21.01.2015 Views

Chromogranin Immunoreactivity in the Central Nervous System ...

Chromogranin Immunoreactivity in the Central Nervous System ...

Chromogranin Immunoreactivity in the Central Nervous System ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Bra<strong>in</strong> Research Reviews, 8 (1984) 193-230<br />

Elsevier<br />

193<br />

BRR 90020<br />

<strong>Chromogran<strong>in</strong></strong> <strong>Immunoreactivity</strong> <strong>in</strong> <strong>the</strong> <strong>Central</strong> <strong>Nervous</strong> <strong>System</strong>.<br />

Immunochemical Characterisation, Distribution and Relationship to<br />

Catecholam<strong>in</strong>e and Enkephal<strong>in</strong> Pathways<br />

P. SOMOGYI, A . J. HODGSONJ, R . W. DePOTTER2, R. FISCHER-COLBRIE 8 ,<br />

M. SCHOBER", H. WINKLER* and 1. W. CHUBB<br />

Unit of Human Physiology, Fl<strong>in</strong>ders University of South Australia, Bedford Park (South Australia) 5042 and<br />

* Department of Pharmacology, University of Innsbruck (Austria)<br />

(Accepted September 17th, 1984)<br />

Key words: chromogran<strong>in</strong> A - enkephal<strong>in</strong>s - catecholam<strong>in</strong>e neurons - adrenal medulla - central nervous systemimmunochemistry<br />

- immunocytochemistry<br />

CONTENTS<br />

1. Introduction<br />

194<br />

2. Materials and Methods ........ .... ....... .. .... ......... ... ... ...... ... ...... ...... .. ... .............. ... ....... ..... .... ... ... .... ...... ............. 195<br />

2.1. Isolation of chromogran<strong>in</strong> A ... ... ..... .... ....... ........ ...... .... .... ...... .. ..... .... ...... ..... ... ............ .... .... ... ..... ............ 195<br />

2.2. Production of antiserum to chromogran<strong>in</strong> .... ............ .... ................... .... ............ ..... ....... .... ... .............. ... ..... .. 195<br />

2.3. Characterization of <strong>the</strong> antiserum to chromogran<strong>in</strong> .... .. ... ........... ..... .. .. ........... ........ .. ... ... ... ... ........ ..... ......... . 195<br />

2.3.1. One dimensional immunoblots ....... .... ....... ... ........ .. .. .. ....... .... ....... .. ......... ................ ... .. ............ ... .. . 195<br />

2.3.2. Two dimensional immunoblots ......... ... .. .. ..... ... ... .. ... .. .... ...... ..... ....... ..... ... .... .. .... ..... .... .. ................. . 195<br />

2.4. Preparation of tissue extracts.. ......... .... ........ ...... .. .. ... .... .... .. ........... .. ..... .... ... ......... .... .......... .... .. .. ...... ...... 196<br />

2.5. O<strong>the</strong>r antisera ............. ..... ........... .............. ........ ... ......... .............. .. ... ... ............ .. .. ... .... .... ... .. .... .. ... ... ... 196<br />

2.6. Animals and preparation of tissue sections ... ..... ..... ... ...... .... .. .... .... ... .......... ...... ..... .... ...... .. ... .... ..... ............ 196<br />

2.7. Pre-embedd<strong>in</strong>g immunohistochemistry.... .... ...... .. ...... ... .... ... .... ................... .. .... ..... .................................. . 197<br />

2.8. AChE enzyme histochemistry. ..... ....... ..... ............... ... ... ... ... ...... ... ...... .. .... .. ... .... .... .. .... ......... .... .... ......... .. 197<br />

2.9. Controls for specificity of <strong>the</strong> immunohistochemical reaction .. ...... .. ........... ... .... ..... .. .. ... ........ .. ............ .... .... .... 197<br />

3. Results ... .... ...... ........ .... ............... .. .... ... ..... ................. ..... ....... ....... .. .......... ... ...... .. ....... ..... .. .... .... ............. 199<br />

3.1. Characteristics of <strong>the</strong> antiserum to chromogran<strong>in</strong> ....... .......... ... ..... ... ............... ... ..... .. .. ... .. ... ... ... .. .... ... ...... .... 199<br />

3.1.1. Adrenal medulla .... .... ..... ......... ..... ........... .. .............. ....... ... ......... ..... .. .. ...... .......... ............. .. .. .... .. 199<br />

3.1.2. Def<strong>in</strong>ition of chromogran<strong>in</strong> immunoreactivity. .... .... ... ............... .. .... ............. .... .... ... ...... .... .... .. .. .... ... .. 199<br />

3.2. <strong>Chromogran<strong>in</strong></strong> immunoreactive prote<strong>in</strong>s <strong>in</strong> bra<strong>in</strong> and pituitary .. ..... .......... ... .... ....... ................... ... ... ................ 201<br />

3.2.1. Bov<strong>in</strong>e pituitary and hippocampus' ........ .... ... ........... ... ... ..................... ...... ........... ... ... .... ............ ...... 201<br />

3.2.2. O<strong>the</strong>r'bra<strong>in</strong> areas .... ... ....... .. ............... .. .... ........... .... ... .. ........ ....... ... .. ..... .. ....... .... .. .......... ............. 201<br />

3.2.3. Identity of antigenic determ<strong>in</strong>ant <strong>in</strong> bra<strong>in</strong> and <strong>in</strong> <strong>the</strong> adrenal medulla. .... ...... .................. .... ........ ...... ..... .... 201<br />

3.3. Immunohistochemical localization of CHR immunoreactivity ..... ..... .... ... .... ...... ............... ..... .. .. .... ...... .... .. ..... 203<br />

3.3.1. Adrenal gland .... .... ... ..... .... .... ...... .................................. ... ... ...... .. ... .... .... ...... ................ .... ..... ... . 203<br />

3.3.2. Anterior pituitary ............. .... ...... ... .... .. ............... ... .... .. .. ..... ..... ...... ....... .... ... .. ... .... .. ... ................. 203<br />

3.3.3 . P<strong>in</strong>eal gland........ ......... .. ..... ... ......... ...... .... ........ .......... ....... ...... .... ........... ............. ..... ....... .... ...... 203<br />

3.3.4. <strong>Central</strong> nervous system. .. ...... ........ .. ... ............... .... ........ ...... .... .. .. .... .... ..... ... .. ... ..... ........................ 203<br />

3.3.4.1 . Light microscopic appearance of CHR immunoreactivity ........................ ...... ... ... ......... ............. 203<br />

3.3.4.2. Electron microscopic localization of CHR immunoreactivity ....... ....... ... .... ..... ...... ..... ................ 205<br />

J Present address: Unit of Cl<strong>in</strong>ical Immunology, Biotechnology Unit, Fl<strong>in</strong>ders University of South Australia, Bedford Park, S.A.<br />

5042.<br />

2 Present address: Laboratory of Histology, State University Gent, Louis Pasteurlaan 2, Gent, Belgium 9000.<br />

0165-0173/84/$03 .00 © 1984 Elsevier Science Publishers B. V.


194<br />

3.3.4.3. Comparison of <strong>the</strong> distribution ofCHR-, TH-, DBH- and en kephal<strong>in</strong>-immunoreactivity .... .... .. .. .... . 205<br />

3.3.4.3.1. Outl<strong>in</strong>eofdescription ............ ... ...... .... 205<br />

3.3.4.3.2. Telencephalon .... ....... ... .... . .. .... . ... ... .. .... ... .. ..... ....... .. ........... ..... ........ ..... .... 205<br />

3.3.4.3.3. Diencephalon ....... .. .... ......... .. .. ...................... ........... .. .. 212<br />

3.3.4.3.4. Mesencephalon .... ... .... .. .... ... .......... ... ....... ... ... .... ... ............... .. ........ ... ...... . ... .... 212<br />

3.3 .4.3.5. Pons and dorsal tegmentum .................. ... .. .. .. .... .................................. ... .. 214<br />

3.3.4.3.6. Cerebellum ...... ""''''''''' ' ...... .. .... .................... . 214<br />

3.3.4.3.7. Medulla oblongata and sp<strong>in</strong>al cord .. ......... ...... .................... ....... ....... .... .. ...... .. ... 214<br />

4. Discussion. ..................... ....... .......... .. . ....... .... .. .... . 218<br />

4.1. Molecular nature of <strong>the</strong> CHR antigen . ..... ... .. .. .... ... . ........ . ... 218<br />

4.1.1. Characteristics of <strong>the</strong> antisera............... ........... .... ....... ... 218<br />

4.1.2. Characteristics of <strong>the</strong> CHR-immunoreactive prote<strong>in</strong>s <strong>in</strong> <strong>the</strong> adrenal medulla. ..... ....... ... ..... ...... .. .. .... .. ... ..... 218<br />

4.1.3. Characteristics of <strong>the</strong> CHR-antigens <strong>in</strong> bra<strong>in</strong> and pituitary . .. .. .. .. .. ....... .. ... .. ....... .... ... 219<br />

4.2. Neuronal pathways conta<strong>in</strong><strong>in</strong>g CHR immunoreactivity .. ... ......... .... .. .. .... ...... .. .... ..... .. .. . .. .. .. . ... ....... .... .... 220<br />

4.2.1. Peripheral nervous system and endocr<strong>in</strong>e cells............. .. ..... .............. . .. ... .. ... .... 220<br />

4.2.2. <strong>Central</strong> nervous system ....... ............... ..... ..... .. ...... .. .. ....... .... .. ......... .. ........... .... ............. 220<br />

4.2.2.1. Catecholam<strong>in</strong>ergicneurons . .... .. .... .. .. ..... ... .. ............. ............. 220<br />

4.2.2.2. Neurons us<strong>in</strong>g acidic am<strong>in</strong>o acids as transmitters.... .. ... ............... ..... ... ........ .. ... . 221<br />

4.2.2.3. Enkephal<strong>in</strong>pathways ..".... .. ......... 221<br />

4.2.2.4. Neurons conta<strong>in</strong><strong>in</strong>g dynorph<strong>in</strong> and neo-endorph<strong>in</strong> immunoreactivity .. .. ... .. .... ........... .. .... 223<br />

4.2.2 .5. Chol<strong>in</strong>ergic neurons ..... .................. .... .. ..... .. ... .. ... .. 223<br />

4.2.2.6. GABAergicneurons .. .. ... .... .. .. .......... .. .... ..... ............... .. .. 223<br />

4.2.2.7. Summary of immunohistochemical experiments ....... ... .. ... . ..... ... .... .... .. .. .. ... .......... .. .. . 224<br />

4.3. Possible roles of <strong>the</strong> chromogran<strong>in</strong>s . .."........... ...... .... .... .. ... 224<br />

4.3.1. <strong>Chromogran<strong>in</strong></strong> as a possible peptide precursor .... .... .... .. ..... .. .. .... .. ... .. .... .... .... ... .. ... .. .... .. .... ......... ........ . 224<br />

5. Summary<br />

Acknowledgements ............. . .... ...... .. .... .. ...... . ... .. .<br />

References ... ........... .......... .<br />

225<br />

226<br />

227<br />

1. INTRODUCTION<br />

The catecholam<strong>in</strong>e stor<strong>in</strong>g secretory granules of<br />

<strong>the</strong> chromaff<strong>in</strong> cells <strong>in</strong> <strong>the</strong> adrenal medulla conta<strong>in</strong><br />

water-soluble prote<strong>in</strong>s which have been collectively<br />

called chromogran<strong>in</strong>ss. Few of <strong>the</strong> prote<strong>in</strong>s have established<br />

roles: one, dopam<strong>in</strong>e ,B-hydroxylase<br />

(DBH), is <strong>in</strong>volved <strong>in</strong> <strong>the</strong> biosyn<strong>the</strong>sis of catecholam<strong>in</strong>es<br />

and o<strong>the</strong>rs <strong>in</strong>clude various forms of <strong>the</strong> enkephal<strong>in</strong><br />

precursor (see ref. 106). The prote<strong>in</strong>s which<br />

have been assigned specific roles account for a small<br />

fraction of <strong>the</strong> total soluble prote<strong>in</strong>s. Roughly<br />

40-50% of <strong>the</strong> mass of water-soluble prote<strong>in</strong>s is accounted<br />

for by one prote<strong>in</strong>, called chromogran<strong>in</strong><br />

A8o.87. There is a wealth of data relat<strong>in</strong>g to <strong>the</strong> biochemical<br />

properties of this prote<strong>in</strong>, <strong>the</strong> most pert<strong>in</strong>ent<br />

to this study be<strong>in</strong>g its relative molecular mass (Mr)<br />

of 70,000-80,000 and its richness <strong>in</strong> acidic am<strong>in</strong>o<br />

acids (see ref. 116). It is also present <strong>in</strong> noradrenergic<br />

sympa<strong>the</strong>tic nerve vesicles (see ref. 51), and it is secreted<br />

from chromaff<strong>in</strong> cells and sympa<strong>the</strong>tic neu-<br />

rons when <strong>the</strong> am<strong>in</strong>es are releaseds.88.89. The functional<br />

role of chromogran<strong>in</strong> A <strong>in</strong> <strong>the</strong> adrenal medulla<br />

and sympa<strong>the</strong>tic nerves is unknown. Attempts to establish<br />

<strong>the</strong> role of <strong>the</strong> prote<strong>in</strong> have focused on its association<br />

with catecholam<strong>in</strong>es and it was proposed to<br />

be an important component <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> high<br />

concentration of am<strong>in</strong>es <strong>in</strong> vesicles (see ref. 88).<br />

However, it has not been possible to show unambiguously<br />

that its presence is a major requirement of<br />

am<strong>in</strong>e storage (see refs. 51, 116). Recent work has<br />

shown that chromogran<strong>in</strong> immunoreactive material<br />

is not exclusively associated with catecholam<strong>in</strong>es but<br />

is also present <strong>in</strong> several endocr<strong>in</strong>e tissues where it is<br />

localized <strong>in</strong> polypeptide-hormone produc<strong>in</strong>g<br />

cells 1S ,16,66,67. <strong>Chromogran<strong>in</strong></strong> immunoreactive material<br />

has also been found <strong>in</strong> serum 64 , suggest<strong>in</strong>g that it<br />

may be secreted from <strong>the</strong> cells.<br />

The presence of chromogran<strong>in</strong> <strong>in</strong> endocr<strong>in</strong>e cells<br />

which secrete peptide hormones <strong>in</strong>dicates that its<br />

role is not conf<strong>in</strong>ed to am<strong>in</strong>ergic tissues, and its secretion<br />

suggests that <strong>the</strong> prote<strong>in</strong>, or possibly peptides


195<br />

act as hormone-like messenendo-<br />

are believed to act as neuromOduJlatC)rs.<br />

It follows if <strong>the</strong> chrof"Il-p,cpr,r<br />

<strong>in</strong> <strong>the</strong> central nervous<br />

<strong>in</strong>fluence neuronal<br />

We have<br />

hvr)otiheSlS that a wider role for<br />

some of <strong>the</strong> cnl:onflO!!ranm should l<strong>in</strong>ked to wide<br />

but selective distribution <strong>in</strong> <strong>the</strong> nervous system. As a<br />

first we have studied <strong>the</strong> distribution<br />

corltalnmlg 40 mM sodium chloride and eluted with<br />

<strong>the</strong> same buffer at a flow rate of 0.3<br />

CDI-on10£~raJt1ln A were<br />

After 0LUHILl"F"<br />

A were cut out and <strong>the</strong> prote<strong>in</strong><br />

allowed to diffuse from <strong>the</strong> The SDS removed<br />

PrE;CnJIt2ltIC1n with ac(~tone·)1 This matenal<br />

2.2. Production<br />

to<br />

neuroactive sut)st,mc:es,<br />

we have also studied its distribution <strong>in</strong> relation to im-<br />

",(',nr'h!lI <strong>in</strong>tervals.<br />

each booster , .. ,v'v'.lVJ'"<br />

2.3. Characterization<br />

n<strong>in</strong><br />

antiserum to rhl'nn1norn_<br />

MATERIALS AND METHODS<br />

2.3.1 One dimensional immunoblots<br />

2.1. Isolation A<br />

bov<strong>in</strong>e adrenal chromaff<strong>in</strong><br />

nr


196<br />

2.3.2. Two dimensional immunoblots<br />

Antisera were also tested first by isoelectric focus<strong>in</strong>g<br />

extracts of prote<strong>in</strong> <strong>in</strong> one direction followed by<br />

SDS gel electrophoresis <strong>in</strong> <strong>the</strong> o<strong>the</strong>r 7o . Immunoblott<strong>in</strong>g<br />

was performed us<strong>in</strong>g a modified 15 version of <strong>the</strong><br />

method of Burnette l 1 . After transfer of <strong>the</strong> prote<strong>in</strong>s,<br />

<strong>the</strong> nitrocellulose sheets were treated with dilute bov<strong>in</strong>e<br />

serum album<strong>in</strong> and goat serum (2% v/v) for one<br />

h, <strong>the</strong>n for 3 h with CHR-antiserum (1:250) diluted <strong>in</strong><br />

normal goat serum (2 % v/v) . After 5 x 10-m <strong>in</strong> washes<br />

, <strong>the</strong> sheets were <strong>in</strong>cubated <strong>in</strong> 1251 labeled prote<strong>in</strong> A<br />

(0.2,uCi/ml) diluted <strong>in</strong> goat serum (2% v/v). After<br />

5 x 10-m<strong>in</strong> washes <strong>the</strong> nitrocellulose was processed<br />

for autoradiographyll.<br />

2.4 . Preparation of tissue extracts<br />

Sheep bra<strong>in</strong>s were obta<strong>in</strong>ed from a local slaughterhouse<br />

with<strong>in</strong> 20- 30 m<strong>in</strong> of death and transported<br />

on ice to <strong>the</strong> laboratory. Samples of tissue were <strong>the</strong>n<br />

removed from <strong>the</strong> follow<strong>in</strong>g areas of bra<strong>in</strong>: olfactory<br />

tubercle, visual cortex (area 17), frontal cortex, lateral<br />

geniculate nucleus, superior colliculus, putamen,<br />

globus pallidus, substantia nigra, <strong>the</strong> periventricular<br />

area of <strong>the</strong> thalamus, th~ ventrolateral nucleus<br />

of <strong>the</strong> thalamus, <strong>the</strong> hypothalamus, amygdala, <strong>the</strong><br />

corpus callosum, subcorticai white matter, <strong>the</strong> dentate<br />

gyrus plus <strong>the</strong> CA3 region of <strong>the</strong> hippocampus,<br />

<strong>the</strong> CAl region of <strong>the</strong> hippocampus, cerebellar cortex<br />

, <strong>the</strong> deep cerebellar nuclei and <strong>the</strong> red nucleus.<br />

Samples were also taken from <strong>the</strong> anterior pituitary<br />

and <strong>the</strong> neural lobe, <strong>the</strong> <strong>in</strong>fundibulum, <strong>the</strong> neural<br />

stalk and <strong>the</strong> dorsal and ventral horns of <strong>the</strong> sp<strong>in</strong>al<br />

cord.<br />

Samples from <strong>the</strong> hippocampus (whole) , <strong>the</strong> dorsal<br />

horn and ventral horn of <strong>the</strong> sp<strong>in</strong>al cord and <strong>the</strong><br />

adrenal medulla were taken from cattle.<br />

The tissues were homogenized <strong>in</strong> 5 vols. of Tris<br />

buffer (5 mM, pH 7.4) us<strong>in</strong>g a Polytron homogenizer<br />

(max speed for 15 s) . The samples were frozen and<br />

thawed 3 times and <strong>the</strong>n centrifuged <strong>in</strong> an air-driven<br />

ultracentrifuge (' Airfuge' Beckman , 30 psi for 5 m<strong>in</strong> ;<br />

165,000 rpm). T hese high-speed supernatants were<br />

prepared for electrophoresis 50 .<br />

Chromaff<strong>in</strong> granules were isolated from homogenates<br />

of <strong>the</strong> adrenal medulla by <strong>the</strong> method of Smith<br />

and W<strong>in</strong>kler86. The chromogran<strong>in</strong>s were extracted<br />

by suspend<strong>in</strong>g <strong>the</strong> granule pellet <strong>in</strong> a hypotonic Tris<br />

buffer (5 mM; pH 7.4) and freez<strong>in</strong>g <strong>the</strong> suspension.<br />

After thaw<strong>in</strong>g and centrifugation, <strong>the</strong> chromogran<strong>in</strong>s<br />

were dialyzed aga<strong>in</strong>st a large excess of <strong>the</strong> same buffer,<br />

with frequent changes, for 24 hat 4 cc.<br />

Prote<strong>in</strong> was measured accord<strong>in</strong>g to <strong>the</strong> method of<br />

Bradford8 us<strong>in</strong>g bov<strong>in</strong>e y-globul<strong>in</strong> (Sigma) as <strong>the</strong><br />

standard. All reagents used throughout <strong>the</strong>se studies<br />

were of analytical grade.<br />

2.5 . O<strong>the</strong>r antisera<br />

Antiserum to tyros<strong>in</strong>e hydroxylase was a gift from<br />

Drs. J. F. Powel! and A. D. Smith, and its characterization<br />

has been described31. The preparation of <strong>the</strong><br />

antibodies to dopam<strong>in</strong>e j3-hydroxylase has been described<br />

elsewhere28 .<br />

Antisera to Met-enkephal<strong>in</strong> (Code no. L146) and<br />

Met-enkephal<strong>in</strong>-Arg6-Phe 7 (Code no . L150) were<br />

gifts from Dr. G . J. Dockray. It has been shown l1 4<br />

that <strong>the</strong> immunoreactivity of serum L146 <strong>in</strong> histological<br />

sections is not affected by prior adsorption of <strong>the</strong><br />

serum to Met-enkephal<strong>in</strong>-Arg6-Phe 7 , and <strong>the</strong> immunoreactivity<br />

of serum L150 is not affected by prior<br />

adsorption of <strong>the</strong> serum to Leu- or Met-enkephal<strong>in</strong>.<br />

Antiserum to Leu-enkephal<strong>in</strong> was a gift from Dr.<br />

M. Tohyama. This antiserum cross-reacts less than<br />

1 % with Met-enkephal<strong>in</strong> , less than 0.01 % with dynorph<strong>in</strong><br />

and ACTH and <strong>the</strong>re was no cross-reaction<br />

with a large number of o<strong>the</strong>r peptides <strong>in</strong> radio-immunoassay82<br />

.<br />

2.6. Animals and preparation of tissue sections<br />

Specimens for immunohistochemistry were obta<strong>in</strong>ed<br />

from two oxen and two cows (Bos taurus , redpolled<br />

short-horn breed); from 5 sheep (avis aries,<br />

mer<strong>in</strong>o/suffolk cross breed); 3 rats (alb<strong>in</strong>o, Porton<br />

stra<strong>in</strong>), two gu<strong>in</strong>ea pigs (IMVS-coloured stra<strong>in</strong>) and<br />

one rabbit (New Zealand white stra<strong>in</strong>). Bra<strong>in</strong>s and<br />

adrenal glands from <strong>the</strong> cattle and 4 of <strong>the</strong> sheep<br />

were collected at <strong>the</strong> abattoir. Thick slices (3-8 mm)<br />

were cut from <strong>the</strong> bra<strong>in</strong> and adrenals and were immersed<br />

<strong>in</strong> fixative with<strong>in</strong> 20 m<strong>in</strong> of <strong>the</strong> animal's<br />

death. One sheep was perfused. It was anes<strong>the</strong>tized<br />

with sodium thiopentone (20 mg/kg i.v.) <strong>in</strong>tubated<br />

and artificially ventilated with a mixture of halothane<br />

(1.5 % ), oxygen (50% ) and air. The descend<strong>in</strong>g aorta<br />

was clamped and <strong>the</strong> animal was perfused through


197<br />

<strong>the</strong> heart, first with sal<strong>in</strong>e <strong>the</strong>n by approximately 15<br />

liter of fixative.<br />

All o<strong>the</strong>r animals were anes<strong>the</strong>tized with chloral<br />

hydrate (35 mg/kg) and perfused through <strong>the</strong> heart<br />

with sal<strong>in</strong>e followed by fixative. After <strong>in</strong>itial trial experiments<br />

with different fixatives, <strong>the</strong> comb<strong>in</strong>ed<br />

paraformaldehyde-glutaraldehyde-picric acid fixative<br />

92 , was found to give satisfactory results for both<br />

light and electron microscopy. It was used for all <strong>the</strong><br />

experiments.<br />

After perfusion, tissue slices were immersed <strong>in</strong> <strong>the</strong><br />

same fixative for 1-2 h. Specimens fixed only by immersion<br />

were left <strong>in</strong> <strong>the</strong> fixative for 6-8 h with cont<strong>in</strong>uous<br />

agitation. The fixed tissues were processed <strong>in</strong><br />

3 different ways: (1) for post-embedd<strong>in</strong>g, light microscopic<br />

immunohistochemistry, small blocks of tissue<br />

(up to 5 x 5 x 5 mm) were washed free of fixative <strong>in</strong><br />

0.1 M sodium phosphate buffer (pH 7.4; PB), dehydrated<br />

and embedded <strong>in</strong> Durcupan ACM (Fluka)<br />

res<strong>in</strong>. Sections ei<strong>the</strong>r 0.5- or 1-,um thick were cut<br />

from <strong>the</strong>se blocks and mounted on egg-album<strong>in</strong> coated<br />

slides. Post-embedd<strong>in</strong>g immunohistochemistry<br />

was carried out as described previously96 us<strong>in</strong>g <strong>the</strong><br />

same reagents as for pre-embedd<strong>in</strong>g immunohistochemistry.<br />

(2) For pre-embedd<strong>in</strong>g light microscopic<br />

immunohistochemistry, 50-80-,um thick sections (up<br />

to 10 cm2) were cut us<strong>in</strong>g a Vibratome (Oxford Instruments)<br />

and washed free offixative. The perfused<br />

sheep bra<strong>in</strong> was cut <strong>in</strong>to slices <strong>in</strong> <strong>the</strong> coronal plane<br />

and sections were cut serially to represent most bra<strong>in</strong><br />

areas. The sections were <strong>the</strong>n processed for immunohistochemistry<br />

(see below). (3) For comb<strong>in</strong>ed light<br />

and electron microscope immunocytochemistry,<br />

small blocks of tissue (max 5 x 5 x 8 mm) were immersed<br />

<strong>in</strong> sucrose, frozen and thawed as described<br />

earlier92 , cut on a Vibratome (70,um) and washed<br />

free of fixative <strong>in</strong> PB.<br />

2.7. Pre-embedd<strong>in</strong>g immunohistochemistry<br />

All solutions used <strong>in</strong> <strong>the</strong> preparation of sections for<br />

light microscopy only, conta<strong>in</strong>ed 0.5% Triton X-lOO,<br />

but it was not used for sections prepared for electron<br />

microscopy. TPBS was used for dilut<strong>in</strong>g antisera and<br />

for washes. The unlabeled antibody peroxidase-antiperoxidase<br />

method99 was used to locate immunoreactivity.<br />

Incubations were performed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g se-<br />

quence: 10 m<strong>in</strong> <strong>in</strong> TPBS; 1 h <strong>in</strong> 20% normal sheep serum;<br />

one day at 4 cC <strong>in</strong> primary antiserum; 3 x 40<br />

m<strong>in</strong> washes; 3-8 h <strong>in</strong> 1 :50 sheep anti-rabbit IgG antiserum<br />

(Silenus Lab., Australia); 3 x 40 m<strong>in</strong> washes;<br />

overnight <strong>in</strong> 1: 100 rabbit peroxidase-antiperoxidase<br />

(Bioproducts, Belgium, or Miles Labs.); 3 x 40-m<strong>in</strong><br />

washes. Follow<strong>in</strong>g a fur<strong>the</strong>r wash <strong>in</strong> PB, <strong>the</strong> sections<br />

were <strong>in</strong>cubated for 30 m<strong>in</strong> <strong>in</strong> 0.05% 3,3'-diam<strong>in</strong>obenzid<strong>in</strong>e<br />

tetrahydrochloride (Sigma) <strong>in</strong> 50 mM Tris<br />

buffer (pH 7.4) followed by a 10-m<strong>in</strong> <strong>in</strong>cubation <strong>in</strong><br />

<strong>the</strong> same solution conta<strong>in</strong><strong>in</strong>g 0.01 % H20 2. After fur<strong>the</strong>r<br />

washes (2 x 20 m<strong>in</strong>) <strong>in</strong> PB, <strong>the</strong> sections to be<br />

used for light microscopy only were mounted on gelat<strong>in</strong>e-coated<br />

slides, dipped <strong>in</strong> 0.01 % OS04 solution,<br />

dehydrated and covered <strong>in</strong> XAM neutral mount<strong>in</strong>g<br />

media.<br />

Sections for comb<strong>in</strong>ed light and electron microscopy<br />

were also washed <strong>in</strong> PB, kept for 1 h <strong>in</strong> 1 % OS04,<br />

washed <strong>in</strong> PB, dehydrated and mounted on slides <strong>in</strong><br />

Durcupan ACM res<strong>in</strong>.<br />

Correlated light and electron microscopy was carried<br />

out as described earlier92 . The electron microscopic<br />

sections were not sta<strong>in</strong>ed with heavy metals,<br />

but 1 % uranyl acetate was <strong>in</strong>cluded <strong>in</strong>to <strong>the</strong> 70% ethanol<br />

dur<strong>in</strong>g dehydration.<br />

2.8. AChE enzyme histochemistry<br />

Acetylchol<strong>in</strong>esterase activity was demonstrated<br />

us<strong>in</strong>g acetylthiochol<strong>in</strong>e as <strong>the</strong> substrate48 . A modified<br />

version of <strong>the</strong> orig<strong>in</strong>al procedure was used52.<br />

BW284C51 (10-4 M) abolished <strong>the</strong> enzyme reaction<br />

confirm<strong>in</strong>g that <strong>the</strong> reaction was due to <strong>the</strong> presence<br />

of AChE84.<br />

2.9. Controls for specificity of <strong>the</strong> immunohistochemical<br />

reaction<br />

Method specificity was tested by orlllttmg <strong>the</strong><br />

DAB or H20 2 from <strong>the</strong> <strong>in</strong>cubation solution. Sections<br />

were also <strong>in</strong>cubated <strong>in</strong> non-immune rabbit serum at<br />

<strong>the</strong> same dilutions as <strong>the</strong> primary antisera. Under<br />

<strong>the</strong>se conditions no peroxidase reaction endproduct<br />

was found <strong>in</strong> neurons or neuronal processes.<br />

Antisera to Leu-enkephal<strong>in</strong>, Met-enkephal<strong>in</strong> and<br />

Met-enkephal<strong>in</strong>-Arg 6 -Phe 7 were absorbed with <strong>the</strong><br />

respective peptides (10-5 M) overnight at 4 cc. No<br />

sta<strong>in</strong><strong>in</strong>g could be detected <strong>in</strong> sections treated with <strong>the</strong>


8.6 8.1 6.8 5.4 pH 4.4 8.6 8.1 6.8 5.4 pH 44 >-'<br />

, , , ,<br />

!<br />

, ! I \0<br />

co<br />

COOMASSIE BLUE<br />

anti-CHR<br />

I<br />

DBH ;~ ~ 94<br />

J ChA<br />

194<br />

A I<br />

.<br />

-"...<br />

.. ~ , ' .' to' ~ ':; .. . - ~-~ ... " :.~:::.:-- .. ~~ ..<br />

B<br />

:-£-fis.- -;a .• M* • ....,JNAfif«''',...,..c- - a- - -,=0-,'''';;<br />

67<br />

I :1 ~<br />

~<br />

t<br />

~<br />

Z<br />

Z<br />

450<br />

0<br />

I1iJ 45 ~<br />

0<br />

30<br />

rO<br />

22 22<br />

L<br />

L14<br />

67<br />

8.6 8.1 6.8 5.4 pH 4.4 8.6 8.1 6.8 5:4 pH 44<br />

I I I I I<br />

COOMASSIE BLUE<br />

ant i-CHh<br />

..<br />

''to<br />

- --=... -<br />

"" ..<br />

/<br />

Ch A '"<br />

- r67<br />

.94 194<br />

-<br />

~<br />

" 1<br />

145~<br />

-<br />

r30<br />

0<br />

0<br />

~,; "' 67<br />

t t<br />

4S }<br />

CO<br />

22 22<br />

...<br />

C o.- -'.--_~~ ~<br />

l14<br />

L 14<br />

D


199<br />

absorbed antiserum.<br />

We have studied <strong>the</strong> possibility that <strong>the</strong> immunosta<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> bra<strong>in</strong> could have been caused by contam<strong>in</strong>at<strong>in</strong>g<br />

antibodies directed aga<strong>in</strong>st impurities <strong>in</strong><br />

<strong>the</strong> chromogran<strong>in</strong> A preparation used for immunisation.<br />

Extensive absorption tests were carried out<br />

aga<strong>in</strong>st syn<strong>the</strong>tic peptides as well as to tissue extracts<br />

to establish if <strong>the</strong> sta<strong>in</strong><strong>in</strong>g obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> adrenal and<br />

<strong>in</strong> <strong>the</strong> bra<strong>in</strong> were affected <strong>in</strong> a parallel fashion. The<br />

tests were performed us<strong>in</strong>g sections of <strong>the</strong> adrenals<br />

from ox, sheep and rat and sections of <strong>the</strong> hippocampi<br />

of sheep and ox us<strong>in</strong>g post-embedd<strong>in</strong>g conditions.<br />

The hippocampus was chosen because it was one of<br />

<strong>the</strong> most strongly CHR-immunoreactive structures <strong>in</strong><br />

<strong>the</strong> central nervous system.<br />

The antiserum to chromogran<strong>in</strong> at f<strong>in</strong>al dilutions of<br />

1 :200, 1 :400 and 1 :800 was treated with several peptides<br />

and tissue extracts. The prote<strong>in</strong>, peptide or tissue<br />

extract was mixed at <strong>the</strong> f<strong>in</strong>al concentration <strong>in</strong>dicated<br />

and <strong>in</strong>cubated overnight at 4 qc. Peptides <strong>in</strong>cluded<br />

Met-enkephal<strong>in</strong> (Sigma, 10- 5 M); Leu-enkephal<strong>in</strong><br />

(Sigma, 10- 5 M); Met-enkephal<strong>in</strong>-Arg 6 -<br />

Phe 7 (Sigma, 10- 5 M); dynorph<strong>in</strong> l _17 (Pen<strong>in</strong>sula Lab.<br />

10- 4 , 10- 5 , 10- 6 M); BAM22P (Pen<strong>in</strong>sula Lab. 10- 4<br />

M, 10- 6 M); bov<strong>in</strong>e carbonic anhydrase (10- 4 M, 10- 5<br />

M, Sigma Cat. no. C7500); a high speed supernatant<br />

from bov<strong>in</strong>e hippocampus (at prote<strong>in</strong> concentrations<br />

of 15.7,13.5,9,4.5,0.9,0.18,0.036,0.0072 mg/ml)<br />

and <strong>the</strong> chromogran<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g high speed supernatant<br />

from a bov<strong>in</strong>e chromaff<strong>in</strong> granule lysate (at<br />

prote<strong>in</strong> concentration of 100, 20, 4, 0.8 ,ug/ml). The<br />

sera were <strong>the</strong>n centrifuged for 5 m<strong>in</strong> at 165,000 rpm<br />

<strong>in</strong> an Airfuge and <strong>the</strong> supernatant used for immunohistochemical<br />

sta<strong>in</strong><strong>in</strong>g.<br />

3. RESULTS<br />

3.1. Characteristics of <strong>the</strong> antiserum to chromogran<strong>in</strong><br />

3.1.1. A drenal medulla<br />

Two-dimensional analysis of bov<strong>in</strong>e chromogran<strong>in</strong>s<br />

revealed that <strong>the</strong>y comprised a group of acidic<br />

polypeptides with a restricted range of isoelectric<br />

po<strong>in</strong>ts (4.8-5.2), but different relative molecular<br />

masses (M r<br />

14,000-100,000, Fig. lA). The only exception<br />

was DBH which had a pI near 6 (Fig. lA).<br />

The most abundant prote<strong>in</strong> was identified as chromogran<br />

<strong>in</strong> A (Fig. lA, apparent Mr approximately<br />

80,000).<br />

The two antisera, produced <strong>in</strong> response to immunisation<br />

with chromogran<strong>in</strong> A, were used for immunosta<strong>in</strong><strong>in</strong>g<br />

of nitrocellulose replicas of gels. Both antisera<br />

reacted with a set of polypeptides <strong>in</strong>clud<strong>in</strong>g chromogran<strong>in</strong><br />

A. The peptides had an almost identical pI<br />

(Fig. 1B). Ano<strong>the</strong>r soluble chromaff<strong>in</strong> granule prote<strong>in</strong>,<br />

DBH, did not react with ei<strong>the</strong>r of <strong>the</strong> sera (Fig.<br />

1B). Similarly, many of <strong>the</strong> m<strong>in</strong>or prote<strong>in</strong>s illustrated<br />

<strong>in</strong> Fig. lA did not react with <strong>the</strong>se antisera. However,<br />

at least 3 polypeptides with isoelectric po<strong>in</strong>ts different<br />

from chromogran<strong>in</strong> A, did react with antiserum<br />

1 but not 2. S<strong>in</strong>ce antiserum 1 was produced by<br />

immuniz<strong>in</strong>g with an immunogen that had undergone<br />

fewer purification steps, <strong>the</strong>se are regarded as contam<strong>in</strong>ants.<br />

One contam<strong>in</strong>at<strong>in</strong>g polypeptide that was<br />

immunoreactive with antiserum 1 but not 2 was identified<br />

as carbonic anhydrase.<br />

One-dimensional analysis of <strong>the</strong> bov<strong>in</strong>e chromaff<strong>in</strong><br />

granule lysate showed a similar pattern of bands<br />

to <strong>the</strong> two-dimensional analysis. Heavily loaded gels<br />

showed a series of immunoreactive polypeptides<br />

rang<strong>in</strong>g <strong>in</strong> size from Mr 80,000 to smaller peptides<br />

runn<strong>in</strong>g <strong>in</strong> <strong>the</strong> buffer front. On less heavily loaded<br />

gels two major bands were sta<strong>in</strong>ed and <strong>the</strong>se corresponded<br />

<strong>in</strong> mobility to chromogran<strong>in</strong> A and to a<br />

slightly smaller prote<strong>in</strong> (Fig. 2e, lanes 1 and 2). An<br />

immunoblot of <strong>the</strong> soluble extract made from an homogenate<br />

of <strong>the</strong> whole sheep adrenal medulla gave a<br />

pattern identical to bov<strong>in</strong>e chromaff<strong>in</strong> granule lysate.<br />

3.1.2. Def<strong>in</strong>ition of chromogran<strong>in</strong> immunoreactivity<br />

Both our antisera reacted with a family of polypeptides<br />

related to chromogran<strong>in</strong> A, as well as with chromogran<strong>in</strong><br />

A itself. The term chromogran<strong>in</strong> immuno-<br />

+-<br />

Fig. 1. Analysis of CHR-immunoreactivity <strong>in</strong> bov<strong>in</strong>e chromaff<strong>in</strong> granule Iysates (A, B) and <strong>in</strong> homogenates of bov<strong>in</strong>e anterior pituitary<br />

(C, D). Isoelectric focus<strong>in</strong>g was carried out <strong>in</strong> rod gels which developed a pH gradient between 8.6 and 4.4. The prote<strong>in</strong>s were<br />

<strong>the</strong>n electrophoresed <strong>in</strong>to SDS gels. Marker prote<strong>in</strong>s were used to calibrate <strong>the</strong> gels. The total prote<strong>in</strong>s <strong>in</strong> <strong>the</strong> lysate and <strong>in</strong> pituitary<br />

were sta<strong>in</strong>ed with Coomassie brilliant blue (A, C) and gels run <strong>in</strong> parallel were used to produce immunoreplicas. The latter were<br />

sta<strong>in</strong>ed with anti-chromogran<strong>in</strong> serum CB, D). Prote<strong>in</strong>s were immunosta<strong>in</strong>ed which had different sizes, one was chromogran<strong>in</strong> A<br />

(ChA, arrowed). They all had similar isoelectric po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> range 4.8-5.2. Dopam<strong>in</strong>e f)-hydroxylase (DBH) did not react.


8.6 8.1 6.8<br />

, I<br />

COOMASSIE BLUE<br />

5.4 pH 4.4<br />

I ~<br />

8.6 8.1<br />

anti-CHR<br />

6.8 5.4 pH 4:4<br />

N<br />

Cl<br />

Cl<br />

94<br />

67<br />

Ch A<br />

I<br />

94<br />

67<br />

$:<br />

....<br />

45::--<br />

0<br />

3:<br />

45'S-<br />

0<br />

0<br />

0<br />

•<br />

30<br />

30<br />

22<br />

22<br />

A<br />

14<br />

8<br />

14<br />

; .<br />

~o rig<strong>in</strong><br />

~68K<br />

4-29K<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17


201<br />

reactIvIty will <strong>the</strong>refore be used to <strong>in</strong>dicate that a<br />

family of related but differently sized polypeptides,<br />

all hav<strong>in</strong>g a very similar isoelectric po<strong>in</strong>t, are recognized<br />

by <strong>the</strong> antisera used <strong>in</strong> <strong>the</strong>se studies.<br />

3.2. <strong>Chromogran<strong>in</strong></strong> immunoreactive prote<strong>in</strong>s <strong>in</strong> bra<strong>in</strong><br />

and pituitary<br />

3.2.1. Bov<strong>in</strong>e pituitary and hippocampus<br />

High speed supernatant fractions from homogenates<br />

of bov<strong>in</strong>e pituitary and hippocampus were analyzed<br />

to establish <strong>the</strong> nature of <strong>the</strong> immunoreactive<br />

material because <strong>the</strong>y were two of <strong>the</strong> most strongly<br />

sta<strong>in</strong><strong>in</strong>g areas found <strong>in</strong> <strong>the</strong> immunohistochemical experiments.<br />

Immunoblots of two-dimensional gels of pituitary<br />

extracts revealed that only a small group (Fig. ID) of<br />

<strong>the</strong> large number of prote<strong>in</strong>s (Fig. lC) were immunoreactive.<br />

The immunoreactive prote<strong>in</strong>s were similar<br />

to those found <strong>in</strong> <strong>the</strong> chromaff<strong>in</strong> granule lysate (Fig.<br />

lB). A prote<strong>in</strong> band <strong>in</strong> <strong>the</strong> pituitary extract, characteristically<br />

oblique, could be identified as chromogran<strong>in</strong><br />

A (Fig. lC). Amongst all <strong>the</strong> soluble prote<strong>in</strong>s <strong>in</strong><br />

<strong>the</strong> hippocampus (Fig. 2A), only two were immunoreactive.<br />

Mix<strong>in</strong>g experiments showed that <strong>the</strong>y comigrated,<br />

<strong>in</strong> both dimensions (Fig. 2B) , with <strong>the</strong> two<br />

most <strong>in</strong>tense bands <strong>in</strong> <strong>the</strong> adrenal extracts.<br />

3.2.2. O<strong>the</strong>r bra<strong>in</strong> areas<br />

Because <strong>the</strong> immunohistochemical experiments<br />

revealed an unexpectedly wide distribution of chromogran<strong>in</strong>-immunoreactivity,<br />

a range of bra<strong>in</strong> regions<br />

were exam<strong>in</strong>ed by <strong>the</strong> immunoblott<strong>in</strong>g technique.<br />

S<strong>in</strong>ce most of <strong>the</strong> histochemical work was done us<strong>in</strong>g<br />

sheep tissues, extracts were taken from sheep bra<strong>in</strong>s<br />

and analyzed on one-dimensional gels. Soluble extracts<br />

from each of <strong>the</strong> areas were compared on <strong>the</strong><br />

same gel with similar extracts of sheep adrenal medulla<br />

or <strong>the</strong> bov<strong>in</strong>e chromaff<strong>in</strong> granule lysate.<br />

All bra<strong>in</strong> areas exam<strong>in</strong>ed, except <strong>the</strong> lateral geniculate<br />

nucleus, showed immunoreactive bands. The<br />

pituitary extract sta<strong>in</strong>ed <strong>the</strong> strongest and had several<br />

bands all similar to those <strong>in</strong> <strong>the</strong> adrenal medulla<br />

(Fig. 2C, lane 4). The <strong>in</strong>tensity of sta<strong>in</strong><strong>in</strong>g of immunoblots<br />

did not parallel <strong>the</strong> <strong>in</strong>tensity of immunohistochemical<br />

sta<strong>in</strong><strong>in</strong>g. For example, <strong>the</strong> CA3 region and<br />

<strong>the</strong> dentate gyrus of <strong>the</strong> hippocampal formation<br />

showed very strong sta<strong>in</strong><strong>in</strong>g <strong>in</strong> mossy fibre term<strong>in</strong>als<br />

(Fig. SA). This sta<strong>in</strong><strong>in</strong>g was absent <strong>in</strong> <strong>the</strong> CAl region<br />

although <strong>the</strong> majority of <strong>the</strong> pyramidal cells had<br />

weaker immunoreactivity <strong>in</strong> <strong>the</strong>ir Golgi apparatus<br />

(Fig. 6). On blots, <strong>the</strong>se two areas gave bands with a<br />

similar <strong>in</strong>tensity. In <strong>the</strong> lateral geniculate nucleus<br />

<strong>the</strong>re were no bands on blots, and only very weak<br />

CHR-immunoreactivity <strong>in</strong> some of <strong>the</strong> cell bodies<br />

and <strong>in</strong> a few term<strong>in</strong>als. The major immunoreactive<br />

prote<strong>in</strong>s <strong>in</strong> each of <strong>the</strong> bra<strong>in</strong> areas had electrophoretic<br />

mobilities identical to <strong>the</strong> major components of <strong>the</strong><br />

chromaff<strong>in</strong> granule lysate. The relative <strong>in</strong>tensity of<br />

sta<strong>in</strong><strong>in</strong>g of <strong>the</strong>se bands varied between different animals.<br />

For example, <strong>in</strong> one animal <strong>the</strong>re was more of<br />

<strong>the</strong> higher molecular weight form <strong>in</strong> <strong>the</strong> dentate gyrus/CA3<br />

region whilst <strong>in</strong> ano<strong>the</strong>r animal <strong>the</strong>re was<br />

more of <strong>the</strong> lower molecular weight material (Fig.<br />

2C). These differences may reflect differences <strong>in</strong> autolysis<br />

that were impossible to control us<strong>in</strong>g material<br />

collected from a slaughterhouse. Smaller immunoreactive<br />

peptides, particularly one of Mr 50,000, were<br />

occasionally seen <strong>in</strong> certa<strong>in</strong> areas. These bands were<br />

at <strong>the</strong> limit of sensitivity of <strong>the</strong> methods.<br />

3.2.3. Identity of antigenic determ<strong>in</strong>ants <strong>in</strong> bra<strong>in</strong> and<br />

<strong>in</strong> <strong>the</strong> adrenal medulla<br />

Absorption tests were carried out by <strong>in</strong>cubat<strong>in</strong>g<br />

+-<br />

Fig. 2. Identification of CHR-immunoreactivity <strong>in</strong> bra<strong>in</strong>. The soluble prote<strong>in</strong>s <strong>in</strong> an extract of bov<strong>in</strong>e hippocampus (A and B) were<br />

analyzed by two-dimensional isoelectric focus<strong>in</strong>g/electrophoresis (see Fig. 1). The gel was sta<strong>in</strong>ed with Coomassie blue CA) , and a blot<br />

with anti-chromogran<strong>in</strong> serum (B). Only two prote<strong>in</strong>s reacted with anti-CHR serum, one similar to chromogran<strong>in</strong> A and one smaller<br />

prote<strong>in</strong>. The soluble prote<strong>in</strong>s from several areas of sheep bra<strong>in</strong> were analyzed by immunoblots after one-dimensional SDS-gel electrophoresis<br />

and compared with both sheep and bov<strong>in</strong>e adrenal prote<strong>in</strong>s. All lanes except (1,2,3) conta<strong>in</strong>ed approximately 100 fJ,g of prote<strong>in</strong>.<br />

Lanes conta<strong>in</strong>ed <strong>the</strong> follow<strong>in</strong>g samples: 1. Bov<strong>in</strong>e chromaff<strong>in</strong> vesicle lysate (2 fJ,g) ; 2. Bov<strong>in</strong>e adrenal medulla soluble fraction<br />

(2 ,ug) ; 3. Sheep adrenal medulla soluble fraction (2fJ,g); 4. Sheep pituitary; 5. Hippocampus, dentate gyrus and CA3 region; 6. Hippocampus,<br />

CAl region; 7 . Cerebral cortex; 8. Globus pallidus; 9. Sp<strong>in</strong>al cord, dorsal horn ; 10. Sp<strong>in</strong>al cord, ventral horn; 11. Amygdala;<br />

12. Caudate nucleus; 13. Thalamus; 14. Hippocampus, as 5 but different animal; 15 . As 6 but different animal; 16. Membrane pellet<br />

from hippocampus; 17. Lateral geniculate nucleus. Molecular weight calibrations were bov<strong>in</strong>e serum album<strong>in</strong> (M r = 68,000) and bov<strong>in</strong>e<br />

carbonic anhydrase (Mr = 29 ,000).


202<br />

<strong>the</strong>r. The same effect on <strong>the</strong> immunosta<strong>in</strong><strong>in</strong>g of <strong>the</strong><br />

chromaff<strong>in</strong> cells was also observed. Thus, follow<strong>in</strong>g<br />

absorption of <strong>the</strong> CHR-antiserum with <strong>in</strong>creas<strong>in</strong>g<br />

concentrations of hippocampal prote<strong>in</strong> extract <strong>the</strong><br />

immunoreactivity was greatly attenuated but some<br />

sta<strong>in</strong><strong>in</strong>g was still present even at <strong>the</strong> highest prote<strong>in</strong><br />

concentration. All <strong>the</strong> immunoreactivity was abolished<br />

by prior absorption of <strong>the</strong> antiserum (1:400)<br />

with 100 or 20 ,ug/ml of <strong>the</strong> chromogran<strong>in</strong> conta<strong>in</strong><strong>in</strong>g<br />

lysate from <strong>the</strong> chromaff<strong>in</strong> granules, while at an antiserum<br />

dilution of 1 :200 <strong>the</strong>re was very weak sta<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> adrenal only. At lower concentrations of (lysate)<br />

prote<strong>in</strong>, <strong>the</strong> immunosta<strong>in</strong><strong>in</strong>g gradually reappeared,<br />

and <strong>the</strong> <strong>in</strong>tensity of <strong>the</strong> sta<strong>in</strong> <strong>in</strong> <strong>the</strong> adrenal<br />

and hippocampus changed <strong>in</strong> parallel.<br />

sections of ox, sheep and rat adrenal and sections of<br />

hippocampus of sheep and ox us<strong>in</strong>g post-embedd<strong>in</strong>g<br />

conditions .<br />

The CHR-immunoreactivity <strong>in</strong> ei<strong>the</strong>r <strong>the</strong> adrenal<br />

or bra<strong>in</strong> was not affected by prior adsorption of <strong>the</strong><br />

antisera with Met-enkephal<strong>in</strong> , Leu-enkephal<strong>in</strong> , Metenkephal<strong>in</strong>-Arg6-Phe<br />

7 , dynorph<strong>in</strong> 1-17, BAM22P or<br />

carbonic anhydrase.<br />

High speed supernatant fractions from bov<strong>in</strong>e hippocampus<br />

with prote<strong>in</strong> concentrations of 15.7 or 13.5<br />

mg/ml completely abolished sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> bov<strong>in</strong>e<br />

hippocampus and left only very fa<strong>in</strong>t sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

sheep hippocampus when <strong>the</strong> antiserum was used at a<br />

f<strong>in</strong>al dilution of 1 :800. The immunoreactivity gradually<br />

reappeared when <strong>the</strong> extract was diluted furac<br />

Fig. 3. <strong>Chromogran<strong>in</strong></strong> (CHR; A , C, 0) and tyros<strong>in</strong>e hydroxylase (TH , B) immunoreactivity <strong>in</strong> <strong>the</strong> ad renal glands of sheep (A , B). ox<br />

(C) and rat (0), as demonstrated on se mith<strong>in</strong> sections by post-embedd<strong>in</strong>g immunohistochemistry. <strong>Chromogran<strong>in</strong></strong> immunoreactivity is<br />

present only <strong>in</strong> <strong>the</strong> chromaff<strong>in</strong> cells of <strong>the</strong> medulla (am) and follows <strong>the</strong> sa me distribution as tyrosi ne hydroxylase. The chromaff<strong>in</strong> ce lls<br />

<strong>in</strong> C surround a s<strong>in</strong>uso id (asterisk). E. strongly (black) and weakly (arrows) chromogran<strong>in</strong>-immunoreactive cells <strong>in</strong> <strong>the</strong> anterior pituitary<br />

of a we<strong>the</strong>r as demonstrated <strong>in</strong> a se mith<strong>in</strong> section. ac , adrenal cortex; scales: A and B, same mag nification . 200 ,um ; C-L 50 ,um.


203<br />

These results demonstrate that <strong>the</strong> same antigens<br />

are recognized by <strong>the</strong> antisera <strong>in</strong> both bra<strong>in</strong> and<br />

adrenal.<br />

3.3. Immunohistochemical localization of CRR-immunoreactivity<br />

3.3.1. Adrenal gland<br />

Catecholam<strong>in</strong>e produc<strong>in</strong>g chromaff<strong>in</strong> cells <strong>in</strong> sections<br />

of <strong>the</strong> adrenal medulla were identified by <strong>the</strong>ir<br />

immunoreactivity for TH when <strong>in</strong>cubated under<br />

ei<strong>the</strong>r pre- or post-embedd<strong>in</strong>g conditions. The antiserum<br />

to TH gave equally strong sta<strong>in</strong><strong>in</strong>g <strong>in</strong> adrenals<br />

from sheep (Fig. 3B), cattle, gu<strong>in</strong>ea pigs, rabbits and<br />

rats.<br />

Serial sections of <strong>the</strong> adrenals were <strong>in</strong>cubated to<br />

reveal CHR- and TH-immunoreactivity. Strong<br />

sta<strong>in</strong><strong>in</strong>g was obta<strong>in</strong>ed for CHR <strong>in</strong> adrenal chromaff<strong>in</strong><br />

cells of <strong>the</strong> sheep (Fig. 3A) and ox (Fig. 3C) and,<br />

even at higher concentrations of antiserum, only<br />

weak immunoreactivity was observed <strong>in</strong> <strong>the</strong> rat (Fig.<br />

3D), gu<strong>in</strong>ea pig and rabbit. In all species, <strong>the</strong> chromaff<strong>in</strong><br />

cell nuclei, endo<strong>the</strong>lial and connective tissue<br />

cells, and cells of <strong>the</strong> adrenal cortex did not show any<br />

immunoreactivity (Figs. 3A-D). In sections <strong>in</strong>cubated<br />

under pre-embedd<strong>in</strong>g conditions <strong>the</strong> sta<strong>in</strong><strong>in</strong>g<br />

had a granular appearance <strong>in</strong> <strong>the</strong> cytoplasm of chromaff<strong>in</strong><br />

cells.<br />

The sheep and ox chromaff<strong>in</strong> cells were also<br />

strongly immunoreactive for Leu- and Met-enkephal<strong>in</strong><br />

and Met-enkephal<strong>in</strong>-Arg 6 -Phe 7 but were weakly<br />

reactive <strong>in</strong> <strong>the</strong> rat.<br />

3.3.2. Anterior pituitary<br />

Two populations of cells showed CHR-immunoreactivity<br />

<strong>in</strong> <strong>the</strong> anterior pituitary of <strong>the</strong> we<strong>the</strong>r. One<br />

population sta<strong>in</strong>ed as strongly as adrenal chromaff<strong>in</strong><br />

cells and had a high cytoplasm to nucleus ratio (Fig.<br />

3E). The o<strong>the</strong>r population was weakly immunoreactive<br />

and <strong>the</strong> cells were smaller. Many of <strong>the</strong> cells<br />

were not immunoreactive even after us<strong>in</strong>g a very<br />

high concentration of <strong>the</strong> anti-CHR serum. The same<br />

pattern of sta<strong>in</strong><strong>in</strong>g was obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> pituitary of <strong>the</strong><br />

ewe.<br />

3.3.3. P<strong>in</strong>eal gland<br />

Noradrenergic sympa<strong>the</strong>tic neurons are known to<br />

conta<strong>in</strong> and release chromogran<strong>in</strong> 14.89. S<strong>in</strong>ce <strong>the</strong> p<strong>in</strong>eal<br />

gland receives its ma<strong>in</strong> <strong>in</strong>nervation from noradrenergic<br />

neurons of <strong>the</strong> superior cervical ganglion<br />

1 , it was used to establish whe<strong>the</strong>r <strong>the</strong> CHR-immunoreactivity<br />

could be detected immunohistochemically<br />

<strong>in</strong> <strong>the</strong> term<strong>in</strong>al varicosities of such neurons. The<br />

noradrenergic axons, revealed by TH-immunoreactivity<br />

<strong>in</strong> <strong>the</strong> sheep p<strong>in</strong>eal, ran <strong>in</strong> large fibre bundles<br />

(Fig. 4B). Axons from <strong>the</strong>se bundles entered <strong>the</strong> parenchyma<br />

and branched out to form varicose fibres.<br />

Exactly <strong>the</strong> same pattern was observed <strong>in</strong> consecutive<br />

sections reacted with <strong>the</strong> CHR-antisera. The<br />

CHR-immunoreactivity was more pronounced <strong>in</strong> <strong>the</strong><br />

varicosities and weaker <strong>in</strong> <strong>the</strong> axon bundles than <strong>the</strong><br />

TH-immunoreactivity (Fig. 4A, B).<br />

3.3.4. <strong>Central</strong> nervous system<br />

3.3.4.1. Light microscopic appearance of CRRimmunoreactivity.<br />

<strong>Immunoreactivity</strong> could be demonstrated<br />

throughout <strong>the</strong> central nervous system of<br />

<strong>the</strong> sheep and cattle. Weak immunoreactivity was<br />

also detected <strong>in</strong> <strong>the</strong> bra<strong>in</strong> of gu<strong>in</strong>ea pigs and rats us<strong>in</strong>g<br />

<strong>the</strong> pre-embedd<strong>in</strong>g techniqu~.<br />

The demonstration of CHR-immunoreactivity <strong>in</strong><br />

<strong>the</strong>se species required higher concentrations of <strong>the</strong><br />

antiserum which resulted <strong>in</strong> high background sta<strong>in</strong><strong>in</strong>g.<br />

Therefore, <strong>the</strong> distribution of CHR-immunoreactivity<br />

was studied systematically <strong>in</strong> <strong>the</strong> sheep only.<br />

<strong>Immunoreactivity</strong> due to CHR was localized to<br />

both neuronal perikarya and fibre networks. Sta<strong>in</strong>ed<br />

perikarya fell <strong>in</strong>to 3 broad classes: (1) most CHR-immunoreactive<br />

perikarya exhibited a per<strong>in</strong>uclear<br />

patchy network of sta<strong>in</strong><strong>in</strong>g often extend<strong>in</strong>g <strong>in</strong>to <strong>the</strong><br />

most proximal dendrites (Figs. SB, D , 6A, 7D, 8).<br />

The distribution of this sta<strong>in</strong><strong>in</strong>g resembled <strong>the</strong> location<br />

of <strong>the</strong> Golgi apparatus; (2) <strong>in</strong> addition to this<br />

patchy sta<strong>in</strong><strong>in</strong>g, some groups of neurons exhibited a<br />

homogeneous sta<strong>in</strong><strong>in</strong>g throughout <strong>the</strong> cytoplasm<br />

(Figs. lOB, D , F, 11B); (3) some large neurons, such<br />

as motoneurons and <strong>the</strong> large neurons of <strong>the</strong> red nucleus,<br />

were characterized by sta<strong>in</strong><strong>in</strong>g <strong>in</strong> small patches<br />

throughout <strong>the</strong> cytoplasm (Fig. 8C). In each structure<br />

only one type of perikaryal sta<strong>in</strong><strong>in</strong>g was observed<br />

us<strong>in</strong>g ei<strong>the</strong>r pre- or post-embedd<strong>in</strong>g techniques.<br />

Immunosta<strong>in</strong><strong>in</strong>g was also present <strong>in</strong> some well-def<strong>in</strong>ed<br />

fibre systems where it could be assumed to be <strong>in</strong><br />

nerve term<strong>in</strong>als. In o<strong>the</strong>r, very heavily sta<strong>in</strong>ed areas


204<br />

.. ;<br />

, .<br />

G ..<br />

Fig. 4. Vibratome sections of <strong>the</strong> sheep p<strong>in</strong>eal gland reacted for chromogran<strong>in</strong> (CHR , A) and tyros<strong>in</strong>e hydroxylase (TH, 8). The immunoreactive<br />

fibre tracks (arrows) and punctate varicosities show similar distribution. C- G : vibratome sections of <strong>the</strong> sheep thalamic<br />

paraventricular nucleus reacted <strong>in</strong> pre-embedd<strong>in</strong>g immunocytochemistry . . ~ 'hromogran<strong>in</strong>-immunoreactive term<strong>in</strong>als (C) similar to tyros<strong>in</strong>e<br />

hydroxylase immunoreactive ones (D) densely surround <strong>the</strong> dendril, .' ~ of neurons. Mct-enkephal<strong>in</strong> (E), met-enkephal<strong>in</strong>-Arg 6 -<br />

Phe 7 (F), and Leu-enkephal<strong>in</strong> (G) immunoreactive term<strong>in</strong>als are few ,' !, and more scattered <strong>in</strong> <strong>the</strong> neuropile Scales: A-G, SO,um;'<br />

C-G, same magnification.


205<br />

such as <strong>the</strong> globus pallidus or substantia nigra, <strong>the</strong> entire<br />

neuropil showed immunoreactivity (Figs. 7C,<br />

9A, B). In most structures, however, small varicose<br />

fibres and punctae, probably represent<strong>in</strong>g nerve term<strong>in</strong>als,<br />

were observed. In some areas <strong>the</strong>se surrounded<br />

neuronal perikarya, form<strong>in</strong>g pericellular<br />

networks (triangles <strong>in</strong> Fig. 12).<br />

3.3.4.2. Electron microscopic localization of<br />

eHR-immunoreactivity. Sta<strong>in</strong>ed tissue sections were<br />

also exam<strong>in</strong>ed <strong>in</strong> <strong>the</strong> electron microscope to determ<strong>in</strong>e<br />

<strong>the</strong> sub-cellular localization of <strong>the</strong> immunoreactive<br />

material. These studies were carried out us<strong>in</strong>g<br />

some of <strong>the</strong> most <strong>in</strong>tensely sta<strong>in</strong>ed areas of <strong>the</strong> sheep<br />

central nervous system, namely <strong>the</strong> hippocampus,<br />

<strong>the</strong> dorsal horn of <strong>the</strong> sp<strong>in</strong>al cord and <strong>the</strong> caudate<br />

nucleus.<br />

It was confirmed that <strong>the</strong> CHR-immunoreactive<br />

per<strong>in</strong>uclear network represented <strong>the</strong> Golgi apparatus<br />

(Fig. 6B-D). Large neurons of <strong>the</strong> caudate nucleus<br />

and <strong>the</strong> pyramidal cells of <strong>the</strong> CA3 region of <strong>the</strong><br />

hippocampus were exam<strong>in</strong>ed. The CHR-immunoreactivity<br />

was present <strong>in</strong> <strong>the</strong> lumen of Golgi saccules<br />

and, to a lesser extent, <strong>in</strong> vesicles. Usually, only <strong>the</strong><br />

middle Golgi saccules were immunoreactive (Fig.<br />

6C, D). Occasionally a few transitional elements between<br />

<strong>the</strong> rough endoplasmic reticulum and <strong>the</strong> cis<br />

side of <strong>the</strong> Golgi apparatus were also immunoreactive.<br />

As a result of <strong>the</strong>se observations <strong>the</strong> networklike<br />

perikaryal sta<strong>in</strong><strong>in</strong>g will be referred to as 'Golgi<br />

apparatus' -type immunoreactivity <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g<br />

description.<br />

The mossy fibre system of <strong>the</strong> hippocampus could<br />

be recognized as immunoreactive for CHR from its<br />

characteristic location (Fig. 5). When <strong>the</strong> mossy fibre<br />

term<strong>in</strong>als were studied us<strong>in</strong>g <strong>the</strong> pre-embedd<strong>in</strong>g<br />

technique, it was found that <strong>the</strong> CHR-immunoreactivity<br />

was ma<strong>in</strong>ly localized <strong>in</strong> <strong>the</strong> electron dense core<br />

of some of <strong>the</strong> large granulated vesicles. There was<br />

also immunoreactivity associated with <strong>in</strong>traterm<strong>in</strong>al<br />

membranes, but to a lesser extent. The term<strong>in</strong>als<br />

formed asymmetric synaptic contacts with <strong>the</strong> apical<br />

dendritic shafts and complex sp<strong>in</strong>es of CA3 pyramidal<br />

cells (Fig. SE-G). In <strong>the</strong> area of synaptic junctions,<br />

omega-shaped profiles conta<strong>in</strong><strong>in</strong>g electron<br />

dense cores were frequently observed. These profiles,<br />

probably represent<strong>in</strong>g large granulated vesicles<br />

undergo<strong>in</strong>g exocytosis, were most frequently seen<br />

immediately adjacent to synaptic active zones (Fig.<br />

SF-G). Some of <strong>the</strong> dense cores <strong>in</strong> <strong>the</strong> omegashaped<br />

profiles showed immunoreactivity (Fig. 5G).<br />

In <strong>the</strong> caudate nucleus of <strong>the</strong> sheep <strong>the</strong> immunoreactive<br />

varicose fibres formed symmetrical synaptic<br />

contacts and <strong>the</strong> immunoreactivity was also localized<br />

ma<strong>in</strong>ly <strong>in</strong> large granulated vesicles.<br />

In <strong>the</strong> substantia gelat<strong>in</strong>osa of <strong>the</strong> dorsal horn of<br />

<strong>the</strong> sp<strong>in</strong>al cord, most CHR-immunoreactive varicosities<br />

seen <strong>in</strong> <strong>the</strong> light microscope proved to be synaptic<br />

term<strong>in</strong>als or preterm<strong>in</strong>al axons crowded with immunoreactive<br />

large granulated vesicles (Fig. llB, C).<br />

The term<strong>in</strong>als formed asymmetrical synaptic contacts<br />

with dendrites (Fig. lIe) and perikarya. In contrast<br />

to <strong>the</strong> mossy fibres, most immunoreactive large<br />

granulated vesicles were situated at <strong>the</strong> periphery of<br />

<strong>the</strong> term<strong>in</strong>al away from <strong>the</strong> synaptic junction. The<br />

immunoreactive term<strong>in</strong>als were occasionally seen to<br />

be presynaptic to o<strong>the</strong>r vesicle conta<strong>in</strong><strong>in</strong>g profiles.<br />

S<strong>in</strong>ce CHR-immunoreactive varicosities and punctae<br />

represented nerve term<strong>in</strong>als <strong>in</strong> all 3 areas, this<br />

term will also be used <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g description of<br />

results obta<strong>in</strong>ed with <strong>the</strong> light microscope.<br />

3.3.4.3. Comparison of <strong>the</strong> distribution of CHR-,<br />

TH-, DBH- and enkephal<strong>in</strong>- immunoreactivity.<br />

3.3.4.3.1. Outl<strong>in</strong>e of description.<br />

The follow<strong>in</strong>g description of <strong>the</strong> distribution of CHR<br />

<strong>in</strong> <strong>the</strong> bra<strong>in</strong> of <strong>the</strong> sheep will progress from rostra I to<br />

caudal (Fig. 12); where appropriate, observations<br />

made <strong>in</strong> bov<strong>in</strong>e, rat and gu<strong>in</strong>ea pig bra<strong>in</strong>s will also be<br />

described. These experiments were designed to<br />

achieve an overall picture of <strong>the</strong> distribution of <strong>the</strong><br />

CHR <strong>in</strong> <strong>the</strong> central nervous system. Areas such as<br />

<strong>the</strong> hypothalamus and thalamus, which have structurally<br />

and biochemically dist<strong>in</strong>ct subnuclei, will<br />

need to be exam<strong>in</strong>ed <strong>in</strong> detail <strong>in</strong> a separate study.<br />

Several markers (see Materials and Methods) of<br />

def<strong>in</strong>ed neuronal populations were exam<strong>in</strong>ed <strong>in</strong> parallel<br />

with <strong>the</strong> CHR-immunoreactivity to determ<strong>in</strong>e<br />

whe<strong>the</strong>r <strong>the</strong>y were present <strong>in</strong> <strong>the</strong> same neuronal population.<br />

The distribution of <strong>the</strong> different antigens will<br />

be compared only <strong>in</strong> structures where <strong>the</strong> sta<strong>in</strong><strong>in</strong>g<br />

suggested co-existence of <strong>the</strong> antigens, or where it<br />

was so different that particular neuronal systems<br />

could be excluded.<br />

3.3.4.3.2. Telencephalon.<br />

Cerebral cortex. Most pyramidal cell perikarya exhibited<br />

Golgi apparatus-type immunoreactivity for<br />

CHR (Fig. 8A), but <strong>the</strong> strongest reaction was <strong>in</strong>


206<br />

,<br />

-<br />

.f<br />

A_-<br />

f<br />

B-<br />

srn<br />

\ ~ ~.-­<br />

'sg


207<br />

neurons of layer V. The band of darkly sta<strong>in</strong>ed layer<br />

V neurons could be followed throughout <strong>the</strong> neocortex.<br />

In <strong>the</strong> primary olfactory cortex, <strong>the</strong> neurons of<br />

layer II were <strong>the</strong> most strongly sta<strong>in</strong>ed (Fig. 8B), and<br />

<strong>the</strong>re was an abrupt shift <strong>in</strong> <strong>the</strong> strongly sta<strong>in</strong>ed cells<br />

from layer II to layer V at <strong>the</strong> lateral border of <strong>the</strong> 01-·<br />

factory cortex. Sparse immunoreactive varicose fibres<br />

were found throughout <strong>the</strong> cortex from layer I to<br />

layer VI. Their distribution, course and density resembled<br />

that of <strong>the</strong> TH-immunoreactive catecholam<strong>in</strong>e<br />

system, suggest<strong>in</strong>g that CHR could be localized<br />

<strong>in</strong> <strong>the</strong> fibres conta<strong>in</strong><strong>in</strong>g catecholam<strong>in</strong>es. The only exception<br />

to <strong>the</strong> ra<strong>the</strong>r uniform and sparse fibre distribution<br />

was <strong>the</strong> pyriform cortex where <strong>the</strong> outer portion<br />

of layer I had a dense and strongly sta<strong>in</strong>ed fibre<br />

system which cont<strong>in</strong>ued <strong>in</strong> <strong>the</strong> outermost layer of <strong>the</strong><br />

olfactory tubercle.<br />

Hippocampal formation. Pyramidal, granule and<br />

some non-pyramidal cells <strong>in</strong> sheep and cattle hippocampus<br />

showed Golgi apparatus-type immunoreactivity<br />

<strong>in</strong> <strong>the</strong>ir perikarya (Fig. SB-D, 6A). The most<br />

strongly sta<strong>in</strong>ed fibres were <strong>the</strong> axons and term<strong>in</strong>als<br />

of <strong>the</strong> granule cells (Fig. SA). In both species <strong>the</strong>re<br />

was a well-del<strong>in</strong>eated band of term<strong>in</strong>al sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

polymorphic cell layer (Fig. SA-D) followed by<br />

sparser sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> hilus and by a strong band <strong>in</strong><br />

<strong>the</strong> CA3 region where <strong>the</strong> mossy term<strong>in</strong>als make synapses<br />

with <strong>the</strong> apical dendrites. In addition <strong>the</strong>re was<br />

a less conspicuous, narrow band of sta<strong>in</strong>ed fibres and<br />

term<strong>in</strong>als <strong>in</strong> <strong>the</strong> stratum oriens of <strong>the</strong> CA2-CA1 regions<br />

immediately border<strong>in</strong>g <strong>the</strong> alveus. Occasional<br />

CHR-immunoreactive fibres were encountered <strong>in</strong> all<br />

regions and layers of <strong>the</strong> hippocampal formation <strong>in</strong>clud<strong>in</strong>g<br />

<strong>the</strong> subiculum. In <strong>the</strong> rat and gu<strong>in</strong>ea pig hippocampus,<br />

<strong>the</strong> mossy fibre system showed only very<br />

weak CHR-immunoreactivity.<br />

The distribution of TH did not resemble that of<br />

CHR. Branch<strong>in</strong>g axons with varicose term<strong>in</strong>al segments<br />

were present <strong>in</strong> all areas and layers, but <strong>the</strong><br />

mossy fibre system and fibres near <strong>the</strong> alveus were<br />

not TH-positive. The distributions of Met-enkephal<strong>in</strong>,<br />

Leu-enkephal<strong>in</strong> and Met-enkephal<strong>in</strong>-Arg6-Phe7<br />

immunoreactive varicose fibres were similar to each<br />

o<strong>the</strong>r and were conf<strong>in</strong>ed to sparse, scattered, branch<strong>in</strong>g<br />

fibres <strong>in</strong> all layers and areas. None of <strong>the</strong> antisera<br />

to opiate peptides used <strong>in</strong> <strong>the</strong> present study reacted<br />

with <strong>the</strong> mossy fibre system.<br />

Basal ganglia. The large neurons <strong>in</strong> <strong>the</strong> caudate<br />

nucleus and putqmen exhibited very strong Golgi apparatus-type<br />

CHR-immunoreactivity (Fig. 7D) and<br />

CHR-positive neurons of similar size were also distributed<br />

<strong>in</strong> and around <strong>the</strong> <strong>the</strong> globus pallidus. Only<br />

some of <strong>the</strong> medium sized neurons which make up<br />

<strong>the</strong> majority of <strong>the</strong> cells <strong>in</strong> <strong>the</strong> caudate and putamen<br />

area, showed weak CHR-immunoreactivity and<br />

some were immunoreactive for Met-enkephal<strong>in</strong>. The<br />

nucleus accumbens conta<strong>in</strong>ed few strongly CHRsta<strong>in</strong>ed<br />

cells, but <strong>the</strong>y were more numerous <strong>in</strong> and<br />

around <strong>the</strong> islands of Calleja. The olfactory tubercle<br />

(as del<strong>in</strong>eated by its strong AChE activity) conta<strong>in</strong>ed<br />

no CHR-immunoreactive perikarya.<br />

Immunoreactive varicose fibres and immunoreactive<br />

term<strong>in</strong>als were seen throughout <strong>the</strong> basal ganglia<br />

(see 3.3.4.2.). The caudate nucleus and putamen<br />

conta<strong>in</strong>ed a moderate density of term<strong>in</strong>als which<br />

were distributed unevenly (Fig. 12). There were<br />

weakly immunoreactive patches, accompany<strong>in</strong>g<br />

myel<strong>in</strong>ated axon bundles head<strong>in</strong>g to jo<strong>in</strong> <strong>the</strong> <strong>in</strong>ternal<br />

capsule. In <strong>the</strong> area <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> nucleus accumbens,<br />

<strong>the</strong> islands of Calleja and <strong>the</strong> olfactory tubercle,<br />

a complex mosaic of strongly, moderately or,<br />

weakly sta<strong>in</strong>ed, but sharply del<strong>in</strong>eated patches, was<br />

+-<br />

Fig. 5. <strong>Chromogran<strong>in</strong></strong> immunoreactivity <strong>in</strong> <strong>the</strong> hippocampal formation. A: vibratome section of <strong>the</strong> hippocampus of sheep show<strong>in</strong>g<br />

strong immunoreactivity <strong>in</strong> granule cell term<strong>in</strong>als which are distributed <strong>in</strong> <strong>the</strong> polymorphic cell layer (pcl) of <strong>the</strong> dentate gyrus (dg), <strong>in</strong><br />

<strong>the</strong> hilus (h) and <strong>in</strong> <strong>the</strong> mossy fibre system (mf). B: higher magnification photograph of <strong>the</strong> same section as <strong>in</strong> A. In <strong>the</strong> dentate gyrus,<br />

immunoreactivity is present <strong>in</strong> <strong>the</strong> granule cells (arrows) and <strong>in</strong> <strong>the</strong>ir term<strong>in</strong>als <strong>in</strong> <strong>the</strong> polymorphic cell layer (pei). C: semith<strong>in</strong> section<br />

of <strong>the</strong> CA3 region of sheep hippocampus show<strong>in</strong>g immunoreactivity <strong>in</strong> <strong>the</strong> boutons of mossy fibres (mf) term<strong>in</strong>at<strong>in</strong>g on <strong>the</strong> apical dendrites<br />

of pyramidal cells (asterisks). D : semith<strong>in</strong> section of <strong>the</strong> dentate gyrus of ox show<strong>in</strong>g immunoreactivity <strong>in</strong> granule cell somata<br />

(arrows) and <strong>in</strong> <strong>the</strong>ir term<strong>in</strong>als <strong>in</strong> <strong>the</strong> polymorphic cell layer (pei) . E-G: electron micrographs of immunoreactive mossy fibre boutons<br />

(mf) <strong>in</strong> <strong>the</strong> CA3 region of <strong>the</strong> sheep. E: immunoreactivity is ma<strong>in</strong>ly localized to large granulated vesicles (long arrows). The boutons<br />

make numerous synaptic contacts (short arrows) with sp<strong>in</strong>es (sp) and a dendrite (d) of pyramidal cells. F . and G: next to <strong>the</strong> synaptic<br />

specialisation (open arrow) omega-shaped profiles, conta<strong>in</strong><strong>in</strong>g ei<strong>the</strong>r immunoreactive (th<strong>in</strong> arrow <strong>in</strong> G) or non-immunoreactive (th<strong>in</strong><br />

arrow <strong>in</strong> F) dense cores, are frequently encountered. The mossy term<strong>in</strong>als conta<strong>in</strong> both immunoreactive (thick arrow <strong>in</strong> F) and nonimmunoreactive<br />

(thick arrows <strong>in</strong> G) large granulated vesicles . sg, stratum granulosum; srn, stratum moleculare. Scales: A, 1 mm;<br />

B-D, SO,um; E, O.S,um; F and G, O.2,um.


208<br />

Fig. 6. <strong>Chromogran<strong>in</strong></strong> immunoreactivity <strong>in</strong> <strong>the</strong> Golgi apparatus. A : semith<strong>in</strong> section of <strong>the</strong> CAl region of ox hippocampus <strong>Immunoreactivity</strong><br />

is localized <strong>in</strong> small per<strong>in</strong>uclear patches resembl<strong>in</strong>g <strong>the</strong> Golgi apparatus <strong>in</strong> <strong>the</strong> pyramidal neurons. B: electron micrograph of a<br />

pyramidal cell (PC) <strong>in</strong> <strong>the</strong> CA3 region of <strong>the</strong> sheep hippocampus. Framed areas conta<strong>in</strong> chromogran<strong>in</strong> immunoreactive Golgi apparatus<br />

and are shown at higher magnification <strong>in</strong> C and D. C and D: immunoreactivity is localized with<strong>in</strong> some of <strong>the</strong> Golgi saccules (arrows).<br />

Scales: A, 20 ,um; B, 1 ,urn; C and D , 0.5 ,um.<br />

observed (Fig. 7B). By <strong>in</strong>cubat<strong>in</strong>g serial sections to<br />

reveal <strong>the</strong> enkephal<strong>in</strong> immunoreactivity, it could be<br />

demonstrated that <strong>the</strong> mosaic pattern of CHR-immunoreactivity<br />

matched <strong>the</strong> pattern of <strong>the</strong> opiate peptides.<br />

The weakly sta<strong>in</strong>ed CHR patches were <strong>in</strong> <strong>the</strong><br />

same position but were usually broader for <strong>the</strong> enkephal<strong>in</strong>s.<br />

The pattern obta<strong>in</strong>ed for <strong>the</strong> 3 enkephal<strong>in</strong>s<br />

was identical.<br />

The <strong>in</strong>tensity of sta<strong>in</strong><strong>in</strong>g for AChE activity, known<br />

to have an uneven distribution <strong>in</strong> components of <strong>the</strong><br />

neostriatal complex 36 , also correlated well with <strong>the</strong><br />

level of CHR-immunoreactivity (Fig . 7 A , B ).<br />

Fibres and term<strong>in</strong>als <strong>in</strong> <strong>the</strong> globus pallidus and entopeduncular<br />

nucleus were among <strong>the</strong> most strongly


I1<br />

A_ D- CHR<br />

B<br />

CHR<br />

Fig. 7. A and B: ventral forebra<strong>in</strong> of <strong>the</strong> sheep reacted to reveal acetylchol<strong>in</strong>esterase (A ChE) enzyme activity (A) and chromogran<strong>in</strong><br />

immunoreactivity (CHR, B). Both show a patchy distribution <strong>in</strong> <strong>the</strong> nucleus accumbens (Na) olfactory tubercle and <strong>in</strong> <strong>the</strong> putamen<br />

(put). Areas show<strong>in</strong>g higher AChE activity (asterisks, arrows) sta<strong>in</strong> stronger for chromogran<strong>in</strong> immunoreactivity. Fibre bundles of <strong>the</strong><br />

capsula <strong>in</strong>terna (Cl) and o<strong>the</strong>r myel<strong>in</strong>ated axon pathways show up as pale areas. C: chromogran<strong>in</strong> immunoreactivity <strong>in</strong> <strong>the</strong> globus pallidus<br />

of <strong>the</strong> sheep. Immunoreactive term<strong>in</strong>als densely surround dendrites distributed among <strong>the</strong> fibre bundles of <strong>the</strong> <strong>in</strong>ternal capsule<br />

(Cl). D: strong chromogran<strong>in</strong> immunoreactivity <strong>in</strong> <strong>the</strong> large neurons (arrowheads) of <strong>the</strong> caudate nucleus of <strong>the</strong> sheep. Small and medium<br />

size neurons (arrows) are ei<strong>the</strong>r weakly immunoreactive or not immunoreactive at all. E-H: dendrites <strong>in</strong> <strong>the</strong> ventral caudate nucleus<br />

of <strong>the</strong> sheep enshea<strong>the</strong>d by boutons immunoreactive for chromogran<strong>in</strong> (E), Met-enkephal<strong>in</strong> (F), Leu-enkephal<strong>in</strong> (G) or Met-enkephal<strong>in</strong>-Arg6-Phe<br />

7 CH). Scales: A and B, 1 mm; C: 200,um; D , 50,um; E-H same magnification, 20,um.<br />

G<br />

H


210<br />

CHR-immunoreactive elements <strong>in</strong> <strong>the</strong> bra<strong>in</strong> (Fig .<br />

7C). Cell bodies and thick dendrites were completely<br />

surrounded by CHR-immunoreactive term<strong>in</strong>als.<br />

Neurons enshea<strong>the</strong>d <strong>in</strong> this way penetrated <strong>the</strong> ventral<br />

neostriatum where <strong>the</strong>ir dendrites were very conspicuous<br />

(Fig. 7E).<br />

This neuronal system also extends rostrally, form<strong>in</strong>g<br />

<strong>the</strong> ventral pallidum and groups of CHR-fibres<br />

enshea<strong>the</strong>d neurons around <strong>the</strong> islands of Calleja.<br />

The pattern of CHR immunoreactivity matched exactly<br />

that of <strong>the</strong> 3 opiate peptides (Fig. 7E-H). This<br />

distribution of CHR-immunoreactivity <strong>in</strong> <strong>the</strong> sheep<br />

was <strong>the</strong> same as that <strong>in</strong> ox . Thus, <strong>the</strong> distribution of<br />

immunoreactive perikarya was similar, and <strong>the</strong> globus<br />

pallidus and entopeduncular nucleus conta<strong>in</strong>ed<br />

heavily immunoreactive CHR-positive fibres and<br />

,, '<br />

. ".<br />

; .<br />

: .:<br />

• . . ( ... .J<br />

.)<br />

~ -:;. - - - - '" , ~ !. t.. i<br />

~,<br />

.'<br />

) ::" .. . ~. . h<br />

~<br />

..<br />

. ..<br />

~<br />

-~----<br />

c_ •<br />

0--.; '<br />

Fig. 8. <strong>Chromogran<strong>in</strong></strong> immunoreactivity is localized <strong>in</strong> per<strong>in</strong>uclear halo with<strong>in</strong> neuronal perikarya <strong>in</strong> <strong>the</strong> gyrus orbitalis of <strong>the</strong> frontal<br />

cortex (A) , <strong>in</strong> neurons of <strong>the</strong> olfactory corkx (B) , <strong>in</strong> motoneurons (arrows) of <strong>the</strong> sp<strong>in</strong>al cord (C) and <strong>in</strong> neurons (arrows) of <strong>the</strong> vertical<br />

arm of <strong>the</strong> nucleus of <strong>the</strong> diagonal band (D) . Note that <strong>in</strong> <strong>the</strong> neocortex <strong>the</strong> pyramidal cells of layer V. are <strong>the</strong> most strongly immunoreactive,<br />

while <strong>the</strong> same is true <strong>in</strong> <strong>the</strong> 01 factory cortex for neurons of layer II (dashed l<strong>in</strong>es) Scales: A, 200 pm ; B-O. 50 ,Lt m


211<br />

term<strong>in</strong>als.<br />

Claustrum. Neurons showed weak or, rarely,<br />

strong Golgi apparatus-type immunoreactivity.<br />

Septum. The medial septum conta<strong>in</strong>ed strongly immunoreactive<br />

neurons and this group was cont<strong>in</strong>uous<br />

with strongly immunoreactive neurons <strong>in</strong> both arms<br />

of <strong>the</strong> nucleus of <strong>the</strong> diagonal band. Similar strongly<br />

alleled <strong>the</strong> strongly AChE-reactive cells <strong>in</strong> <strong>the</strong> basal<br />

forebra<strong>in</strong> . In contrast, <strong>the</strong> lateral septum conta<strong>in</strong>ed<br />

no immunoreactive perikarya, but most neurons<br />

were surrounded by CHR-immunoreactive term<strong>in</strong>als.<br />

There were only a few term<strong>in</strong>als <strong>in</strong> <strong>the</strong> medial<br />

septum. Enkephal<strong>in</strong>-immunoreactive term<strong>in</strong>als had<br />

a similar distribution <strong>in</strong> <strong>the</strong> septum.<br />

Bed nucleus of <strong>the</strong> stria term<strong>in</strong>alis. There were few<br />

immunoreactive neurons, but <strong>the</strong>re was a dense<br />

CHR-immunoreactive fibre and term<strong>in</strong>al network.<br />

Amygdala. Strongly CHR-positive neurons exhib-<br />

sta<strong>in</strong>ed neurons, show<strong>in</strong>g Golgi apparatus-type immunoreactivity,<br />

were scattered fur<strong>the</strong>r caudally<br />

along <strong>the</strong> ventral forebra<strong>in</strong> and cont<strong>in</strong>ued among <strong>the</strong><br />

neurons of <strong>the</strong> globus pallidus. This distribution parc<br />

Fig . 9. <strong>Chromogran<strong>in</strong></strong> (A and B) and tyros<strong>in</strong>e hydroxylase (C and D) immunoreactivity <strong>in</strong> <strong>the</strong> substantia nigra region of sheep as demonstrated<br />

by pre-embedd<strong>in</strong>g immunohistochemistry. Dense chromogran<strong>in</strong> fibre network is present <strong>in</strong> <strong>the</strong> zona compacta (zc), zona reticulata<br />

(zr) and pars lateralis (pI) . The ventral tegmental area (vta) has fewer fibres and only <strong>the</strong> cell bodies are immunoreactive <strong>in</strong> <strong>the</strong><br />

nucleus ruber (nr). Large arrows <strong>in</strong> A and C mark regions shown <strong>in</strong> Band D , respectively. The chromogran<strong>in</strong> immunoreactive boutons<br />

<strong>in</strong> B surround <strong>the</strong> zona compacta cells (arrows) most of which are dopam<strong>in</strong>ergic as seen <strong>in</strong> D . Scales: A and C, same magnification,l<br />

mm; Band D, same magnification, lOO,um.


212<br />

it<strong>in</strong>g Golgi apparatus-type sta<strong>in</strong><strong>in</strong>g were present <strong>in</strong><br />

<strong>the</strong> central and basolateral nuclei, while neurons of<br />

<strong>the</strong> lateral basomedial and basolateral ventral nuclei<br />

showed weak immunoreactivity. No immunoreactivity<br />

could be demonstrated <strong>in</strong> neurons of <strong>the</strong> medial<br />

nucleus. A very dense CHR -positive term<strong>in</strong>al network<br />

was found <strong>in</strong> <strong>the</strong> central nucleus with fewer fibres<br />

<strong>in</strong> <strong>the</strong> medial, basomedial and cortical nuclei.<br />

The central nucleus also sta<strong>in</strong>ed very strongly for <strong>the</strong><br />

3 enkephal<strong>in</strong>s and for TH . In <strong>the</strong> medial, basomedial<br />

and cortical nuclei, enkephal<strong>in</strong>-immunoreactive fibres<br />

were sparser than CHR-fibres.<br />

3.3.4.3.3. Diencephalon.<br />

Thalamus. Neurons <strong>in</strong> most nuclei showed very<br />

weak Golgi apparatus-type CHR-immunoreactivity<br />

and only occasional sta<strong>in</strong>ed fibres were seen. Therefore<br />

, <strong>the</strong> nuclei were not del<strong>in</strong>eated <strong>in</strong> Fig. 12. An exception<br />

was <strong>the</strong> thalamic reticular nucleus which conta<strong>in</strong>ed<br />

some strongly sta<strong>in</strong>ed neurons and had a moderately<br />

sta<strong>in</strong>ed fibre network throughout <strong>the</strong> neuropil.<br />

This fibre sta<strong>in</strong><strong>in</strong>g did not correlate with T H or<br />

enkephal<strong>in</strong> immunoreactivity. The paraventricular<br />

thalamic nucleus and its cont<strong>in</strong>uation <strong>in</strong> patches<br />

along <strong>the</strong> midl<strong>in</strong>e showed a very strongly sta<strong>in</strong>ed<br />

CHR-fibre network. The proximal dendrites of neurons,<br />

and to a lesser extent <strong>the</strong> perikarya, were completely<br />

surrounded by CHR-immunoreactive term<strong>in</strong>als<br />

(Fig. 4C). This pattern closely resembled that of<br />

TH- (Fig. 4D) and DBH-immunoreactivity. This nucleus<br />

of <strong>the</strong> thalamus also showed <strong>the</strong> highest density<br />

of en kephal<strong>in</strong>-immunoreactive term<strong>in</strong>als; Met-enkephal<strong>in</strong><br />

sta<strong>in</strong><strong>in</strong>g was especially strong. The term<strong>in</strong>als<br />

appeared to be more scattered than those positive<br />

for CHR.<br />

Hypolhalamus. Only weakly immunoreactive neurons<br />

were seen. Many of <strong>the</strong> magnocellular neurons<br />

<strong>in</strong> <strong>the</strong> paraventricular and supraoptic nuclei exhibited<br />

Golgi apparatus-type sta<strong>in</strong><strong>in</strong>g as well as more homogeneous<br />

sta<strong>in</strong><strong>in</strong>g throughout <strong>the</strong> perikarya. Many<br />

term<strong>in</strong>als <strong>in</strong> <strong>the</strong> neural lobe of <strong>the</strong> pituitary were<br />

strongly CHR-immunoreactive. The hypothalamus<br />

was very rich <strong>in</strong> varicose fibres and term<strong>in</strong>als immunoreactive<br />

for CHR. The densest areas were <strong>the</strong> median<br />

em<strong>in</strong>ence, <strong>the</strong> periventricular region, <strong>the</strong> nucleus<br />

arcuatus and <strong>the</strong> supra optic nucleus. A smaller,<br />

but still significant, number of fibres and term<strong>in</strong>als<br />

were seen <strong>in</strong> <strong>the</strong> paraventricular nucleus. Additional<br />

fibres were also observed throughout <strong>the</strong> hypothalamus<br />

but particularly <strong>in</strong> <strong>the</strong> ventromedial nucleus, <strong>in</strong><br />

<strong>the</strong> lateral hypothalamus and <strong>in</strong> <strong>the</strong> area of <strong>the</strong> A13<br />

catecholam<strong>in</strong>ergic cell group over its full rostro-caudal<br />

extent. The fibres were often surround<strong>in</strong>g neuronal<br />

perikarya and proximal dendrites. The distribution<br />

of <strong>the</strong> catecholam<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g neurons was ascerta<strong>in</strong>ed<br />

by TH -immunohistochemistry.<br />

Both TH- and en kephal<strong>in</strong>-immunoreactive fibre<br />

systems were present <strong>in</strong> <strong>the</strong> areas of CHR-immunoreactive<br />

term<strong>in</strong>als, but <strong>the</strong> distribution of <strong>the</strong> CHR<br />

did not exclusively correspond to ei<strong>the</strong>r. In <strong>the</strong> arcuate<br />

nucleus and <strong>in</strong> <strong>the</strong> median em<strong>in</strong>ence, <strong>the</strong> distribution<br />

of CHR-immunoreactive term<strong>in</strong>als was different<br />

from that of <strong>the</strong> enkephal<strong>in</strong>s and TH.<br />

Z ona <strong>in</strong>certa. Scattered immunoreactive neurons<br />

and only occasional term<strong>in</strong>als were seen.<br />

3.3.4.3.4. Mesencephalon.<br />

Strong, patchy sta<strong>in</strong><strong>in</strong>g was observed <strong>in</strong> neurons of<br />

<strong>the</strong> nucleus ruber, and oculomotor nuclei, while Golgi<br />

apparatus-type CHR -immunoreactivity was present<br />

<strong>in</strong> large cells of pars reticulata and pars lateralis<br />

of <strong>the</strong> substantia nigra, <strong>in</strong> neurons of <strong>the</strong> <strong>in</strong>terstitial<br />

nucleus of Cajal, nucleus of Darkschewitsch and <strong>in</strong><br />

<strong>the</strong> accessory oculomotor nuclei. Weak Golgi apparatus<br />

type-immunoreactivity was observed <strong>in</strong> some<br />

scattered cells of <strong>the</strong> mesencephalic reticular formation.<br />

The areas where <strong>the</strong> neuropil was most heavily<br />

sta<strong>in</strong>ed were <strong>the</strong> pars reticulata and lateralis of <strong>the</strong><br />

substantia nigra (Fig. 9A). The immunoreactivity,<br />

like that <strong>in</strong> <strong>the</strong> globus pallidus, seemed to surround<br />

<strong>the</strong> dendrites completely. Heavy sta<strong>in</strong><strong>in</strong>g of a different<br />

type was found <strong>in</strong> <strong>the</strong> dopam<strong>in</strong>ergic cell regions<br />

of <strong>the</strong> zona compacta, where varicose fibres often<br />

surrounded neuronal perikarya (Fig. 9) . The regions<br />

of <strong>the</strong> ventral tegmental area conta<strong>in</strong><strong>in</strong>g dopam<strong>in</strong>e<br />

cells had fewer CHR-immunoreactive fibres. The<br />

periaqueductal grey matter conta<strong>in</strong>ed fibres and term<strong>in</strong>als<br />

throughout and some <strong>in</strong>dividual neurons were<br />

very heavily surrounded by term<strong>in</strong>als. The superior<br />

colliculus, <strong>the</strong> <strong>in</strong>ferior colliculus, <strong>the</strong> medial geniculate<br />

nucleus and <strong>the</strong> mesencephalic reticular formation<br />

conta<strong>in</strong>ed few immunoreactive fibres. Term<strong>in</strong>als<br />

were present throughout <strong>the</strong> <strong>in</strong>terpeduncular nucleus.<br />

Nei<strong>the</strong>r TH- nor enkephal<strong>in</strong>-immunoreactive fibre<br />

systems correlated completely with <strong>the</strong> CHR. The<br />

pars reticulata of <strong>the</strong> substantia nigra conta<strong>in</strong>ed no


DSH<br />

·DSH<br />

CHR<br />

"*<br />

'..'"<br />

G<br />

TH<br />

M-E-A-P<br />

Fig. 10. Locus coeruleus of <strong>the</strong> sheep, reacted by pre-embedd<strong>in</strong>g immunohistochemistry of vibratome sections (A-D and H-J) and<br />

post-embedd<strong>in</strong>g immunohistochemistry of semi th<strong>in</strong> sections. A and B: dopam<strong>in</strong>e j3-hydroxylase immunoreactivity (A) and chromogran<strong>in</strong><br />

immunoreactivity (B) show a similar distribution localized to neuronal perikarya and varicose fibres (arrows). C and D: some of<br />

<strong>the</strong> varicosities are <strong>in</strong> apparent contact with <strong>the</strong> cells. E-G: serial sections of two neurons, one of which (triangle) is noradrenergic as<br />

shown by immunoreactivity for dopam<strong>in</strong>e j3-hydroxylase (E) and tyros<strong>in</strong>e hydroxylase (G). <strong>Chromogran<strong>in</strong></strong> immunoreactivity (F) is<br />

also present <strong>in</strong> this neuron throughout <strong>the</strong> cytoplasm, but only <strong>in</strong> <strong>the</strong> Golgi apparatus (arrows) of <strong>the</strong> non-catecholam<strong>in</strong>ergic neuron<br />

(asterisk). H-J: Leu-enkephal<strong>in</strong>-(H), Met-enkephal<strong>in</strong>-(I) and Met-enkephal<strong>in</strong>-Arg 6 -Phe 7 -(J) immunoreactive term<strong>in</strong>als show a distribution<br />

different from those shown <strong>in</strong> (A) and (B) and completely surround <strong>the</strong> perikarya and dendrites of neurons. Scales: A, Band<br />

H-J , same magnification, 100,um; C-G, same magnification, 20,um.


214<br />

TH- or enkephal<strong>in</strong>-immunoreactive fibres. In <strong>the</strong><br />

pars compacta on <strong>the</strong> o<strong>the</strong>r hand, immunoreactive fibres<br />

could be demonstrated with all 3 anti-enkephal<strong>in</strong><br />

antisera, and <strong>the</strong> pattern and density of Met-enkephal<strong>in</strong><br />

immunoreactivity resembled that of CHR.<br />

The same was true for <strong>the</strong> ventral tegmental area. In<br />

<strong>the</strong> periaqueducta[ grey and <strong>in</strong>terpeduncular nucleus<br />

<strong>the</strong> TH-immunoreactive fibres were clearly different<br />

from those sta<strong>in</strong><strong>in</strong>g for CH R, but both areas were<br />

rich <strong>in</strong> enkephal<strong>in</strong> immunoreactive fibres and term<strong>in</strong>als<br />

with a distribution similar to <strong>the</strong> CHR-immunoreactivity.<br />

3.3.4.3 .5. Pons and dorsal tegmentum.<br />

Locus coeruleus area . Strong CHR-immunoreactivity<br />

was present <strong>in</strong> neurons <strong>in</strong> all <strong>the</strong> areas of <strong>the</strong><br />

A4, A6 and A7 catecholam<strong>in</strong>ergic cell groups. CHR-,<br />

TH- and DBH-immunoreactive neurons were present<br />

<strong>in</strong> <strong>the</strong> locus coeruleus and subcoeru[eus, <strong>in</strong> <strong>the</strong><br />

parabrachial nuclei and scattered laterally throughout<br />

<strong>the</strong> dorsolateral tegmentum end<strong>in</strong>g at <strong>the</strong> lateral<br />

lemniscus (Figs. lOA, B, 12). Us<strong>in</strong>g serial semith<strong>in</strong><br />

sections of <strong>the</strong> same neuron, it could be demonstrated<br />

that immunoreactivity due to CHR, DBH<br />

and TH was present <strong>in</strong> <strong>the</strong> same neurons (Fig.<br />

lOE-G). The CHR-immunoreactivity <strong>in</strong> <strong>the</strong> cytoplasm<br />

of noradrenergic neurons was homogeneously<br />

distributed and <strong>the</strong>re was also Golgi apparatus-type<br />

sta<strong>in</strong><strong>in</strong>g (Fig. 10D, F). Non-catecholam<strong>in</strong>ergic neurons<br />

<strong>in</strong> <strong>the</strong> same area showed only <strong>the</strong> Golgi apparatus-type<br />

reaction. The area of <strong>the</strong> catecholam<strong>in</strong>e produc<strong>in</strong>g<br />

cells was aiso rich <strong>in</strong> C HR-immunoreactive<br />

term<strong>in</strong>als many of <strong>the</strong>m contact<strong>in</strong>g CHR-positive<br />

neurons (Fig. lOD) . Their distribution correlated<br />

well with DBH- and TH-positive term<strong>in</strong>als but more<br />

CHR-term<strong>in</strong>als were seen <strong>in</strong> <strong>the</strong> parabrachial nuclei.<br />

Although <strong>the</strong> area was very rich <strong>in</strong> enkephal<strong>in</strong>-immunoreactive<br />

term<strong>in</strong>als, <strong>the</strong>ir distribution was different<br />

s<strong>in</strong>ce <strong>the</strong>y completely enshea<strong>the</strong>d <strong>the</strong> perikarya and<br />

dendrites of neurons <strong>in</strong> <strong>the</strong> area of <strong>the</strong> catecholam<strong>in</strong>e<br />

produc<strong>in</strong>g cells. The parabrachial nuclei conta<strong>in</strong>ed<br />

few cells densely surrounded by enkephal<strong>in</strong>-immunoreactivity<br />

but also exhibited a dense network of<br />

immunoreactive fibres and term<strong>in</strong>als.<br />

O<strong>the</strong>r areas . Weak CHR-immunoreactivity, ma<strong>in</strong>ly<br />

of <strong>the</strong> Golgi apparatus-type, was present <strong>in</strong> neurons<br />

of <strong>the</strong> trochlear nucleus, <strong>the</strong> dorsal tegmental<br />

nucleus, <strong>the</strong> pont<strong>in</strong>e nuclei, <strong>the</strong> nucleus of <strong>the</strong> lateral<br />

lemniscus and <strong>in</strong> <strong>the</strong> scattered neurons of <strong>the</strong> reticular<br />

formation. Moderate fibre- and term<strong>in</strong>al-sta<strong>in</strong><strong>in</strong>g<br />

was present <strong>in</strong> <strong>the</strong> dorsal and medial raphe nuclei, <strong>in</strong><br />

<strong>the</strong> dorsal and dorso-lateral tegmental nuclei, <strong>in</strong> <strong>the</strong><br />

pont<strong>in</strong>e nuclei and <strong>in</strong> an area with<strong>in</strong> <strong>the</strong> nucleus of<br />

<strong>the</strong> lateral lemniscus. One small, well-del<strong>in</strong>eated<br />

area <strong>in</strong> <strong>the</strong> dorsal tegmental nucleus was strongly immunoreactive.<br />

3.3.4.3.6. Cerebellum.<br />

In <strong>the</strong> cerebellar cortex, only <strong>the</strong> Golgi cells showed<br />

weak Golgi apparatus-type immunoreactivity. Varicose<br />

fibres and term<strong>in</strong>als immunoreactive for CHR<br />

were present <strong>in</strong> <strong>the</strong> granule cell layers as well as<br />

among <strong>the</strong> Purk<strong>in</strong>je cells. The densest fibre network<br />

was <strong>in</strong> <strong>the</strong> molecular layer. The density and distribution<br />

of CHR-positive fibres correlated well with <strong>the</strong><br />

TH-immunoreactivity. Groups of term<strong>in</strong>als immunoreactive<br />

for <strong>the</strong> enkephal<strong>in</strong>s were found <strong>in</strong> <strong>the</strong> granular<br />

layer and <strong>the</strong>y may correspond to <strong>the</strong> term<strong>in</strong>als of<br />

<strong>the</strong> Golgi cells. Very strong Golgi apparatus-type<br />

CHR-immunoreactivity was seen <strong>in</strong> neurons of <strong>the</strong><br />

deep cerebellar nuclei, and <strong>the</strong>re was also a sparse<br />

but strongly sta<strong>in</strong>ed varicose fibre network. This latter<br />

immunoreactivity had a similar distribution to<br />

TH.<br />

3.3.4.3.7. Medulla oblongata and sp<strong>in</strong>al cord.<br />

Cell bodies. Motoneurons of <strong>the</strong> abducens, facial ,<br />

hypoglossal nuclei and <strong>the</strong> ventral horn of <strong>the</strong> sp<strong>in</strong>al<br />

cord showed strong, patchy immunoreactivity, while<br />

neurons <strong>in</strong> <strong>the</strong> dorsal motor nucleus of <strong>the</strong> vagus<br />

were not immunoreactive. Strong immunoreactivity<br />

was also found <strong>in</strong> cells of <strong>the</strong> lateral reticular nucleus<br />

and <strong>in</strong> cells of <strong>the</strong> Al and Cl catecholam<strong>in</strong>e cell<br />

groups. No immunoreactivity was present <strong>in</strong> perikarya<br />

<strong>in</strong> <strong>the</strong> nucleus of <strong>the</strong> solitary tract and area postrema,<br />

which conta<strong>in</strong>ed numerous TH -positive neurons.<br />

Strongly immunoreactive cells were scattered<br />

<strong>in</strong> <strong>the</strong> reticular formation. Small homogeneously<br />

sta<strong>in</strong>ed neurons could be found <strong>in</strong>frequently <strong>in</strong> <strong>the</strong><br />

substantia gelat<strong>in</strong>osa of both <strong>the</strong> sp<strong>in</strong>al trigem<strong>in</strong>al nucleus<br />

and <strong>the</strong> dorsal horn of <strong>the</strong> sp<strong>in</strong>al cord (Fig.<br />

lIB). Weak Golgi apparatus-type immunoreactivity<br />

was present <strong>in</strong> <strong>the</strong> neurons of <strong>the</strong> cuneate and external<br />

cuneate nuclei <strong>in</strong> deeper parts of <strong>the</strong> sp<strong>in</strong>al trigem<strong>in</strong>al<br />

nucleus and <strong>in</strong> <strong>the</strong> vestibular nuclei.<br />

Fibres and term<strong>in</strong>als. The densest immunoreactive<br />

term<strong>in</strong>al networks were found <strong>in</strong> <strong>the</strong> nucleus of <strong>the</strong><br />

solitary tract, <strong>the</strong> area postrema , with less but still<br />

significant sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> dorsal motor nucleus of <strong>the</strong>


215<br />

Fig. 11. A: vibratome section of <strong>the</strong> sheep cervical sp<strong>in</strong>al cord show<strong>in</strong>g strong chromogran<strong>in</strong> immunoreactivity <strong>in</strong> <strong>the</strong> substantia gelat<strong>in</strong>osa<br />

(sg) and <strong>in</strong> motoneurons (small arrows). B: <strong>in</strong> <strong>the</strong> substantia gelat<strong>in</strong>osa, immunoreactivity is present <strong>in</strong> fibres and boutons some<br />

of which surround non-immunoreactive neurons (asterisk). Immunoreactive perikarya (arrow) are also present. C : electron micrograph<br />

of an immunoreactive bouton establish<strong>in</strong>g asymmetrical synaptic contact (thick arrow) with a dendrite (d). <strong>Immunoreactivity</strong> is<br />

ma<strong>in</strong>ly localized to large granulated vesicles (th<strong>in</strong> arrows) and is also present <strong>in</strong> a preterm<strong>in</strong>al axon (a). Scales: A, 1 mm; B, SO .urn;<br />

C, 0.2.um .<br />

vagus. In <strong>the</strong> latter, <strong>the</strong> term<strong>in</strong>als surrounded <strong>the</strong><br />

perikarya of <strong>the</strong> large neurons, similar to TH and enkephal<strong>in</strong><br />

immunoreactive term<strong>in</strong>als. The area postrema<br />

and <strong>the</strong> nucleus of <strong>the</strong> solitary tract were also<br />

very rich <strong>in</strong> TH, and enkephal<strong>in</strong>-immunoreactive term<strong>in</strong>als<br />

whose density and distribution were similar to<br />

<strong>the</strong> CHR-immunoreactivity.<br />

The o<strong>the</strong>r strongly CHR-sta<strong>in</strong>ed term<strong>in</strong>al network<br />

was localized <strong>in</strong> <strong>the</strong> substantia gelat<strong>in</strong>osa of both <strong>the</strong><br />

sp<strong>in</strong>al trigem<strong>in</strong>al nucleus and <strong>the</strong> dorsal horn of <strong>the</strong><br />

sp<strong>in</strong>al cord (Fig. lIB). (See 3.3.4.2 for electron microscopic<br />

data). Some of <strong>the</strong> fibres surrounded smal1<br />

neurons (Fig. lIB). The areas conta<strong>in</strong><strong>in</strong>g CHR-immunoreactive<br />

fibres were also rich <strong>in</strong> enkephal<strong>in</strong>-positive<br />

fibres with a similar pattern and density. On <strong>the</strong><br />

o<strong>the</strong>r hand, <strong>the</strong>re were fewer TH-immunoreactive<br />

term<strong>in</strong>als. In <strong>the</strong> sp<strong>in</strong>al cord, an area around and lateral<br />

to <strong>the</strong> central canal also conta<strong>in</strong>ed numerous<br />

CHR-immunoreactive term<strong>in</strong>als. S<strong>in</strong>gle varicose fibres<br />

were also seen among <strong>the</strong> motoneurons of <strong>the</strong><br />

ventral horn. Enkephal<strong>in</strong>-immunoreactivity had a<br />

similar distribution at <strong>the</strong>se latter two sites.<br />

The <strong>in</strong>ferior olivary nucleus conta<strong>in</strong>ed CHR-immunoreactive<br />

term<strong>in</strong>als throughout, but <strong>the</strong>re were<br />

no en kephal<strong>in</strong>-immunoreactive fibres and few THpositive<br />

term<strong>in</strong>als. In contrast, <strong>the</strong> density of CHRimmunoreactive<br />

term<strong>in</strong>als <strong>in</strong> <strong>the</strong> Al and Cl catecholam<strong>in</strong>e<br />

cell groups correlated well with enkephal<strong>in</strong>immunoreactivity.<br />

A dense CHR-fibre network was<br />

also found <strong>in</strong> <strong>the</strong> gracile nucleus and fibres could be


216<br />

SCol<br />

• Strongly CHR pOSl T IV e neurons<br />

OWeakly<br />

CHR positive neurons<br />

'V Pericellular term<strong>in</strong>al nets


217<br />

ABBREVIATIONS REFERRED TO IN FIG. 12 LS lateral septum<br />

LSC locus subcoeruleus<br />

ACo cortical amygdaloid nucleus LV lateral ventricle<br />

AN ambiguous nucleus me median em<strong>in</strong>ence<br />

AP area postrema Me medial amygdaloid nucleus<br />

Aq aqueductus cerebri ml medial lemniscus<br />

Ar arcuate nucleus mldt medullary lam<strong>in</strong>a of <strong>the</strong> dorsal thalamus<br />

ASC area subcoeruleus mlf medial longitud<strong>in</strong>al fasciculus<br />

AV anterior ventral thalamic nucleus MGN medial geniculate nucleus<br />

Al<br />

MRN medial raphe nucleus<br />

A7 J catecholam<strong>in</strong>e cell gmups<br />

MRF mesencephalic reticular formation<br />

A13 MS medial septum<br />

A14 mt mamillo-thalamic tract<br />

BL basolateral amygdaloid nucleus Na nucleus accumbens<br />

BLV basolateral ventral amygdaloid nucleus Nc neocortex<br />

BM basomedial amygdaloid nucleus NHDB nucleus of <strong>the</strong> horizontal arm of <strong>the</strong> diagonal band<br />

BNStr bed nucleus of <strong>the</strong> stria term<strong>in</strong>alis NLL nucleus of <strong>the</strong> lateral lemniscus<br />

ca anterior commissure NR nucleus ruber<br />

cc central canal Nts nucleus of <strong>the</strong> solitary tract<br />

CC corpus callosum NVDB nucleus of <strong>the</strong> vertical arm of <strong>the</strong> diagonal band<br />

CE capsula externa n4 tract of trochlear nerve<br />

Cl capsula <strong>in</strong>terna NlO dorsal motor nucleus of vagus<br />

CL claustrum n12 tract of hypoglossal nucleus<br />

CN caudate nucleus N12 hypoglossal nucleus<br />

cp posterior commissure Olt olfactory tubercle<br />

CP cerebral peduncle OT optic tract<br />

ctt central tegmental tract PN pont<strong>in</strong>e nuclei<br />

Cu cuneate nucleus PO pyriform cortex<br />

CUN cuneiform nucleus PRF pont<strong>in</strong>e reticular formation<br />

Cl catecholam<strong>in</strong>e cell group PTN pretectal nuclei<br />

DAR nucleus of Darkschewitsch Put putamen<br />

dh dorsal horn PVT paraventricular thalamic nucleus<br />

DPB dorsal para brachial nucleus pyr pyramid<br />

DR dorsal raphe nucleus RF reticular formation<br />

drf dorsal root fibres RP raphe pallidus<br />

dsc dorsal sp<strong>in</strong>ocerebellar tract RT reticular thalamic nucleus<br />

dscp decussation of <strong>the</strong> superior cerebellar peduncle RTN reticulotegmental nerve of pons<br />

DTg dorsal tegmental nucleus SCol superior colliculus<br />

ECu external cuneate nucleus scp superior cerebellar peduncle<br />

En endopiriform nucleus sg substantia gelat<strong>in</strong>osa<br />

EPN entopeduncular nucleus SN substantia nigra<br />

EW accessory oculomotor nucleus SNC substantia nigra pars compacta<br />

fr fasciculus retroflexus SNL substantia nigra pars lateralis<br />

fx fornix SNR substantia nigra pars reticulata<br />

GP globus pallidus SpNS sp<strong>in</strong>al trigem<strong>in</strong>al nucleus<br />

Gr gracile nucleus SptS sp<strong>in</strong>al tract of trigem<strong>in</strong>al nerve<br />

rc islands of Calleja Str stria term<strong>in</strong>alis<br />

ICol <strong>in</strong>ferior colliculus vh ventral horn<br />

INC <strong>in</strong>terstitial nucleus of Cajal Ve vestibular nucleus<br />

10 <strong>in</strong>ferior olive VL ventrolateral thalamic nucleus<br />

IP <strong>in</strong>terpeduncular nucleus VM ventromedial nerve of hypothalamus<br />

La lateral amygdaloid nucleus VP ventral pallidum<br />

LC locus coeruleus VPB ventral para brachial nerve<br />

LDTg laterodorsal tegmental nucleus vsc ventral sp<strong>in</strong>ocerebellar tract<br />

LH lateral hypothalamus VTA ventral tegmental area<br />

II lateral lemniscus ' V3 third ventricle<br />

10 lateral olfactory tract V4 fourth ventricle<br />

LRt lateral reticular nucleus<br />

+-<br />

Fig. 12. Distribution of chromogran<strong>in</strong> (CHR) immunoreactivity <strong>in</strong> neuronal perikarya (dots, circles), fibres and term<strong>in</strong>als (stippled,<br />

hatched areas) <strong>in</strong> frontal sections of <strong>the</strong> sheep bra<strong>in</strong>. Hatched areas conta<strong>in</strong>ed a low density of fibres and <strong>the</strong> density of stippl<strong>in</strong>g corresponds<br />

to <strong>the</strong> density of immunoreactivity <strong>in</strong> <strong>the</strong> neuropil. Areas not labeled, conta<strong>in</strong>ed no or only a very low density of fibres. Additional<br />

areas not illustrated here are described <strong>in</strong> <strong>the</strong> text.


4.1<br />

,...,r,nrCln.n A.


219<br />

chromogran<strong>in</strong> A or a smaller prote<strong>in</strong> extracted from<br />

polyacrylamide gels, recognized 90% of <strong>the</strong> prote<strong>in</strong>aceous<br />

material <strong>in</strong> <strong>the</strong> chromaff<strong>in</strong> granule lysate, as<br />

well as <strong>the</strong> immunogens. Kilpatrick et al. 46 have<br />

found that an antiserum raised aga<strong>in</strong>st chromogran<strong>in</strong><br />

A also recognized smaller peptides when adrenal<br />

medullary prote<strong>in</strong>s were exam<strong>in</strong>ed.<br />

The presence of a common epitope suggests that<br />

<strong>the</strong> peptides are likely to be derived from <strong>the</strong> same<br />

parent molecule. This suggestion is supported by two<br />

o<strong>the</strong>r observations. (1) The overall am<strong>in</strong>o acid composition<br />

of <strong>the</strong> total prote<strong>in</strong>s <strong>in</strong> <strong>the</strong> lysate does not differ<br />

significantly from <strong>the</strong> composition of purified<br />

chromogran<strong>in</strong> A (see ref. 116). S<strong>in</strong>ce chromogran<strong>in</strong><br />

A accounts for only 40-50% of <strong>the</strong> prote<strong>in</strong>s <strong>in</strong> granule<br />

Iysates, this result suggests that <strong>the</strong> bulk of <strong>the</strong> rema<strong>in</strong><strong>in</strong>g<br />

prote<strong>in</strong>s have similar compositions. (2) All<br />

<strong>the</strong> polypeptides recognized by <strong>the</strong> antisera have<br />

similar isoelectric po<strong>in</strong>ts confirm<strong>in</strong>g <strong>the</strong> similarity of<br />

<strong>the</strong>ir composition. It is probable that peptides with<br />

such similar compositions share a common orig<strong>in</strong>.<br />

The most obvious way for chromogran<strong>in</strong> A to be<br />

reduced <strong>in</strong> size <strong>in</strong> vivo is by limited proteolytic digestion,<br />

and <strong>the</strong>re is evidence that such enzymes exist <strong>in</strong><br />

<strong>the</strong> chromaff<strong>in</strong> granules29.32.60,lOS. The enzymes,<br />

which have been generally studied with respect to<br />

<strong>the</strong>ir ability to cleave <strong>the</strong> precursors of <strong>the</strong> enkephal<strong>in</strong>s,<br />

have been variously described as hav<strong>in</strong>g tryps<strong>in</strong>-like<br />

24 .ss , atypical tryps<strong>in</strong>-like29.60, or carboxypeptidase<br />

B-like 32 activity. Such enzymes could degrade<br />

chromogran<strong>in</strong> A <strong>in</strong>to smaller fragments if it had <strong>the</strong><br />

appropriate am<strong>in</strong>o acid sequences.<br />

Studies us<strong>in</strong>g an <strong>in</strong> vitro translation system also<br />

suggest that <strong>the</strong> small peptides are derived from<br />

chromogran<strong>in</strong> A by post-translational process<strong>in</strong>g46<br />

(see also Falkensammer, G. , Fischer-Colbrie, R.<br />

and W<strong>in</strong>kler, H., unpublished observations). When<br />

messenger-RNA extracted from <strong>the</strong> adrenal medulla<br />

was translated , <strong>the</strong> only product which reacted with<br />

<strong>the</strong> anti-chromogran<strong>in</strong> antiserum was a large prote<strong>in</strong><br />

similar to chromogran<strong>in</strong> A , and not <strong>the</strong> smaller products.<br />

Thus, <strong>the</strong> smaller peptides are probably not<br />

products of different genes, but derived from chromogran<strong>in</strong><br />

A.<br />

The chromaff<strong>in</strong> granule is known to conta<strong>in</strong> 3 major<br />

species of prote<strong>in</strong>s: DBH, <strong>the</strong> enkephal<strong>in</strong> precursors<br />

and <strong>the</strong> chromogran<strong>in</strong> family of polypeptides.<br />

While it has been clearly demonstrated that DBH is<br />

immunologically dist<strong>in</strong>ct from CHR and does not<br />

carry <strong>the</strong> epitope recognized by our antisera, <strong>the</strong> relationship<br />

between <strong>the</strong> CHR family and <strong>the</strong> enkephal<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g<br />

prote<strong>in</strong>s has not been established. It<br />

is unlikely, however, that <strong>the</strong>y are biochemically related<br />

even though enkephal<strong>in</strong> and CHR are localized<br />

<strong>in</strong> <strong>the</strong> same organelle <strong>in</strong> <strong>the</strong> adrenal medulla and <strong>the</strong>y<br />

share a strik<strong>in</strong>gly similar distribution <strong>in</strong> parts of <strong>the</strong><br />

bra<strong>in</strong> (see below).<br />

The largest prote<strong>in</strong>s conta<strong>in</strong><strong>in</strong>g <strong>the</strong> en kephal<strong>in</strong> sequence<br />

have been estimated to be 50 ,000 daltonS3 , or<br />

34,000 dalton 77 while <strong>the</strong> size of <strong>the</strong> precursor derived<br />

from <strong>the</strong> genomic sequence is 29,000 dalton63.<br />

Because of <strong>the</strong> position of start and stop codons <strong>in</strong><br />

<strong>the</strong> gene sequence, <strong>the</strong>se pep tides cannot be part of<br />

chromogran<strong>in</strong> A. This view is re<strong>in</strong>forced by <strong>the</strong> now<br />

known am<strong>in</strong>o acid composition of preproenkephal<strong>in</strong><br />

which differs substantially from that of chromogran<strong>in</strong><br />

A63. The differences are highlighted by <strong>the</strong> recent<br />

characterization of a fragment of preproenkephal<strong>in</strong>,<br />

called synenkephal<strong>in</strong>S7, that has a pI of7.6 as dist<strong>in</strong>ct<br />

from values <strong>in</strong> <strong>the</strong> range of 4.8-5.2 for <strong>the</strong> chromogran<strong>in</strong>s.<br />

In summary, <strong>the</strong> evidence supports <strong>the</strong> hypo<strong>the</strong>sis<br />

that chromogran<strong>in</strong> A represents <strong>the</strong> largest of a family<br />

of related polypeptides all shar<strong>in</strong>g common epitopes.<br />

The smaller molecules are probably derived<br />

from <strong>the</strong> parent by limited proteolysis, and <strong>the</strong>y have<br />

<strong>the</strong> same pI and a similar am<strong>in</strong>o acid composition.<br />

None of this family would appear to be related to any<br />

of <strong>the</strong> o<strong>the</strong>r identified prote<strong>in</strong> constituents of <strong>the</strong><br />

granules. The immunohistochemical experiments described<br />

here are <strong>the</strong>refore believed to reveal <strong>the</strong> distribution<br />

of this family of polypeptides unambiguously,<br />

but <strong>the</strong> results do not discrim<strong>in</strong>ate between <strong>the</strong><br />

differently sized immunoreactive molecules.<br />

4.1.3. Characteristics of <strong>the</strong> CHR-antigens <strong>in</strong> bra<strong>in</strong><br />

and pituitary<br />

The properties of <strong>the</strong> molecules carry<strong>in</strong>g <strong>the</strong> chromogran<strong>in</strong>-derived<br />

epitope were <strong>in</strong>vestigated <strong>in</strong> two<br />

ways. First, tissue extracts from bra<strong>in</strong> and pituitary<br />

were studied by immunoblott<strong>in</strong>g. Second, <strong>the</strong> identity<br />

of <strong>the</strong> epitope <strong>in</strong> <strong>the</strong> hippocampus and <strong>the</strong> adrenal<br />

was confirmed by cross-absorption.<br />

On two-dimensional immunoblots, <strong>the</strong> immunoreactive<br />

material <strong>in</strong> bov<strong>in</strong>e pituitary was <strong>in</strong>dist<strong>in</strong>guishable<br />

on <strong>the</strong> basis of size and isoelectric po<strong>in</strong>t from that


220<br />

<strong>in</strong> bov<strong>in</strong>e chromaff<strong>in</strong> granule Iysates. S<strong>in</strong>ce plasma<br />

can be excluded as <strong>the</strong> source of CHR64, this result<br />

confirms <strong>the</strong> presence of CHR <strong>in</strong> <strong>the</strong> pituitary and<br />

shows that its syn<strong>the</strong>sis and subsequent process<strong>in</strong>g<br />

follows <strong>the</strong> same pathway as <strong>the</strong> one <strong>in</strong> <strong>the</strong> adrenal.<br />

Previous studies with pituitary extracts have<br />

shown that CHR-immunoreactivity was due to <strong>the</strong><br />

presence of a molecule that was smaller than chromogran<br />

<strong>in</strong> A64. Our f<strong>in</strong>d<strong>in</strong>g of multiple peptides with <strong>the</strong><br />

chromogran<strong>in</strong> A epitope <strong>in</strong> <strong>the</strong> pituitary could expla<strong>in</strong><br />

<strong>the</strong> broad elution profile of pituitary chromogran<strong>in</strong><br />

when separated on <strong>the</strong> basis of size64 .<br />

In bov<strong>in</strong>e hippocampus two immunoreactive prote<strong>in</strong>s<br />

were detected which were shown to be identical<br />

to <strong>the</strong> major prote<strong>in</strong>s <strong>in</strong> <strong>the</strong> chromaff<strong>in</strong> granule lysate<br />

by co-migration <strong>in</strong> mix<strong>in</strong>g experiments. Smaller polypeptides<br />

were not detected on two-dimensional gels ,<br />

possibly reflect<strong>in</strong>g <strong>the</strong> lower amounts of immunoreactive<br />

material <strong>in</strong> <strong>the</strong> tissue. In extracts from sheep<br />

bra<strong>in</strong>, <strong>the</strong> immunoreactive material was similar to<br />

that <strong>in</strong> both sheep and bov<strong>in</strong>e adrenals.<br />

The identity of <strong>the</strong> antigen <strong>in</strong> bra<strong>in</strong> with those <strong>in</strong><br />

chromaff<strong>in</strong> granule Iysates was confirmed by absorption<br />

experiments. The fact that extracts of <strong>the</strong> hippocampus<br />

abolished hippocampal sta<strong>in</strong><strong>in</strong>g <strong>in</strong> parallel<br />

with adrenal sta<strong>in</strong><strong>in</strong>g, and that <strong>the</strong> lysate abolished<br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> hippocampus and <strong>the</strong> adrenal <strong>in</strong> parallel,<br />

confirms that <strong>the</strong> antigens <strong>in</strong> both tissues carry<br />

<strong>the</strong> same epitopes. It also excludes <strong>the</strong> possibility that<br />

<strong>the</strong> sta<strong>in</strong><strong>in</strong>g is due to <strong>the</strong> presence of a contam<strong>in</strong>at<strong>in</strong>g<br />

antibody.<br />

4.2. Neuronal pathways conta<strong>in</strong><strong>in</strong>g CHR-immunoreactivity<br />

Although CHR-immunoreactivity was found <strong>in</strong><br />

cell bodies throughout <strong>the</strong> bra<strong>in</strong>, <strong>the</strong>re were <strong>in</strong>dications<br />

that some neurons that conta<strong>in</strong>ed CHR-immunoreactivity<br />

<strong>in</strong> <strong>the</strong>ir cell bodies did not have detectable<br />

levels <strong>in</strong> <strong>the</strong>ir term<strong>in</strong>als (see 4.2.2.2. and<br />

4.2 .2.6.). There were also suggestions that some neurons<br />

with strongly react<strong>in</strong>g term<strong>in</strong>als had unsta<strong>in</strong>ed<br />

perikarya (see 4.2.2.3.). S<strong>in</strong>ce it was not possible for<br />

ethical reasons to treat sheep with colchic<strong>in</strong>e to <strong>in</strong>crease<br />

<strong>the</strong> level of antigen <strong>in</strong> perikarya, <strong>the</strong> results<br />

may not represent <strong>the</strong> complete distribution of CHRimmunoreactive<br />

cell bodies.<br />

In <strong>the</strong> follow<strong>in</strong>g description, CHR-immunoreactive<br />

neuronal populations will be correlated with neurochemical<br />

or morphological classes def<strong>in</strong>ed here<br />

and elsewhere. While we have provided immunohistochemical<br />

evidence for <strong>the</strong> presence of CHR-immunoreactive<br />

material <strong>in</strong> central noradrenergic neurons<br />

us<strong>in</strong>g double-Iabel<strong>in</strong>g techniques, more such direct<br />

studies will be needed for <strong>the</strong> o<strong>the</strong>r populations.<br />

4.2.l. Peripheral nervous system and endocr<strong>in</strong>e cells<br />

The distribution of chromogran<strong>in</strong> immunoreactivity<br />

<strong>in</strong> <strong>the</strong> adrenal and pituitary reported here agrees<br />

well with <strong>the</strong> results of previous studies16.64.66 . In addition<br />

, as would be expected if <strong>the</strong> antisera were directed<br />

aga<strong>in</strong>st <strong>the</strong> chromogran<strong>in</strong> epitope, immunoreactivity<br />

was found <strong>in</strong> varicose term<strong>in</strong>als of peripheral<br />

noradrenergic neurons which are known to store and<br />

release chromogran<strong>in</strong> A or immunologically related<br />

peptides (see ref. 51).<br />

4.2.2. <strong>Central</strong> nervous system<br />

4.2.2.l. Catecholam<strong>in</strong>ergic neurons. As would be<br />

predicted from <strong>the</strong> strong reaction of peripheral catecholam<strong>in</strong>ergic<br />

neurons, central neurons known to<br />

conta<strong>in</strong> noradrenal<strong>in</strong>e were also immunoreactive. In<br />

both <strong>the</strong> locus coeruleus region and <strong>in</strong> <strong>the</strong> area of <strong>the</strong><br />

Al and Cl cell groups <strong>in</strong> <strong>the</strong> ventro-Iateral medulla,<br />

<strong>the</strong> CHR-reactive perikarya were distributed similarly<br />

to <strong>the</strong> catecholam<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g neurons. In <strong>the</strong><br />

locus coeruleus, <strong>the</strong> CHR-immunoreactive neurons<br />

were identified as noradrenergic by <strong>the</strong> presence of<br />

both TH and DBH <strong>in</strong> <strong>the</strong>ir perikarya. It is likely that<br />

<strong>the</strong> CHR-immunoreactive material was also present<br />

<strong>in</strong> <strong>the</strong> term<strong>in</strong>als of <strong>the</strong>se neurons: <strong>the</strong> distribution of<br />

<strong>the</strong> TH- and CHR -conta<strong>in</strong><strong>in</strong>g varicose axons was<br />

identical <strong>in</strong> areas known to have a dense noradrenergic<br />

<strong>in</strong>nervation from <strong>the</strong> locus coeruleus, such as <strong>the</strong><br />

cerebral and cerebellar cortices and <strong>the</strong> hypothalamus54<br />

.<br />

Not all noradrenergic neurons were immunoreactive<br />

for CHR under conditions which produced <strong>the</strong><br />

sta<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> locus coeruleus. T here was no reactivity<br />

apparent <strong>in</strong> <strong>the</strong> neuronal perikarya with<strong>in</strong> <strong>the</strong> nucleus<br />

of <strong>the</strong> solitary tract or with<strong>in</strong> <strong>the</strong> area postrema.<br />

Similarly, it was not possible to demonstrate CHR ­<br />

immunoreactivity <strong>in</strong> <strong>the</strong> dopam<strong>in</strong>ergic cell groups or<br />

<strong>in</strong> <strong>the</strong>ir term<strong>in</strong>als. Clearly, some am<strong>in</strong>ergic cells conta<strong>in</strong><br />

no CHR, or <strong>the</strong> concentration was too low to be<br />

detected.


221<br />

In conclusion, while CHR-immunoreactivity was<br />

present <strong>in</strong> some catecholam<strong>in</strong>ergic neurons <strong>in</strong> <strong>the</strong><br />

CNS, it was probably not present <strong>in</strong> all such neurons.<br />

It is of historical <strong>in</strong>terest that 'chromogran<strong>in</strong>s' were<br />

<strong>the</strong> first immunogens used to produce antisera which<br />

were subsequently applied to <strong>the</strong> immunohistochemical<br />

characterisation of neurons <strong>in</strong> <strong>the</strong> nervous system<br />

33 . The distribution <strong>in</strong> <strong>the</strong> bra<strong>in</strong> however, is not<br />

tightly l<strong>in</strong>ked to catecholam<strong>in</strong>es, and is more widespread<br />

than would be expected if it were conf<strong>in</strong>ed to<br />

<strong>the</strong>se cell types.<br />

4.2.2.2. Neurons us<strong>in</strong>g acidic am<strong>in</strong>o acids as transmitters.<br />

Some of <strong>the</strong> neurons thought to use glutamate<br />

or aspartate as neurotransmitters also conta<strong>in</strong>ed<br />

CHR-immunoreactivity. One such system,<br />

<strong>the</strong> hippocampal mossy fibre term<strong>in</strong>als 20 ,lOO.101, was<br />

amongst <strong>the</strong> most strongly reactive <strong>in</strong> <strong>the</strong> bra<strong>in</strong>. S<strong>in</strong>ce<br />

most granule cells which give rise to <strong>the</strong> mossy fibres<br />

showed immunoreactivity <strong>in</strong> <strong>the</strong> Golgi apparatus,<br />

and s<strong>in</strong>ce <strong>the</strong> density of <strong>the</strong> reactive mossy term<strong>in</strong>als<br />

was high, <strong>the</strong> possibility that <strong>the</strong> positive neurons<br />

comprise a separate sub-population can be excluded.<br />

The pyramidal cells of <strong>the</strong> neocortex and hippocampus<br />

are also thought to use glutamate or aspartate<br />

as a neurotransmitter3o . Like <strong>in</strong> <strong>the</strong> granule cells<br />

of <strong>the</strong> dentate gyrus, <strong>the</strong> Golgi apparatus of most pyramidal<br />

cells was strongly CHR-immunoreactive. In<br />

contrast with <strong>the</strong> granule cell term<strong>in</strong>als, however, <strong>the</strong><br />

term<strong>in</strong>als of <strong>the</strong> pyramidal cells were probably not<br />

immunoreactive. This was <strong>in</strong>ferred from two observations.<br />

First, cortical pyramidal cells have a very<br />

rich local axon collateral arborization 34 , but this was<br />

not reflected by <strong>the</strong> distribution and density of <strong>the</strong><br />

CHR-positive axons <strong>in</strong> <strong>the</strong> cortex and hippocampus.<br />

Second, some areas, like <strong>the</strong> thalamus and <strong>the</strong> red<br />

nucleus, which receive a rich cortical <strong>in</strong>put showed<br />

no or few immunoreactive term<strong>in</strong>als.<br />

The layer of term<strong>in</strong>ation of <strong>the</strong> lateral olfactory<br />

tract was also conspicuously CHR-immunoreactive.<br />

The lateral olfactory tract orig<strong>in</strong>ates <strong>in</strong> <strong>the</strong> ma<strong>in</strong> olfactory<br />

bulb, largely from <strong>the</strong> Mitral cells, and term<strong>in</strong>ates<br />

among o<strong>the</strong>r areas <strong>in</strong> <strong>the</strong> outer half of <strong>the</strong> plexiform<br />

layer <strong>in</strong> <strong>the</strong> olfactory tubercle and <strong>in</strong> <strong>the</strong> olfactory<br />

cortex 9 ,38,75. The term<strong>in</strong>als of <strong>the</strong> pathway, at least<br />

<strong>in</strong> <strong>the</strong> olfactory cortex, probably conta<strong>in</strong> aspartate or<br />

glutamate as neurotransmitters 17 ,18. The layer of term<strong>in</strong>ation<br />

of <strong>the</strong> lateral olfactory tract conta<strong>in</strong>ed a<br />

sharply del<strong>in</strong>eated band of CHR-immunoreactivity,<br />

but s<strong>in</strong>ce we have not studied <strong>the</strong> olfactory bulb, it rema<strong>in</strong>s<br />

to be established if <strong>the</strong> perikarya of Mitral cells<br />

were immunoreactive, although <strong>the</strong>ir term<strong>in</strong>als are<br />

almost certa<strong>in</strong> to conta<strong>in</strong> CHR.<br />

It has also been suggested that some neurons <strong>in</strong> <strong>the</strong><br />

deep cerebellar nuclei use acidic am<strong>in</strong>o acid transmitters<br />

62 . All such cells had strongly immunoreactive<br />

perikarya, but no immunoreactive term<strong>in</strong>als were<br />

found <strong>in</strong> <strong>the</strong> red nucleus, where <strong>the</strong>se cells send projections.<br />

In conclusion, neurons thought to use acidic am<strong>in</strong>o<br />

acid transmitters frequently have CHR-immunoreactive<br />

perikarya and mayor may not have immunoreactive<br />

term<strong>in</strong>als. The reactivity <strong>in</strong> <strong>the</strong> cell bodies<br />

was <strong>in</strong>variably conf<strong>in</strong>ed to <strong>the</strong> Golgi apparatus.<br />

In <strong>the</strong> context of acidic am<strong>in</strong>o acid transmitters, it<br />

is pert<strong>in</strong>ent to re-emphasize <strong>the</strong> am<strong>in</strong>o acid composition<br />

of chromogran<strong>in</strong>. The chromogran<strong>in</strong>s are particularly<br />

rich <strong>in</strong> glutamic acid 39 ,87, and <strong>the</strong> presence of<br />

CHR-immunoreactive material <strong>in</strong> <strong>the</strong> Golgi apparatus<br />

of many of <strong>the</strong> cells that use glutamate (or aspartate)<br />

as neurotransrnitters may <strong>in</strong>dicate a special<br />

function.<br />

It should also be emphasized that <strong>the</strong> sta<strong>in</strong><strong>in</strong>g proposed<br />

as CHR-immunoreactivity was unlikely to<br />

have been due to <strong>the</strong> antisera recogniz<strong>in</strong>g <strong>the</strong> transmitter<br />

store of glutamate fixed <strong>in</strong> <strong>the</strong> tissue. An antiserum<br />

thought to be specific for glutamate sta<strong>in</strong>ed<br />

<strong>the</strong> mossy fibres <strong>in</strong> rat bra<strong>in</strong> very strongly!Ol, as did<br />

<strong>the</strong> antisera to CHR. However, o<strong>the</strong>r layers which<br />

sta<strong>in</strong>ed strongly for glutamate!Ol and which are<br />

known to conta<strong>in</strong> and selectively accumulate high<br />

concentrations of acidic am<strong>in</strong>o acids 102 did not sta<strong>in</strong><br />

with <strong>the</strong> CHR antiserum. The converse could be possible,<br />

however. The sta<strong>in</strong><strong>in</strong>g due to 'glutamate' could<br />

be due to <strong>the</strong> presence of high concentrations of <strong>the</strong><br />

glutamic acid-rich chromogran<strong>in</strong>s present <strong>in</strong> particular<br />

areas.<br />

4.2.2.3. Enkephal<strong>in</strong> pathways. Antisera aga<strong>in</strong>st 3<br />

different opioid peptides were used to determ<strong>in</strong>e<br />

whe<strong>the</strong>r <strong>the</strong> co-existence of <strong>the</strong>se small peptides and<br />

chromogran<strong>in</strong>s, a feature of <strong>the</strong> chromaff<strong>in</strong> granules,<br />

was also common <strong>in</strong> bra<strong>in</strong>. The 3 antisera showed essentially<br />

similar patterns of enkephal<strong>in</strong> immunoreactivity<br />

and <strong>the</strong> distribution <strong>in</strong> sheep agreed well with<br />

that obta<strong>in</strong>ed <strong>in</strong> o<strong>the</strong>r species6,22,26 ,79 ,115. However,<br />

<strong>the</strong> similar sta<strong>in</strong><strong>in</strong>g of <strong>the</strong> pallidal fibre network <strong>in</strong> <strong>the</strong><br />

sheep us<strong>in</strong>g ei<strong>the</strong>r Met-enkephal<strong>in</strong> and Met-enkeph-


222<br />

al<strong>in</strong>-Arg6-Phe7 was <strong>in</strong> contrast to <strong>the</strong> different distribution<br />

<strong>in</strong> <strong>the</strong> ratI14 ,115.<br />

In some areas, <strong>the</strong> distribution of en kephal<strong>in</strong>- and<br />

CHR-immunoreactivity <strong>in</strong> <strong>the</strong> neuropil was identical,<br />

suggest<strong>in</strong>g that <strong>the</strong> peptides were present <strong>in</strong> <strong>the</strong><br />

same nerve fibres and term<strong>in</strong>als. This similarity <strong>in</strong><br />

distribution was marked <strong>in</strong> parts of <strong>the</strong> basal ganglia;<br />

namely <strong>in</strong> <strong>the</strong> nucleus caudatus, <strong>the</strong> globus pallidus,<br />

<strong>the</strong> putamen, <strong>the</strong> ventral pallidum and <strong>the</strong> nucleus<br />

accumbens.<br />

The mosaic pattern produced by <strong>the</strong> differential<br />

density of en kephal<strong>in</strong>-immunoreactive axons and<br />

term<strong>in</strong>als <strong>in</strong> <strong>the</strong> neostriatum was different from <strong>the</strong><br />

pattern found <strong>in</strong> o<strong>the</strong>r species 36 . Most of <strong>the</strong> neostriatum<br />

<strong>in</strong> <strong>the</strong> sheep sta<strong>in</strong>ed reasonably uniformly, but<br />

some irregularly shaped areas surround<strong>in</strong>g myel<strong>in</strong>ated<br />

axon bundles sta<strong>in</strong>ed weakly. These weakly<br />

sta<strong>in</strong>ed areas also had low AChE activity . In <strong>the</strong> cat,<br />

areas of <strong>the</strong> neostriatum sta<strong>in</strong>ed strongly for <strong>the</strong> enkephal<strong>in</strong>s<br />

, but weakly for AChE activity36. The<br />

CHR-immunoreactivity <strong>in</strong> nerve term<strong>in</strong>als closely<br />

followed <strong>the</strong> pattern and <strong>the</strong> density of <strong>the</strong> enkephal<strong>in</strong>s.<br />

This was true even for details like <strong>the</strong> dendrites<br />

<strong>in</strong> <strong>the</strong> ventral neostriatum enshea<strong>the</strong>d <strong>in</strong> enkephal<strong>in</strong><br />

or CHR-immunoreactive term<strong>in</strong>als. These characteristic<br />

dendrites, some of which may belong to striato-nigral<br />

neurons7, have been shown to receive symmetrical<br />

synaptic contacts from <strong>the</strong> enkephal<strong>in</strong>-immunoreactive<br />

term<strong>in</strong>als. Most of <strong>the</strong> scattered enkephal<strong>in</strong><br />

<strong>in</strong> <strong>the</strong> neostriatum also established symmetrical<br />

contacts94 . The CHR-imm unoreactive term<strong>in</strong>als<br />

established symmetrical contacts, and <strong>the</strong> immunoreactivity,<br />

like that of <strong>the</strong> enkephal<strong>in</strong>s74.94, was localized<br />

<strong>in</strong> <strong>the</strong> large granular vesicles.<br />

The well-correlated localization <strong>in</strong> term<strong>in</strong>als contrast<br />

with <strong>the</strong> relationship <strong>in</strong> perikarya. Enkephal<strong>in</strong>immunoreactivity<br />

has been found only <strong>in</strong> medium<br />

sized neurons <strong>in</strong> <strong>the</strong> neostriatum of <strong>the</strong> rat74.11 5 and,<br />

as reported here, <strong>in</strong> similar neurons <strong>in</strong> <strong>the</strong> sheep.<br />

Most of <strong>the</strong>se neurons are known to project to <strong>the</strong><br />

globus pallidus and substantia nigra giv<strong>in</strong>g rise to <strong>the</strong><br />

strong enkephal<strong>in</strong>-immunoreactivity <strong>in</strong> <strong>the</strong> neuropil<br />

of <strong>the</strong> pallidum22. Consider<strong>in</strong>g <strong>the</strong> strong CH R-sta<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> globus pallidus and entopeduncular nucleus,<br />

it seemed likely that <strong>the</strong> CHR-immunoreactivity<br />

would be found <strong>in</strong> <strong>the</strong> medium sized projection neurons<br />

of <strong>the</strong> neostriatum. These neurons unexpectedly<br />

showed little or no immunoreactivity, but <strong>the</strong> large<br />

neurons, most of which do not project to <strong>the</strong> pallidum<br />

or nigra were strongly immunoreactive (see<br />

4.2.2.5.).<br />

One possible explanation for this apparent<br />

anomaly is <strong>the</strong> relative lack of cell organelles, <strong>in</strong>clud<strong>in</strong>g<br />

<strong>the</strong> Golgi apparatus, <strong>in</strong> <strong>the</strong> perikarya of <strong>the</strong> medium<br />

sized neurons <strong>in</strong> <strong>the</strong> neostriatum91. S<strong>in</strong>ce perikaryal<br />

CHR-immunoreactivity is largely restricted to<br />

<strong>the</strong> Golgi apparatus, <strong>the</strong> few sta<strong>in</strong>ed saccules may not<br />

have been visible <strong>in</strong> <strong>the</strong> light microscope. This is supported<br />

by <strong>the</strong> f<strong>in</strong>d<strong>in</strong>g that <strong>the</strong> few weakly sta<strong>in</strong>ed medium<br />

sized neurons showed only short strands of immunoreactivity<br />

around <strong>the</strong> nucleus.<br />

The results discussed above suggest <strong>the</strong> coexistence<br />

of enkephal<strong>in</strong>s and CHR at <strong>the</strong> neostriatal and<br />

pallidal level of <strong>the</strong> sheep basal ganglia . However,<br />

<strong>the</strong> situation is more complex <strong>in</strong> <strong>the</strong> substantia nigra.<br />

Enkephal<strong>in</strong>-immunoreactive term<strong>in</strong>als were almost<br />

exclusively restricted to <strong>the</strong> areas conta<strong>in</strong><strong>in</strong>g <strong>the</strong> dopam<strong>in</strong>ergic<br />

neurons, where <strong>the</strong>y had a very similar<br />

distribution to <strong>the</strong> CHR-immunoreactive term<strong>in</strong>als.<br />

However, <strong>in</strong> most of <strong>the</strong> pars reticulata <strong>the</strong>re was no<br />

visible enkephali n immunoreactivity even though <strong>the</strong><br />

area sta<strong>in</strong>ed strongly for CHR-immunoreactivity.<br />

This suggests that <strong>the</strong> two could be <strong>in</strong> different neuronal<br />

systems. The distribution of <strong>the</strong> CHR <strong>in</strong> <strong>the</strong> pars<br />

reticulata resembled that of substance p_21.50, glutamate<br />

decarboxylase76- and dynorph<strong>in</strong> - (see 4.2.2.4.)<br />

immunoreactivities reported <strong>in</strong> o<strong>the</strong>r species . Double-Iabel<strong>in</strong>g<br />

experiments would be needed to establish<br />

whe<strong>the</strong>r any of <strong>the</strong>se antigens co-exist <strong>in</strong> <strong>the</strong><br />

same nerve term<strong>in</strong>al .<br />

Ano<strong>the</strong>r pathway thought to conta<strong>in</strong> en kepha\<strong>in</strong>s<br />

is <strong>the</strong> hippocampal mossy fibre system 4 1.8:198 103 , although<br />

it has also been suggested that <strong>the</strong> dynorph<strong>in</strong><br />

peptides ra<strong>the</strong>r than en kephal<strong>in</strong> itself are <strong>the</strong> predom<strong>in</strong>ant<br />

peptides <strong>in</strong> this pathwayS9 (see 4. 2.2.4. ) .<br />

None of <strong>the</strong> antisera to <strong>the</strong> enkephal <strong>in</strong>s used <strong>in</strong> this<br />

study reacted with <strong>the</strong> mossy fibres , although, as discussed<br />

above, <strong>the</strong>se fibres sta<strong>in</strong>ed strongl y for CHR.<br />

The results of <strong>the</strong> absorption experiments described<br />

here suggest that, whichever opiate fam ily proves to<br />

be <strong>in</strong> <strong>the</strong> mossy fibres , <strong>the</strong>ir termi nals also conta<strong>in</strong><br />

CHR-immunoreactive material.<br />

E nkephal<strong>in</strong> immunoreactivity has also been found<br />

<strong>in</strong> <strong>the</strong> oxytoc<strong>in</strong>-produc<strong>in</strong>g neurons <strong>in</strong> <strong>the</strong> magnocellular<br />

nuclei of <strong>the</strong> hypothalamus l lJ7 The same ce lls<br />

also conta<strong>in</strong> <strong>the</strong> N-term<strong>in</strong>al non-opiate segment of


223<br />

It<br />

<strong>the</strong> en kephal<strong>in</strong> precursor107 . S<strong>in</strong>ce many of <strong>the</strong> magnocellular<br />

neurons were immunoreactive for CHR,<br />

<strong>the</strong>se cells are ano<strong>the</strong>r example of possible co-existence<br />

of <strong>the</strong> two groups of peptides.<br />

Ano<strong>the</strong>r possible site of coexistence of CHR- and<br />

enkephal<strong>in</strong>-immunoreactivity is with<strong>in</strong> <strong>the</strong> Golgi<br />

cells of <strong>the</strong> cerebellum. Cerebellar Golgi cells have<br />

been shown to conta<strong>in</strong> enkephal<strong>in</strong> immunoreactivity<br />

<strong>in</strong> o<strong>the</strong>r species26 ,79,81,115, and <strong>the</strong> perikarya of many<br />

of <strong>the</strong>se cells sta<strong>in</strong>ed for CHR.<br />

Enkephal<strong>in</strong>- and CHR-immunoreactivities were<br />

also distributed similarly <strong>in</strong> areas such as <strong>the</strong> central<br />

and medial amygdaloid nuclei, <strong>the</strong> raphe nuclei, <strong>the</strong><br />

nucleus of <strong>the</strong> solitary tract, <strong>the</strong> dorsal motor nucleus<br />

of <strong>the</strong> vagus and <strong>the</strong> substantia gelat<strong>in</strong>osa of both <strong>the</strong><br />

sp<strong>in</strong>al trigem<strong>in</strong>al nucleus and dorsal horn of <strong>the</strong> sp<strong>in</strong>al<br />

cord. Although both <strong>the</strong> distribution and density<br />

of <strong>the</strong> axons and term<strong>in</strong>als were similar, without double<br />

label<strong>in</strong>g experiments it is impossible to establish<br />

which of <strong>the</strong> systems conta<strong>in</strong><strong>in</strong>g <strong>the</strong> variety of neuroactive<br />

substances found <strong>in</strong> <strong>the</strong>se areas conta<strong>in</strong>s <strong>the</strong><br />

CHR-immunoreactivity.<br />

It is possible that <strong>the</strong> enkephal<strong>in</strong>s were present <strong>in</strong><br />

<strong>the</strong> same noradrenergic neurons <strong>in</strong> <strong>the</strong> locus coeruleus<br />

which were found to be CHR-immunoreactive.<br />

However, whe<strong>the</strong>r all <strong>the</strong> TH-conta<strong>in</strong><strong>in</strong>g cells of <strong>the</strong><br />

locus coeruleus also conta<strong>in</strong> enkephal<strong>in</strong>s is not<br />

clear12,45.<br />

4.2.2.4. Neurons conta<strong>in</strong><strong>in</strong>g dynorph<strong>in</strong> and neoendorph<strong>in</strong><br />

immunoreactivity. Dynorph<strong>in</strong>s and neoendorph<strong>in</strong>s<br />

are known to be present <strong>in</strong> <strong>the</strong> magnocellular<br />

neurons of <strong>the</strong> hypothalamus toge<strong>the</strong>r with vasopress<strong>in</strong>109-<br />

113 . S<strong>in</strong>ce many of <strong>the</strong>se neurons and<br />

<strong>the</strong>ir term<strong>in</strong>als <strong>in</strong> <strong>the</strong> posterior pituitary were also immunoreactive<br />

for CHR, it is possible that <strong>the</strong> chromogran<strong>in</strong>s<br />

co-exist with dynorph<strong>in</strong>s and <strong>the</strong> posterior<br />

pituitary hormones.<br />

Both <strong>the</strong> globus pallidus and <strong>the</strong> substantia nigra<br />

conta<strong>in</strong> a high density of dynorph<strong>in</strong>-immunoreactive<br />

term<strong>in</strong>als108,110,112. Whe<strong>the</strong>r <strong>the</strong> dynorph<strong>in</strong>s are <strong>in</strong><br />

<strong>the</strong> same nerve term<strong>in</strong>als as <strong>the</strong> enkephal<strong>in</strong>s is not<br />

known, but <strong>the</strong> distribution of <strong>the</strong> CHR-immunoreactivity<br />

<strong>in</strong> <strong>the</strong> sheep parallels <strong>the</strong> dynorph<strong>in</strong> pathways<br />

<strong>in</strong> <strong>the</strong> rat <strong>in</strong> both <strong>the</strong> pallidum and <strong>the</strong> nigra108<br />

,111, while it differs from <strong>the</strong> enkephal<strong>in</strong>s <strong>in</strong> <strong>the</strong><br />

nigra108 (see 4.2.2.3.). O<strong>the</strong>r areas rich <strong>in</strong> dynorph<strong>in</strong>immunoreactive<br />

term<strong>in</strong>als, such as <strong>the</strong> parabrachial<br />

nuclei and <strong>the</strong> nucleus of <strong>the</strong> solitary tract 45 ,111 were<br />

also rich <strong>in</strong> CHR-reactive term<strong>in</strong>als.<br />

The hippocampal mossy fibres have also been reported<br />

to conta<strong>in</strong> dynorph<strong>in</strong> immunoreactivity45,59,112,<br />

and may represent ano<strong>the</strong>r area where<br />

<strong>the</strong>y are co-localized with CHR (see 4.2.2.3.).<br />

The remote possibility exists that <strong>the</strong> antiserum to<br />

CHR recognizes dynorph<strong>in</strong>-like peptides. This is unlikely<br />

for two reasons: first, <strong>the</strong>se studies have shown<br />

that several areas of <strong>the</strong> central nervous system<br />

which reacted strongly for CHR-immunoreactivity<br />

are not thought to conta<strong>in</strong> <strong>the</strong> dynorph<strong>in</strong>s19,45,108,111<br />

and second, <strong>the</strong> absorption experiments showed that<br />

prior <strong>in</strong>cubation with dynorph<strong>in</strong> A did not affect <strong>the</strong><br />

sta<strong>in</strong><strong>in</strong>g with <strong>the</strong> CHR antiserum.<br />

4.2.2.5. Chol<strong>in</strong>ergic neurons. Most of <strong>the</strong> large<br />

neurons <strong>in</strong> <strong>the</strong> neostriatum, <strong>the</strong> magnocellular neurons<br />

of <strong>the</strong> basal forebra<strong>in</strong>, <strong>the</strong> neurons of <strong>the</strong> medial<br />

septum and cranial and sp<strong>in</strong>al motoneurons have all<br />

been shown to conta<strong>in</strong> chol<strong>in</strong>e acetyltransferase<br />

(ChAT) by immunohistochemistry2,44,47. All <strong>the</strong>se<br />

neurons were strongly immunoreactive for CHR, but<br />

o<strong>the</strong>rs, also known to conta<strong>in</strong> ChAT, e.g. <strong>in</strong> <strong>the</strong> dorsal<br />

motor nucleus of <strong>the</strong> vagus and <strong>in</strong> <strong>the</strong> medial habenula44<br />

, were CHR-negative. Thus, <strong>the</strong>re is an overlap<br />

with a neurochemically def<strong>in</strong>ed system, but <strong>the</strong><br />

CHR-immunoreactivity only partially corresponds to<br />

<strong>the</strong> chol<strong>in</strong>ergic marker.<br />

It rema<strong>in</strong>s to be determ<strong>in</strong>ed whe<strong>the</strong>r CHR can be<br />

demonstrated <strong>in</strong> areas rich <strong>in</strong> chol<strong>in</strong>ergic term<strong>in</strong>als.<br />

However, it can be concluded already that <strong>the</strong> distribution<br />

of CHR is different from what would be predicted<br />

on <strong>the</strong> basis of ChAT data2,44,47.<br />

4.2.2.6. GABAergic neurons. The two CHR-positive<br />

groups of neurons most likely to use GAB A as a<br />

neurotransmitter are <strong>the</strong> cerebellar Golgi cells78 and<br />

<strong>the</strong> large neurons <strong>in</strong> <strong>the</strong> pars reticulata of <strong>the</strong> substantia<br />

nigra68 . O<strong>the</strong>r known GABAergic neurons<br />

such as <strong>the</strong> cerebellar Purk<strong>in</strong>je cells were negative.<br />

No def<strong>in</strong>itive evidence has been obta<strong>in</strong>ed that<br />

GABAergic term<strong>in</strong>als were immunoreactive for<br />

CHR, although such term<strong>in</strong>als, along with term<strong>in</strong>als<br />

conta<strong>in</strong><strong>in</strong>g o<strong>the</strong>r neuroactive substances, are present<br />

<strong>in</strong> <strong>the</strong> CHR-rich term<strong>in</strong>ation areas of <strong>the</strong> neostriata!<br />

output pathways.<br />

Evidence has recently been provided that <strong>the</strong> neurons<br />

of <strong>the</strong> reticular thalamic nuclei conta<strong>in</strong> both glutamate<br />

decarboxylase and somatostat<strong>in</strong> immunoreactivity69.<br />

Most of <strong>the</strong>se neurons were rich <strong>in</strong> CHRimm<br />

unoreactivity.


immunohistochemical<br />

iments. Immunoreactive CHR has been localized<br />

and systems<br />

been found to overof<br />

many established<br />

u!H1pc:nr~'~rl<br />

selective localization of CHR that is<br />

for<br />

of transmitters<br />

lIVLUlll/::. obvious that<br />

,",VJ,llU,111l111,l:; CHR have <strong>in</strong> common.<br />

of CHR thus that it has a<br />

role.<br />

Possible roles<br />

<strong>the</strong> distribumuch<br />

more<br />

The<br />

all<br />

POSSllOle that members of <strong>the</strong> chromay<br />

prove to gmnc,ant <strong>in</strong>tracellular<br />

<strong>the</strong> <strong>in</strong>dications<br />

function will be related to<br />

There is<br />

abandoned.<br />

The p\"rlp"f'P rpr,,,rtpri<br />

here fur<strong>the</strong>r weakens <strong>the</strong><br />

an <strong>in</strong>tracellular role. It may have been<br />

ble to argue <strong>the</strong> structural role <strong>in</strong><br />

conta<strong>in</strong> o<strong>the</strong>r l-/'-'IJLlIJ"'''<br />

and somatostat<strong>in</strong>6L72.73,96.<br />

which react for CHR con<strong>in</strong>to<br />

smaller pep<strong>the</strong><br />

action of l-/"IJLl'""U.v'~0.


225<br />

<strong>the</strong> enkephal<strong>in</strong>s, however, <strong>the</strong> process<strong>in</strong>g appears to<br />

be <strong>in</strong>complete because a full size range of immunoreactive<br />

peptides was <strong>in</strong>variably obta<strong>in</strong>ed <strong>in</strong> extracts of<br />

<strong>the</strong> chromaff<strong>in</strong> granules. It is not known whe<strong>the</strong>r <strong>the</strong><br />

smallest immunoreactive peptide is <strong>the</strong> f<strong>in</strong>al product,<br />

or whe<strong>the</strong>r, as <strong>in</strong> <strong>the</strong> case of <strong>the</strong> enkephal<strong>in</strong>s, antibodies<br />

to this product will need to be made before it<br />

will be detected. Regardless, <strong>the</strong> two parent prote<strong>in</strong>s<br />

yield smaller peptides with a wide range of molecular<br />

sizes.<br />

The enkephal<strong>in</strong> precursor can be broken down by<br />

<strong>the</strong> action of tryps<strong>in</strong> and carboxypeptidase B 106 to<br />

yield free enkephal<strong>in</strong>s and o<strong>the</strong>r peptides. Likewise,<br />

<strong>the</strong>re is evidence that <strong>the</strong> chromogran<strong>in</strong>s are susceptible<br />

to proteolytic digestion 40 . It has recently been<br />

demonstrated that two related prote<strong>in</strong>s, chromogran<strong>in</strong>s<br />

A and B, yield similar peptides when treated<br />

with tryps<strong>in</strong> imply<strong>in</strong>g a common orig<strong>in</strong> of <strong>the</strong> parent<br />

molecule65 . We have prelim<strong>in</strong>ary evidence that chromogran<strong>in</strong><br />

A is readily degraded by acetylchol<strong>in</strong>esterase<br />

(a proposed constituent of chromaff<strong>in</strong> granules35)<br />

as well as by tryps<strong>in</strong> (Ismael, Z. , Chubb, 1. W. unpublished<br />

observations). The enzymes responsible for<br />

<strong>the</strong> degradation of <strong>the</strong> chromogran<strong>in</strong>s <strong>in</strong> vivo have<br />

not been identified. There are reports that <strong>the</strong> chromaff<strong>in</strong><br />

granules conta<strong>in</strong> peptidases which could, <strong>in</strong><br />

pr<strong>in</strong>ciple, hydrolyze CHR but <strong>the</strong>ir activity appears<br />

to be low 29 . Prelim<strong>in</strong>ary experiments suggests that<br />

<strong>the</strong>re is very little <strong>in</strong> vitro process<strong>in</strong>g of <strong>the</strong> chromogran<br />

<strong>in</strong>s unless exogenous enzymes are added (Ismael,<br />

Z. and Chubb, LW. unpublished observations).<br />

The chromogran<strong>in</strong>s, like <strong>the</strong> opioid precursors<br />

90 •117 , appear to be processed differently <strong>in</strong> some<br />

cells. As described above, some immunoreactive cell<br />

bodies do not appear to give rise to immunoreactive<br />

nerve term<strong>in</strong>als whereas o<strong>the</strong>rs have term<strong>in</strong>als that<br />

are strongly positive. The simplest explanation is that<br />

<strong>the</strong> products derived from <strong>the</strong> chromogran<strong>in</strong>s are different.<br />

This might also expla<strong>in</strong> <strong>the</strong> puzzl<strong>in</strong>g results of<br />

O'Connor and Frigon65, who have shown that <strong>the</strong><br />

bulk of immunoassayable chromogran<strong>in</strong> A is not <strong>in</strong><br />

synaptosomal fractions from bra<strong>in</strong> homogenates, but<br />

<strong>in</strong> <strong>the</strong> cytosol fraction. Such a location might be accounted<br />

for <strong>in</strong> part by material orig<strong>in</strong>ally <strong>in</strong> <strong>the</strong> Golgi<br />

apparatus. The full extent of peptide process<strong>in</strong>g with<strong>in</strong><br />

organelles is not completely known, nor are <strong>the</strong><br />

factors, enzymes and f<strong>in</strong>al products derived by <strong>the</strong><br />

degradative processes. For example, recent evidence<br />

suggests that smaller peptides derived physiologically<br />

from such well-characterized bioactive peptides as<br />

j3-endorph<strong>in</strong>71 and vasopress<strong>in</strong>lO might also have biological<br />

activities which are of a type totally different<br />

from that of <strong>the</strong>ir parent molecules. Thus, large precursors<br />

may eventually be processed right down to<br />

bioactive di-peptides.<br />

On <strong>the</strong> basis of <strong>the</strong>se examples, it is reasonable to<br />

suggest that <strong>the</strong> abundance of chromogran<strong>in</strong> immunoreactive<br />

term<strong>in</strong>als and perikarya <strong>in</strong> <strong>the</strong> nervous<br />

system, and immunoreactive cells <strong>in</strong> <strong>the</strong> pituitary and<br />

adrenal, is typical of a bioactive-peptide family with<br />

diverse functions. Although <strong>the</strong> role of <strong>the</strong> chromogran<br />

<strong>in</strong>s is still unknown, <strong>the</strong>ir widespread but highly<br />

selective distribution opens up new possibilities for<br />

experiments to establish <strong>the</strong>ir function.<br />

5. SUMMARY<br />

<strong>Chromogran<strong>in</strong></strong> A, <strong>the</strong> major soluble prote<strong>in</strong> of <strong>the</strong><br />

chromaff<strong>in</strong> granules, was isolated from bov<strong>in</strong>e<br />

adrenals and used for immunization of rabbits. <strong>Chromogran<strong>in</strong></strong><br />

(CHR) immunoreactivity was studied by<br />

immunochemical and immunohistochemical methods<br />

<strong>in</strong> <strong>the</strong> adrenal, pituitary, bra<strong>in</strong> and sp<strong>in</strong>al cord of<br />

cattle, sheep, rats and gu<strong>in</strong>ea pigs us<strong>in</strong>g two antisera<br />

nei<strong>the</strong>r of which cross-reacted with dopam<strong>in</strong>e j3-hydroxylase.<br />

Detailed studies were done us<strong>in</strong>g tissues<br />

from sheep only because very weak immunoreaction<br />

was obta<strong>in</strong>ed <strong>in</strong> tissues from <strong>the</strong> latter two species.<br />

Immunoblots of soluble prote<strong>in</strong>s separated by twodimensional<br />

polyacrylamide gel electrophoresis<br />

showed that <strong>the</strong> sera recognized a family of polypeptides<br />

<strong>in</strong> <strong>the</strong> adrenal which differed <strong>in</strong> size, but had almost<br />

identical isoelectric po<strong>in</strong>ts. The patterns of immunoreactive<br />

prote<strong>in</strong>s <strong>in</strong> extracts from <strong>the</strong> adrenal<br />

and pituitary were similar. Only two bands correspond<strong>in</strong>g<br />

to <strong>the</strong> major high molecular weight bands <strong>in</strong><br />

adrenal could be detected <strong>in</strong> <strong>the</strong> hippocampus which<br />

appeared to have a lower concentration of antigen.<br />

O<strong>the</strong>r bra<strong>in</strong> areas also showed two major immunoreactive<br />

prote<strong>in</strong>s, one with a molecular weight similar<br />

to chromogran<strong>in</strong> A, and one smaller.<br />

Adrenal chromaff<strong>in</strong> cells, peripheral noradrenergic<br />

nerve axons and term<strong>in</strong>als <strong>in</strong> <strong>the</strong> p<strong>in</strong>eal gland, a<br />

proportion of <strong>the</strong> anterior pituitary cells and <strong>the</strong> neurosecretory<br />

term<strong>in</strong>als of <strong>the</strong> posterior pituitary were<br />

strongly immunoreactive. In addition, CHR-immu-


226<br />

noreactivity was widely distributed <strong>in</strong> <strong>the</strong> bra<strong>in</strong> and<br />

sp<strong>in</strong>al cord. The reactivity was readily visible <strong>in</strong> some<br />

nerve cell bodies and <strong>in</strong> well-def<strong>in</strong>ed pathways and<br />

term<strong>in</strong>al fibre networks. There were neurons whose<br />

perikarya were <strong>in</strong>tensely sta<strong>in</strong>ed but whose term<strong>in</strong>al<br />

projections appeared to be negative, while <strong>in</strong> o<strong>the</strong>r<br />

cases, <strong>the</strong> term<strong>in</strong>als appeared rich <strong>in</strong> CHR, while <strong>the</strong><br />

perikarya were barely sta<strong>in</strong>ed. All chromogran<strong>in</strong> immunoreactivity<br />

was abolished by absorption of <strong>the</strong><br />

sera with a lysate from <strong>the</strong> chromaff<strong>in</strong> granules, but<br />

was not affected by absorption with Met- or Leu-enkephal<strong>in</strong><br />

, dynorph<strong>in</strong> \-\7 , Met -en kephali n- Arg6-Phe 7<br />

or BAM-22P.<br />

Electron microscopic experiments revealed that<br />

<strong>the</strong> CHR-reaction <strong>in</strong> cell bodies was almost exclusively<br />

conf<strong>in</strong>ed to <strong>the</strong> Golgi apparatus, while <strong>in</strong> synaptic<br />

boutons it was found <strong>in</strong> large dense-cored vesicles<br />

common to many types of term<strong>in</strong>als. In <strong>the</strong> hippocampal<br />

mossy fibre term<strong>in</strong>als , <strong>the</strong> immunoreactive<br />

granulated vesicles sometimes appeared to have<br />

fused with <strong>the</strong> plasma membrane of <strong>the</strong> boutons suggest<strong>in</strong>g<br />

that <strong>the</strong> CHR was be<strong>in</strong>g secreted by exocytosis.<br />

The CHR-immunoreactivity was found to overlap<br />

partially with <strong>the</strong> distribution of many o<strong>the</strong>r neuroactive<br />

substances. The distribution of CHR was compared<br />

with that of Met- and Leu-enkephal<strong>in</strong>, Met-enkephal<strong>in</strong>-Arg6-Phe<br />

7 , tyros<strong>in</strong>e hydroxylase and dopam<strong>in</strong>e<br />

,B-hydroxylase <strong>in</strong> serial sections of <strong>the</strong> bra<strong>in</strong> and<br />

sp<strong>in</strong>al cord. Its distribution was also compared with<br />

that of o<strong>the</strong>r neurotransmitters and neuroactive peptides<br />

as described <strong>in</strong> <strong>the</strong> literature for o<strong>the</strong>r species.<br />

CHR-immunoreactivity was found <strong>in</strong> some of <strong>the</strong><br />

cells thought to conta<strong>in</strong> one of <strong>the</strong> follow<strong>in</strong>g: enkephal<strong>in</strong>s,<br />

dynorph<strong>in</strong>s , acetylchol<strong>in</strong>e, GAB A, glutamate,<br />

aspartate, oxytoc<strong>in</strong> and vasopress<strong>in</strong>. However, <strong>the</strong><br />

CHR was not found <strong>in</strong> all <strong>the</strong> cells thought to conta<strong>in</strong><br />

each of <strong>the</strong>se substances. For ex ample, <strong>the</strong> very<br />

strong CHR-immunoreactivity paraJleled enkephal<strong>in</strong><br />

immunoreactivity <strong>in</strong> <strong>the</strong> glo bus pallidus, <strong>the</strong> central<br />

amygdaloid nucleus, <strong>the</strong> nucleus of <strong>the</strong> solitary<br />

tract and <strong>in</strong> <strong>the</strong> substantia gelat<strong>in</strong>osa of <strong>the</strong> dorsal sp<strong>in</strong>al<br />

cord , but it was different <strong>in</strong> <strong>the</strong> substantia nigra<br />

and <strong>the</strong> hippocampus. Among <strong>the</strong> catecholam<strong>in</strong>e cell<br />

groups, <strong>the</strong> neurons of <strong>the</strong> locus coeruleus and <strong>the</strong>ir<br />

presumed axons and term<strong>in</strong>als <strong>in</strong> <strong>the</strong> neocortex, hypothalamus<br />

and cerebellum were strongly CHR-immunoreactive,<br />

but no such reactivity was fou nd <strong>in</strong> <strong>the</strong><br />

A2 and C2 catecholam<strong>in</strong>ergic neurons. A detailed<br />

anal ysis of <strong>the</strong> distribution of CHR thus suggests that<br />

it is present <strong>in</strong> neurons u <strong>in</strong>g many different transmitters.<br />

The possible roles of CHR are discussed . The selective<br />

distribution of CHR <strong>in</strong>dicates that it has a<br />

widespread but special function. It is suggested that<br />

<strong>the</strong> CHRs are a family of peptid s which, li ke <strong>the</strong> enkephal<strong>in</strong>s,<br />

enkephal<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g peptides and o<strong>the</strong>r<br />

neuroactive peptides, are derived from a large precursor<br />

by limited proteolysi s. The release of members<br />

of this family from endocr<strong>in</strong>e cells and neurons<br />

could serve to <strong>in</strong>fluence target cell activ ity,<br />

ACK NOWLEDGEMENTS<br />

We are grateful to Miss Oim itra Beroukas for excellent<br />

technical assistance, to Or. W. W. Bless<strong>in</strong>g<br />

for help <strong>in</strong> animal surgery, and to Ors, G. J. Oockray<br />

, 1. F. Powell , A . D . Smith an d M, Tohyama for<br />

gifts of antisera, This work was supported by grants<br />

from <strong>the</strong> National Health and Me dical Research<br />

Council of Australia and <strong>the</strong> Fl<strong>in</strong>ders Medical Centre<br />

Research Foundation. R. W. DeP. was an Australian­<br />

European exchange Fellow.


227<br />

REFERENCES<br />

Ariens Kappers, J ., Survey of <strong>the</strong> <strong>in</strong>nervation of <strong>the</strong><br />

epiphysis cerebri and <strong>the</strong> accessory p<strong>in</strong>eal organs of vertebrates,<br />

Frogr. Bra<strong>in</strong> Res., 10 (1965) 87-153.<br />

2 Armstrong, D. M., Saper, C. B. , Levey, A.!., Wa<strong>in</strong>er, B.<br />

H. and Terry, R . D., Distribution of chol<strong>in</strong>ergic neurons<br />

<strong>in</strong> rat bra<strong>in</strong>: demonstrated by <strong>the</strong> immunocytochemical 10-<br />

calization of chol<strong>in</strong>e acetyltransferase , 1. camp. Neurol. ,<br />

216 (1983) 53-68.<br />

3 Banks, P. and HeIle, K., The release of prote<strong>in</strong> from <strong>the</strong><br />

stimulated adrenal medulla , Biochem. 1., 97 (1965)<br />

40-41C.<br />

4 Bartlett, S. F., Lagercrantz, H. and Smith , A. D., Gel<br />

electrophoresis of soluble and <strong>in</strong>soluble prote<strong>in</strong>s of noradrenergic<br />

vesicles from ox splenic nerve: a comparison<br />

with prote<strong>in</strong>s of adrenal chromaff<strong>in</strong> granules, Neuroscience,<br />

1 (1976) 339-344.<br />

5 Blaschko, H., Coml<strong>in</strong>e, R. S. , Schneider, F. H ., Silver,<br />

M. and Smith, A. D ., Secretion of a chromaff<strong>in</strong> granule<br />

prote<strong>in</strong>, chromogran<strong>in</strong> , from <strong>the</strong> adrenal gland after<br />

splanchnic stimulation, Nature (Land.), 215 (1967)<br />

58-59.<br />

6 Bloch, B. , Baird, A., L<strong>in</strong>g, N. , Benoit, R. and Guillem<strong>in</strong>,<br />

R. , Immunohistochemical evidence that bra<strong>in</strong> enkephal<strong>in</strong>s<br />

arise from a precursor similar to adrenal preproenkephal<strong>in</strong>,<br />

Bra<strong>in</strong> Res., 263 (1983) 251-257.<br />

7 Bolam, J. P. , Somogyi, P. , Totterdell, S. and Smith, A.<br />

D ., A second type of striatonigral neuron: a comparison<br />

between retrogradely labelled and Golgi-sta<strong>in</strong>ed neurons<br />

at <strong>the</strong> light and electron microscopic levels, Neuroscience,<br />

6 (1981) 2141-2157.<br />

8 Bradford, M. M ., A rapid and sensitive method for <strong>the</strong><br />

quantitation of microgram quantities of prote<strong>in</strong> utiliz<strong>in</strong>g<br />

<strong>the</strong> pr<strong>in</strong>ciple of prote<strong>in</strong>-dye b<strong>in</strong>d<strong>in</strong>g, Analyt. Biochem., 72<br />

(1976) 248-254.<br />

9 Broadwell, R. D ., Olfactory relationships of <strong>the</strong> telencephalon<br />

and diencephalon <strong>in</strong> <strong>the</strong> rabbit, 1. camp. Neural.,<br />

163 (1975) 329-346.<br />

10 Burbach, J . P. H. , Kovacs, G. L. , DeWied, D., Van Nispen,<br />

J. W. and Greven, H. M ., A major metabolite of arg<strong>in</strong><strong>in</strong>e<br />

vasopress<strong>in</strong> <strong>in</strong> <strong>the</strong> bra<strong>in</strong> is a highly potent neuropeptide<br />

, Science, 221 (1983) 1310-1312.<br />

11 Burnette, W. N. , ' Western Blott<strong>in</strong>g': electrophoretic<br />

transfer of prote<strong>in</strong>s from sodium dodecyl sulfate-polyacrylamide<br />

gels to unmodified nitrocellulose and radiographic<br />

detection with antibody and radioiod<strong>in</strong>ated prote<strong>in</strong> A,<br />

Analyt. Biachem., 112 (1981) 195-203.<br />

12 Charnay, Y., Leger, L., Dray, F., Berod, A. , Jouvet, M.,<br />

Pujol, J. F. and Dubois, P. M ., Evidence for <strong>the</strong> presence<br />

of enkephal<strong>in</strong> <strong>in</strong> catecholam<strong>in</strong>ergic neurones of cat locus<br />

coeruleus, Neurosci. Lett., 30 (1982) 147-151.<br />

13 Chavk<strong>in</strong> , C. and Goldste<strong>in</strong> , A., Specific receptor for <strong>the</strong><br />

opioid peptide dynorph<strong>in</strong>: structure-activity relatiocships,<br />

Froc. nat. Acad. Sci. US.A. , 78 (1981) 6543-6547.<br />

14 Chubb, 1. W. , The release of non-transmitter substances.<br />

In G. A. Cottrell, and P. N . R. Isherwood (Eds.), Synapses,<br />

Blackie , Glasgow and London, 1977 , pp. 264-290.<br />

15 Cohn, D. V., Zangerle, R., Fischer-Colbrie, R. , Chu, L.<br />

L. H., Elt<strong>in</strong>g, J. J., Hamilton, J. W . and W<strong>in</strong>kler, H., Similarity<br />

of secretory prote<strong>in</strong> I from parathyroid gland to<br />

chromogran<strong>in</strong> A from adrenal medulla, Froc. na/. Acad.<br />

Sci. U.S.A. , 79 (1982) 6056-6059.<br />

16 Cohn, D. V ., Elt<strong>in</strong>g, J. J. , Frick, M. and Elde, R., Selec-<br />

tive localisation of <strong>the</strong> parathyroid secretory prote<strong>in</strong>­<br />

I/adrenal medulla <strong>Chromogran<strong>in</strong></strong> A prote<strong>in</strong> family <strong>in</strong> a<br />

wide variety of endocr<strong>in</strong>e cells of <strong>the</strong> rat , Endacr<strong>in</strong>alagy,<br />

114(1984) 1963-1974.<br />

17 Coll<strong>in</strong>s, G. G. S. , Anson, J. and Probett, G. A. , Patterns<br />

of endogenous am<strong>in</strong>o acid release from slices of rat and<br />

gu<strong>in</strong>ea-pig olfactory cortex, Bra<strong>in</strong> Res. , 204 (1981)<br />

103-120.<br />

18 Coll<strong>in</strong>s, G . G. S. , Effect of chronic bulbectomy on <strong>the</strong><br />

depth distribution of am<strong>in</strong>o acid transmitter candidates <strong>in</strong><br />

rat olfactory cortex, Bra<strong>in</strong> Res., 171 (1979) 552-555.<br />

19 Cone, R. 1., Weber, E., Barchas, J. D . and Goldste<strong>in</strong>, A.,<br />

Regional distribution of dynorph<strong>in</strong> and neo-endorph<strong>in</strong><br />

peptides <strong>in</strong> rat bra<strong>in</strong>, sp<strong>in</strong>al cord and pituitary, 1. Neurosci.,<br />

3 (1983) 2146-2152.<br />

20 Crawford, 1. L. and Connor, J. D., Localization and release<br />

of glutamic acid <strong>in</strong> relation to <strong>the</strong> hippocampal mossy<br />

fibre pathway, Nature (Lond.), 244 (1973) 442-443.<br />

21 Cuello, A . C. and Kanazawa, 1., The distribution of substance<br />

P-immunoreactive fibres <strong>in</strong> <strong>the</strong> rat central nervous<br />

system,l. comp. Neurol., 178 (1978) 129-156.<br />

22 Cuello, A. C. and Pax<strong>in</strong>os, G ., Evidence for a long leu-enkephal<strong>in</strong><br />

striopallidal pathway <strong>in</strong> rat bra<strong>in</strong>, Nature<br />

(Lond.), 271 (1978) 178-180.<br />

23 De Potter, W. P., Smith, A . D. and De Schaepdryver, A.<br />

F ., Subcellular fractionation of splenic nerve: ATP, chromogran<strong>in</strong><br />

A and dopam<strong>in</strong>e j3-hydroxylase <strong>in</strong> noradrenergic<br />

vesicles, Tissue Cell, 2 (1970) 529-546.<br />

24 EvangeIista, R. , Ray , P. and Lewis, R. V., A 'tryps<strong>in</strong>-like'<br />

enzyme <strong>in</strong> adrenal chromaff<strong>in</strong> granules: a proenkephal<strong>in</strong><br />

process<strong>in</strong>g enzyme, Biochem. Biophys. Res. Commun.,<br />

106(1982)895-902.<br />

25 Fairbanks, G ., Steck, T . L. and Wallach, D. F. , Electrophoretic<br />

analysis of <strong>the</strong> major polypeptides of <strong>the</strong> human<br />

erythrocyte membrane, Biochemistry, 10 (1971)<br />

2606-2617.<br />

26 F<strong>in</strong>ley, J. C. W., Maderdrut, J. L. and Petrusz, P., The immunocytochemical<br />

localization of en kephal<strong>in</strong> <strong>in</strong> <strong>the</strong> central<br />

nervous system of <strong>the</strong> rat, 1. camp. Neurol., 198<br />

(1981) 541-565.<br />

27 Fischer-Colbrie, R ., Schach<strong>in</strong>ger, M., Zangerle, R. and<br />

W<strong>in</strong>kler, H., Dopam<strong>in</strong>e j3-hydroxylase and o<strong>the</strong>r glycoprote<strong>in</strong>s<br />

from <strong>the</strong> soluble content and <strong>the</strong> membranes of<br />

adrenal chromaff<strong>in</strong> granules: isolation and carbohydrate<br />

analysis,1. Neurochem., 38 (1982) 725-732.<br />

28 Fischer-Colbrie, R. , Isolation and immunological characterization<br />

of a glycoprote<strong>in</strong> from adrenal chromaff<strong>in</strong> granules,J.<br />

Neurochem. , 42 (1984) 1008-1016.<br />

29 Flem<strong>in</strong>ger, G., Ezra, E., Kilpatrick, D. L. and Udenfriend,<br />

S., Process<strong>in</strong>g of enkephal<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g pep tides <strong>in</strong><br />

isolated bov<strong>in</strong>e adrenal chromaff<strong>in</strong> granules, Frac. nat.<br />

Acad. Sci. U.S.A., 80 (1983) 6418-6421.<br />

30 Fonnum, F., Glutamate: a neurotransmitter <strong>in</strong> mammalian<br />

bra<strong>in</strong>, 1. Neurochem ., 42 (1984) 1-11.<br />

31 Freund, T., Powell, J. F. and Smith, A. D., Tyros<strong>in</strong>e hydroxylase-immunoreactive<br />

synaptic boutons <strong>in</strong> contact<br />

with identified striatonigral neurons, with particular reference<br />

to dendritic sp<strong>in</strong>es, Neuroscience, submitted for publication.<br />

32 Fricker, L. D . and Snyder, S. H., Purification and characterisation<br />

of enkephal<strong>in</strong> convertase, an enkephal<strong>in</strong>-syn<strong>the</strong>siz<strong>in</strong>g<br />

carboxypeptidase, 1. bioi. Chem., 258 (1983)<br />

10950-10955.<br />

33 Geffen, L. B., Livett, B . G . and Rush, R . A., Immunohis-


228<br />

tochemicallocalisation of prote<strong>in</strong> components of catecholam<strong>in</strong>e<br />

storage vesicles, 1. Physial. (Land.), 204 (1969)<br />

593-605.<br />

34 Gilbert , C. D. and Wiesel, T. N., Clustered <strong>in</strong>tr<strong>in</strong>sic connections<br />

<strong>in</strong> cat visual cortex, 1. Neurosci, 3 (1983)<br />

1116-1133.<br />

35 Gratzl, M .. Krieger-Brauer, H. and Ekerdt, R., Latent<br />

acetylchol<strong>in</strong>esterase <strong>in</strong> secretory vesicles isolated from<br />

adrenal meduJla, Biochim Biophys. Acta, 649 (1981)<br />

355-366.<br />

36 Graybiel , A. M., Ragsdale , C. W. , Yoneoka, E. S. and<br />

Elde, R. P., An immunohistochemical study of enkephal<strong>in</strong>s<br />

and o<strong>the</strong>r neuropeptides <strong>in</strong> <strong>the</strong> striatum of <strong>the</strong> cat<br />

with evidence that <strong>the</strong> opiate peptides are arranged to<br />

form mosaic patterns <strong>in</strong> register with <strong>the</strong> striosomal compartments<br />

visible by acetylchol<strong>in</strong>esterase sta<strong>in</strong><strong>in</strong>g, Neuroscience,<br />

6 (1981) 377-397.<br />

37 Hager, D. A. and Burgess, R. R. , Elution of prote<strong>in</strong>s from<br />

sodium dodecyl sulfate-polyacrylamide gels, removal of<br />

sodium dodecyl sulfate and renaturation of enzymatic activity:<br />

results with Sigma subunit of Escherichia coli RNA<br />

polymerase, wheat germ DNA topoisomerase , and o<strong>the</strong>r<br />

enzymes, Analyl. Biochem., 109 (1980) 76-86.<br />

38 Heimer, L., Synaptic distribution of centripetal and centrifugal<br />

nerve fibres <strong>in</strong> <strong>the</strong> olfactory system of <strong>the</strong> rat. An<br />

experimental anatomical study, 1. Ana!., 103 (1968)<br />

413-432.<br />

39 Helle, K. B., Some chemical and physical properties of <strong>the</strong><br />

soluble prote<strong>in</strong> fraction of bov<strong>in</strong>e adrenal chromaff<strong>in</strong><br />

granules, Molee. Pharmacal., 2 (1966) 298-310.<br />

40 Helle, K. B., Serck-Hanssen, G. and Reichelt, K. L. , Resistance<br />

of dopam<strong>in</strong>e ,B-hydroxylase to proteolysis dur<strong>in</strong>g<br />

tryptic digestion of <strong>the</strong> adrenomedullary chromogran<strong>in</strong>s,<br />

1nt.1. Biochem., 8 (1977) 693-704.<br />

41 Hoffman , D. W. , Altschuler, R. A. and Gutierrez, J.,<br />

Multiple molecular forms of enkephal<strong>in</strong>s <strong>in</strong> <strong>the</strong> gu<strong>in</strong>ea-pig<br />

hippocampus,J. Neuroehem., 41 (1983) 1641-1647.<br />

42 Hbkfelt, T., Johansson, 0. , Ljungdahl, A ., Lundberg, J.<br />

M. and Schultzberg, M., Peptidergic neurones, Nature<br />

(Lond.), 284 (1980) 515-521.<br />

43 Hbrtnagl, H. , Lochs, H. and W<strong>in</strong>kler, H., Immunological<br />

studies on <strong>the</strong> acidic chromogran<strong>in</strong>s and on dopam<strong>in</strong>e<br />

,B-hydroxylase (EC 1.14.2.1) of bov<strong>in</strong>e chromaff<strong>in</strong> granules,}.<br />

Neuroehem., 22 (1974) 197-199.<br />

44 Houser, C. R., Crawford, G. D., Barber, R. P., Sal vaterra,<br />

P. M. and Vallghn, J. E., Organization and morphological<br />

characteristics of chol<strong>in</strong>ergic neurons: an immunocytochemical<br />

study with a monoclonal antibody to chol<strong>in</strong>e<br />

acetyltransferase, Bra<strong>in</strong> Res. , 266 (1983) 97-120.<br />

45 Khachaturian, H., Watson, S. J. , Lewis, M. E ., Coy, D. ,<br />

Goldste<strong>in</strong>, A. and Akil, H., Dynorph<strong>in</strong> immunocytochemistry<br />

<strong>in</strong> <strong>the</strong> rat central nervous system, Pep!ides, 3<br />

(1982) 941-954.<br />

46 Kilpatrick, L., Gav<strong>in</strong>e, F., Apps, D. and Phillips, J. , Biosyn<strong>the</strong>tic<br />

relationship between <strong>the</strong> major matrix prote<strong>in</strong>s<br />

of <strong>the</strong> adrenal chromaff<strong>in</strong> granules, F. E. B. S. Leu., 164<br />

(1983) 383-388.<br />

47 Kimura , H. , McGeer, P. L., Peng, J. H. and McGeer, E.<br />

G. , The central chol<strong>in</strong>ergic system studied by chol<strong>in</strong>e acetyltransferase<br />

immunohistochemistry <strong>in</strong> <strong>the</strong> cat, 1. camp.<br />

Neural, 200 (1981) 151-20l.<br />

48 Koelle , G. B. and Friedenwald , J. S. , A histochemical<br />

method for localiz<strong>in</strong>g chol<strong>in</strong>esterase activity, Proc. Soc.<br />

expo BioI. Med., 70 (1949) 617-622.<br />

49 Krieger, D. T., Bra<strong>in</strong> peptides: What, where , and why'),<br />

Science, 222 (1983) 975-985.<br />

50 Laemmli, U. K., Cleavage of structural prote<strong>in</strong>s dur<strong>in</strong>g<br />

<strong>the</strong> assembly of <strong>the</strong> head of bacteriophage T4, NaTure<br />

(Land.), 227 (1970) 680-685.<br />

51 Lagercrantz, H ., On <strong>the</strong> composition and function of large<br />

dense cored vesicles <strong>in</strong> sympa<strong>the</strong>tic nerves, Neuroscience,<br />

1 (1976) 81-92.<br />

52 Lewis, P. R. and Shute, C. C. D. , An electron microscopic<br />

study of chol<strong>in</strong>esterase distribution <strong>in</strong> <strong>the</strong> rat adrenal medulla,1.<br />

Mierose, 89 (1969) 181-193.<br />

53 Lewis, R. V., Stern , A. S. , Kimura, S., Rossier, J., Ste<strong>in</strong> ,<br />

S. and Udenfriend, S., An about 50,000-dalton prote<strong>in</strong> <strong>in</strong><br />

adrenal medulla: a common precursor of (Met)- and (Leu)<br />

enkephal<strong>in</strong>, Science, 208 (1980) 1459-1461.<br />

54 L<strong>in</strong>dvall, O. and Bjbrklllnd, A. , Organisation of catecholam<strong>in</strong>e<br />

neurons <strong>in</strong> <strong>the</strong> rat central nervous system. In L. L.<br />

Iversen, S. D. Iversen and S. H. Snyder (Eds.) , Handbook<br />

of Psychopharmacology, Vol. 9, Plenum, 1978, pp.<br />

139-23l.<br />

55 L<strong>in</strong>dberg, 1., Yang, H. Y. T. and Costa, E., An enkephal<strong>in</strong>-generat<strong>in</strong>g<br />

enzyme <strong>in</strong> bov<strong>in</strong>e adrenal medulla, Biochem.<br />

Biophys. Res. Commun., 106 (1982) 186-193.<br />

56 L<strong>in</strong>dberg, 1. , Yang, H. Y. T. and Costa, E., Characterisation<br />

of a partially tryps<strong>in</strong>-like enkephal<strong>in</strong> generat<strong>in</strong>g enzyme<br />

<strong>in</strong> bov<strong>in</strong>e adrenal medulla, Life Sci., 31 (1982)<br />

1713-1716.<br />

57 Liston, D. R., Vanderhaeghen, J. -J. and Rossier, J. , Presence<br />

<strong>in</strong> bra<strong>in</strong> of synenkephal<strong>in</strong>, a proenkephal<strong>in</strong>-immunoreactive<br />

prote<strong>in</strong> which does not conta<strong>in</strong> enkephal<strong>in</strong>, Nature<br />

(Land.), 302 (1983) 62-65.<br />

58 Ljungdahl, A., Hbkfelt , T. , Nilsson, G. and Goldste<strong>in</strong>,<br />

M., Distribution of substance P-like immunoreactivity <strong>in</strong><br />

<strong>the</strong> central nervous system of <strong>the</strong> rat-I1. Light microscopic<br />

localization <strong>in</strong> relation to catecholam<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g neurons,<br />

Neuroscience, 3 (1978) 945-976.<br />

59 McG<strong>in</strong>ty, J. F., Hendriksen, S. J., Goldste<strong>in</strong>, A. , Terenius,<br />

L. and Bloom, F. E., Dynorph<strong>in</strong> is conta<strong>in</strong>ed with<strong>in</strong><br />

hippocampal mossy fibres: immunochemical alterations<br />

after ka<strong>in</strong>ic acid adm<strong>in</strong>istration and colchic<strong>in</strong>e-<strong>in</strong>duced<br />

neurotoxicity, Proe. nat. Acad. Sci. US.A. , 80 (1983)<br />

589-593.<br />

60 Mizuno, K., Miyata , A., Kangawa, K. and Matsuo, H., A<br />

unique proenkephal<strong>in</strong>-covert<strong>in</strong>g enzyme purified from bov<strong>in</strong>e<br />

adrenal chromaff<strong>in</strong> granules, Biochem. Biophys. Res.<br />

Commun., 108 (1982) 1235-1242.<br />

61 Morrison, J. H., Benoit, R., Magistretti, P. J., L<strong>in</strong>g, N.<br />

and Bloom, F. E. , Immunohistochemical distribution of<br />

prosomatostat<strong>in</strong>-related peptides <strong>in</strong> hippocampus, Neurosci.<br />

Le!!., 34 (1982) 137-142.<br />

62 Nieoullon , A. and Dusticier, N., Decrease <strong>in</strong> chol<strong>in</strong>e acetyltransferase<br />

and <strong>in</strong> high aff<strong>in</strong>ity glutamate uptake <strong>in</strong> <strong>the</strong><br />

red nucleus of <strong>the</strong> cat after cerebellar lesions , Neurosci.<br />

Lelt.,24(1981)267-271.<br />

63 Noda , M., Furutani, Y., Takahashi, H., Toyosato, M.,<br />

Hirose, T., Inayama, S., Nakanishi , S. and Numa , S.,<br />

Clon<strong>in</strong>g and sequence analysis of cDNA for bov<strong>in</strong>e adrenal<br />

preproenkephal<strong>in</strong>, Nature (Land.) , 295 (1982)<br />

202-206.<br />

64 O'Connor, D. T , <strong>Chromogran<strong>in</strong></strong>: widespread immunoreactivity<br />

<strong>in</strong> polypeptide hormone produc<strong>in</strong>g tissues and <strong>in</strong><br />

serum, Regulat. Pepl., 6 (1983) 263-280.<br />

65 O'Connor, D. T. and Frigon, R. P., <strong>Chromogran<strong>in</strong></strong> A, <strong>the</strong><br />

major catecholam<strong>in</strong>e storage vesicle soluble prote<strong>in</strong>. Mul-


229<br />

tiple size forms, subcellular storage, and regional distribution<br />

<strong>in</strong> chromaff<strong>in</strong> and nervous tissue elucidated by radioimmunoassay,l.<br />

bioi. Chem., 259 (1984) 3237-3247.<br />

66 O'Connor, D . T, Burton, D. and Deftos, L. J ., <strong>Chromogran<strong>in</strong></strong><br />

A: immunohistology reveals its universal occurrence<br />

<strong>in</strong> normal polypeptide hormone produc<strong>in</strong>g endocr<strong>in</strong>e<br />

glands, Life Sci., 33 (1983) 1657-1663.<br />

67 O'Connor, D. T , Burton, D. and Deftos, L. J., Immunoreactive<br />

human chromogran<strong>in</strong> A <strong>in</strong> diverse polypeptide<br />

hormone produc<strong>in</strong>g human tumors and normal endocr<strong>in</strong>e<br />

tissues,l. cl<strong>in</strong>. Endocr<strong>in</strong>ol. Metab ., 57 (1983) 1084-1086.<br />

68 Oertel, W. H., Mugna<strong>in</strong>i, E., Schmechel, D. E., Tappaz,<br />

M. L. and Kop<strong>in</strong>, I. J., The immunocytochemical demonstration<br />

of gamma-am<strong>in</strong>obutyric acid-ergic neurons -<br />

methods and application. In V. Chan-Palay and S. L. Palay<br />

(Eds.), Cytochemical Methods <strong>in</strong> Neuroanatomy, Alan<br />

R . Liss, New York, 1982, pp. 297-329.<br />

69 Oertel, W . H., Graybiel, A. M., Mugna<strong>in</strong>i, E., Elde, R .<br />

P., Schmechel, D. E. and Kop<strong>in</strong>, I. J., Coexistence of glutamic<br />

acid decarboxylase- and somatostat<strong>in</strong>-like immunoreactivity<br />

<strong>in</strong> neurons of <strong>the</strong> fel<strong>in</strong>e nucleus reticularis thalami,1.<br />

Neurosci., 3 (1983) 1322-1332.<br />

70 O'Farrell, P. H ., High resolution two-dimensional electrophoresis<br />

of prote<strong>in</strong>s, J. bioi. Chem., 250 (1974)<br />

4007-4021.<br />

71 Parish, D. C., Smyth, D. G., Normanton, J . R. and<br />

Wolstencroft, l. H., Glycyl-Glutam<strong>in</strong>e, an <strong>in</strong>hibitory neuropeptide<br />

derived from B-Endorph<strong>in</strong>, Nature (Lond.),<br />

306 (1983) 267-270.<br />

72 Peters, A., Miller, M. and Kimerer, L. M ., Cholecystok<strong>in</strong><strong>in</strong>-like<br />

immunoreactive neurons <strong>in</strong> rat cerebral cortex,<br />

Neuroscience, 8 (1983) 431-448.<br />

73 Petrusz, P., Sar, M., Grossman, G . H. and Kizer, J . S.,<br />

Synaptic term<strong>in</strong>als with somatostat<strong>in</strong>-like immunoreactivity<br />

<strong>in</strong> <strong>the</strong> rat bra<strong>in</strong>, Bra<strong>in</strong> Res., 137 (1977) 181-187.<br />

74 Pickel, V. M., Sumal, K. K., Beckley, S. c., Miller, R. J.<br />

and Reis, D. J., Immunocytochemical localization of enkephal<strong>in</strong><br />

<strong>in</strong> <strong>the</strong> neostriatum of rat bra<strong>in</strong>: a light and electron<br />

microscopic study, 1. camp. Neurol., 189 (1980)<br />

721-740.<br />

75 Powell, T P. S., Cowan, W. M. and Raisman, G ., The<br />

central olfactory connections, 1. Anat., 99 (1965)<br />

791-813.<br />

76 Ribak, C. E., Vaughn, J. E., Saito, K., Barber, R. and<br />

Roberts, E., Immunocytochemical localization of glutamate<br />

decarboxylase <strong>in</strong> rat substantia nigra, Bra<strong>in</strong> Res.,<br />

116(1976)287-298.<br />

77 Sabol, S. L., Liang, C.-M., Dandekar, S. and Kranzler, L.<br />

S., In vitro biosyn<strong>the</strong>sis and process<strong>in</strong>g of immunologically<br />

identified methion<strong>in</strong>e-en kephal<strong>in</strong> precursor prote<strong>in</strong>,<br />

1. bioi. Chem., 258 (1983) 2697-2704.<br />

78 Saito, K., Barber, R. , Wu, J.-y', Matsuda, T , Roberts,<br />

E. and Vaughn, l . E., Immunohistochemical localization<br />

of glutamic acid decarboxylase <strong>in</strong> rat cerebellum, Proc.<br />

nat. Acad. Sci. U.S.A ., 71 (1974) 269-273.<br />

79 Sar, M., Stumpf, W. E. , Miller, R . J ., Chang, K. J. and<br />

Cautrecasas, P., Immunohistochemical localization of enkephal<strong>in</strong><br />

<strong>in</strong> rat bra<strong>in</strong> and sp<strong>in</strong>al cord, 1. camp. Neurol.,<br />

182 (1978) 17-38.<br />

80 Schneider, F. H ., Smith , A . D . and W<strong>in</strong>kler, H., Secretion<br />

from <strong>the</strong> adrenal medulla: biochemical evidence for exocytosis,<br />

Brit. 1. Pharmacol. Chemo<strong>the</strong>r. , 31 (1967)<br />

94-104.<br />

81 Schulman, J . A., F<strong>in</strong>ger, T. E., Brecha, N. L. and Karten,<br />

H. J., Enkephal<strong>in</strong> immunoreactivity <strong>in</strong> Golgi cells and<br />

mossy fibres of mammalian, avian , amphibian and teleost<br />

cerebellum, Neuroscience, 6 (1981) 2407-2416.<br />

82 Senba, E. , Shiosaka, S. , Hara, Y., Inagaki, S., Kawai , Y. ,<br />

Takatsuki, K., Sakanaka, M., Iida, H., Takagi, H ., M<strong>in</strong>agawa,<br />

H. and Tohyama, M ., Ontogeny of <strong>the</strong> Leuc<strong>in</strong>e-Enkephal<strong>in</strong><br />

neuron system of <strong>the</strong> rat: immunohistochemical<br />

analysis. I. lower bra<strong>in</strong>stem, 1. comp. Neurol. , 205 (1982)<br />

341-359.<br />

83 Sigg<strong>in</strong>s, G. R. , McG<strong>in</strong>ty, J. F ., Morrison, J. H., Pittman,<br />

Q. l., Zieglgansberger, W. , Magistretti, P. J. and Gruol,<br />

D. L., The role of neuropeptides <strong>in</strong> <strong>the</strong> hippocampal formation.<br />

In E. Costa and M. Trabucchi (Eds.), Regulatory<br />

Pep tides From Molecular Biology to Function, Adv. Biochem.<br />

Psychopharmacol., Vol. 33, Raven Press, New<br />

York, 1982, pp. 413-422.<br />

84 Silver, A. The Biology of Chol<strong>in</strong>esterases, North Holland,<br />

Amsterdam, Oxford, 1974.<br />

85 Smith, A. D., Secretion of prote<strong>in</strong>s (<strong>Chromogran<strong>in</strong></strong> A and<br />

Dopam<strong>in</strong>e ,8-hydroxylase) from a sympa<strong>the</strong>tic neuron,<br />

Philos. Trans. R. Soc. Land. Ser. B. , 261 (1971) 363-370.<br />

86 Smith, A. D. and W<strong>in</strong>kler, H., A simple method for <strong>the</strong><br />

isolation of adrenal chromaff<strong>in</strong> granules on a large scale,<br />

Biochem. J., 103 (1967) 480-482.<br />

87 Smith, A. D . and W<strong>in</strong>kler, H., Purification and properties<br />

of an acidic prote<strong>in</strong> from chromaff<strong>in</strong> granules of bov<strong>in</strong>e<br />

adrenal medulla, Biochem. 1., 103 (1967) 483-492.<br />

88 Smith, A. D. and W<strong>in</strong>kler, H., Fundamental mechanisms<br />

<strong>in</strong> <strong>the</strong> release of catecholam<strong>in</strong>es. In H. Blaschko and E.<br />

Muscholl (Eds.), Catecholam<strong>in</strong>es, Handbook of Experimental<br />

Pharmacology, Vo!. 33, Spr<strong>in</strong>ger, Berl<strong>in</strong>, 1972, pp.<br />

538-617.<br />

89 Smith, A . D., De Potter, W. P., Moerman, E . H. and De<br />

Schaepdryver, A. F., Release of dopam<strong>in</strong>e ,8-hydroxylase<br />

and chromogran<strong>in</strong> A upon stimulation of <strong>the</strong> splenic<br />

nerve, Tissue Cell, 2 (1970) 547-568.<br />

90 Smyth, D. G. and Zakarian, S. , Selective process<strong>in</strong>g of ,8-<br />

endorph<strong>in</strong> <strong>in</strong> regions of porc<strong>in</strong>e pituitary, Nature (Land.),<br />

288 (1980) 613-615.<br />

91 Somogyi, P. and Smith, A. D., Projection of neostriatal<br />

sp<strong>in</strong>y neurons to <strong>the</strong> substantia nigra. Application of a<br />

comb<strong>in</strong>ed Golgi-sta<strong>in</strong><strong>in</strong>g and horseradish peroxidase<br />

transport procedure at both light and electron microscopic<br />

levels, Bra<strong>in</strong> Res. , 178 (1979) 3-15.<br />

92 Somogyi, P. and Takagi, H., A note on <strong>the</strong> use of picric<br />

acid-paraformaldehyde-glutaraldehyde fixative for correlated<br />

light and electron microscopic imunocytochemistry,<br />

Neuroscience, 7 (1982) 1779-1783.<br />

93 Somogyi, P., Freund, T F . and Cowey, A., The axo-axonic<br />

<strong>in</strong>terneuron <strong>in</strong> <strong>the</strong> cerebral cortex of <strong>the</strong> rat, cat and<br />

monkey, Neuroscience, 7 (1982) 2577-2608 .<br />

94 Somogyi, P. , Preistley, J. V., Cuello, A. c. , Smith, A . D.<br />

and Takagi, H., Synaptic connections of enkephal<strong>in</strong>-immunoreactive<br />

nerve term<strong>in</strong>als <strong>in</strong> <strong>the</strong> neostriatum: a correlated<br />

light and electron microscopic study, J. Neurocytol.,<br />

11 (1982)779-807.<br />

95 Somogyi , P., Smith, A . D. , Nunzi , M. G. , Gorio, A. , Takagi,<br />

H. and Wu , J.-Y., Glutamate decarboxylase immunoreactivity<br />

<strong>in</strong> <strong>the</strong> hippocampus of <strong>the</strong> cat. Distribution of<br />

immunoreactive synaptic term<strong>in</strong>als with special reference<br />

to <strong>the</strong> axon <strong>in</strong>itial segment of pyramidal neurons, 1. Neurosci.<br />

, 3 (1983) 1450-1468.<br />

96 Somogyi, P., Hodgson, A. J., Smith, A. D. , Nunzi , M. G. ,<br />

Gorio, A . and Wu, J .-Y., Different populations of


230<br />

107<br />

108<br />

and Storm-Mathisen, J"<br />

Uptake of n_~,"n""'r::HP<br />

l"dll)IIIaJ.::l <strong>in</strong> hippocamcOlnpan:;;on<br />

with<br />

103<br />

14<br />

104<br />

115<br />

116<br />

117

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!