21.01.2015 Views

MHR Calculus and Vectors 12 Solutions 462 Chapter 4 Review ...

MHR Calculus and Vectors 12 Solutions 462 Chapter 4 Review ...

MHR Calculus and Vectors 12 Solutions 462 Chapter 4 Review ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chapter</strong> 4 <strong>Review</strong><br />

<strong>Chapter</strong> 4 <strong>Review</strong> Question 1 Page 244<br />

a) i) (0, −1), ( ! , 1), (2 ! , −1)<br />

b)<br />

ii) (!, 1)<br />

iii) (2!, !1) or (0, –1)<br />

<strong>Chapter</strong> 4 <strong>Review</strong> Question 2 Page 244<br />

a)<br />

b)<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> <strong>462</strong>


<strong>Chapter</strong> 4 <strong>Review</strong> Question 3 Page 244<br />

dy<br />

a) sin x<br />

dx = !<br />

b) f !( x) = " 2cos x<br />

dy<br />

c) sin x cos x<br />

dx = ! !<br />

d) f !(x) = 3cos x + !sin x<br />

<strong>Chapter</strong> 4 <strong>Review</strong> Question 4 Page 244<br />

The slope of a function at a point is given by the value of its first derivative at that point.<br />

y = 4sin x<br />

dy<br />

dx x= ! 3<br />

dy<br />

dx = 4cos x<br />

= 4cos ! 3<br />

= 2<br />

Therefore, the slope of the function<br />

y = 4sin x at x = ! 3<br />

is 2.<br />

<strong>Chapter</strong> 4 <strong>Review</strong> Question 5 Page 244<br />

a) To find the equation of the tangent line, find the slope <strong>and</strong> the y-coordinates at ! = ! 4 .<br />

y = 2sin! + 4cos!<br />

dy<br />

= 2cos! " 4sin!<br />

d!<br />

dy<br />

d! != ! 4<br />

= 2 2 " 4 2<br />

= " 2 2<br />

= " 2<br />

At ! = ! 4 , y = 3 2 .<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> 463


Use the slope-point form of a line to find the equation of the tangent line.<br />

#<br />

y ! 3 2 = ! 2 " ! ! &<br />

$<br />

% 4'<br />

(<br />

Therefore, the equation of the tangent is y = ! 2" + 2<br />

4 ! + 3 2 .<br />

b) Use the same approach as in part a).<br />

y = 2cos! " 1 2 sin!<br />

dy<br />

d! = "2sin! " 1 2 cos!<br />

dy<br />

= "2("1) " 1 d! != 3! 2 (0)<br />

2<br />

= 2<br />

At ! = 3! 2 , 1<br />

y = .<br />

2<br />

Use the slope-point form of a line to find the equation of the tangent.<br />

1 3!<br />

y $ = 2<br />

" !<br />

#<br />

2<br />

% $<br />

2<br />

&<br />

' (<br />

Therefore, the equation of the tangent is y = 2! " 3! + 1 2 .<br />

c)<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> 464


<strong>Chapter</strong> 4 <strong>Review</strong> Question 6 Page 244<br />

a)<br />

dy<br />

= !2cos x(! sin x)<br />

dx<br />

= sin 2x<br />

dy<br />

b) 2cos 2! 4sin 2!<br />

d! = +<br />

c) f !(") = #!cos(2" # !)<br />

d) f !(x) = (cos(sin x))(cos x)<br />

e) f !(x) = #<br />

$ " sin(cos x) %<br />

&(" sin x)<br />

= #<br />

$ sin(cos x) %<br />

&(sin x)<br />

f) f !(") = #7sin(7") + 5sin(5")<br />

<strong>Chapter</strong> 4 <strong>Review</strong> Question 7 Page 244<br />

dy<br />

a) 3xcos x 3sin x<br />

dy = +<br />

b) f !(t) = "4t 2 sin 2t + 4t cos 2t<br />

c)<br />

d)<br />

dy<br />

dt = !2 t(cos(!t " 6)) + !sin(!t " 6)<br />

dy<br />

d! = " # $ sin(sin!) %<br />

&(cos!) – # $ cos(cos!) %<br />

& (sin!)<br />

e) f !(x) = "2 #<br />

$ cos(sin x) %<br />

& # $ sin(sin x) %<br />

&(cos x)<br />

f) f !(") = #7(sin7") +10(cos5")(sin5")<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> 465


<strong>Chapter</strong> 4 <strong>Review</strong> Question 8 Page 244<br />

a) Answers may vary. For example:<br />

To find the slope, f '( x ) , first find all the critical points at f ''( x ) = 0 .<br />

f (x) = 2cos3x<br />

f '(x) = !6sin3x<br />

f ''(x) = !18cos3x<br />

Let f ''( x ) = 0<br />

cos3x = 0<br />

3x = ..., ! 3 2 !, ! ! 2 , ! 2 , 3! 2 , ...<br />

x = ..., ! 3 6 !, ! ! 6 , ! 6 , 3! 6 , ...<br />

x =<br />

(2k +1)!<br />

, k "!<br />

6<br />

At, x = ..., ! 5! 6 , ! ! 6 , 3! 6 , 7! 6<br />

, ..., the maximum value of the slope is obtained f '( x ) = 6 .<br />

Need only one equation of the tangent, so let x = ! 2 .<br />

! ! $<br />

f<br />

"<br />

# 2%<br />

& = 2cos 3! 2<br />

= 0<br />

Use the slope-point form of a line to find the equation of the tangent line.<br />

"<br />

y ! 0 = 6 x ! ! %<br />

#<br />

$ 2&<br />

'<br />

Therefore, the equation of the tangent is y = 6x ! 3! .<br />

b) No, there are an infinite number of tangent lines to the curve y = 2cos3x<br />

whose slope is a maximum.<br />

From part a), at x = ..., ! 5! 6 , ! ! 6 , 3! 6 , 7! , ..., the maximum value of the slope is<br />

6<br />

obtained f '( x ) = 6 . In more general terms, the set of all such x’s can be expressed as<br />

(4k + 3)!<br />

x = , k !! . For each value of k, you will obtain a different equation for the tangent line with<br />

6<br />

maximised slope.<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> 466


Examples using a graphing calculator <strong>and</strong> the tangent function are shown below.<br />

<strong>Chapter</strong> 4 Section <strong>Review</strong> Question 9 Page 244<br />

a) V (t) = 130sin(5t) +18<br />

V !(t) = 650cos(5t)<br />

The critical points are given by V '( t ) = 0 .<br />

0 = 650cos(5t)<br />

0 = cos(5t)<br />

5t = ! 2 , 3! 2 , 5! 2 ,...<br />

t = !<br />

10 , 3!<br />

10 , 5!<br />

10 ,...<br />

!<br />

V ! $ ! ! $<br />

"<br />

# 10%<br />

& = 130sin 5'<br />

"<br />

# 10%<br />

& +18<br />

= 130 +18<br />

= 148<br />

!<br />

V 3! $ ! 3! $<br />

"<br />

# 10 %<br />

& = 130sin 5'<br />

"<br />

# 10 %<br />

& +18<br />

= 130((1) +18<br />

= (1<strong>12</strong><br />

#<br />

% ( 4k +1)!<br />

'<br />

%<br />

Maximum voltage: 148 V at time, in seconds, $ t t = , k !!, k " 0(<br />

.<br />

10<br />

&%<br />

)%<br />

#<br />

% (<br />

Minimum voltage: –1<strong>12</strong> V at time, in seconds, t t = 4k + 3 )!<br />

'<br />

%<br />

$<br />

, k !!, k " 0(<br />

.<br />

10<br />

&%<br />

)%<br />

b) Period: T = 2! 5 s<br />

f = 1 T<br />

= 5<br />

2!<br />

Frequency:<br />

5<br />

2! Hz<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> 467


A = 1 [148 ! (!1<strong>12</strong>)]<br />

2<br />

= 130<br />

Amplitude: 130 V<br />

<strong>Chapter</strong> 4 Section <strong>Review</strong> Question 10 Page 245<br />

a) i) sin! = 1<br />

! = ! 2<br />

Maximum: The force<br />

F = mg sin!<br />

has a maximum value when ! = ! 2 .<br />

ii) sin! = 0<br />

! = 0<br />

Minimum: The force<br />

b) Answers may vary. For example:<br />

The formula for force is<br />

F = mg sin!<br />

has a minimum value when θ = 0.<br />

F = mg sin!<br />

. The force will be a maximum at an angle where sin! is<br />

maximized i.e., ! = 90°, since sine has a maximum value at 90°. The force will be a minimum at an<br />

2<br />

angle where sin! is minimized i.e., 0°, since sine has a minimum value at 0°.<br />

<strong>Chapter</strong> 4 <strong>Review</strong> Question 11 Page 245<br />

a) Answers may vary. For example:<br />

Given:<br />

p = mv (p is the momentum of the body.)<br />

Differentiate with respect to time<br />

dp dv<br />

= m<br />

dt dt<br />

<br />

dv<br />

= a<br />

dt<br />

(Acceleration is the rate of change of velocity.)<br />

Therefore, dp ma<br />

dt = .<br />

Combined with Newton’s second law of motion:<br />

dp<br />

F = , this gives F = ma .<br />

dt<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> 468


) F = ma<br />

= m dv<br />

dt<br />

= m d dt (2cos3t)<br />

= !6msin3t<br />

Therefore F = 0 when sin3t = 0 .<br />

t = 0, ! 3 , 2! 3 , 3! 3 , 4! 3 , ...<br />

t = k! 3<br />

, k !!, k " 0.<br />

c) v( t) = 2cos3t<br />

!<br />

v k! $<br />

"<br />

# 3 %<br />

& = 2cos(k!)<br />

2cos(k!) is 2 m/s when k is even <strong>and</strong> –2 m/s when k is odd.<br />

Therefore the speed is | v | = 2 m/s.<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> 469


<strong>Chapter</strong> 4 Practice Test<br />

<strong>Chapter</strong> 4 Practice Test Question 1 Page 246<br />

The correct answer is B.<br />

<strong>Chapter</strong> 4 Practice Test Question 2 Page 246<br />

The correct answer is C.<br />

<strong>Chapter</strong> 4 Practice Test Question 3 Page 246<br />

The correct answer is C.<br />

<strong>Chapter</strong> 4 Practice Test Question 4 Page 246<br />

The correct answer is D.<br />

<strong>Chapter</strong> 4 Practice Test Question 5 Page 246<br />

The correct answer is C.<br />

<strong>Chapter</strong> 4 Practice Test Question 6 Page 246<br />

The correct answer is D.<br />

dy ! 1 "<br />

= 2<br />

dx # 2 $<br />

% &<br />

= 1.<br />

<strong>Chapter</strong> 4 Practice Test Question 7 Page 246<br />

The correct answer is B.<br />

dy<br />

Use a graphing calculator to graph = cos x ! sin x for the given window.<br />

dx<br />

<strong>Chapter</strong> 4 Practice Test Question 8 Page 246<br />

The correct answer is B.<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> 470


<strong>Chapter</strong> 4 Practice Test Question 9 Page 247<br />

dy<br />

a) sin x cos x<br />

dx = ! !<br />

dy<br />

b) 6cos 2!<br />

d! =<br />

c) f !(x) = !sin x cos x<br />

d) f !(t) = 3t 2 cost + 6t sint<br />

<strong>Chapter</strong> 4 Practice Test Question 10 Page 247<br />

a)<br />

b)<br />

dy<br />

dx = cos "<br />

! + ! %<br />

#<br />

$ 4&<br />

'<br />

dy<br />

d! = " sin #<br />

! " ! &<br />

$<br />

% 4'<br />

(<br />

dy<br />

d! =<br />

3<br />

c) 4sin ! ( cos!<br />

)<br />

dy<br />

d! =<br />

3 4<br />

d) 4! cos( ! )<br />

<strong>Chapter</strong> 4 Practice Test Question 11 Page 247<br />

The slope of the tangent is the same as that of the curve, i.e., dy<br />

dx at ! 4 .<br />

dy<br />

2 2<br />

2cos x 2sin x<br />

dx = !<br />

At x = ! 4 ,<br />

dy ! 1 " ! 1 "<br />

= 2$ % # 2$ %<br />

dx & 2 ' & 2 '<br />

= 0<br />

Therefore, the slope of the line tangent to the curve y = 2sin xcos<br />

x at x = ! 4<br />

is 0.<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> 471


<strong>Chapter</strong> 4 Practice Test Question <strong>12</strong> Page 247<br />

dy<br />

6cos<br />

dx = !<br />

2<br />

xsin<br />

x<br />

At x = ! 3 ,<br />

dy ! 1 "! 3 "<br />

= # 6$ $ dx & 4<br />

%$ 2 %<br />

'& '<br />

3 3<br />

= #<br />

4<br />

= m<br />

Also at x = ! 3 ,<br />

! 1 "<br />

y = 2 # $<br />

% 2 &<br />

1<br />

=<br />

4<br />

3<br />

Substituting for m, y, <strong>and</strong> x in y = mx + b gives:<br />

b = 1 4 + 3 3<br />

4<br />

= 1 4 + 3!<br />

4<br />

! ! $<br />

"<br />

# 3%<br />

&<br />

y = ! 3 3<br />

4 x + 3!<br />

4 + 1 4<br />

is the equation of the tangent line.<br />

Use a graphing calculator <strong>and</strong> the tangent function to confirm this result.<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> 472


<strong>Chapter</strong> 4 Practice Test Question 13 Page 247<br />

a) V (t) = 325sin(100!t)<br />

V "(t) = 325(100!)cos(100!t)<br />

The critical points are given by V '( t ) = 0 .<br />

0 = 325(100!)cos(100!t)<br />

0 = cos(100!t)<br />

100!t = ! 2 , 3! 2 , 5! 2 ,...<br />

t = 1<br />

200 , 3<br />

200 , 5<br />

200 ,...<br />

! 1 $<br />

V<br />

"<br />

# 200%<br />

& = 325sin !<br />

100' ! 1 $ $<br />

#<br />

"<br />

# 200%<br />

& &<br />

"<br />

%<br />

= 325<br />

! 3 $<br />

V<br />

"<br />

# 200%<br />

& = 325sin !<br />

100' ! 3 $ $<br />

#<br />

"<br />

# 200%<br />

& &<br />

"<br />

%<br />

= (325<br />

4 1<br />

Maximum voltage: 325 V at time, in seconds,<br />

! k +<br />

% t t = , k #! , k $<br />

" 0 & .<br />

' 200<br />

(<br />

4 3<br />

Minimum voltage: –325 V at time, in seconds,<br />

! k +<br />

% t t = , k #! , k $<br />

" 0 & .<br />

' 200<br />

(<br />

b) i) T = 2!<br />

100!<br />

= 1<br />

50<br />

The period is<br />

1<br />

50 s.<br />

ii)<br />

1<br />

f =<br />

T<br />

= 50 Hz<br />

The frequency is 50 Hz.<br />

1 325 ( 325)<br />

2<br />

= 325<br />

iii) A = [ ! ! ]<br />

The amplitude is 325 V.<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> 473


<strong>Chapter</strong> 4 Practice Test Question 14 Page 247<br />

a) V (t) = 170sin(<strong>12</strong>0!t)<br />

V "(t) = 170(<strong>12</strong>0!)cos(<strong>12</strong>0!t)<br />

The critical points are given by V '( t ) = 0 .<br />

0 = 170(<strong>12</strong>0!)cos(<strong>12</strong>0!t)<br />

0 = cos(<strong>12</strong>0!t)<br />

<strong>12</strong>0!t = ! 2 , 3! 2 , 5! 2 ,...<br />

t = 1<br />

240 , 3<br />

240 , 5<br />

240 ,...<br />

! 1 $<br />

V<br />

"<br />

# 240%<br />

& = 170sin !<br />

<strong>12</strong>0' ! 1 $ $<br />

#<br />

"<br />

# 240%<br />

& &<br />

"<br />

%<br />

= 170<br />

! 3 $<br />

V<br />

"<br />

# 240%<br />

& = 170sin !<br />

<strong>12</strong>0' ! 3 $ $<br />

#<br />

"<br />

# 240%<br />

& &<br />

"<br />

%<br />

= (170<br />

4 1<br />

Maximum voltage: 170 V at time, in seconds,<br />

! k +<br />

% t t = , k #! , k $<br />

" 0 & .<br />

' 200<br />

(<br />

4 3<br />

Minimum voltage: –170 V at time, in seconds,<br />

! k +<br />

% t t = , k #! , k $<br />

" 0 & .<br />

' 200<br />

(<br />

2!<br />

i) T =<br />

<strong>12</strong>0!<br />

= 1<br />

60<br />

The period is<br />

1<br />

60 s.<br />

ii)<br />

1<br />

f =<br />

T<br />

= 60 Hz<br />

The frequency is 60 Hz.<br />

1 170 ( 170)<br />

2<br />

= 170 V<br />

iii) A = [ ! ! ]<br />

The amplitude is 170 V.<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> 474


) Answers may vary. For example;<br />

Similarities: Both functions are sinusoidal functions <strong>and</strong> both functions pass through the origin (0, 0).<br />

Differences: The functions have different periods, frequencies, <strong>and</strong> amplitudes.<br />

<strong>Chapter</strong> 4 Practice Test Question 15 Page 247<br />

L.S. = d (sin 2x)<br />

dx<br />

= 2cos 2x<br />

R.S. = d (2sin x cos x)<br />

dx<br />

= 2cos 2 x ! 2sin 2 x<br />

Recall:<br />

sin 2x = 2sin x cos x<br />

2cos 2x = 2cos 2 x ! 2sin 2 x<br />

Therefore, differentiating both sides of the given equation gives the identity cos 2x = cos 2 x – sin 2 x.<br />

<strong>Chapter</strong> 4 Practice Test Question 16 Page 247<br />

a) f !(x) = " sin 2 x + cos 2 x<br />

f !!(x) = "4sin x cos x<br />

b) f !!! (x) = "4 #<br />

$<br />

" sin 2 x + cos 2 x%<br />

&<br />

f ( 4)<br />

(x) = 16sin x cos x<br />

f ( 5)<br />

(x) = 16 "<br />

#<br />

! sin 2 x + cos 2 x$<br />

%<br />

f ( 6)<br />

(x) = !64sin x cos x<br />

Answers may vary. For example:<br />

2 2<br />

The first, third, <strong>and</strong> fifth derivatives all have the expression ! sin x + cos x in the derivative.<br />

The second, fourth, <strong>and</strong> sixth derivative all have the expression sin x cos x in the derivative.<br />

The second derivative is the original function multiplied by −4.<br />

The third derivative is the first derivative multiplied by −4.<br />

This pattern continues for fourth to sixth derivatives so that the n derivative is the (n – 2) derivative<br />

multiplied by –4.<br />

c) Answers may vary. For example:<br />

My prediction for the seventh derivative is f ( 7)<br />

(x) = !64 "<br />

#<br />

! sin 2 x + cos 2 x$<br />

% .<br />

My prediction for the eighth derivative is f ( 8)<br />

(x) = 256sin x cos x .<br />

When the sixth derivative is differentiated, the seventh derivative is f ( 7)<br />

(x) = !64 "<br />

#<br />

! sin 2 x + cos 2 x$<br />

% as<br />

predicted. When the seventh derivative is differentiated, the eighth derivative is found to be<br />

( ) (x) = 256sin x cos x as predicted.<br />

f 8<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> 475


d) Answers may vary. For example:<br />

i) f ( 2n)<br />

(x) = (!4) n sin x cos x<br />

ii) f (2n+1) (x) = (!4) n (! sin 2 x + cos 2 x)<br />

e) i) f (<strong>12</strong>) (x) = 4096sin x cos x<br />

ii) f (15) (x) = !16384(! sin 2 x + cos 2 x)<br />

<strong>Chapter</strong> 4 Practice Test Question 17 Page 247<br />

Answers will vary. For example:<br />

a) y = sin x<br />

dy<br />

dx = cos x<br />

d 2 y<br />

dx = ! sin x<br />

2<br />

d 3 y<br />

dx = ! cos x<br />

3<br />

d 4 y<br />

dx = sin x<br />

4<br />

d 5 y<br />

dx = cos x<br />

5<br />

b) y = cos x , y = ! cos x<br />

c) There are four functions that satisfy this differential equation. The fourth function is y = ! sin x . The<br />

functions are sinusoidal <strong>and</strong> the derivatives of each of the functions are shifted horizontally to the left,<br />

or to the right, ! 2<br />

units. The graph of the fifth derivative of each of the functions will be the same as<br />

the graph of the first derivative of each of the functions.<br />

<strong>MHR</strong> <strong>Calculus</strong> <strong>and</strong> <strong>Vectors</strong> <strong>12</strong> <strong>Solutions</strong> 476

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!