio<br />

Español <strong>de</strong> Educación y Ci<strong>en</strong>cia for a F.P.U. scho<strong>la</strong>rship.<br />

5. Refer<strong>en</strong>ces<br />

[1] Dinis, MT, Ribeiro, L, Soares, F and Sarasquete, C. A review on the cultivation<br />

pot<strong>en</strong>tial of Solea s<strong>en</strong>egal<strong>en</strong>sis in Spain and in Portugal. Aquaculture 1999; 176:<br />

27-38.<br />

[2] Zorril<strong>la</strong>, I, Balebona, MC, Moriñigo, MA, Sarasquete, C and Borrego, JJ. Iso<strong>la</strong>tion<br />

and characterization of the causative ag<strong>en</strong>t of pasteurellosis, Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida, from sole, Solea s<strong>en</strong>egal<strong>en</strong>sis (Kaup). Journal of Fish<br />

Diseases 1999; 22: 167-72.<br />

[3] Magariños, B, Romal<strong>de</strong>, JL, López-Romal<strong>de</strong>, S, Moriñigo, MA and Toranzo, AE.<br />

Pathobiological characterisation of Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

iso<strong>la</strong>ted from cultured sole (Solea s<strong>en</strong>egal<strong>en</strong>sis). Bulletin of European Association<br />

of Fish Pathologists 2003; 23: 183-9.<br />

9


[4] Arijo, S, Chabrillón, M, Díaz-Rosales, P, Rico, RM, Martínez-Manzanares, E,<br />

Balebona, MC, Toranzo, AE and Moriñigo, MA. Bacteria iso<strong>la</strong>ted from outbreaks<br />

affecting cultured sole, Solea s<strong>en</strong>egal<strong>en</strong>sis (Kaup). Bulletin of European<br />

Association of Fish Pathologists 2005; 25: 148-54.<br />

[5] Thyss<strong>en</strong>, A and Ollivier, F. In vitro antimicrobial susceptibility of Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida to 15 differ<strong>en</strong>t antimicrobial ag<strong>en</strong>ts. Aquaculture 2001;<br />

200: 259-60.<br />

[6] Noya, M, Magariños, B, Toranzo, AE and Lamas, J. Sequ<strong>en</strong>tial pathology of<br />

experim<strong>en</strong>tal pasteurellosis in gilthead sea bream, Sparus aurata. A light and<br />

electron microscopic study. Diseases of Aquatic Organisms 1995; 21: 177-86.<br />

[7] López-Dóriga, MV, Barnes, AC, dos Santos, NMS and Ellis, AE. Invasion of fish<br />

epithelial cells by Photobacterium damse<strong>la</strong>e subsp. piscicida: evi<strong>de</strong>nce for<br />

receptor specificity, and effect of capsule and serum. Microbiology 2000; 146: 21-<br />

30.<br />

[8] Romal<strong>de</strong>, JL. Photobacterium damse<strong>la</strong>e subsp. piscicida: an integrated view of a<br />

bacterial fish pathog<strong>en</strong>. International Microbiology 2002; 5: 3-11.<br />

[9] Díaz-Rosales, P, Chabrillón, M, Moriñigo, MA and Balebona, MC. Survival of<br />

exog<strong>en</strong>ous hydrog<strong>en</strong> peroxi<strong>de</strong> of Photobacterium damse<strong>la</strong>e subsp. piscicida un<strong>de</strong>r<br />

differ<strong>en</strong>t culture conditions. Journal of Fish Diseases 2003; 26: 305-8.<br />

[10] Elkamel, AA, Hawke, JP, H<strong>en</strong>k, WG and Thune, RL. Photobacterium damse<strong>la</strong>e<br />

subsp. piscicida is capable of replicating in hybrid striped bass macrophages.<br />

Journal of Aquatic Animal Health 2003; 15: 175-83.<br />

[11] Rodríguez, A, Cuesta, A, Ortuño, J, Esteban, MA and Meseguer, J.<br />

Immunostimu<strong>la</strong>nt properties of a cell wall-modified whole Saccharomyces<br />

cerevisiae strain administered by diet to seabream (Sparus aurata L.). Veterinary<br />

Immunology & Immunopathology 2003; 96: 183-92.<br />

[12] Siwicki, AK, An<strong>de</strong>rson, DP and Rumsey, GL. Dietary intake of immunostimu<strong>la</strong>nts<br />

by rainbow trout affects non-specific immunity and protection against<br />

furunculosis. Veterinary Immunology & Immunopathology 1994; 41: 125-39.<br />

[13] An<strong>de</strong>rson, DP, Siwicki, AK and Rumsey, GL. Injection or immersion <strong>de</strong>livery of<br />

selected immunostimu<strong>la</strong>nts to trout <strong>de</strong>monstrate <strong>en</strong>hancem<strong>en</strong>t of non-specific<br />

10


<strong>de</strong>f<strong>en</strong>se mechanisms and protective immunity. In: Sharill M, Subasighe RP, Arthur<br />

JR, editors. Diseases in Asian Aquaculture Vol. 11. Fish Health Section, Asian<br />

Fisheries Society, Mani<strong>la</strong>, Philippines; 1995, p. 413-26.<br />

[14] Sakai, M. Curr<strong>en</strong>t research status of fish immunostimu<strong>la</strong>nts. Aquaculture 1999;<br />

172: 63-92.<br />

[15] Esteban, MA, Cuesta, A, Ortuño, J and Meseguer, J. Immunomodu<strong>la</strong>tory effects of<br />

dietary intake of chitin on gilthead seabream (Sparus aurata L.) innate immune<br />

system. Fish & Shellfish Immunology 2001; 11: 303-15.<br />

[16] Ortuño, J, Cuesta, A, Rodríguez, A, Esteban, MA and Meseguer, J. Oral<br />

administration of yeast, Saccharomyces cerevisiae, <strong>en</strong>hances the cellu<strong>la</strong>r innate<br />

immune response of gilthead seabream (Sparus aurata, L.). Veterinary<br />

Immunology & Immunopathology 2002; 85: 41-50.<br />

[17] Cuesta, A, Esteban, MA and Meseguer, J. Tumoricidal activity of gilthead<br />

seabream (Sparus aurata, L.) natural cytotoxic cells role p<strong>la</strong>yed in vitro and in<br />

vivo by retinol acetate. Fish & Shellfish Immunology 2003; 14: 133-44.<br />

[18] Kumari, J and Sahoo, PK. Dietary β-1,3 glucan pot<strong>en</strong>tiates innate immunity and<br />

disease resistance of Asian catfish, C<strong>la</strong>rias batrachus (L.). Journal of Fish<br />

Diseases 2006; 29: 95-101.<br />

[19] Kojima, M, Kasajima, T, Imai, Y, Koboyashi, S, Dobashim M and Uemura, T. A<br />

new chlorel<strong>la</strong>polysacchari<strong>de</strong> and its accelerating effect on phagocytic activity of<br />

the reticulo<strong>en</strong>dotelial system. Rec<strong>en</strong>t Advance RES. Res. 1973; 13: 101-11.<br />

[20] Pulz, O and Kouehler, E. Microalgae as a source of pharmacologically valuable<br />

polysacchari<strong>de</strong>s. Proceeding of the 6 th European Congress on Biotechnology.<br />

Fir<strong>en</strong>ze 1993; 40-1.<br />

[21] Blinkova, LP, Gorobets, CB and Barturo, AP. Biological activity of Spirulina.<br />

Zhurnal Mikrobiologii, Epi<strong>de</strong>miologii, i immunobiologi 2001; 2: 114-8.<br />

[22] Castro, R, Couso, N, Obach, A and Lamas, J. Effect of differ<strong>en</strong>t β-glucans on the<br />

respiratory burst of turbot (Psetta maxima) and gilthead seabream (Sparus aurata)<br />

phagocytes. Fish & Shellfish Immunology 1999; 9: 529-41.<br />

[23] Castro, R, Zarra, I and Lamas, J. Watersoluble seaweed extracts modu<strong>la</strong>te the<br />

respiratory burst activity of turbot phagocytes. Aquaculture 2004; 229: 67-78.<br />

11


[24] Castro, R, Piazzon, MC, Zarra, I, Leiro, J, Noya, M and Lamas, J. Stimu<strong>la</strong>tion of<br />

turbot phagocytes by Ulva rigida C. Agardh polysacchari<strong>de</strong>s. Aquaculture 2006;<br />

254: 9-20.<br />

[25] Adda, M, Merehuk, JC and Arad, S. Effect of nitrate on growth and production of<br />

cell wall polysacchari<strong>de</strong> by the unicellu<strong>la</strong>r red alga Porphyridium cru<strong>en</strong>tum.<br />

Biomass 1986; 10: 131-40.<br />

[26] Arad, S, Adda, M and Coh<strong>en</strong>, E. The pot<strong>en</strong>tial production of sulphated<br />

polysacchari<strong>de</strong>s from Porphyridium. P<strong>la</strong>nt & Soil 1985; 89: 117-27.<br />

[27] Arad, S, Friedman, DO and Rotem, A. Effect of nitrog<strong>en</strong> on polysacchari<strong>de</strong><br />

production in Porphyridium sp. Applied & Environm<strong>en</strong>tal Microbiology 1988; 54:<br />

2411-14.<br />

[28] Ramus, J, K<strong>en</strong>ney, BE and Shaughnessy, EJ. Drag reducting properties of<br />

microalgal exopolymers. Biotechnology & Bio<strong>en</strong>gineering 1989; 33: 550-6.<br />

[29] You, T and Barneu, SM. Effect of light quality on production of extracellu<strong>la</strong>r<br />

polysacchari<strong>de</strong>s and growth rate of Porphyridium cru<strong>en</strong>tum. Biochemical<br />

Engineering Journal 2004; 19: 251-8.<br />

[30] Morris, HJ, Martínez, CE, Abda<strong>la</strong>, RT and Cobas, G. Evi<strong>de</strong>ncias preliminares <strong>de</strong> <strong>la</strong><br />

actividad inmunomodu<strong>la</strong>dora <strong>de</strong> <strong>la</strong> fracción polisacarídica <strong>de</strong> orig<strong>en</strong> marino PC-1.<br />

Revista Cubana <strong>de</strong> Oncología 2000; 16: 171-6 [in Spanish].<br />

[31] Vonshak, A. Porphyridium. In: Borowitzka MA, Borowitzka L, editors.<br />

Microalgal Biotechnology, Cambridge University Press; 1988, p. 122-35.<br />

[32] Secombes, CJ. Iso<strong>la</strong>tion of salmonid macrophages and analysis of their killing<br />

activity. In: Stol<strong>en</strong> JS, Fletcher DP, An<strong>de</strong>rson BS, Roberson, van Muiswinkel<br />

WB, editors. Techniques in Fish Immunology, Fair Hav<strong>en</strong>, NJ, SOS Publication;<br />

1990, p. 137-54.<br />

[33] Boes<strong>en</strong>, HT, Lars<strong>en</strong>, MH, Lars<strong>en</strong>, LH and Ellis, AE. In vitro interactions betwe<strong>en</strong><br />

rainbow trout (Oncorhynchus mykiss) macrophages and Vibrio anguil<strong>la</strong>rum<br />

serogroup O2a. Fish & Shellfish Immunology 2001; 11: 415-31.<br />

[34] Díaz-Rosales, P, Burmeister, A, Aguilera, J, Korbee, N, Moriñigo, MA, Figueroa,<br />

FL, Chabrillón, M, Arijo, S, Lin<strong>de</strong>squit, U and Balebona, MC. Scre<strong>en</strong>ing of algal<br />

extracts as pot<strong>en</strong>tial stimu<strong>la</strong>nts of chemotaxis and respiratory burst activity of<br />

12


phagocytes from sole (Solea s<strong>en</strong>egal<strong>en</strong>sis). Bulletin of European Association of<br />

Fish Pathologists 2005; 25: 9-19.<br />

[35] Hou, WY and Ch<strong>en</strong>, JC. The immunostimu<strong>la</strong>tory effect of hot-water extract of<br />

Graci<strong>la</strong>ria t<strong>en</strong>uistipitata on the white shrimp Litop<strong>en</strong>aeus vannamei and its<br />

resistance against Vibrio alginolyticus. Fish & Shellfish Immunology 2005; 19:<br />

127-38.<br />

[36] Santarém, M, Novoa, B and Figueras, A. Effects of β-glucans on the non-specific<br />

immune responses of turbot (Scophthalmus maximus L.). Fish & Shellfish<br />

Immunology 1997; 7: 429-37.<br />

[37] Cook, MT, Hayball, P, Hutchinson, W, Nowak, BF and Hayball, JD.<br />

Administration of a commercial immunostimu<strong>la</strong>nt preparation, EcoActiva, as<br />

feed supplem<strong>en</strong>t <strong>en</strong>hances macrophage respiratory burst and the growth rate of<br />

snapper (Pagrus auratus, Sparidae (Bloch and Schnei<strong>de</strong>r)) in winter. Fish &<br />

Shellfish, 2003; 14: 333-45.<br />

[38] Couso, N, Castro, R, Magariños, B, Obach, A and Lamas, J. Effect of oral<br />

administration of glucans on the resistance of gilthead seabream to pasteurellosis.<br />

Aquaculture 2003; 219: 99-109.<br />

[39] Thompson, I, White, A, Fletcher, TC, Houlihan, DF and Secombes, CJ. The effect<br />

of stress on the immune response of At<strong>la</strong>ntic salmon (Salmo sa<strong>la</strong>r L.) fed diets<br />

containing differ<strong>en</strong>t amounts of vitamin C. Aquaculture 1993; 114: 1-18.<br />

[40] Pulsford, AL, Crampe, M, Langston, A and Glynn, PJ. Modu<strong>la</strong>tory effects of<br />

disease, stress, copper, TBT and vitamin E on the immune system of f<strong>la</strong>tfish. Fish<br />

& Shellfish Immunology 1995; 5: 631-43.<br />

13


Figure leg<strong>en</strong>ds<br />

Figure 1. Respiratory burst activity of sole phagocytes incubated with<br />

polysaccharidic fraction from Porphyridium cru<strong>en</strong>tum (a) or β-glucan (b) (1, 2, 5, 10<br />

mg ml -1 ) in abs<strong>en</strong>ce ( ) or pres<strong>en</strong>ce ( ) of Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

(2x10 6 cells per well). Results are expressed as stimu<strong>la</strong>tion in<strong>de</strong>x (mean ± SE; n=15)<br />

obtained by dividing each sample value by its mean control value (HBSS or P.<br />

damse<strong>la</strong>e subsp. piscicida cells). Symbol * <strong>de</strong>notes statistically significant differ<strong>en</strong>ces<br />

(P


Figure 1a<br />

Stimu<strong>la</strong>tion in<strong>de</strong>x<br />

3<br />

2.5<br />

2<br />

1. 5<br />

1<br />

0.5<br />

0<br />

1 2 5 10 mg ml -1<br />

17


Figure 1b<br />

Stimu<strong>la</strong>tion in<strong>de</strong>x<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

*<br />

*<br />

0<br />

1 2 5 10 mg ml -1<br />

19


Figure 2<br />

Stimu<strong>la</strong>tion in<strong>de</strong>x<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

*<br />

P-24<br />

*<br />

P-7 B-24 B-7 PB-24 PB-7<br />

Treatm<strong>en</strong>ts<br />

21


A RTÍCULO 2.3.<br />

A RTICLE 2.3.


Effect of dietary administration of probiotics on respiratory burst activity of<br />

phagocytes and intestinal microbiota of S<strong>en</strong>egalese sole (Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup<br />

1858)<br />

P.Díaz-Rosales a , M. Chabrillón a , H. Smidt b , S. Arijo a , Juan M. León-Rubio a , Rosa M.<br />

Rico a , F. Javier A<strong>la</strong>rcón c , M. Ángel Sá<strong>en</strong>z <strong>de</strong> Rodrigáñez c , M.Carm<strong>en</strong> Balebona a and<br />

M.Ángel Moriñigo a<br />

a Departm<strong>en</strong>t of Microbiology, Faculty of Sci<strong>en</strong>ces, University of Má<strong>la</strong>ga. 29071<br />

Má<strong>la</strong>ga. Spain.<br />

b Laboratory of Microbiology, Agrotechnology and Food Sci<strong>en</strong>ces Group, Wag<strong>en</strong>ing<strong>en</strong><br />

University. 6703 CT Wag<strong>en</strong>ing<strong>en</strong>. The Nether<strong>la</strong>nds.<br />

c Departm<strong>en</strong>t of Applied Biology, University of Almería. 04120 Almería. Spain.<br />

* Corresponding author. Phone: +34 952 131 862; fax: +34 952 131 889<br />

E-mail address: morinigo@uma.es (M. Ángel Moriñigo)<br />

1


Abstract<br />

The effects of the dietary administration of two bacterial probiotic strains from<br />

the Alteromonadaceae family, Pdp11 and Pdp13, on S<strong>en</strong>egalese sole intestinal<br />

microbiota were studied. The fish were fed four differ<strong>en</strong>t diets: control (nonsupplem<strong>en</strong>ted),<br />

or diets supplem<strong>en</strong>ted with alginate alone, or as a carrier for Pdp11 (10 9<br />

cfu g -1 ) or Pdp13 (10 9 cfu g -1 ) for sixty days. The effect of the differ<strong>en</strong>t dietary<br />

treatm<strong>en</strong>ts was assessed by measuring respiratory burst activity, protection against<br />

experim<strong>en</strong>tal infection with Photobacterium damse<strong>la</strong>e subsp. piscicida and analysis of<br />

intestinal microbiota by 16S ribosomal RNA g<strong>en</strong>e-targeted PCR-DGGE (<strong>de</strong>naturing<br />

gradi<strong>en</strong>t gel electrophoresis). We also evaluated, to which ext<strong>en</strong>d and how this<br />

technique could be effectively applied to examine bacterial diversity and dynamics of<br />

the sole (Solea s<strong>en</strong>egal<strong>en</strong>sis) intestinal microbiota, as influ<strong>en</strong>ced by the diet. Bacterial<br />

ribotypic diversity was <strong>de</strong>termined using DGGE analysis of the V6 to V8 and V3<br />

regions of 16S rRNA g<strong>en</strong>es using two differ<strong>en</strong>t sets of primers for PCR amplification.<br />

To our knowledge, this is the first report re<strong>la</strong>ted to the effect of probiotics in the<br />

intestinal microbiota of sole, by cultivation-in<strong>de</strong>p<strong>en</strong><strong>de</strong>nt molecu<strong>la</strong>r ecological<br />

approaches.<br />

Keywords: Probiotics; Alteromonadaceae; Intestinal microbiota; DGGE; Sole (Solea<br />

s<strong>en</strong>egal<strong>en</strong>sis, Kaup 1858); Teleosts.<br />

2


1. Introduction<br />

S<strong>en</strong>egalese sole culture (Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup 1858) is nowadays a very<br />

promising industry in the Mediterranean countries [1]. One of the most serious<br />

problems concerning sole production is the exist<strong>en</strong>ce of infectious diseases,<br />

pseudotuberculosis caused by Photobacterium damse<strong>la</strong>e subsp. piscicida, being the<br />

main limiting factor [2].<br />

In fish farms, control of this bacterial pathog<strong>en</strong> is achieved by the<br />

administration of chemotherapeutic ag<strong>en</strong>ts. However, over the <strong><strong>la</strong>s</strong>t <strong>de</strong>ca<strong>de</strong>, drugresistant<br />

strains carrying a transferable R-p<strong><strong>la</strong>s</strong>mid have evolved, making treatm<strong>en</strong>t with<br />

antimicrobial chemotherapeutics less successful [3]. Therefore, immunoprophy<strong>la</strong>xis has<br />

become the best way to prev<strong>en</strong>t pseudotuberculosis [4].<br />

Throughout the <strong><strong>la</strong>s</strong>t 20 years, there has be<strong>en</strong> a variety of studies analyzing the<br />

effectiv<strong>en</strong>ess of immunization in prev<strong>en</strong>ting pseudotuberculosis [5]. A dival<strong>en</strong>t vaccine<br />

against V. harveyi and P. damse<strong>la</strong>e subsp. piscicida for sole has be<strong>en</strong> reported [6]. This,<br />

however, only provi<strong>de</strong>s protection for a short period. Therefore, searching for new<br />

prophy<strong>la</strong>ctic methods, such as immunostimu<strong>la</strong>nts or probiotics seems a very promising<br />

alternative.<br />

Probiotics have be<strong>en</strong> <strong>de</strong>fined as live microbial preparations that improve the<br />

health and well-being of the host [7-10]. The research on probiotics for aquatic animals<br />

is increasing with the <strong>de</strong>mand for <strong>en</strong>vironm<strong>en</strong>t-fri<strong>en</strong>dly aquaculture. Most of these<br />

studies have be<strong>en</strong> re<strong>la</strong>ted to chall<strong>en</strong>ge trials and suppression of pathog<strong>en</strong> growth by<br />

probiotic bacteria [11-21]. Rec<strong>en</strong>t works have be<strong>en</strong> focused on the immunological<br />

<strong>en</strong>hancem<strong>en</strong>t of fish <strong>de</strong>f<strong>en</strong>ce mechanisms by probiotic bacteria [22-27] and the effects<br />

that dietary administration of probiotics could exert on the intestinal microbiota of the<br />

host fish [28].<br />

As immunomodu<strong>la</strong>tors, probiotics may <strong>en</strong>hance phagocytic activity and increase<br />

the production of reactive oxyg<strong>en</strong> species by macrophages from species such as gilthead<br />

seabream [27, 29] and rainbow trout (Onchorynchus mykiss) [22]. The means of<br />

invasion and survival of P. damse<strong>la</strong>e subsp. piscicida insi<strong>de</strong> the host are still unknown,<br />

and while authors have reported the pres<strong>en</strong>ce of intact bacteria insi<strong>de</strong> fish cells,<br />

3


suggesting the ability of the bacterium to survive as an intracellu<strong>la</strong>r pathog<strong>en</strong> [30-33],<br />

others have observed that this pathog<strong>en</strong> is highly susceptible to oxidative radicals<br />

g<strong>en</strong>erated during the macrophage respiratory burst [34, 35]. For this reason, the<br />

stimu<strong>la</strong>tion of the respiratory burst activity of S<strong>en</strong>egalese sole phagocytes could<br />

facilitate a more effective <strong>de</strong>struction of P. damse<strong>la</strong>e subsp. piscicida.<br />

H<strong>en</strong>ce, the first objective of the pres<strong>en</strong>t study was to evaluate the possible<br />

immunostimu<strong>la</strong>tory effect of dietary administration of two probiotics [36-38] on<br />

respiratory burst activity of sole phagocytes. In addition, possible changes in the<br />

intestinal microbiota were evaluated by <strong>de</strong>termining the g<strong>en</strong>etic diversity of gut<br />

microbiota by DGGE (<strong>de</strong>naturing gradi<strong>en</strong>t gel electrophoresis) [39]. Several authors<br />

have reported on the composition of intestinal microbiota of differ<strong>en</strong>t farmed fish [40-<br />

44], although none of them have studied sole microbiota. On the other hand, the<br />

possible effect of probiotics on fish intestinal microbiota is still <strong>la</strong>rgely unknown [28].<br />

Thus, this is the first report on sole gut microbiota and the possible changes in response<br />

to probiotic treatm<strong>en</strong>t.<br />

2. Materials and Methods<br />

2.1. Microorganisms<br />

Two bacteria strains iso<strong>la</strong>ted from gilthead seabream skin, Pdp11 and Pdp13,<br />

belonging to Alteromonadaceae family, Shewanel<strong>la</strong> g<strong>en</strong>us, were selected for this study<br />

because their in vitro characteristics suggested they could be consi<strong>de</strong>red as pot<strong>en</strong>tial fish<br />

probiotics [36-38].<br />

These strains were grown in tubes containing 5 ml of trypticase soy broth (Oxoid<br />

Ltd., Basingstoke, UK) supplem<strong>en</strong>ted with 1.5 % NaCl (TSBs) for 18 h at 22 ºC, with<br />

continuous shaking. Appropriate dilutions of the culture were spread onto p<strong>la</strong>tes of<br />

trypticase soy agar (Oxoid) supplem<strong>en</strong>ted with 1.5 % NaCl (TSAs). The number of<br />

culturable bacteria was <strong>de</strong>termined by p<strong>la</strong>te counting on TSAs. Bacteria were recovered<br />

from the p<strong>la</strong>tes, lyophilized and the conc<strong>en</strong>tration of lyophilized bacteria was adjusted<br />

per gram of pellet diet.<br />

4


2.2. Fish and experim<strong>en</strong>tal <strong>de</strong>sign<br />

S<strong>en</strong>egalese sole specim<strong>en</strong>s (Solea s<strong>en</strong>egal<strong>en</strong>sis, Kaup, 1838) of 15-30 g weight,<br />

were kept in four 300 l seawater tanks (75 fish per tank), 36 ‰ salinity, at 22 ºC and fed<br />

with a commercial pellet diet (Gemma 0.5, Skreeting, Trouw España, Nutreco, Burgos,<br />

Spain). Specim<strong>en</strong>s were sacrificed by overdose of c<strong>la</strong>ve oil.<br />

Experim<strong>en</strong>tal diets were prepared in the <strong>la</strong>boratory from the commercial pellet<br />

diet. The diet preparation was carried out with alginate (0.5% kg -1 ) and 50 mM calcium<br />

chlori<strong>de</strong> (0.4% kg -1 ) to facilitate the lyophilized bacteria incorporation to the pellet.<br />

Alginate and Ca Cl 2 were sprayed into the feed slowly, mixing with the required amount<br />

of lyophilized bacteria (10 9 cfu g -1 ).<br />

Thus, fish in each tank received one of four differ<strong>en</strong>t diets: a commercial diet<br />

supplem<strong>en</strong>ted with Pdp11 (10 9 cfu g -1 ) (diet A); the same diet supplem<strong>en</strong>ted with Pdp13<br />

(10 9 cfu g -1 ) (diet B); a diet consisting of the commercial diet (control without alginate)<br />

(diet C); and, finally, the fourth group of fish received a diet supplem<strong>en</strong>ted with alginate<br />

and calcium chlori<strong>de</strong> (control with alginate) (diet D). Fish were fed at a rate of 15 g dry<br />

diet Kg -1 biomass (1.5 %) per day for 60 days. The biomass of the fish in each aquarium<br />

was measured at the beginning of the experim<strong>en</strong>t and daily ratio was adjusted<br />

accordingly. No mortality was observed during the experim<strong>en</strong>t.<br />

Sampling was carried out at the <strong>en</strong>d of the feeding trial, day 60, for the chall<strong>en</strong>ge<br />

test and study of intestinal microbiota. Samples for measurem<strong>en</strong>t of the respiratory burst<br />

activity were tak<strong>en</strong> at the middle of the trial and at the <strong>en</strong>d, at day 30 and 60,<br />

respectively.<br />

2.3. Iso<strong>la</strong>tion of head kidney phagocytes<br />

The influ<strong>en</strong>ce of the treatm<strong>en</strong>t on respiratory burst activity was tested in<br />

phagocytes iso<strong>la</strong>ted from the kidney of soles following the technique <strong>de</strong>scribed by<br />

Secombes [45]. Briefly, the kidney was removed aseptically and pushed through a 100<br />

μm nylon mesh with Leibovitz medium (L-15) containing 2% foetal calf serum (FCS,<br />

Sigma), 1% p<strong>en</strong>icillin-streptomycin (Sigma), 0.1 % (5 mg ml -1 ) g<strong>en</strong>tamicine (Sigma)<br />

(P/S/G) and 10 U heparine ml -1 . This cell susp<strong>en</strong>sion was <strong>la</strong>yered on a 30 to 51%<br />

Percoll (Amersham) gradi<strong>en</strong>t and c<strong>en</strong>trifuged at 600 × g for 30 min. Th<strong>en</strong>, the bands<br />

5


separated at the interface were collected, c<strong>en</strong>trifuged for 15 min at 500 × g and<br />

resusp<strong>en</strong><strong>de</strong>d in L-15 medium supplem<strong>en</strong>ted with P/S/G. The viable cell conc<strong>en</strong>tration<br />

was <strong>de</strong>termined after staining with trypan blue and microscope counting. Aliquots of<br />

100 μl containing 1x10 7 cells ml -1 in L-15 medium supplem<strong>en</strong>ted with P/S/G were<br />

ad<strong>de</strong>d to 96-well microtitre p<strong>la</strong>tes. After 3 h incubation at 22 ºC, non-adher<strong>en</strong>t cells<br />

were removed and medium was substituted by L-15 and P/S/G supplem<strong>en</strong>ted with<br />

2%FCS. Mono<strong>la</strong>yers were incubated overnight at 22 ºC.<br />

2.4. Respiratory burst activity<br />

Fish of the four experim<strong>en</strong>tal groups, fed with diets A, B, C or D, were assayed<br />

for respiratory burst activity.<br />

The g<strong>en</strong>eration of intracellu<strong>la</strong>r superoxi<strong>de</strong> radicals by sole phagocytes was<br />

<strong>de</strong>termined by the reduction of nitro-blue tetrazolium (NBT) according to the technique<br />

<strong>de</strong>scribed by Secombes [45] and Boes<strong>en</strong> et al. [46]. Phagocyte mono<strong>la</strong>yers were washed<br />

with L-15 medium and HBSS (Hank´s Ba<strong>la</strong>nced Salt Solution) to remove any trace of<br />

antibiotic. Th<strong>en</strong>, NBT (100 μl) dissolved at 1 mg ml -1 in HBSS was ad<strong>de</strong>d to the wells<br />

and the phagocytes incubated at 22 ºC for 30 min. Wells containing phagocytes were<br />

infected with P. damse<strong>la</strong>e subsp. piscicida (10 8 bacterias ml -1 ) and used to <strong>de</strong>termine the<br />

response of the phagocytes to the fish pathog<strong>en</strong>. As a positive control phorbol myristate<br />

acetate (PMA, Sigma) (1 μg ml -1 ), an activating ag<strong>en</strong>t of the respiratory burst, was used<br />

to stimu<strong>la</strong>te the respiratory burst of non-infected phagocytes. The specificity of the<br />

reaction was tested by adding superoxi<strong>de</strong> dismutase (SOD) (300 I.U. per well) to some<br />

wells containing PMA-stimu<strong>la</strong>ted phagocytes (data not shown).<br />

After incubation, cells were fixed in 70% methanol and reduced formazan within<br />

phagocytes was solubilised by adding 120 μl 2M KOH and 140 μl dimethyl sulfoxi<strong>de</strong><br />

(DMSO, Sigma). Finally, absorbance was read at 630 nm in a multiscan<br />

spectrophotometer (UV-1601 Spectrophotometer, Whitakker Bioproducts).<br />

6


2.5. Chall<strong>en</strong>ge with Photobacterium damse<strong>la</strong>e subsp. piscicida<br />

Groups of 10 fish (15-30 g weight) were chall<strong>en</strong>ged at the <strong>en</strong>d of the feeding trial,<br />

after 60 days of beginning. For the chall<strong>en</strong>ge, three groups of fish were assayed, fed<br />

with diets A, B and C.<br />

Soles were intraperitoneally injected with a dose of P. damse<strong>la</strong>e subsp. piscicida<br />

(Lg h41/01 ) of 5 x 10 4 cfu g -1 from a bacterial susp<strong>en</strong>sion in PBS (phosphate buffer saline)<br />

adjusted to 5 x 10 8 cfu ml -1 . As control, the same number of fish was inocu<strong>la</strong>ted with 0.1<br />

ml PBS. Inocu<strong>la</strong>ted fish were followed daily for 10 days, and all mortalities were<br />

recor<strong>de</strong>d, consi<strong>de</strong>ring only those that could be linked to the bacterial chall<strong>en</strong>ge by reiso<strong>la</strong>tion<br />

in pure culture from internal organs of <strong>de</strong>ad fish.<br />

2.6. Analysis of the sole intestinal microbiota<br />

2.6.1. Sample collection<br />

Three groups of fish were analyzed for intestinal microbiota composition, i.e. fish<br />

fed with diets A, B and C.<br />

Per treatm<strong>en</strong>t group, three specim<strong>en</strong>s of S<strong>en</strong>egalese sole were sacrificed at the <strong>en</strong>d<br />

of the feeding trial (60 days), and whole intestines were collected and stored at -80 ºC<br />

until further analysis.<br />

2.6.2. DNA iso<strong>la</strong>tion from intestinal cont<strong>en</strong>t and probiotic cultures<br />

The gut cont<strong>en</strong>ts were homog<strong>en</strong>ized in 4 ml PBS (phosphate buffer saline) pH<br />

7.2, and a 1 ml aliquot was c<strong>en</strong>trifuged at 1000 × g for 5 min. The supernatant was pretreated<br />

by <strong>en</strong>zymatic digestion with 40 μl proteinase K (20 mg/ml) and 50 μl do<strong>de</strong>cyl<br />

sulphate (SDS) 10% and incubated at 65 ºC for 30 min. Subsequ<strong>en</strong>tly, DNA extraction<br />

from the susp<strong>en</strong>sion was performed with the Fast DNA Spin kit for soil (Qbiog<strong>en</strong>e, Inc.,<br />

Carlsbad, CA) according to manufacturer’s instructions. Agarose gel (1.5% [wt/vol])<br />

electrophoresis in the pres<strong>en</strong>ce of ethidium bromi<strong>de</strong> was used to check visually for<br />

DNA quality and yield.<br />

Pure cultures of probiotic strains were grown until expon<strong>en</strong>tial phase in TSBs,<br />

and th<strong>en</strong> c<strong>en</strong>trifuged at 2500 × g for 15 min. Pellets were washed with PBS and<br />

c<strong>en</strong>trifuged again. DNA was extracted from the resulting pellet resusp<strong>en</strong><strong>de</strong>d in 500 μl<br />

PBS with the Fast DNA Spin kit (Qbiog<strong>en</strong>e, Inc., Carlsbad, CA).<br />

7


2.6.3. PCR amplification<br />

Two differ<strong>en</strong>t sets of primers were tested in this study to select those that yiel<strong>de</strong>d<br />

the best results to compare DGGE patterns based on their resolution and observed<br />

diversity (Table 1). Primer set Bact-0968-GC-F / Bact-1401-R was used to amplify the<br />

V6 to V8 regions of the 16S rRNA g<strong>en</strong>e [47, 48] and PRBA-338-GC-F and PRUN-518-<br />

R amplified the V3 hypervariable region [44]. PCR was performed using the Taq DNA<br />

polymerase kit from Life Technologies (Gaithersburg, Md). PCR mixtures (50 μl)<br />

contained 0.5 μl Taq polymerase (1.25 U), 20 mM Tris-HCl (pH 8.5), 50 mM KCl, 3<br />

mM MgCl 2 , 200 μM of each <strong>de</strong>oxynucleosi<strong>de</strong> triphosphate, 5 pmol of the primers, 1 μl<br />

of DNA temp<strong>la</strong>te, and UV-sterilized water. The samples were amplified in a T1<br />

thermocycler (Whatman Biometra, Götting<strong>en</strong>, Germany), and the cycling conditions for<br />

each pair of primers are listed in Table 1. Aliquots (5 μl) were analyzed by<br />

electrophoresis on 1.5% (wt/vol) agarose gels containing ethidium bromi<strong>de</strong> to check for<br />

product size and quantity.<br />

2.6.4. DGGE analysis<br />

The amplicons obtained from the intestinal lum<strong>en</strong>-extracted DNA and the<br />

probiotic strains were separated by DGGE according to the specifications of Muyzer et<br />

al. [39] using a Dco<strong>de</strong> TM system (Bio-Rad Laboratories, Hercules, CA).<br />

Electrophoresis was performed in an 8% polyacry<strong>la</strong>mi<strong>de</strong> gel (37.5:1 acry<strong>la</strong>mi<strong>de</strong>bisacry<strong>la</strong>mi<strong>de</strong>;<br />

dim<strong>en</strong>sions, 200 by 200 by 1 mm) using a 30 to 55% <strong>de</strong>naturing gradi<strong>en</strong>t<br />

for separation of PCR products. The gels contained a 30 to 55% gradi<strong>en</strong>t of urea and<br />

formami<strong>de</strong> increasing in the direction of the electrophoresis. A 100% <strong>de</strong>naturing<br />

solution contained 7 M urea and 40% (vol/vol) <strong>de</strong>ionized formami<strong>de</strong>. PCR samples<br />

were applied to gels in aliquots of 13 μl per <strong>la</strong>ne. The gels were electrophoresed for 16<br />

h at 85 V in 0.5 X TAE (20 mM Tris acetate [pH 7.4], 10 mM sodium acetate, 0.5 mM<br />

Na 2 -EDTA) [50] buffer at a constant temperature of 60 ºC and subsequ<strong>en</strong>tly stained<br />

with AgNO 3 [51].<br />

Gel image processing and comparative analysis of banding patterns was done<br />

with Bionumerics version 4.0 (Applied Maths BVBA, Sint-Mart<strong>en</strong>s-Latem, Belgium).<br />

Simi<strong>la</strong>rity betwe<strong>en</strong> DGGE profiles was <strong>de</strong>termined by calcu<strong>la</strong>ting simi<strong>la</strong>rity indices of<br />

8


the <strong>de</strong>nsitometric curves of the profiles compared using the Pearson product-mom<strong>en</strong>t<br />

corre<strong>la</strong>tion [52, 53].<br />

Clustering of DGGE patterns was achieved by construction of <strong>de</strong>ndrograms using<br />

UPGMA (Unweighted Pair Groups Method using Arithmetic Averages).<br />

3. Results<br />

3.1. Respiratory burst activity<br />

Respiratory burst activity of phagocytes iso<strong>la</strong>ted from assayed soles was<br />

expressed as stimu<strong>la</strong>tion in<strong>de</strong>x, which was calcu<strong>la</strong>ted as the ratio betwe<strong>en</strong> the<br />

absorbance obtained from phagocytes from fish fed with the differ<strong>en</strong>t experim<strong>en</strong>tal diets<br />

and absorbance from fish fed with the control diet, without any supplem<strong>en</strong>tation.<br />

The respiratory burst activity of phagocytes was measured at days 30 and 60.<br />

Only the phagocytes from sole specim<strong>en</strong>s fed with the diet supplem<strong>en</strong>ted with probiotic<br />

strain Pdp11 showed a significant increase (P


3.3. Intestinal microbiota analysis<br />

In or<strong>de</strong>r to compare DGGE patterns of the intestinal microbiota of soles receiving<br />

the differ<strong>en</strong>t diets assayed, two sets of primers, targeting differ<strong>en</strong>t variable regions of<br />

the 16S rRNA g<strong>en</strong>e, were used to select the optimal set with respect to diversity and<br />

resolution. DGGE profiles were compared using Pearson’s simi<strong>la</strong>rity coeffici<strong>en</strong>t<br />

analysis, a test that consi<strong>de</strong>rs quantitative values of a <strong>de</strong>nsitometric curve, repres<strong>en</strong>ting<br />

bands and their int<strong>en</strong>sities.<br />

Profiles were compared within (Table 2) and betwe<strong>en</strong> experim<strong>en</strong>tal groups (Table<br />

3). The results obtained show that the V6-V8 targeting primers Bact-0968-GC-F and<br />

Bact-1401-R <strong>de</strong>tected higher simi<strong>la</strong>rity in DGGE patterns among fish from the same<br />

group (intragroup) in two of the three groups assayed, control group, without any<br />

supplem<strong>en</strong>tation, and fish fed with Pdp11 strain (Table 2). On the other hand, the same<br />

set of primers (Bact-0968-GC-F and Bact-1401-R) <strong>de</strong>tected lower perc<strong>en</strong>tages and more<br />

pronounced differ<strong>en</strong>ces with respect to intergroup simi<strong>la</strong>rities (Table 3). There is only<br />

one statistically significant differ<strong>en</strong>ce (P


most effici<strong>en</strong>t probiotics for aquaculture, as a consequ<strong>en</strong>ce of the specificity of aquatic<br />

microbiota [8]. H<strong>en</strong>ce, we assessed the probiotic pot<strong>en</strong>tial of bacteria of the g<strong>en</strong>us<br />

Shewanel<strong>la</strong>, naturally pres<strong>en</strong>t on seabream skin [36]. Moreover, the selection of the<br />

probiotic Pdp11 was based on its adhesion to intestinal mucus, its resistance to intestinal<br />

mucus and bile [37, 38] and its ability to increase several immunological parameters in<br />

gilthead seabream [27, 29].<br />

Despite of their affiliation within the same g<strong>en</strong>us, Shewanel<strong>la</strong>, and same origin of<br />

both microorganisms assayed in this study, their effect on the respiratory burst activity<br />

was completely differ<strong>en</strong>t, as only Pdp11 strain produced statistically significant increase<br />

in superoxi<strong>de</strong> anion production by sole kidney phagocytes. This could suggest that the<br />

immunostimu<strong>la</strong>tion of the respiratory burst of sole phagocytes is strain-<strong>de</strong>p<strong>en</strong><strong>de</strong>nt rather<br />

than a g<strong>en</strong>eral characteristic of a bacterial species. This strain-<strong>de</strong>p<strong>en</strong><strong>de</strong>nce has be<strong>en</strong><br />

<strong>de</strong>scribed for other characteristics such as the mucus adhesion of certain iso<strong>la</strong>tes of<br />

<strong>la</strong>ctic acid bacteria [56] and fish iso<strong>la</strong>tes [37, 38]. In a previous work it was reported<br />

that Pdp11 strain did not induce an increase on the respiratory burst activity of<br />

phagocytes from gilthead seabream wh<strong>en</strong> the microorganism was administered heatinactivated<br />

[27]. These results are in agreem<strong>en</strong>t with Panigrahi et al. [24], who indicated<br />

that probiotic viability could probably influ<strong>en</strong>ce the induced immune responses. It was<br />

found that viable <strong>la</strong>ctic acid bacteria were more effici<strong>en</strong>t in <strong>en</strong>hancing certain aspects of<br />

immune response in rainbow trout (Oncorhynchus mykiss) compared to non-viable heatkilled<br />

cells, although the respiratory burst activity in this case, was not affected.<br />

Although several authors reported the induction of respiratory burst activity by<br />

probiotics [23, 57-59]. The fact that the pot<strong>en</strong>tial probiotic strain Pdp13 did not increase<br />

superoxi<strong>de</strong> anion production does not rule out that the possibility to induce a significant<br />

change in other immunological parameters. This is supported by the fact that we<br />

observed increased survival after the chall<strong>en</strong>ge with the pathog<strong>en</strong>ic bacteria P. damse<strong>la</strong>e<br />

subsp. piscicida in fish fed with diet supplem<strong>en</strong>ted with Pdp13 strain, compared to<br />

control fish (fed with normal diet) and fish fed with the diet supplem<strong>en</strong>ted with Pdp11.<br />

Although the <strong>de</strong>gree of protection achieved with Pdp13 was not very high (i.e. 20%<br />

survival), the reduced and retar<strong>de</strong>d mortality might provi<strong>de</strong> additional time that could be<br />

useful to prev<strong>en</strong>t the infection by using other differ<strong>en</strong>t treatm<strong>en</strong>ts.<br />

11


Several authors have reported a stimu<strong>la</strong>tory effect of differ<strong>en</strong>t probiotics on<br />

differ<strong>en</strong>t immunological parameters, such as phagocytic [22, 24, 26, 27, 58],<br />

complem<strong>en</strong>t [24, 27], lysozyme [22, 24] or cytotoxic [26, 27] activities. Moreover it has<br />

be<strong>en</strong> <strong>de</strong>scribed that probiotic treatm<strong>en</strong>t resulted in an increase of immunoglobulin levels<br />

in serum [23, 59]. H<strong>en</strong>ce, Pdp13 strain can be consi<strong>de</strong>red as probiotic although further<br />

studies should be carried out, evaluating additional immunological aspects.<br />

On the other hand, the probiotic bacteria have to be administered at an optimal<br />

dose that may <strong>de</strong>p<strong>en</strong>d on the size and species of experim<strong>en</strong>tal fish and used probiotic<br />

strain [23]. This might exp<strong>la</strong>in differ<strong>en</strong>t effects of both probiotic strains observed in this<br />

study wh<strong>en</strong> applied to sole, and differ<strong>en</strong>ces of Pdp11 obtained for sole (this study) and<br />

gilthead seabream [27].<br />

Besi<strong>de</strong>s the effect of the probiotics on the immune response of sole, the other<br />

objective of this work was to assess changes in bacterial community structure of the sole<br />

intestine, as influ<strong>en</strong>ced by dietary treatm<strong>en</strong>t with probiotics. The <strong>de</strong>velopm<strong>en</strong>t of<br />

molecu<strong>la</strong>r methods for studying microbial communities has rec<strong>en</strong>tly also resulted in<br />

numerous works focusing on fish microbiota [20, 40-44, 60]. Nevertheless, no study has<br />

be<strong>en</strong> reported evaluating possible shifts in fish intestinal microbiota in response to<br />

probiotics administration. In the pres<strong>en</strong>t study, PCR-DGGE has be<strong>en</strong> applied to the<br />

analysis of fragm<strong>en</strong>ts <strong>de</strong>rived from differ<strong>en</strong>t hypervariable regions of 16S rRNA g<strong>en</strong>es.<br />

The set of primers selected are specific for all bacteria (V6-V8 region), and were<br />

previously used by several authors for the analysis of dietary effects on intestinal<br />

microbiota [47-49]. The results obtained in this study showed very simple patterns.<br />

Muyzer et al. [39] <strong>de</strong>scribed that communities with a few dominant species will produce<br />

simpler patterns and that less abundant species may not be a<strong>de</strong>quately repres<strong>en</strong>ted in the<br />

community pattern. It could be possible that some of these bands may not repres<strong>en</strong>t<br />

individual species, but rather groups which have the same re<strong>la</strong>tive G+C cont<strong>en</strong>t within<br />

the 16S V6-V8 region and have comigrated [61, 62]. These limitations may account in<br />

part for the <strong>de</strong>creased band number in the pres<strong>en</strong>t study and may also have influ<strong>en</strong>ced<br />

the appar<strong>en</strong>t diversity and simi<strong>la</strong>rity values [63]. The use of universal primers (e.g.<br />

those targeting the V3 or V6-V8 region of the 16S rRNA g<strong>en</strong>e) allows any bacterial<br />

community to be analyzed, although in case of an ecosystem with a re<strong>la</strong>tively high<br />

12


acterial diversity only the dominant microbiota (i.e. popu<strong>la</strong>tions with re<strong>la</strong>tive<br />

abundances of > 1%) will be visualized on the DGGE gels [64].<br />

Simi<strong>la</strong>r to the situation <strong>de</strong>scribed by several authors in homeotherms [64, 65],<br />

each individual fish showed a unique DGGE pattern. As expected, the fish intestinal<br />

microbiota fluctuates over time and is more <strong>de</strong>p<strong>en</strong><strong>de</strong>nt on the <strong>en</strong>vironm<strong>en</strong>t than<br />

homeothers [8].<br />

In our study, the only significant change in the intestinal microbiota could be<br />

observed in intergroup comparisons after comparing fish from the control group with<br />

fish fed with strain Pdp13. This might partly be exp<strong>la</strong>ined by the fact that closely re<strong>la</strong>ted<br />

popu<strong>la</strong>tions were already installed in the tissue, as corresponding bands were also<br />

observed in control groups. This is in accordance with the i<strong>de</strong>a that the microbiota of<br />

fish intestine consists of bacteria that are also pres<strong>en</strong>t in the surrounding water, but<br />

which are able to persist and multiply in the <strong>en</strong>vironm<strong>en</strong>t provi<strong>de</strong>d by intestinal tract<br />

[66, 67]. Therefore, the gastrointestinal microbiota of fish and shellfish are peculiarly<br />

<strong>de</strong>p<strong>en</strong><strong>de</strong>nt on the external <strong>en</strong>vironm<strong>en</strong>t, Vibrio being one of the most abundant g<strong>en</strong>era in<br />

marine fish [55]. The probiotics were iso<strong>la</strong>ted from the skin of another farmed fish,<br />

gilthead seabream. It can be expected that simi<strong>la</strong>r microbiota colonize both hosts.<br />

Further studies using direct sequ<strong>en</strong>cing of excised bands and 16S rRNA g<strong>en</strong>e clone<br />

library analysis need to be carried out to confirm that these bands correspond to<br />

popu<strong>la</strong>tions i<strong>de</strong>ntical to Pdp11 or Pdp13 strains.<br />

Although probiotics did not produce dramatic changes in the intestinal microbiota<br />

<strong>de</strong>tected by DGGE analysis, this does not imply that they do not exert any effect.<br />

According to Ouwehand et al. [68], it is not necessary that a probiotic induces changes<br />

in intestinal microbiota or so-called colonization to exert an effect locally or during<br />

transi<strong>en</strong>t passage through the gastrointestinal system. In fact, the variation of the<br />

microbiota in fish is substantial and fluctuates strongly on a daily basis [17, 20, 24].<br />

Therefore, stabilisation of the protective intestinal microbiota may be a means of<br />

improving the natural resistance to pot<strong>en</strong>tial pathog<strong>en</strong>s.<br />

13


Acknowledgem<strong>en</strong>ts<br />

The authors thank PREDOMAR (Carboneras, Almería, Spain) fishery for help<br />

and participation in this study and the financial support by the Ministerio Español <strong>de</strong><br />

Ci<strong>en</strong>cia y Tecnología (AGL 2005-07454-CO2-O2). P. Díaz-Rosales wishes to thank the<br />

Ministerio Español <strong>de</strong> Educación y Ci<strong>en</strong>cia for a F.P.U. scho<strong>la</strong>rship.<br />

5. Refer<strong>en</strong>ces<br />

[1] Dinis, MT, Ribeiro, L, Soares, F and Sarasquete, C. A review on the cultivation<br />

pot<strong>en</strong>tial of Solea s<strong>en</strong>egal<strong>en</strong>sis in Spain and in Portugal. Aquaculture 1999; 176:<br />

27-38.<br />

[2] Romal<strong>de</strong>, JL. Photobacterium damse<strong>la</strong>e subsp. piscicida: an integrated review of a<br />

bacterial fish pathog<strong>en</strong>. International Microbiology 2002; 5: 3-9.<br />

[3] Thyss<strong>en</strong>, A and Ollevier, F. In vitro antimicrobial susceptibility of Photobacterium<br />

damse<strong>la</strong>e subsp. piscicida to 15 differ<strong>en</strong>t antimicrobial ag<strong>en</strong>ts. Aquaculture 2001;<br />

200: 259-69.<br />

[4] Sakai, M. Curr<strong>en</strong>t research status of fish immunostimu<strong>la</strong>nts. Aquaculture 1999; 172:<br />

63-92.<br />

[5] Romal<strong>de</strong>, JL and Magariños, B. Immunization with bacterial antig<strong>en</strong>s:<br />

pasteurellosis. In: Gudding R, Lillehaug A, Midtlyng PJ, Brown F, editors. Fish<br />

Vaccinology. Karger, Basel, p. 167-77. (1997).<br />

[6] Arijo, S, Chabrillón, M, Díaz-Rosales, P, Rico, RM, Martínez-Manzanares, E,<br />

Balebona, MC, Toranzo, AE and Moriñigo, MA. Bacteria iso<strong>la</strong>ted from outbreaks<br />

affecting cultured sole, Solea s<strong>en</strong>egal<strong>en</strong>sis (Kaup). Bulletin of European<br />

Association of Fish Pathologists 2005; 25: 148-54.<br />

[7] Fuller, R. Probiotics in man and mammals. Journal of Applied Bacteriology 1989;<br />

66: 365-78.<br />

[8] Gatesoupe FJ. The use of probiotics in aquaculture. Aquaculture 1999; 180:147-65.<br />

14


[9] Verschuere, L, Rombaut, G, Sorgeloos, P and Verstraete, W. Probiotic bacteria as<br />

biological control ag<strong>en</strong>ts in aquaculture. Microbiology & Molecu<strong>la</strong>r Biology<br />

Reviews 2000; 64:655-71.<br />

[10] Schrez<strong>en</strong>meir, J and <strong>de</strong> Vrese, M. Probiotics, prebiotics and symbioticsapproaching<br />

a <strong>de</strong>finition. The American Journal of Clinical Nutrition 2001;<br />

73:361-4.<br />

[11] Bly, JE, Quiniou, SMA, Lawson, LA and Clem LW. Inhibition of Saprolegnia<br />

pathog<strong>en</strong>ic for fish by Pseudomonas fluoresc<strong>en</strong>s. Journal of Fish Diseases 1997;<br />

20:35-40.<br />

[12] Skjermo, J and Vadstein, O. Techniques for microbial control in the intestive<br />

rearing of marine <strong>la</strong>rvae. Aquaculture 1999; 177: 333-43.<br />

[13] Gómez-Gil, B, Roque A and Tumbull, JF. The use and selection of probiotic<br />

bacteria for use in the culture of <strong>la</strong>rval aquatic organisms. Aquaculture 2000;<br />

191:259-70.<br />

[14] Robertson, PAW, O’Dowd, C, Burrells, C, Williams, P and Austin, B. Use of<br />

Carnobacterium sp. as a probiotic for At<strong>la</strong>ntic salmon (Salmo sa<strong>la</strong>r L.) and<br />

rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 2000; 185: 235-43.<br />

[15] Nikoske<strong>la</strong>in<strong>en</strong> S, Ouwehand AC, Salmin<strong>en</strong>, S and Bylund, G (2001). Protection of<br />

rainbow trout (Oncorhynchus mykiss). Aquaculture 198, 229-236.<br />

[16] Nikoske<strong>la</strong>in<strong>en</strong> S, Salmin<strong>en</strong>, S, Bylund, G and Ouwehand AC. Characterization of<br />

the properties of human and diary-<strong>de</strong>rived probiotics for prev<strong>en</strong>tion of infectious<br />

disease in fish. Applied Environm<strong>en</strong>tal Microbiology 2001; 67: 2430-5.<br />

[17] Spanggaard, B, Huber, I, Niels<strong>en</strong>, J, Sick, EB, Pipper, CB, Martinuss<strong>en</strong>, T,<br />

Slier<strong>en</strong>drecht, WJ and Gram, L. The probiotic pot<strong>en</strong>tial against vibriosis of the<br />

indig<strong>en</strong>ous microflora of rainbow trout. Environm<strong>en</strong>tal Microbiology 2001; 3:755-<br />

65.<br />

[18] Raida, MK, Lars<strong>en</strong>, JL, Niels<strong>en</strong>, ME and Buchmann, K. Enhanced resistance of<br />

rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri<br />

chall<strong>en</strong>ge following oral administration of Bacillus subtilis and B. lich<strong>en</strong>iformis<br />

(BioPlus2B). Journal of Fish Diseases 2003; 26:495-8.<br />

15


[19] Vil<strong>la</strong>mil, L, Figueras, A, P<strong>la</strong>nas, M and Novoa, B. Control of Vibrio alginolyticus<br />

in Artemia culture by treatm<strong>en</strong>t with bacterial probiotics. Aquaculture 2003;<br />

219:43-56.<br />

[20] Al-Harbi, AH and Naim Uddin, M. Seasonal variation in the intestinal bacterial<br />

flora of hybrid ti<strong>la</strong>pia (Oreochromis niloticus x Oreochromis aureus) cultured in<br />

earth<strong>en</strong> ponds in Saudi Arabia. Aquaculture 2004; 229:37-44.<br />

[21] Vázquez, JA, González, MP and Murado, MA. Effects of <strong>la</strong>ctic acid bacteria<br />

cultures on pathog<strong>en</strong>ic microbiota from fish. Aquaculture 2005; 245: 149-61.<br />

[22] Irianto, A and Austin, B. Use of <strong>de</strong>ad probiotic cells to control furunculosis in<br />

rainbow trout, Onchorhynchus mykiss (Walbaum). Journal of Fish Diseases 2003;<br />

26:59-62.<br />

[23] Nikoske<strong>la</strong>in<strong>en</strong>, S, Ouwehand, AC, Bylund, G, Salmin<strong>en</strong> S and Lilius, EM. Immune<br />

<strong>en</strong>hancem<strong>en</strong>t in rainbow trout (Oncorhynchus mykiss) by pot<strong>en</strong>tial probiotic<br />

bacteria (Lactobacillus rhamnosus). Fish & Shellfish Immunology 2003; 15:443-<br />

52.<br />

[24] Panigrahi, A, Kiron, V, Kobayashi, T, Puangkaew, J, Satoh, S and Sugita, H.<br />

Immune responses in rainbow trout Oncorhynchus mykiss induced by a pot<strong>en</strong>tial<br />

probiotic bacteria Lactobacillus rhamnosus JCM 1136. Veterinary Immunology &<br />

Immunopathology 2004; 102:379-88.<br />

[25] Panigrahi, A, Kiron, V, Puangkaew, J, Kobayashi, T, Satoh, S and Sugita H. The<br />

viability of probiotic bacteria as a factor influ<strong>en</strong>cing the immune response in<br />

rainbow trout Oncorhynchus mykiss. Aquaculture 2005; 243:241-54.<br />

[26] Salinas, I, Cuesta A, Esteban, MA and Meseguer, J. Dietary administration of<br />

Lactobacillus <strong>de</strong>lbrüeckii and Bacillus subtilis, single or combined, on gilthead<br />

seabream cellu<strong>la</strong>r innate immune responses. Fish & Shellfish Immunology 2005;<br />

19:67-77.<br />

[27] Díaz-Rosales, P, Salinas, I, Rodríguez, A, Cuesta, A, Chabrillón, M, Balebona,<br />

MC, Moriñigo, MA, Esteban, MA and Meseguer, J. Gilthead seabream (Sparus<br />

aurata L.) innate immune response after dietary administration of heat-inactivated<br />

pot<strong>en</strong>tial probiotics. Fish & Shellfish Immunology 2006; 20: 482-92.<br />

16


[28] Burr, G, Gathin, D and Ricke, S. Microbial ecology of the gastrointestinal tract of<br />

fish and the pot<strong>en</strong>tial application of prebiotics and probiotics in finfish<br />

aquaculture. Journal of the World Aquaculture Society 2005; 36: 425-36.<br />

[29] Salinas, I, Díaz-Rosales, P, Cuesta, A, Meseguer, J, Chabrillón, M, Moriñigo, MA<br />

and Esteban, MA. Effect of heat-inactivated fish and non-fish <strong>de</strong>rived probiotics<br />

on the innate immune parameters of a teleost fish (Sparus aurata L.). Veterinary<br />

Immunology & Immunopathology 2006; 111: 279-86.<br />

[30] Noya, M, Magariños, B, Toranzo, AE and Lamas, J. Sequ<strong>en</strong>tial pathology of<br />

experim<strong>en</strong>tal pasteurellosis in gilthead seabream Sparus aurata. A light- and<br />

electron-microscopic study. Diseases of Aquatic Organisms 1995; 21: 177-86.<br />

[31] López-Dóriga, MV, Barnes, AC, dos Santos, NMS and Ellis, AE. Invasion of fish<br />

epithelial cells by Photobacterium damse<strong>la</strong>e subsp. piscicida: evi<strong>de</strong>nce for<br />

receptor specificity, and effect of capsule and serum. Microbiology 2000; 146:<br />

21-30.<br />

[32] Díaz-Rosales, P, Chabrillón, M, Moriñigo, MA and Balebona, MC. Survival<br />

against exog<strong>en</strong>ous hydrog<strong>en</strong> peroxi<strong>de</strong> of Photobacterium damse<strong>la</strong>e subsp.<br />

piscicida un<strong>de</strong>r differ<strong>en</strong>t culture conditions. Journal of Fish Diseases 2003; 26:<br />

305-8.<br />

[33] Elkamel, AA, Hawke, JP, H<strong>en</strong>k, WG and Thune, RL. Photobacterium damse<strong>la</strong>e<br />

subsp. piscicida is capable of replicating in hybrid striped bass macrophages.<br />

Journal of Aquatic Animal Health 2003; 15: 175-83.<br />

[34] Skarmeta, AM, Bandín, I, Santos, Y and Toranzo, AE. In vitro killing of<br />

Pasteurel<strong>la</strong> piscicida by fish macrophages. Diseases of Aquatic Organisms 1995;<br />

23: 51-7.<br />

[35] Barnes, AC, Balebona, MC, Horne, MT and Ellis, AE. Superoxi<strong>de</strong> dismutase and<br />

cata<strong><strong>la</strong>s</strong>e in Photobacterium damse<strong>la</strong>e subsp. piscicida and their roles in resistance<br />

to reactive oxyg<strong>en</strong> species. Microbiology 1999; 145: 483-94.<br />

[36] Chabrillón, M. Estudio <strong>de</strong> <strong>la</strong> interacción <strong>de</strong> patóg<strong>en</strong>os piscíco<strong><strong>la</strong>s</strong> y pot<strong>en</strong>ciales<br />

bacterias probióticas con <strong><strong>la</strong>s</strong> superficies mucosas <strong>de</strong> dorada (Sparus aurata L.).<br />

PhD thesis 2003. University of Má<strong>la</strong>ga, Spain.<br />

17


[37] Chabrillón M, Rico RM, Arijo, S, Díaz-Rosales, P, Balebona MC and Moriñigo<br />

MA. Interactions of microorganisms iso<strong>la</strong>ted from gilthead sea bream, Sparus<br />

aurata L., on Vibrio harveyi, a pathog<strong>en</strong> of farmed S<strong>en</strong>egalese sole, Solea<br />

s<strong>en</strong>egal<strong>en</strong>sis (Kaup). Journal of Fish Diseases 2005; 28: 531-7.<br />

[38] Chabrillón M, Rico RM, Balebona MC and Moriñigo MA. Adhesion to sole, Solea<br />

s<strong>en</strong>egal<strong>en</strong>sis Kaup, mucus of microorganisms iso<strong>la</strong>ted from farmed fish, and their<br />

interaction with Photobacterium damse<strong>la</strong>e subsp. piscicida. Journal of Fish<br />

Diseases 2005; 28: 229-37.<br />

[39] Muyzer, G, <strong>de</strong> Waal, EC and Uitterlin<strong>de</strong>n, AG. Profiling of complex microbial<br />

popu<strong>la</strong>tions by <strong>de</strong>naturing gel electrophoresis analysis of polymerase chain<br />

reaction-amplified g<strong>en</strong>es coding for 16S rRNA. Applied & Environm<strong>en</strong>tal<br />

Microbiology 1993; 59: 695-700.<br />

[40] Spanggaard, B, Huber, I, Niels<strong>en</strong>, T and Gram, L. Proliferation and location of<br />

Vibrio anguil<strong>la</strong>rum dusing infection of rainbow trout, Onchorhynchus mykiss<br />

(Walbaum). Journal of Fish Diseases 2000; 23: 423-7.<br />

[41] Holb<strong>en</strong>, WE, Williams, P, Saarin<strong>en</strong>, M, Särki<strong>la</strong>hti, LK and Apaja<strong>la</strong>hti,<br />

JHA.Phylog<strong>en</strong>etic analysis of intestinal microflora indicates a novel Mycop<strong><strong>la</strong>s</strong>ma<br />

phylotype in farmed and wild salmon. Microbial Ecology 2002; 44: 175-85.<br />

[42] Sandaa, RA, Magnes<strong>en</strong>, T, Torkilds<strong>en</strong>, L and Bergh, Ø. Characterisation of the<br />

bacterial community associated with early stages of great scallop (Pect<strong>en</strong><br />

maximus), using <strong>de</strong>naturing gradi<strong>en</strong>t gel electrophoresis (DGGE). Systematic and<br />

Applied Microbiology 2003; 26: 302-11.<br />

[43] Huber, I, Spanggaard, B, Appel, KF, Ross<strong>en</strong>, L, Niels<strong>en</strong>, T and Gram, L.<br />

Phylog<strong>en</strong>etic analysis and in situ i<strong>de</strong>ntification of the intestinal microbial<br />

community of rainbow trout (Oncorhynchus mykiss, Walbaum). Journal of<br />

Applied Microbiology 2004; 96: 117-32.<br />

[44] J<strong>en</strong>s<strong>en</strong>, S, Øvreas, L, Bergh, Ø and Torsvik, V. Phylog<strong>en</strong>etic analysis of bacterial<br />

communities associated with <strong>la</strong>rvae of the at<strong>la</strong>ntic halibut propose succession from<br />

a uniform normal flora. Systematic and Applied Microbiology 2004; 27: 728-36.<br />

[45] Secombes, CJ. Iso<strong>la</strong>tion of salmonid macrophages and analysis of their killing<br />

activity. In: Stol<strong>en</strong> JS, Fletcher DP, An<strong>de</strong>rson BS, Roberson, van Muiswinkel<br />

18


WB, editors. Techniques in Fish Immunology, Fair Hav<strong>en</strong>, NJ, SOS Publication;<br />

1990, p. 137-54.<br />

[46] Boes<strong>en</strong>, HT, Lars<strong>en</strong>, MH, Lars<strong>en</strong>, LH and Ellis, AE. In vitro interactions betwe<strong>en</strong><br />

rainbow trout (Oncorhynchus mykiss) macrophages and Vibrio anguil<strong>la</strong>rum<br />

serogroup O2a. Fish & Shellfish Immunology 2001; 11: 415-31.<br />

[47] Konstantinov, SR, Zhu, WY, Williams, BA, Tamminga, S, <strong>de</strong> Vos, WM and<br />

Akkermans, ADL. Effect of ferm<strong>en</strong>table carbohydrates on faecal bacterial<br />

communities as revealed by DGGE analysis of 16S rDNA. FEMS Microbiology<br />

Ecology 2003; 43: 225-35.<br />

[48] Nübel, U, Engel<strong>en</strong>, B, Felske, A, Snaidr, J, Wieshuber, A, Amann, RI, Ludwig, W<br />

and Backhaus, H. Sequ<strong>en</strong>ce heterog<strong>en</strong>eities of g<strong>en</strong>es <strong>en</strong>coding 16S rRNAs in<br />

Pa<strong>en</strong>ibacillus polymyxa <strong>de</strong>tected by temperature gradi<strong>en</strong>t gel electrophoresis.<br />

Journal of Bacteriology 1996; 178: 5636-43.<br />

[49] Zoet<strong>en</strong>dal, EG and von Wright, A, Vilppon<strong>en</strong>-Salme<strong>la</strong>, B<strong>en</strong>-Amor, K, Akkermans,<br />

ADL, <strong>de</strong> Vos, WM. Mucosa-associated bacteria in the human gastrointestinal tract<br />

are uniformly distributed along the colon and differ from the community recovered<br />

from feces. Applied & Environm<strong>en</strong>tal Microbiology 2002; 68: 3401-7.<br />

[50] Sambrook, J, Fritsch, EF and Maniatis, T. In: Sambrook, J, Russell, DW, editors.<br />

Molecu<strong>la</strong>r cloning: a <strong>la</strong>boratory manual, 2 nd ed. 1989. Cold Spring Harbor<br />

Laboratory Press, Cold Spring Harbor, N.Y.<br />

[51] Sanguinetti, CJ, Dias Neto, E and Simpson, AJG. Rapid silver staining and<br />

recovery of PCR products separated on polyacru<strong>la</strong>mi<strong>de</strong> gels. BioTechniques 1994;<br />

17: 915-9.<br />

[52] Pearson, E. A further note on the distribution of range in samples tak<strong>en</strong> from a<br />

normal popu<strong>la</strong>tion. Biometrika 1926; 18: 173-94.<br />

[53] Häne, BG, Jäger, K and Drexler, HG. The Pearson product-mom<strong>en</strong>t corre<strong>la</strong>tion<br />

coeffici<strong>en</strong>t is better suited for i<strong>de</strong>ntification of DNA fingerprint profiles than band<br />

matching algorithms. Electrophoresis 1993; 14: 967-72.<br />

[54] Balcázar, JL, <strong>de</strong> B<strong><strong>la</strong>s</strong>, I, Ruíz-Zarzue<strong>la</strong>, I, Cunningham, D, V<strong>en</strong>drell, D and<br />

Múzquiz, JL. The role of probiotics in aquaculture. Veterinary Microbiology<br />

2006; 114: 173-84.<br />

19


[55] Sakata, T. Microflora in the digestive tract of fish and shellfish. In: Lésel, R,<br />

editors. Microbiology in Poecilotherms, Elsevier, Amsterdam; 2006, p. 171-6.<br />

[56] Rinkin<strong>en</strong>, M, Ja<strong>la</strong>va, K, Westermarck, W, Salmin<strong>en</strong>, S and Ouwehand, AC.<br />

Interaction betwe<strong>en</strong> probiotic <strong>la</strong>ctic acid bacteria and canine <strong>en</strong>teric pathog<strong>en</strong>s: a<br />

risk factor for intestinal Enterococcus faecium colonization Veterinary<br />

Microbiology 2003; 92: 111-9.<br />

[57] Gullian, M, Thompson, F and Rodriguez, J. Selection of probiotic bacteria and<br />

study of their immunostimu<strong>la</strong>tory effect in P<strong>en</strong>aeus vannamei. Aquaculture 2004;<br />

233: 1-14.<br />

[58] Brunt, J and Austin, B. Use of a probiotic to control <strong>la</strong>ctococcosis and<br />

streptococcosis in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of<br />

Fish Diseases 2005; 28: 693-701.<br />

[59] Aubin, J, Gatesoupe, FJ, Labbé, L and Lebrun, L. Trial of probiotics to prev<strong>en</strong>t the<br />

vertebral column compression syndrome in rainbow trout (Oncorhynchus mykiss<br />

Walbaum). Aquaculture Research 2005; 36: 758-67.<br />

[60] Hjelm, M, Bergh, Ø, Riaza, A, Niels<strong>en</strong>, J, Melchiors<strong>en</strong>, J, J<strong>en</strong>s<strong>en</strong>, S, Duncan, H,<br />

Ahr<strong>en</strong>s, P, Birkbeck, H and Gram, L. Selection and i<strong>de</strong>ntification of<br />

autochthonous pot<strong>en</strong>tial probiotic bacteria from turbot <strong>la</strong>rvae (Scophthalmus<br />

maximus) rearing units. Systematic and Applied Microbiology 2004; 27: 360-71.<br />

[61] Simpson, JM, McCrack<strong>en</strong>, VJ, White, BA, Gaskins, HR and Mackie, RI.<br />

Application of <strong>de</strong>naturant gradi<strong>en</strong>t gel electrophoresis for the analysis of the<br />

porcine gastrointestinal microbiota. Journal of Microbiological Methods 1999; 36:<br />

167-79.<br />

[62] Temmerman, R, Scheirlinck, I, Huys, G and Swings, J. Culture-in<strong>de</strong>p<strong>en</strong><strong>de</strong>nt<br />

analysis of probiotic products by <strong>de</strong>naturing gradi<strong>en</strong>t gel electrophoresis. Applied<br />

& Environm<strong>en</strong>tal Microbiology 2003; 69: 220-6.<br />

[63] McCrak<strong>en</strong>, VJ, Simpson, JM, Mackie, RI and Gaskins, HR. Molecu<strong>la</strong>r ecological<br />

analysis of dietary and antibiotic-induced alterations of the mouse intestinal<br />

microbiota. Journal of Nutrition 2001; 131: 1862-70.<br />

[64] Zoet<strong>en</strong>dal, EG, Akkermans, ADL and <strong>de</strong> Vos, WM. Temperature gradi<strong>en</strong>t gel<br />

electrophoresis analysis of 16S rRNA from human fecal samples reveals stable<br />

20


and host-specific communities of active bacteria. Applied & Environm<strong>en</strong>tal<br />

Microbiology 1998; 64: 3854-9.<br />

[65] Simpson, JM, McCrack<strong>en</strong>, VJ, Gaskins, HR and Mackie, RI. D<strong>en</strong>aturing gradi<strong>en</strong>t<br />

gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes<br />

in fecal bacterial popu<strong>la</strong>tions of weaning pigs after introduction of Lactobacillus<br />

reuteri strain MM53. Applied & Environm<strong>en</strong>tal Microbiology 2000; 66: 4705-14.<br />

[66] Sugita, H, Hirose, Y, Matsuo, N and Deguchi, Y. Production of the antibacterial<br />

substance by Bacillus sp. strain NM 12, an intestinal bacterium of Japanese<br />

coastal fish. Aquaculture 1998; 165: 269-80.<br />

[67] Cahill, MM. Bacterial flora of fishes: a review. Microbioal Ecology 1990; 19: 21-<br />

41.<br />

[68] Ouwehand, AC, Salmin<strong>en</strong>, S and Iso<strong>la</strong>uri, E. Probiotics: an overview of b<strong>en</strong>eficial<br />

effects. Antoine van Leeuw<strong>en</strong>hoek 2002; 82: 279-89.<br />

21


Figures leg<strong>en</strong>ds<br />

Table 1. Primers and PCR conditions used in this study.<br />

Figure 1a. Respiratory burst activity of kidney phagocytes from sole specim<strong>en</strong>s<br />

fed diets containing alginate alone, or in combination with 10 9 cfu g -1 Pdp11 or 10 9 cfu<br />

g -1 Pdp13 for 30 days ( ) or 60 days ( ). Results are expressed as stimu<strong>la</strong>tion in<strong>de</strong>x<br />

obtained by dividing each sample value by the mean control value. Symbol * <strong>de</strong>notes<br />

statistically significant differ<strong>en</strong>ces (P


Table 1<br />

Primer Sequ<strong>en</strong>ce (5’-3’) PCR Refer<strong>en</strong>ce<br />

Bact-0968-GC-F CGC CCG GGG CGC GCC 94 ºC for 2 min and 35 [47-49]<br />

CCG GGC GGG GCG cycles of 95 ºC for 30 s,<br />

GGG<br />

56 ºC for 40 s, 72 ºC<br />

GCA CGG GGG GAA CGC<br />

GAA GAA CCT TAC<br />

for 1 min, and 72 ºC for<br />

5 min (final ext<strong>en</strong>sion)<br />

Bact-1401-R CGG TGT GTA CAA GAC<br />

CC<br />

PRBA-338-GC-F CGC CCG CCG CGC GCG 92 ºC for 2 min and 30 [44]<br />

GCG GGC GGG GCG GGG<br />

GCA CGG GGG GAC TCC<br />

cycles of 92 ºC for 1<br />

min, 55 ºC for 30 s, 72<br />

TAC GGG AGG CAG ºC for 1 min, and 72 ºC<br />

CAG<br />

for 6 min (final<br />

ext<strong>en</strong>sion)<br />

PRUN-518-R ATT ACC GCG GCT GCT<br />

GG<br />

* Primer with a 40-bp GC c<strong>la</strong>mp at the 5’<strong>en</strong>d.<br />

25


Figure 1a<br />

2.5<br />

2<br />

*<br />

Stimu<strong>la</strong>tion in<strong>de</strong>x<br />

1. 5<br />

1<br />

0.5<br />

0<br />

Alginate Pdp11 Pdp13<br />

27


Figure 1b<br />

Stimu<strong>la</strong>tion in<strong>de</strong>x<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

*<br />

0<br />

Alginate Pdp11 Pdp13<br />

29


Figure 2<br />

Cumu<strong>la</strong>tive mortality (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Control<br />

Pdp11<br />

Pdp13<br />

0 1 2 3 4<br />

Days after chall<strong>en</strong>ge<br />

31


Table 2<br />

Primer Control Pdp11 Pdp13<br />

Bact-0968-GC-F & 72.85±7 83.01±4.22 65.81±4.92<br />

Bact-1401-R<br />

PRBA-338-GC-F &<br />

PRUN-518-R<br />

71.4±4.67 71.33±7.19 73.11±5<br />

33


Table 3<br />

Primer Bact-0968-GC-F &<br />

Bact-1401-R<br />

PRBA-338-GC-F &<br />

PRUN-518-R<br />

Control-Pdp11 57.08±2.91 68.95±4.52<br />

Control-Pdp13 41.54±2.88 70.21±3.82<br />

Pdp11-Pdp13 65.08±1.87 79.78±4.18<br />

35


Figure 3<br />

Pearson corre<strong>la</strong>tion [0.0%-100.0%]<br />

PREDOMARSalvador<br />

PREDOMARSalvador<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

100<br />

Pdp11 . Pdp11 (I)<br />

Pdp11 . Pdp11 (I)<br />

Pdp11 . Pdp11(I)<br />

Pdp13 . Pdp13 (I)<br />

Pdp13 . Pdp13 (I)<br />

Pdp13 . Pdp13 (I)<br />

Control . Control (I)<br />

Control . Control (I)<br />

Control . Control (I)<br />

Pure control . Pure Pdp13 culture Pdp1<br />

Pure culture . Pure Pdp11 culture Pdp1<br />

37


Agra<strong>de</strong>cimi<strong>en</strong>tos / Acknowledgem<strong>en</strong>ts<br />

En primer lugar, un agra<strong>de</strong>cimi<strong>en</strong>to muy especial a Miguel Ángel Moriñigo<br />

y a Mª Carm<strong>en</strong> Balebona, mis directores. Agra<strong>de</strong>ceros el apoyo y <strong>la</strong> confianza<br />

que <strong>de</strong>positasteis <strong>en</strong> mí, espero no haberos <strong>de</strong>fraudado. Gracias por <strong>en</strong>señarme,<br />

por haber hecho fácil y gratificante este camino, y por transmitirme <strong>la</strong> ilusión por<br />

<strong>la</strong> investigación. Ha sido un honor ser vuestra discípu<strong>la</strong>.<br />

Gracias a Eduardo Martínez por transmitir sus conocimi<strong>en</strong>tos y por su<br />

apoyo.<br />

Mi agra<strong>de</strong>cimi<strong>en</strong>to al director <strong>de</strong>l Departam<strong>en</strong>to, Antonio <strong>de</strong> Vic<strong>en</strong>te, a<br />

Juan José Borrego, Dolores Castro, Alejandro Pérez, Mª Carm<strong>en</strong> Alonso,<br />

Francisco Cazor<strong>la</strong> y Esther García.<br />

Gracias a Roberto Abda<strong>la</strong> y Félix López, <strong>de</strong>l Departam<strong>en</strong>to <strong>de</strong> Ecología,<br />

por esta gratificante y <strong>en</strong>riquecedora co<strong>la</strong>boración inter<strong>de</strong>partam<strong>en</strong>tal.<br />

Muchas gracias a Salvador Arijo y Mariana Chabrillón: esta Tesis también<br />

es vuestra. Durante estos años vosotros habéis sido mi ejemplo a seguir. Gracias<br />

por todo lo que me habéis <strong>en</strong>señado. Muchas gracias a Rosa Mª Rico, por tu<br />

sonrisa y <strong>la</strong> alegría que transmites. Gracias a los que comi<strong>en</strong>zan ahora, <strong>en</strong><br />

especial a Silvana Tapia.<br />

Gracias a Daniel <strong>de</strong>l Pino, Paco Olea, Eva Arrebo<strong>la</strong>, Diego Romero, Ir<strong>en</strong>e<br />

Cano y Pedro Fierro. Gracias a María Múñoz y Carm<strong>en</strong> Vi<strong>la</strong>.<br />

Agra<strong>de</strong>cer a <strong>la</strong> piscifactoría PROMAN (Promotora Alpujarreña <strong>de</strong><br />

Negocios, S.L., Motril, Granada, España), especialm<strong>en</strong>te a Víctor Fernán<strong>de</strong>z,<br />

Director Técnico, y al Au<strong>la</strong> <strong>de</strong>l Mar (Má<strong>la</strong>ga, España) su inestimable<br />

co<strong>la</strong>boración.<br />

Thank you Dr. Secombes, Chris, to afford me the opportunity to work at<br />

your <strong>la</strong>boratory in Aber<strong>de</strong><strong>en</strong>. I am very grateful that you have trusted me again. I<br />

hope you will not be disappointed by me. Thank you Dr. Jun Zou.<br />

José Meseguer y Mª Ángeles Esteban, gracias por <strong>de</strong>jarme trabajar con<br />

vosotros, por aceptarme como un miembro más. Muchas gracias a Alberto<br />

Cuesta, Alejandro Rodríguez y, <strong>en</strong> especial, a Ir<strong>en</strong>e Salinas.<br />

Thank you Dr. Smidt, Hauke, to allow me working at your <strong>la</strong>boratory.<br />

Danke Schön. Dr. Edwin Zoet<strong>en</strong>dal, dank u wel. Mariana Chabrillón, agra<strong>de</strong>certe


que perdieras parte <strong>de</strong> tu tiempo <strong>en</strong> <strong>en</strong>señarme y todo lo que me has ayudado;<br />

creo que esto no podría haber salido sin ti.<br />

A mis amigos que, a pesar <strong>de</strong> los años transcurridos, sigu<strong>en</strong> estando ahí,<br />

apoyándome <strong>en</strong> cada mom<strong>en</strong>to. Muchas gracias.<br />

Dar <strong><strong>la</strong>s</strong> gracias a mis padres por tantas horas <strong>de</strong> <strong>de</strong>dicación.<br />

Y, sobre todo, a mi hermano Raúl. Raúl, sin ti esta Tesis no habría visto <strong>la</strong><br />

luz; gracias por apoyarme siempre, por escucharme y por soportarme. Gracias<br />

por tu ayuda <strong>en</strong> todo el proceso <strong>de</strong> e<strong>la</strong>boración, esta Tesis está completa gracias a<br />

tus conocimi<strong>en</strong>tos filológicos. Gracias.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!