21.01.2015 Views

Download PDF - Pan Stanford Publishing

Download PDF - Pan Stanford Publishing

Download PDF - Pan Stanford Publishing

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ELECTROCHEMICAL<br />

DNA<br />

BIOSENSORS<br />

Edited by<br />

Mehmet Ozsoz


ELECTROCHEMICAL<br />

DNA<br />

BIOSENSORS


ELECTROCHEMICAL<br />

DNA<br />

BIOSENSORS<br />

Edited by<br />

Mehmet Ozsoz


Published by<br />

<strong>Pan</strong> <strong>Stanford</strong> <strong>Publishing</strong> Pte. Ltd.<br />

Penthouse Level, Suntec Tower 3<br />

8 Temasek Boulevard<br />

Singapore 038988<br />

Email: editorial@panstanford.com<br />

Web: www.panstanford.com<br />

British Library Cataloguing-in-Publication Data<br />

A catalogue record for this book is available from the British Library.<br />

Electrochemical DNA Biosensors<br />

Copyright c○ 2012 <strong>Pan</strong> <strong>Stanford</strong> <strong>Publishing</strong> Pte. Ltd.<br />

All rights reserved. This book, or parts thereof, may not be reproduced in any<br />

form or by any means, electronic or mechanical, including photocopying,<br />

recording or any information storage and retrieval system now known or to<br />

be invented, without written permission from the publisher.<br />

For photocopying of material in this volume, please pay a copying<br />

fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive,<br />

Danvers, MA 01923, USA. In this case permission to photocopy is not<br />

required from the publisher.<br />

ISBN 978-981-4241-77-9 (Hardcover)<br />

ISBN 978-981-4303-98-9 (eBook)<br />

PrintedintheUSA


Contents<br />

Preface<br />

xvii<br />

1 Terminology Related to Electrochemical DNA-Based<br />

Biosensors 1<br />

Jan Labuda<br />

1.1 Introduction 1<br />

1.2 Detection Features of DNA-Based Biosensors 3<br />

1.3 Detection of Specific DNA Interactions 7<br />

1.3.1 DNA Hybridization Biosensors 7<br />

1.3.2 DNA Damage 9<br />

1.3.3 DNA Association Interactions 13<br />

1.3.3.1 Binding of low molecular mass<br />

compounds 13<br />

1.3.3.2 Binding of proteins 14<br />

1.4 Conclusions 15<br />

2 Electrochemical Aptamer-Based Biosensors 29<br />

S. Centi, S. Tombelli, and M. Mascini<br />

2.1 Introduction 29<br />

2.2 Electrochemical Detection Strategies<br />

Based on Labeling 31<br />

2.3 Electrochemical Aptasensors Based on<br />

a Sandwich Assay 32<br />

2.4 Electrochemical Aptasensors Based on<br />

a Competitive Assay 34<br />

2.5 Electrochemical Aptasensors Based on a Direct<br />

Assay 37<br />

2.6 Electrochemical Metal Nanoparticle-Labeled<br />

Aptasensors 39


vi<br />

Contents<br />

2.7 Electrochemical Aptasensors Based on Noncovalent<br />

Redox Species Label 43<br />

2.8 Electrochemical Aptasensors Based on the Aptamer<br />

Conformational Changes 46<br />

2.9 Electrochemical Aptasensors Based on<br />

Target-Induced Aptamer Displacement 49<br />

2.10 Conclusions 52<br />

3 Carbon-Polymer Bio-Nano-Composite Electrodes for<br />

Electrochemical Genosensing 57<br />

María Isabel Pividori and Salvador Alegret<br />

3.1 Introduction 57<br />

3.2 Composites Materials: Main Features and<br />

Classification 61<br />

3.3 Carbon Composites 65<br />

3.3.1 Carbon-Based Materials as Conductive<br />

Fillers in Composites 65<br />

3.3.2 Rigid Carbon-Polymer Composite 69<br />

3.3.3 Graphite-Epoxy Composites 71<br />

3.4 Electrochemical Genosensing Based on<br />

Graphite-Epoxy Composite 73<br />

3.4.1 Electrochemical Genosensing Based on DNA<br />

Dry Adsorption on GEC as Electrochemical<br />

Transducer 73<br />

3.4.2 Electrochemical Genosensing Based on DNA<br />

Wet Adsorption on GEC as Electrochemical<br />

Transducer 77<br />

3.4.3 Electrochemical Genosensing Based on<br />

Graphite-Epoxy Biocomposite Modified with<br />

Avidin (Av-GEB) as Electrochemical<br />

Transducer 78<br />

3.4.4 Electrochemical Genosensing Based on<br />

Magnetic Beads and m-GEC Electrochemical<br />

Transducer 81<br />

3.4.5 Electrochemical Genosensing Based on<br />

Graphite-Epoxy Composite Modified with<br />

Gold Nanoparticles (NanoAu-GEC) as<br />

Electrochemical Transducer 87<br />

3.5 Final Remarks 93


Contents<br />

vii<br />

4 Gold Nanoparticle-Based Electrochemical DNA<br />

Biosensors 103<br />

María Pedrero, Paloma Yáñez-Sedeño,<br />

and JoséM.Pingarrón<br />

4.1 Introduction 103<br />

4.2 Configurations Used for DNA Immobilization 107<br />

4.2.1 Au-Thiol Binding 108<br />

4.2.2 Gold Nanoparticles: Metallic Oxide<br />

Composites 110<br />

4.2.3 Carbon Nanotube–Gold Nanoparticle<br />

Hybrids 111<br />

4.2.4 Polymer–Gold Nanoparticle Hybrids 111<br />

4.2.5 Avidin–Biotin Affinity Reactions 113<br />

4.3 Signal Transduction and Amplification Strategies 114<br />

4.3.1 Detection Strategies Not Involving Direct<br />

Participation of Au-NPs in the Generation<br />

of the Electrochemical Signal 114<br />

4.3.1.1 Direct detection of redox markers 115<br />

4.3.1.2 Detection based on enzymatic labels 116<br />

4.3.1.3 Detection based on electrochemical<br />

labels intercalated within dsDNA 118<br />

4.3.1.4 Detection involving the use of<br />

Au-NPs as carriers 120<br />

4.3.2 Detection Strategies Involving Direct<br />

Participation of Au-NPs in the Generation of<br />

the Electrochemical Signal 124<br />

4.3.2.1 Detection based on Au-NPs’ acidic or<br />

electrochemical dissolving 124<br />

4.3.2.2 Label-free electrical detection 127<br />

4.3.2.3 Signal enhancement methods 129<br />

4.4 Conclusions and Outlook 136<br />

5 Nanoparticle-Induced Catalysis for Electrochemical<br />

DNA Biosensors 141<br />

Marisa Maltez-da Costa, Alfredo de la Escosura-Muñiz, and<br />

Arben Merkoçi<br />

5.1 Introduction 142<br />

5.2 Catalysis Induced by Gold Nanoparticles 145


viii<br />

Contents<br />

5.2.1 Electrocatalytic Activity of Gold Nanoparticle<br />

Labels on Silver Deposition 145<br />

5.2.2 Electrocatalytic Activity of Gold Nanoparticle<br />

Labels on Other Reactions 146<br />

5.2.3 Electrocatalytic Activity of Gold<br />

Nanoparticles Used as Modifiers of<br />

Electrotransducer Surfaces 149<br />

5.3 Catalysis Induced by Platinum and<br />

Palladium Nanoparticles 149<br />

5.3.1 Electrocatalytic Activity of Platinum<br />

Nanoparticle Labels 149<br />

5.3.2 Electrocatalytic Activity of Palladium<br />

Nanoparticle Labels 151<br />

5.4 Catalysis Induced by Other Nanoparticles 152<br />

5.4.1 Electrocatalytic Activity of Titanium Dioxide<br />

Nanoparticle Labels 152<br />

5.4.2 Electrocatalytic Activity of Osmium Oxide<br />

Nanoparticle Labels 155<br />

5.4.3 Electrocatalytic Activity of Other<br />

Nanoparticles 156<br />

5.5 Conclusions 157<br />

6 Application of Field-Effect Transistors to Label-Free<br />

Electrical DNA Biosensor Arrays 163<br />

Peng Li, Piero Migliorato, and Pedro Estrela<br />

6.1 Introduction 163<br />

6.2 Field-Effect Transistors 165<br />

6.2.1 Field-Effect Transistor Technologies 168<br />

6.2.1.1 Single crystalline silicon and CMOS 168<br />

6.2.1.2 Thin-film transistors 170<br />

6.2.2 Field-Effect Transistor Arrays 173<br />

6.3 Field-Effect DNA Sensing 174<br />

6.3.1 Physical Mechanisms of Detection 176<br />

6.3.1.1 Description of the electrochemical<br />

system 177<br />

6.3.1.2 DNA charge fraction 178<br />

6.3.1.3 Quantitation of the field-effect device<br />

signal 180


Contents<br />

ix<br />

6.3.1.4 Equivalent electrical circuit model of<br />

functionalized FET 183<br />

6.3.2 Differential OCP Measurement 184<br />

6.4 Electrochemical Impedance Spectroscopy 185<br />

6.4.1 PNA-Based Sensing 188<br />

6.4.2 Modeling of the Signal 189<br />

6.5 Application of FETs on Biosensor Arrays 192<br />

6.5.1 FET-Addressed Biosensor Arrays 192<br />

6.5.2 Specifications of the Biosensor Arrays 194<br />

6.5.3 Development of Biosensor Arrays Based on<br />

FETs 197<br />

6.5.4 Fabrication Technologies and Future<br />

Trends 198<br />

6.6 Conclusions 201<br />

7 Electrochemical Detection of Basepair Mismatches in<br />

DNA Films 205<br />

Piotr Michal Diakowski, Mohtashim Shamsi,<br />

and Heinz-Bernhard Kraatz<br />

7.1 Introduction 206<br />

7.2 Surface Immobilization 207<br />

7.2.1 Covalent Attachment 208<br />

7.2.2 Adsorption 209<br />

7.2.3 Affinity Binding 210<br />

7.3 Detection Strategies 210<br />

7.3.1 Direct DNA Electrochemistry 211<br />

7.3.2 Charge Transduction Through DNA 212<br />

7.3.3 Hybridization Indicators, Intercalators and<br />

Groove Binders 216<br />

7.3.4 Peptide Nucleic Acids (PNA) 221<br />

7.3.5 Protein Mediated DNA Biosensors 225<br />

7.3.6 DNA Stem-Loops 227<br />

7.3.6.1 Enzyme-mediated sensors 228<br />

7.3.7 Nanoparticle-Based Sensors 231<br />

7.3.8 Metal-Ion Amplified Sensor 233<br />

7.3.9 Miscellaneous Methods 236<br />

7.4 Conclusion 239


x<br />

Contents<br />

8 Electrochemical Detection of DNA Hybridization: Use<br />

of Latex to Construct Metal-Nanoparticle Labels 245<br />

Mithran Somasundrum and Werasak Surareungchai<br />

8.1 Introduction 245<br />

8.2 Synthesis of Metal Nanoparticles 246<br />

8.3 Use of Metal Nanoparticles as Electrochemical<br />

Labels 249<br />

8.4 Voltammetric Detection of Metal-Nanoparticle<br />

Labels 254<br />

8.4.1 Principles of Analytical Voltammetry 254<br />

8.4.2 Anodic Stripping Voltammetry (ASV) 256<br />

8.4.3 Quantification 258<br />

8.4.3.1 Linear sweep voltammetry 258<br />

8.4.3.2 Differential pulse voltammetry 260<br />

8.4.3.3 Potentiometric stripping analysis 262<br />

8.5 Latex as a Label Support 262<br />

8.5.1 Introduction 262<br />

8.5.2 Latex Synthesis 263<br />

8.5.3 Latex Solution Properties 264<br />

8.5.4 Layer-by-Layer Deposition: Theory 265<br />

8.5.5 Layer-by-Layer Modification of Latex 267<br />

8.5.5.1 Latex surface charge excess 267<br />

8.6 DNA Measurement 278<br />

8.6.1 DNA Immobilization 278<br />

8.6.2 Probe Attachment 280<br />

8.6.3 Detection Sequence 280<br />

8.7 Areas for Further Research 284<br />

9 Screen-Printed Electrodes for Electrochemical DNA<br />

Detection 291<br />

Graciela Martínez-Paredes, María Begoña González-García,<br />

and Agustín Costa-García<br />

9.1 Introduction 292<br />

9.2 Fabrication of Screen-Printed Electrodes 292<br />

9.2.1 Types of Screen-Printed Electrodes 293<br />

9.3 Genosensors on Screen-Printed Electrodes 294<br />

9.3.1 Electrochemical Detection of Hybridization<br />

Reaction 295


Contents<br />

xi<br />

9.3.1.1 Direct transduction methods 295<br />

9.3.1.2 Indirect transduction methods 296<br />

9.3.2 Strategies for Immobilization of ssDNA over<br />

SPEs 298<br />

9.3.2.1 Immobilization of ssDNA over<br />

carbon electrodes 300<br />

9.3.2.2 Immobilization of ssDNA over gold<br />

electrodes 302<br />

9.4 Applications 303<br />

9.4.1 Enzymatic Genosensors on<br />

Streptavidin-Modified Screen-Printed Carbon<br />

Electrode 304<br />

9.4.1.1 Genosensor design 305<br />

9.4.1.2 Analytical signal recording 306<br />

9.4.2 Alkaline Phosphatase-Catalyzed Silver<br />

Deposition for Electrochemical Detection 310<br />

9.4.2.1 Genosensor design 311<br />

9.4.2.2 Results 312<br />

9.4.3 Genosensor for SARS Virus Detection Based<br />

on Gold Nanostructured Screen-Printed<br />

Carbon Electrode 314<br />

9.4.3.1 Gold nanostructuration of<br />

screen-printed carbon electrodes 315<br />

9.4.3.2 Genosensor design 315<br />

9.4.3.3 Results 315<br />

9.4.4 Simultaneous Detection of Streptococcus and<br />

Mycoplasma Pneumoniae Using<br />

Gold-Modified SPCEs 318<br />

9.4.4.1 Genosensor design 319<br />

9.4.4.2 Results 320<br />

9.5 Conclusion 321<br />

10 Synthetic Polymers for Electrochemical DNA<br />

Biosensors 329<br />

Adriana Ferancová and Katarína Beníková<br />

10.1 Introduction 329<br />

10.2 Modification of Electrode Surface with Polymers 330<br />

10.2.1 Solvent Casting 330


xii<br />

Contents<br />

10.2.2 Spin Coating 330<br />

10.2.3 Electropolymerization 331<br />

10.3 Polymer-Assisted DNA Immobilization 332<br />

10.3.1 Immobilization of DNA onto<br />

Polymer-Modified Electrode Surface 332<br />

10.3.2 Immobilization of DNA Within a Polymeric<br />

Matrix by Electropolymerization 334<br />

10.4 Application of Synthetic Polymers in DNA<br />

Biosensors 334<br />

10.4.1 Electronically (Intrinsically) Conducting<br />

Polymers 334<br />

10.4.1.1 Polypyrroles 335<br />

10.4.1.2 Polyaniline 339<br />

10.4.1.3 Polythiophene and its<br />

derivatives 341<br />

10.4.2 Redox Polymers 342<br />

10.4.2.1 Quinone-containing polymers 342<br />

10.4.2.2 Redox-active polymers<br />

containing organometalic<br />

redox center 343<br />

10.4.3 Nonconducting Polymers 344<br />

10.5 Conclusions 346<br />

11 Electrochemical Transducer for Oligonucleotide<br />

Biosensor Based on the Elimination and Adsorptive<br />

Transfer Techniques 355<br />

Libuse Trnkova, Frantisek Jelen, and Mehmet Ozsoz<br />

11.1 Introduction 355<br />

11.2 Theoretical Fundamentals of Elimination<br />

Voltammetry with Linear Scan (EVLS) 356<br />

11.2.1 Elimination Functions 356<br />

11.2.2 EVLS of Adsorbed Species 359<br />

11.2.3 Single and Double Mode of EVLS 360<br />

11.3 EVLS Increasing the Transducer Potential<br />

Range 362<br />

11.4 EVLS in Connection with Adsorptive Stripping<br />

Technique 362<br />

11.4.1 AdS EVLS of Homo- and<br />

Hetero-oligonucleotides 364


Contents<br />

xiii<br />

11.4.2 AdS EVLS of Hairpins 366<br />

11.5 EVLS of Nucleobases and Oligonucleotides in the<br />

Presence of Copper Ions 368<br />

11.5.1 Mercury and Mercury-Modified<br />

Electrodes 368<br />

11.5.2 Solid Electrodes 371<br />

11.6 Conclusions 373<br />

12 Electrochemical DNA Biosensors for Detection of<br />

Compound-DNA Interactions 379<br />

D. Ozkan-Ariksoysal, P. Kara, and M. Ozsoz<br />

12.1 Introduction 380<br />

12.1.1 Aim of Electrochemical DNA Biosensors 380<br />

12.2 The Structure of DNA 380<br />

12.3 Natural Electronalytical Characterictics of DNA 383<br />

12.4 Types of DNA Immobilization Methodologies onto<br />

Sensor Surfaces 385<br />

12.4.1 Adsorption (Wet Adsorption/Electrostatic<br />

Accumulation) 386<br />

12.4.2 Covalent Binding to Activated/<br />

Nonactivated Surfaces 386<br />

12.4.3 DNA İmmobilization onto Transducer<br />

Surfaces Via Avidin-Biotin İnteraction 387<br />

12.5 DNA-Compound Interactions 387<br />

12.5.1 Types of Molecular Binding to DNA 388<br />

12.5.1.1 Electrostatic interactions 388<br />

12.5.1.2 Groove binding interactions 388<br />

12.5.1.3 Intercalation mode 389<br />

12.5.1.4 Specific binding for<br />

single-stranded DNA 390<br />

12.5.2 Detection Techniques for Compound-DNA<br />

Binding Reactions Using Electrochemical<br />

DNA Biosensors 390<br />

12.5.2.1 Label-free detection based on<br />

intrinsic DNA signals (direct<br />

detection) 390<br />

12.5.2.2 Compound-based detection<br />

(indirect redox indicator-based<br />

detection) 392


xiv<br />

Contents<br />

12.6 Calculations About Compound-DNA Interactions 394<br />

12.7 Conclusions 395<br />

13 Electrochemical Nucleic Acid Biosensors Based on<br />

Hybridization Detection for Clinical Analysis 403<br />

P. Kara, D. Ariksoysal, and M. Ozsoz<br />

13.1 Introduction 403<br />

13.2 Biosensors 404<br />

13.2.1 Nucleic Acid Hybridization Biosensors 405<br />

13.3 Electrochemical Nucleic Acid Biosensors 407<br />

13.3.1 Label-Based Electrochemical Nucleic Acid<br />

Biosensors 408<br />

13.3.1.1 Electrochemical genosensing by<br />

using hybridization indicator 408<br />

13.3.1.2 Electrochemical genosensing<br />

with labeled signaling probe or<br />

labeled target DNA 414<br />

13.3.2 Label-Free Electrochemical<br />

Genosensing 415<br />

13.4 Conclusion 420<br />

14 Nanomaterial-Based Electrochemical DNA Detection 427<br />

Ronen Polsky, Jason C. Harper, and Susan M. Brozik<br />

14.1 Introduction 427<br />

14.2 Nanoparticle-Based Electrochemical DNA<br />

Detection 429<br />

14.2.1 Nanoparticle Modification of Electrodes<br />

and Their Use as Supports for DNA<br />

Immobilization 429<br />

14.2.2 Gold Nanoparticle Supports 430<br />

14.2.3 Magnetic Particles 432<br />

14.2.4 Layer-by-Layer Immobilization Techniques 434<br />

14.2.5 Metal Nanoparticle Labels for DNA<br />

Hybridization Detection 435<br />

14.2.5.1 Direct detection of the<br />

nanoparticle label 435<br />

14.2.5.2 Non-stripping-based<br />

nanoparticle electrochemical<br />

DNA detection methods 440


Contents<br />

xv<br />

14.3 Nanowires, Nanorods, and Nanofibers 443<br />

14.3.1 Nanorods as Labels 444<br />

14.3.2 Nanowires Interfaced with Electrodes as<br />

an Immobilization Matrix 445<br />

14.3.3 Nanowire Conductance Based DNA<br />

Detection 448<br />

14.3.4 Electrochemical Impedance Spectroscopy<br />

at Nanowires for DNA Detection 451<br />

14.3.5 Dendrimers 452<br />

14.3.6 Apoferritin Nanovehicles 455<br />

14.3.7 Silica Nanoparticles 456<br />

14.3.8 Liposomes 458<br />

14.4 DNA Detection Using Carbon Nanotubes 461<br />

14.4.1 Functionalization of Carbon Nanotubes<br />

with DNA 462<br />

14.4.2 CNTs for Electrochemical DNA Sensing 464<br />

14.4.3 Progress toward CNT-Based Sensors for<br />

DNA Detection 470<br />

14.5 Conclusion 472<br />

15 Electrochemical Genosensor Assay for the Detection<br />

of Bacteria on Screen-Printed Chips 481<br />

Chan Yean Yean, Lee Su Yin, and Manickam Ravichandran<br />

15.1 Introduction 482<br />

15.2 Methods for the Detection and Identification of<br />

Microorganism Utilizing Enzyme-Based<br />

Genosensors on Screen-Printed Chips 482<br />

15.2.1 Electrochemical Genosensors for the<br />

Detection of Bacteria 482<br />

15.2.2 Principles of Enzyme-Based PCR<br />

Amplicons Target DNA Detection<br />

Methods 486<br />

15.2.2.1 Direct method 486<br />

15.2.2.2 Indirect method 488<br />

15.2.2.3 Rapid method 488<br />

15.2.3 Screen-Printed Transducer Surface 490<br />

15.2.3.1 Screen-printed gold chip<br />

genosensors 490


xvi<br />

Contents<br />

15.2.3.2 Screen-printed carbon-chip<br />

genosensors 491<br />

15.3 Advantages of the Enzyme-Based Electrochemical<br />

Genosensors in Detecting Bacteria on<br />

Screen-Printed Carbon Chips 492<br />

15.4 Discussions 493<br />

15.4 Conclusions 493<br />

16 Introduction to Molecular Biology Related to<br />

Electrochemical DNA-Based Biosensors 499<br />

Yalcin Erzurumlu and Petek Ballar<br />

16.1 Introduction 499<br />

16.2 Nucleic Acids 501<br />

16.3 Deoxyribonucleic Acid 506<br />

16.4 DNA in Electrochemical DNA-Based Biosensors 509<br />

16.5 Nucleic Acid Variants Used in Electrochemical<br />

DNA-Based Biosensors 511<br />

16.5.1 Peptide Nucleic Acid (PNA) 511<br />

16.5.2 Locked Nucleic Acid (LNA) 513<br />

Index 517


Preface<br />

The discovery of DNA, the carrier of genetic information in cells,<br />

brought with it many important technological accomplishments<br />

such as the development of various diagnostic tools to unravel the<br />

nature of hereditary diseases, gene expression profiling methods,<br />

and genotyping. Among these, DNA biosensors constitute an<br />

important class of point-of-care diagnostic devices because they<br />

are capable of converting the Watson-Crick base pair recognition<br />

event signal into an interpretable analytical signal in a shorter time<br />

compared with other methods, thereby producing accurate and sensitive<br />

results. Moreover, they are also suitable for miniaturization.<br />

The terms “electrochemical DNA biosensor” and “nucleic acid–based<br />

electrochemical biosensor” are used interchangeably.<br />

By definition, biosensors are devices that fall into the subgroup of<br />

biomedical sensors, combine a biological component with a detector<br />

component, and are composed of three parts: (1) the biorecognition<br />

element, such as an antibody, an enzyme, nucleic acids, or cell<br />

lysates, which serves as a mediator; (2) the detector/transducer<br />

element, which converts a biological signal into a readable output;<br />

and (3) the signal processor, which displays a user-friendly version<br />

of the transformed signal. Biosensors are classified according to<br />

either the detector they are equipped with or the biorecognition<br />

element they include. In general, the term “nucleic acid biosensors”<br />

connotes devices that use single-stranded DNA as a biological<br />

element. However, because of the advances in biosensor design, new<br />

nucleic acid/nucleic acid analog interactions have been described<br />

that are also considered to fall in this category, such as aptamer–<br />

nucleic acid, RNA–DNA, peptide nucleic acid (PNA)–DNA, and locked<br />

nucleic acid (LNA)–DNA. For the transduction of biological signals,<br />

various kinds of detectors are available, but they can be categorized


xviii<br />

Preface<br />

into three main classes: optical, electrochemical, and piezoelectric.<br />

Because electrochemical DNA biosensors are miniaturizable (i.e.,<br />

reducible in size to nanoscale dimensions), fast, accurate, simple,<br />

and low cost, they have played perhaps the greatest role in the fields<br />

of molecular and medical diagnosis, environmental monitoring,<br />

bioterrorism, food analysis, pharmacogenomics, and drug discovery.<br />

The aim of this book is to cover the full scope of electrochemical<br />

nucleic acid biosensors by emphazing on DNA detection. The<br />

material is presented in 16 chapters. Starting with the terminology<br />

related to electrochemical DNA–based biosensors in Chapter 1,<br />

the researchers active in the fields of biosensor design, molecular<br />

biology, and genetics describe types of detection used for analysis<br />

(chapters 6, 9, 11, and 13), types of materials used for biosensor<br />

design (chapters 3, 4, 5, 8, 10, and 14), and types of nucleic acid<br />

interactions detected (chapters 2, 7, 12, and 15).<br />

I hope that this state-of-the-art book will continue to inform and<br />

inspire all levels of scientists for many years. I wish to express my<br />

gratitude to the researchers throughout the world who contributed<br />

to the book by sharing their valuable studies in the field of<br />

biosensors. In their honor, I quote the amazing scientist Albert<br />

Einstein: “Imagination is more important than knowledge.”<br />

I would also like to thank my wife, Ayse, for her love and patience<br />

as well as the editorial group of <strong>Pan</strong> <strong>Stanford</strong> <strong>Publishing</strong> for their<br />

assistance and support.<br />

Mehmet Ozsoz<br />

Izmir, Turkey

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!