21.01.2015 Views

Non-equilibrium phase transition from AdS/CFT

Non-equilibrium phase transition from AdS/CFT

Non-equilibrium phase transition from AdS/CFT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Non</strong>-<strong>equilibrium</strong> <strong>phase</strong><br />

<strong>transition</strong> <strong>from</strong> <strong>AdS</strong>/<strong>CFT</strong><br />

Mohammad Ali-Akbari<br />

School of particles and accelerators, IPM, Iran<br />

Seventh Crete regional meeting on string theory<br />

Kolymbari 2013


Outline<br />

1. <strong>Non</strong>-<strong>equilibrium</strong> system: non-<strong>equilibrium</strong> steady sates.<br />

2. <strong>Non</strong>-<strong>equilibrium</strong> <strong>phase</strong> <strong>transition</strong> of differential conductivity.<br />

3. <strong>AdS</strong>/<strong>CFT</strong> correspondence + matter fields<br />

4. <strong>Non</strong>-linear conductivity in the presence of magnetic field:<br />

3.1: D3-D7 system.<br />

3.2: D3-D5(supersymmetric and non-supersymmetrc) systems.


<strong>Non</strong>-<strong>equilibrium</strong> system<br />

Challenging problem: Physical system at non-<strong>equilibrium</strong> <strong>phase</strong>.<br />

1. Local <strong>equilibrium</strong> Hydrodynamics<br />

2. <strong>Non</strong>-<strong>equilibrium</strong> steady states:<br />

They have no macroscopically observable time dependence.<br />

Y. Oono, and M. Paniconi, “Steady state thermodynamics,” Prog. Theor. Phys. Suppl. 130, 29--44 (1998<br />

S. Sasa and H. Tasaki, ``Steady state thermodynamics,'' [cond-mat/0411052].<br />

Z. Racz, ``<strong>Non</strong><strong>equilibrium</strong> <strong>phase</strong> <strong>transition</strong>,'' [cond-mat/0210435].<br />

B. Derrida, ``<strong>Non</strong> <strong>equilibrium</strong> steady states: fluctuations and large deviations of the density and of the


Conductivity:<br />

<strong>Non</strong>-linear conductivity:<br />

Duo to the non-linearity of conductivity, differential conductivity may be<br />

either positive or negative.<br />

Positive differential conductivity(PDC)<br />

Phase <strong>transition</strong><br />

Negative differential conductivity(NDC)<br />

Strong interaction<br />

<strong>AdS</strong>/<strong>CFT</strong> correspondence as a theoretical<br />

framework<br />

Y. Taguchi, T. Matsumoto, Y. Tokura, “Dielectric breakdown of one-dimensional Mott<br />

insulators<br />

Sr 2 CuO 3 and SrCuO 2 ,” Phys. Rev. B 62, 7015–7018 (2000)<br />

Takashi Oka, Hideo Aoki, ” <strong>Non</strong><strong>equilibrium</strong> Quantum Breakdown in a Strongly


<strong>AdS</strong>/<strong>CFT</strong> correspondence<br />

IIB string theory on<br />

<strong>AdS</strong>(5)xS(5)<br />

N=4 D=4 superconformal<br />

Su(N) gauge theory<br />

D3-D7:<br />

D3<br />

D7<br />

Probe limit<br />

<strong>AdS</strong> background + D7-brane<br />

A. Karch and E. Katz, JHEP 0206, 043 (2002) [hep-th/<br />

0205236].<br />

Strongly coupled Su(N) gauge theory<br />

+ fundametal matters


<strong>AdS</strong> background + D7-brane<br />

(A reminder)<br />

D7-brane is extended along .


Gauge theory side<br />

Gravity side<br />

1. Strongly coupled thermal field<br />

theory.<br />

2. Explicit charge carriers.<br />

3. Electric and magnetic fileds.<br />

1. BH -<strong>AdS</strong> Sch.<br />

2. Time component of the gauge field<br />

on the D7-branes ( ).<br />

3. The spatial components of the<br />

gauge field.<br />

4. (non-linear)<br />

Conductivity .<br />

4.<br />

Mass of the fundamental<br />

matter<br />

A. Karch and A. O'Bannon, ``Metallic <strong>AdS</strong>/<strong>CFT</strong>,‘’ JHEP 0709, 024 (2007), [arXiv:0705.3870 [hepth]].<br />

A. O'Bannon, ``Hall Conductivity of Flavor Fields <strong>from</strong> <strong>AdS</strong>/<strong>CFT</strong>,‘’ Phys. Rev. D 76, 086007 (2007),


A. Karch and A. O'Bannon, ``Metallic <strong>AdS</strong>/<strong>CFT</strong>,‘’ JHEP 0709, 024 (2007), [arXiv:0705.3870 [hepth]].<br />

A. O'Bannon, ``Hall Conductivity of Flavor Fields <strong>from</strong> <strong>AdS</strong>/<strong>CFT</strong>,‘’ Phys. Rev. D 76, 086007 (2007),<br />

D7-branes action<br />

Conductivity equations<br />

Current<br />

Asymptotic behaviour<br />

Mass


Current<br />

We need to solve the equation of motion for<br />

its asymptotic value<br />

for given E, B and temperature.<br />

to find<br />

S. Nakamura, ``<strong>Non</strong><strong>equilibrium</strong> Phase Transitions and <strong>Non</strong><strong>equilibrium</strong> Critical Point <strong>from</strong><br />

<strong>AdS</strong>/<strong>CFT</strong>,‘’<br />

Phys. Rev. Lett. 109, 120602 (2012) [arXiv:1204.1971 [hep-th]].<br />

S. Nakamura, ``Negative Differential Resistivity <strong>from</strong> Holography,‘’ Prog. Theor.<br />

Phys. 124, 1105 (2010) [arXiv:1006.4105 [hep-th]].<br />

M. Ali-Akbari and A. Vahedi, ``<strong>Non</strong>-<strong>equilibrium</strong> Phase Transition <strong>from</strong> <strong>AdS</strong>/<strong>CFT</strong>,‘’ arXiv<br />

1305.3713 [hep-th].


: Insulator <strong>phase</strong> : Conductor <strong>phase</strong>


Small-J region: NDC<br />

Large-J region: PDC<br />

Blue curve : First order <strong>phase</strong> <strong>transition</strong><br />

Red curve: Second order <strong>phase</strong> <strong>transition</strong><br />

Green curve: Crossover


Hamiltonian<br />

Energy<br />

It numerically turns out that the solutions with the<br />

largest value of the electric field have the lowest<br />

energy.<br />

A. Karch and A. O'Bannon, ``Metallic <strong>AdS</strong>/<strong>CFT</strong>,‘’ JHEP 0709, 024 (2007), [arXiv:0705.3870 [hepth]].<br />

A. O'Bannon, ``Hall Conductivity of Flavor Fields <strong>from</strong> <strong>AdS</strong>/<strong>CFT</strong>,‘’ Phys. Rev. D 76, 086007 (2007),


D3-D5 systems<br />

Supersymmetric<br />

D3-D5<br />

Current<br />

2+1 dimensional subspace on which the matter fields live.


<strong>Non</strong>-supersymmetric<br />

D3-D5<br />

1+1 dimensional subspace on which the matter fields live.<br />

Current


Results

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!