20.01.2015 Views

Utilization of a Unitary Transform for Efficient Computation in the ...

Utilization of a Unitary Transform for Efficient Computation in the ...

Utilization of a Unitary Transform for Efficient Computation in the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

YILMAZER et al.: UTILIZATION OF A UNITARY TRANSFORM FOR EFFICIENT COMPUTATION 179<br />

TABLE I<br />

SUMMARY OF SIGNAL FEATURES INCIDENT ON THE ANTENNA ARRAY<br />

One should state that premultiply<strong>in</strong>g and postmultiply<strong>in</strong>g<br />

by and require only additions and scal<strong>in</strong>g. For<br />

example, <strong>in</strong> <strong>the</strong> case <strong>of</strong> sensor elements, and <strong>for</strong> a given<br />

pencil parameter , <strong>the</strong> computations done <strong>for</strong> <strong>the</strong> unitary<br />

trans<strong>for</strong>mation,<br />

, requires around<br />

real additions. This is negligible as compared to<br />

<strong>the</strong> computations done <strong>for</strong> <strong>the</strong> computation <strong>in</strong>volved <strong>in</strong> <strong>the</strong><br />

eigendecomposition [8], [9].<br />

Eigenstructure based methods <strong>for</strong> estimat<strong>in</strong>g DOA <strong>of</strong> <strong>the</strong><br />

sources imp<strong>in</strong>g<strong>in</strong>g on a ULA requires complex calculations<br />

<strong>in</strong> comput<strong>in</strong>g <strong>the</strong> eigenvectors and <strong>the</strong> eigenvalues. The MP<br />

method, <strong>in</strong> addition, requires <strong>the</strong> computation <strong>of</strong> a SVD <strong>of</strong> <strong>the</strong><br />

complex-valued data. It should be stated that eigendecomposition<br />

with complex-valued data matrix is quite computation<br />

<strong>in</strong>tensive. The eigen-decomposition process consists <strong>of</strong> a large<br />

portion <strong>of</strong> <strong>the</strong> whole computational load. To reduce <strong>the</strong> computational<br />

complexity dur<strong>in</strong>g eigen-decomposition, application<br />

<strong>of</strong> a unitary trans<strong>for</strong>mation is proposed <strong>for</strong> DOA estimation<br />

by us<strong>in</strong>g a real-valued SVD. Comput<strong>in</strong>g <strong>the</strong> eigen-components<br />

<strong>of</strong> <strong>the</strong> unitary trans<strong>for</strong>med data matrix requires only real<br />

computations. Real-valued eigendecomposition has a reduced<br />

computational complexity than <strong>the</strong> complex one approximately<br />

by a factor <strong>of</strong> four.<br />

The unitary MP (UMP) method is thus a completely realvalued<br />

algorithm as it requires only real-valued computations.<br />

Apart from f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> s<strong>in</strong>gular values and vectors, <strong>the</strong> rest <strong>of</strong> <strong>the</strong><br />

calculations are also real computations as opposed to <strong>the</strong> ones<br />

done <strong>in</strong> <strong>the</strong> conventional MP method. A big portion <strong>of</strong> <strong>the</strong> computational<br />

load is occupied by <strong>the</strong> multiplication operations, so<br />

trans<strong>for</strong>m<strong>in</strong>g <strong>the</strong> data can save a noticeable amount <strong>of</strong> computations<br />

and <strong>the</strong> process<strong>in</strong>g time is reduced greatly.<br />

V. SIMULATION RESULTS<br />

In this section, <strong>the</strong> computer simulation results are given to illustrate<br />

<strong>the</strong> per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> UMP method. The noisy signal<br />

model is <strong>for</strong>mulated from (14). is treated as a zero mean<br />

Gaussian white noise with variance . Uni<strong>for</strong>mly spaced arrays<br />

(ULA) <strong>of</strong> omnidirectional isotropic po<strong>in</strong>t sensors are considered<br />

<strong>in</strong> this study. The distance between any two elements<br />

<strong>of</strong> <strong>the</strong> ULA is half a wavelength. is <strong>the</strong> voltage <strong>in</strong>duced<br />

at each <strong>of</strong> <strong>the</strong> antenna elements, <strong>for</strong><br />

.Itis<br />

assumed that <strong>the</strong>re are 6 antenna elements and two signals are<br />

imp<strong>in</strong>g<strong>in</strong>g on <strong>the</strong> array with amplitudes<br />

. The<br />

phases, magnitudes and DOA <strong>of</strong> <strong>the</strong> two imp<strong>in</strong>g<strong>in</strong>g signals are<br />

tabulated <strong>in</strong> Table I.<br />

S<strong>in</strong>ce <strong>the</strong> estimated direction <strong>of</strong> arrival is treated as a random<br />

variable, <strong>the</strong> stability/accuracy <strong>of</strong> <strong>the</strong> results need to be expressed<br />

<strong>in</strong> terms <strong>of</strong> its statistical properties, which <strong>in</strong> this case<br />

Fig. 1. Variance 010 log (var( ^ )) UMP, MP, and <strong>the</strong> CRLB are plotted<br />

aga<strong>in</strong>st <strong>the</strong> SNR.<br />

are <strong>the</strong> estimated values such as <strong>the</strong> mean, variance, and so<br />

on <strong>of</strong> <strong>the</strong> estimate. The Cramer–Rao lower bound (CRLB)<br />

measures <strong>the</strong> goodness <strong>of</strong> an estimator. CRLB is <strong>the</strong> limit that<br />

<strong>the</strong> variance <strong>of</strong> <strong>the</strong> estimates contam<strong>in</strong>ated by white Gaussian<br />

noise cannot be any smaller than this bound. The simulation<br />

results show that <strong>the</strong> variance <strong>of</strong> <strong>the</strong> estimators approaches to<br />

<strong>the</strong> CRLB. The bound is found by us<strong>in</strong>g <strong>the</strong> Fisher <strong>in</strong><strong>for</strong>mation<br />

matrix ( ), whose diagonal elements are <strong>the</strong> correspond<strong>in</strong>g<br />

CRLB <strong>of</strong> that element. Fisher is def<strong>in</strong>ed by<br />

(43)<br />

(44)<br />

where is <strong>the</strong> estimate <strong>of</strong> . Here, is probability density<br />

function conditioned to an unknown vector parameter . The diagonal<br />

elements <strong>of</strong> <strong>the</strong> <strong>in</strong>verse <strong>of</strong> <strong>the</strong> Fisher def<strong>in</strong>e <strong>the</strong> bound<br />

on that estimated value as shown <strong>in</strong> [15]. In this study, a comparison<br />

<strong>in</strong> per<strong>for</strong>mance is made between <strong>the</strong> MP and <strong>the</strong> UMP<br />

method. We compute <strong>the</strong> CRLB <strong>of</strong> <strong>the</strong> variance <strong>for</strong> <strong>the</strong> estimate<br />

<strong>of</strong> <strong>the</strong> DOA. The <strong>in</strong>verse <strong>of</strong> <strong>the</strong> sample <strong>in</strong>variance <strong>of</strong> <strong>the</strong> estimate<br />

<strong>of</strong> (DOA) and <strong>the</strong> <strong>in</strong>verse variance <strong>of</strong> <strong>the</strong> MP method<br />

us<strong>in</strong>g complex data, <strong>in</strong>verse variance <strong>of</strong> <strong>the</strong> UMP method and<br />

<strong>the</strong> correspond<strong>in</strong>g CRLB versus signal-to-noise ratio (SNR) <strong>of</strong><br />

<strong>the</strong> <strong>in</strong>put voltages is plotted <strong>in</strong> Fig. 1. Different values <strong>of</strong> SNR<br />

comprise <strong>the</strong> -axis and <strong>the</strong> <strong>in</strong>verse <strong>of</strong> <strong>the</strong> variance <strong>of</strong> <strong>the</strong> estimated<br />

arrival angle <strong>in</strong> logarithmic doma<strong>in</strong>,<br />

is shown along <strong>the</strong> -axis.<br />

To obta<strong>in</strong> <strong>the</strong> sample variance <strong>of</strong> <strong>the</strong> estimate <strong>of</strong> , 300<br />

<strong>in</strong>dependent trials have been per<strong>for</strong>med. Noise <strong>for</strong> each<br />

run is <strong>in</strong>dependent <strong>of</strong> each o<strong>the</strong>r. In <strong>the</strong> summary <strong>of</strong> algorithm<br />

section, <strong>the</strong> Step 6 implies that all <strong>the</strong> eigenvalues <strong>of</strong><br />

are real. One should<br />

recall that <strong>the</strong> eigenvalues <strong>of</strong> a real matrix can ei<strong>the</strong>r be real<br />

or <strong>the</strong>y occur <strong>in</strong> complex conjugate pairs. In <strong>the</strong> case <strong>of</strong> very<br />

noisy environment, <strong>the</strong> eigenvalues <strong>of</strong> this matrix may fail to be<br />

real and <strong>the</strong>y occur <strong>in</strong> complex conjugate pairs, which is also

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!