20.01.2015 Views

Next Generation Mobile Network - WorkShop

Next Generation Mobile Network - WorkShop

Next Generation Mobile Network - WorkShop

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Next</strong> <strong>Generation</strong><br />

<strong>Mobile</strong> <strong>Network</strong>s<br />

Presented by: Avi Patir<br />

November 15, 2007


The Expansion of Broadband


Growth in Broadband<br />

18% average annual growth (2006-2010)<br />

» Broadband penetration in<br />

Europe is currently 25% with a<br />

Y/Y growth of 43% over the<br />

past two years<br />

» In Asia Pacific, broadband<br />

infiltration is only 11%, but Y/Y<br />

growth is 58%<br />

Active subscriptions (million)<br />

Worldwide Broadband Subscriber Growth<br />

500<br />

50%<br />

416<br />

400<br />

350<br />

40%<br />

299<br />

300 258<br />

30%<br />

218<br />

200 22%<br />

20%<br />

18%<br />

19%<br />

16%<br />

17%<br />

100<br />

10%<br />

0<br />

2006 2007 2008 2009 2010<br />

Total BB Subscribers<br />

%YoY Growth<br />

0%<br />

Source: Motorola and Infonetics, May 2006


I Am Stuck At Home


I Want My Stuff To Go With Me


Multi Media <strong>Mobile</strong> Device<br />

WWAN VoIP WWAN VoIP WWAN VoIP<br />

Bluetooth TM WWAN Data WWAN Data<br />

WWAN VoIP<br />

WWAN Data<br />

WWAN VoIP<br />

WWAN Data<br />

Bluetooth TM<br />

GPS<br />

MediaFLO<br />

Wi-Fi<br />

Bluetooth TM<br />

Bluetooth TM<br />

Voice call to<br />

sales manager<br />

While on call,<br />

checks email and<br />

downloads<br />

presentation with<br />

latest sales figures<br />

Checks location<br />

and directions to<br />

client’s office<br />

Watches game on<br />

MediaFLO and has<br />

a group chat with<br />

friends<br />

At home, playing<br />

multiplayer 3D<br />

game, using Wi-Fi<br />

to send video to<br />

nearby display


Rise of Wireless Broadband<br />

Wireless broadband will liberate our connections<br />

Making them wireless and making them mobile<br />

• Globally, mobile surpassed<br />

fixed lines in 2002<br />

• By 2003 mobile had attained<br />

near 40% of telecom service<br />

revenues<br />

Worldwide Broadband Subscriber Forecast<br />

Wireline vs. Wireless<br />

Wireline Broadband<br />

Wireless Broadband<br />

• <strong>Mobile</strong> data revenues are<br />

projected to experience a 20%<br />

CAGR with significant portion<br />

of revenues from mobile<br />

access to information and<br />

entertainment<br />

5M<br />

2%<br />

213M<br />

98%<br />

2006<br />

343M<br />

82%<br />

2010<br />

73M<br />

18%<br />

Source: Motorola and Infonetics, May 2006


Future <strong>Mobile</strong> <strong>Network</strong><br />

Characteristics


4G <strong>Mobile</strong> <strong>Network</strong>s<br />

A spectrally efficient system (in bits/s/Hz and bit/s/Hz/site)<br />

High network capacity: more simultaneous users per cell<br />

A nominal data rate of 100 Mbit/s while the client<br />

physically moves at high speeds (>100 Km/h) relative to<br />

the station, and 1 Gbit/s while client and station are in<br />

relatively fixed positions<br />

A data rate of at least 100 Mbit/s between any two points<br />

in the world<br />

Smooth handoff across heterogeneous networks<br />

Seamless connectivity and global roaming across multiple<br />

networks<br />

High quality of service for next generation multimedia<br />

support (real time audio, high speed data, HDTV video<br />

content, mobile TV, etc)<br />

Interoperability with existing wireless standards, and<br />

An all IP, packet switched network


Trending Toward Broadband IP-Based Systems<br />

CDMA-3GPP2<br />

ANSI-41 Ckt MSC<br />

WIN HLR<br />

ISUP<br />

cdma2000<br />

Circuit based<br />

Legacy Architecture<br />

1X<br />

802.11b<br />

802.11a/g<br />

MSS/HLR<br />

Packet based<br />

Legacy Architecture<br />

EV-DO<br />

802.16e<br />

EV-DO-A<br />

Packet based<br />

EV-DO-B<br />

Multimedia<br />

IOS V5.0<br />

LMSD<br />

WiMAX<br />

UMB<br />

Voice<br />

Core<br />

Packet<br />

Core<br />

GSM-3GPP<br />

GSM-MAP<br />

CAMEL<br />

ISUP<br />

GSM<br />

CktMSC<br />

HLR<br />

GPRS<br />

EDGE<br />

HSUPA<br />

HSDPA 802.16e<br />

802.11a/g 802.20<br />

WCDMA<br />

DVB<br />

802.11b<br />

Circuit based<br />

Legacy Architecture<br />

MSS/HLR<br />

Packet based<br />

Legacy Architecture<br />

UMTS R5 CS<br />

LTE<br />

Voice<br />

Core<br />

Multi-Mode<br />

<strong>Mobile</strong>s<br />

SIP-<strong>Mobile</strong>s Home Gateways<br />

WiFi <strong>Mobile</strong>s<br />

Now<br />

Time<br />

Terminals


Dynamic Industry Evolution<br />

Today’s wireless technologies<br />

evolving to tomorrow’s next generation platforms<br />

70<br />

Market size by technology<br />

60<br />

$ Billions<br />

50<br />

40<br />

30<br />

20<br />

802.16e / WiMAX<br />

LTE<br />

UMTS<br />

GSM<br />

UMB<br />

CDMA<br />

10<br />

0<br />

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015


Increasing Technology<br />

Leverage<br />

Classic Design<br />

Future<br />

Wireless<br />

Voice<br />

Vertical<br />

Features<br />

Transport<br />

Switch<br />

Radio<br />

Controller<br />

Base<br />

Stations<br />

Wireline<br />

Voice<br />

Vertical<br />

Features<br />

Transport<br />

Class 4<br />

Switching<br />

Class 5<br />

Switching<br />

POTS<br />

Phone<br />

Video<br />

Vertical<br />

Features<br />

Content<br />

Transport<br />

Cable<br />

Box<br />

Analog<br />

TV<br />

Data<br />

Vertical<br />

Features<br />

Content<br />

Transport<br />

Dial-Up<br />

Computer<br />

Wireless/Wireline Voice<br />

Video<br />

Internet Video Access<br />

Entertainment<br />

Applications<br />

VoIP Core<br />

Operator Services<br />

Internet Protocol (IP)<br />

Broadband Connection<br />

Guides / Directories


Broadband Applications


NG <strong>Mobile</strong> <strong>Network</strong>s<br />

Technologies<br />

System Characteristics<br />

• All IP<br />

• Convergence<br />

• E2E QOS<br />

• Seamless Mobility<br />

• Flat <strong>Network</strong><br />

Enabling Technologies<br />

• OFDMA<br />

• MIMO<br />

• Smart Antenna<br />

• <strong>Mobile</strong> IP


<strong>Mobile</strong> WiMAX


The Need For Speed<br />

Data Downloaded (5 MegaBytes)<br />

Typical<br />

Peak Rate<br />

GPRS<br />

EDGE<br />

WCDMA<br />

DSL<br />

Cable<br />

EV/DO-A<br />

HSDPA<br />

80 Kbps<br />

128 Kbps<br />

384 Kbps<br />

1.5 Mbps<br />

3.0 Mbps<br />

3.1 Mbps<br />

3.6 Mbps<br />

WiMAX<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 MB<br />

11 Mbps<br />

* 5 MHz, TDD<br />

SMS<br />

Email Internet<br />

Browsing<br />

Java<br />

Game<br />

Email<br />

Attachment<br />

Music File<br />

Downloads<br />

Video File<br />

Downloads


Standard<br />

IEEE 802.16 is the standard.<br />

WiMAX is the name.<br />

The WiMAX label was introduced by<br />

the WiMAX Forum to promote the 802.16<br />

family of standards<br />

802.16<br />

(2001)<br />

Line-of-Sight (LOS)<br />

10-66 GHz<br />

802.16c<br />

(2002)<br />

802.16a<br />

(2003)<br />

Non-Line-of-Sight (NLOS)<br />

2-11 GHz<br />

802.16d<br />

(Oct 2004)<br />

802.16e<br />

(Dec 2005)


Profiles<br />

Motorola is a board member of the WiMAX Forum<br />

and has participation in every working group<br />

WiMAX Forum specifies profiles for 802.16-2004 and 802.16e<br />

“802.16 Standards<br />

Compliant”<br />

WiMAX Forum<br />

Certified<br />

IEEE<br />

802.16e<br />

Fixed / <strong>Mobile</strong><br />

WiMAX Profiles<br />

(To be finalized in 2H 2006)<br />

128-2048 FFT Scaleable OFDMA<br />

Focus on 2.5, 3.5, 5.8 GHz<br />

IEEE<br />

802.16d<br />

Fixed<br />

WiMAX Profiles<br />

256 FFT OFDM<br />

3.5 GHz with 4 Variations:<br />

FDD: 3.5 MHz, 7.0 MHz Channels<br />

TDD: 3.5 MHz, 7.0 MHz Channels<br />

5.8 GHz: 10 MHz Ch; TDD


Spectrum<br />

Motorola is working with global regulators to drive<br />

frequency allocations and harmonize spectrum<br />

Spectral allocations for wireless broadband vary by region; preliminary<br />

profiles focused on 2.5 GHz, 3.5 GHz & 5.8 GHz<br />

US WCS<br />

2.305 – 2.32 GHz<br />

2.345-2.36 GHz<br />

3.3 – 3.4 GHz 3.6 – 3.8 GHz<br />

WRC<br />

5.47 – 5.725 GHz<br />

MDS<br />

2.5 – 2.69 GHz<br />

2.7 – 2.9 GHz<br />

3.5 GHz Band<br />

3.4 – 3.6 GHz<br />

Low/Mid UNII<br />

Band<br />

5.15 – 5.35 GHz<br />

Upper UNII Band<br />

5.725 – 5.85 GHz<br />

3.3-3.4 GHz India, China<br />

3.5 GHz W. Europe, LAC<br />

3.6-3.85 GHz E. Europe, Canada, LAC<br />

5.725 – 5.850 GHz Russia<br />

2.5 GHz US, Singapore, Malaysia,<br />

Japan<br />

Current WiMAX (Rev D) Profiles<br />

Potential Future WiMAX Profiles


<strong>Mobile</strong> WiMAX<br />

System Characteristics


All IP<br />

All existing IP applications will work over WiMAX networks<br />

Throughput and latency stringent applications (VoIP,<br />

streaming video, gaming, etc.) will work better<br />

Motorola solutions easily fits into an existing wired or wireless<br />

application framework<br />

TODAY: 2G & 3G<br />

PSTN<br />

Internet<br />

FUTURE MODEL<br />

SGSN<br />

MSS<br />

PSTN<br />

Internet<br />

Border Gateway and<br />

Home Agent<br />

IMS<br />

Base Station<br />

Controllers<br />

Operator’s<br />

IP <strong>Network</strong><br />

CAP<br />

Controller<br />

Base Stations<br />

Access Points


Simplified Backhaul <strong>Network</strong><br />

Traditional Wireless<br />

WiMAX<br />

Internet<br />

PSTN<br />

Internet<br />

PDSN or<br />

GGSN/SSGN<br />

MSC<br />

T1s<br />

Base Station<br />

Controller<br />

Simpler<br />

lower-cost<br />

all-IP<br />

RF networks<br />

ASN<br />

Gateway<br />

Base Stations<br />

WiMAX<br />

Access Points


Mesh <strong>Network</strong>ing<br />

(BS)<br />

(Subscriber Station)<br />

(SS)<br />

(SS)<br />

(SS)<br />

(BS)


Light Infrastructure Benefits<br />

Traditional Cellular<br />

Infrastructure<br />

Light Infrastructure<br />

Antennas Separate Modular<br />

Active Elements Many Few<br />

Civil Works Tower Pole/Stand<br />

Cooling A/C Convection/Fans<br />

Cabling Analog Coax Digital<br />

Real Estate Traditional Zero Footprint<br />

Infrastructure Housing Temp Control Building All Outdoor<br />

Power Kilowatts Watts<br />

Backhaul T1s Wireless IP<br />

Installation Tools Heavy Equipment Hand Tools


Seamless Mobility


<strong>Mobile</strong> WiMAX<br />

Enabling Technologies


OFDM Basics


Why the Focus on OFDM<br />

The OFDM signal is able to support NLOS<br />

performance while maintaining a high level of spectral<br />

efficiency maximizing the available spectrum.<br />

Superior NLOS performance enables significant<br />

equalizer design simplification.<br />

Supports operation in multi-path propagation<br />

environments.<br />

Usage of cyclic prefix provides additional multi-path<br />

immunity as well as tolerance for time synchronization<br />

errors.<br />

Scalable bandwidths provide flexibility and potentially<br />

reduces capital expense.


OFDM Basic Concept<br />

OFDM is a multi-carrier modulation scheme that transmits<br />

data over a number of orthogonal sub-carriers<br />

A conventional transmission uses only a single carrier,<br />

which is modulated with all the data to be sent<br />

OFDM breaks the data to be sent in to small chunks,<br />

allocating each sub-data stream to a sub-carrier and the<br />

data is sent in parallel orthogonal sub-carriers.<br />

FDM<br />

OFDM


Orthogonality Principle<br />

Two signals g 1 (t) and g 2 (t) are said to be orthogonal over the period Ts if:<br />

s g 1<br />

(t) g 2<br />

(t)<br />

PEAK<br />

For example:<br />

T<br />

∫ s<br />

0<br />

j 2π<br />

f t − j 2π<br />

f t<br />

p<br />

q<br />

e . e d t = 0<br />

ZERO<br />

for p ≠ q, where f k =k/T


OFDM Spectral Overlap<br />

Conventional Frequency Division Multiplex (FDM) Multi-carrier Modulation Technique<br />

OFDM subcarriers have a sinc (sin(x)/x) frequency response resulting in<br />

overlap in the frequency domain. This overlap does however not cause any<br />

interference due to the orthogonality of the subcarriers.<br />

Saving of the bandwidth<br />

Orthogonal Frequency Division Multiplex (OFDM) Multi-carrier Modulation Technique<br />

The OFDM receiver uses a time and frequency synchronized FFT to convert the OFDM time waveform back into<br />

the frequency domain. In this process the FFT picks up discrete frequency samples, corresponding to just the<br />

peaks of the carriers. At these frequencies, all other carriers pass through zero amplitude eliminating any<br />

interference between the subcarriers.


Multipath and OFDM<br />

OFDM Offers Advantage in Frequency Selective Fading<br />

Environments<br />

Channel Response<br />

Only a few subcarriers are lost due to fading. This can be<br />

overcome with proper channel coding.


More Multipath<br />

Mitigation…Cyclic Prefix<br />

Delay spread exceeds symbol time<br />

Add a gap to capture delay spread<br />

Can’t have gaps in transmission…copy part of symbol and put it in the front


Advanced Antennas Technologies<br />

MIMO Matrix A<br />

Space Time Block Coding (STBC)<br />

MIMO Matrix B<br />

Spatial Multiplexing (MIMO-SM)<br />

MRT & Beamforming<br />

Interferer<br />

Data Stream A<br />

Data Stream A<br />

WiMAX<br />

Subscriber A<br />

WiMAX<br />

Subscriber B<br />

Interferer<br />

Data Stream A<br />

Data Stream B<br />

Enhancing Coverage<br />

Improving Capacity<br />

Directing the radiation pattern


Smart Antenna Technique<br />

<br />

<br />

8-Rx MRC in the Uplink<br />

• 9-12dB additional UL gain from coherent combining & Rx<br />

diversity<br />

4-Tx Single-Stream in the Downlink<br />

• Coherent frequency-selective transmit beamforming using<br />

Uplink Channel Sounding feature of 802.16e<br />

• Additional 6dB DL gain from additional TX power<br />

• Approximately 6dB to 12dB additional DL coherent gain<br />

• Minimal impact on subscriber device design<br />

x 1<br />

(k)<br />

y 1<br />

(k)<br />

v 1<br />

(k)<br />

w 1<br />

(k)<br />

x 2<br />

(k)<br />

y 2<br />

(k)<br />

s(k) Σ z(k)<br />

v 2<br />

(k)<br />

w 2<br />

(k)<br />

x MT<br />

(k)<br />

y MR<br />

(k)<br />

v MT<br />

(k)<br />

w MR<br />

(k)


Diversity Technique<br />

2-RX MRC in the Uplink<br />

• Expect 3-5dB gain over single receive<br />

antenna<br />

2-TX Alamouti Diversity in the Downlink<br />

• Expect 3dB gain from doubling TX power<br />

• Expect 1-3dB additional TX diversity gain<br />

BS<br />

Subchannel<br />

Modulation<br />

IFTT<br />

Input<br />

Packing<br />

TX<br />

Diversity<br />

Encoder<br />

IFTT<br />

IFTT<br />

Filter<br />

Filter<br />

DAC<br />

DAC<br />

RF<br />

RF<br />

SS<br />

RF<br />

ADC<br />

Filter<br />

IFTT<br />

Diversity<br />

Combiner<br />

Subchannel<br />

Demodulator<br />

Loglikelihood<br />

Ratios<br />

Decoder


<strong>Mobile</strong> IP Basics


The benefit of <strong>Mobile</strong> IP<br />

“<br />

“<strong>Mobile</strong> IP provides an IP node the ability to<br />

retain the same IP address and maintain<br />

uninterrupted network and application<br />

connectivity while traveling across<br />

networks ”<br />


The Problem with Mobility<br />

“Connect to<br />

171.68.69.24”<br />

<br />

Gateway A<br />

171.68.0.0<br />

Internet<br />

Host B<br />

Gateway C<br />

140.31.0.0<br />

<strong>Mobile</strong> Router<br />

171.68.69.0<br />

171.68.70.0 <strong>Mobile</strong> Router<br />

171.68.69.0<br />

• Gateway C blocks router from joining network<br />

• Gateway A replies to Host B with an ICMP unreachable<br />

• Routing Protocol rejects duplicate network advertisements<br />

171.68.70.0<br />

X<br />

SEND


<strong>Mobile</strong> IP Solution<br />

<strong>Mobile</strong> Router<br />

171.68.69.0<br />

Mobility Binding Table:<br />

MR<br />

CoA<br />

171.68.69.0 140.31.2.1<br />

Home Agent<br />

171.68.60.1<br />

Internet<br />

171.68.70.0 <strong>Mobile</strong> Router<br />

171.68.69.0<br />

171.68.70.0<br />

Host B<br />

Foreign Agent<br />

COA 140.31.2.1<br />

• <strong>Mobile</strong> Router sends Registration Request [RRQ] to Home Agent (HA)<br />

• Home Agent forwards packets to <strong>Mobile</strong> Router via Care of Address [CoA]


<strong>Mobile</strong> IP Terminology<br />

MN<br />

HA<br />

HA, Home Agent<br />

Internet<br />

Maintains an association between the<br />

MN’s “home” IP address and its care of<br />

address (loaned address) on the<br />

foreign network<br />

Redirects and tunnels packets to the<br />

care of address on the foreign network<br />

COA<br />

MN<br />

CN<br />

MN, <strong>Mobile</strong> Node<br />

FA<br />

FA, Foreign Agent<br />

An IP host that maintains network<br />

connectivity using its “home” IP address,<br />

regardless of which subnet (or network) it<br />

is connected to<br />

CN, Correspondent Node<br />

Destination IP host in session with<br />

a <strong>Mobile</strong> Node<br />

Provides an addressable point of<br />

attachment to the MN called Care Of<br />

Address (COA)<br />

Maintains an awareness for all<br />

visiting MNs<br />

Acts as a ‘relay’ between the MN and<br />

its Home Agent<br />

Receives all packets for the MN from<br />

the MN’s Home Agent


Thank You

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!