20.01.2015 Views

Tutorial: Multi-Species Lattice Boltzmann Models and Applications

Tutorial: Multi-Species Lattice Boltzmann Models and Applications

Tutorial: Multi-Species Lattice Boltzmann Models and Applications

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Tutorial</strong>: <strong>Multi</strong>-<strong>Species</strong> <strong>Lattice</strong> <strong>Boltzmann</strong> <strong>Models</strong><br />

<strong>and</strong> <strong>Applications</strong><br />

Pietro Asinari, PhD<br />

Dipartimento di Energetica, Politecnico di Torino, Torino, Italy,<br />

e-mail: pietro.asinari@polito.it,<br />

home page: http://staff.polito.it/pietro.asinari<br />

19th Discrete Simulation of Fluid Dynamics<br />

CNR <strong>and</strong> University of Rome, "Tor Vergata", Rome, Italy, on July 5-9, 2010<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 1 / 51


Abstract of this tutorial<br />

The aim of this tutorial is to discuss a numerical scheme based on the<br />

<strong>Lattice</strong> <strong>Boltzmann</strong> Method (LBM) for gas mixture modeling, which fully<br />

recovers Maxwell-Stefan diffusion model in the continuum limit, without<br />

the restriction of the mixture-averaged approximation [1]. The<br />

mixture-averaged approximation is used to express the molar<br />

concentration gradient by means of a Fickian expression <strong>and</strong> a proper<br />

diffusion coefficient, both designed in such a way to be consistent with<br />

the Maxwell-Stefan formulation only in some limiting cases.<br />

Unfortunately (a) this approximation yields to Fickian diffusion<br />

coefficients depending on both the fluid transport properties <strong>and</strong> the<br />

local flow <strong>and</strong> (b) it is not valid in general. The key idea for avoiding<br />

these problems is to start from a Bhatnagar-Gross-Krook-type kinetic<br />

model for gas mixtures, recently proposed by Andries, Aoki <strong>and</strong><br />

Perthame [2] (the so-called AAP model).<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 2 / 51


Outline of this tutorial<br />

1 Kinetic theory of rarefied gas mixtures<br />

Full <strong>Boltzmann</strong> equations<br />

Exchange relation for momentum<br />

2 <strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Single-relaxation-time <strong>Lattice</strong> <strong>Boltzmann</strong> scheme<br />

Andries-Aoki-Perthame (AAP) model<br />

LBM formulation by variable transformation<br />

3 Validation <strong>and</strong> simple applications<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 3 / 51


Kinetic theory of rarefied gas mixtures<br />

Outline Compass<br />

1 Kinetic theory of rarefied gas mixtures<br />

Full <strong>Boltzmann</strong> equations<br />

Exchange relation for momentum<br />

2 <strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Single-relaxation-time <strong>Lattice</strong> <strong>Boltzmann</strong> scheme<br />

Andries-Aoki-Perthame (AAP) model<br />

LBM formulation by variable transformation<br />

3 Validation <strong>and</strong> simple applications<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 4 / 51


Kinetic theory of rarefied gas mixtures<br />

Full <strong>Boltzmann</strong> equations<br />

Full <strong>Boltzmann</strong> equations for gas mixtures<br />

The simultaneous <strong>Boltzmann</strong> equations for a mixture without<br />

external force can be written as [3, 4, 5, 6]:<br />

∂ t f σ + ξ·∇f σ + a σ ·∇ ξ f σ = Q σ = ∑ ς<br />

Q σς , (1)<br />

where Q σς = Q ςσ , ς ≠ σ, is the cross collision term for two<br />

different species σ (with mass m σ ) <strong>and</strong> ς (with mass m ς ).<br />

Obviously, for an N-component system, there will be N such<br />

equations. In general, the collision term is<br />

∫ ∫<br />

Q σς ˙= K σς (g, n) [ f σ (ξ ′ )f ς (ξ ∗) ′ − f σ (ξ)f ς (ξ ∗ ) ] dn dξ ∗ ,<br />

R 3 ξ<br />

g·n


Kinetic theory of rarefied gas mixtures<br />

Full <strong>Boltzmann</strong> equations<br />

Collision kernel <strong>and</strong> post–collision velocities<br />

The weight K σς (g, n) = K ςσ (g, n) is a volumetric particle flux or<br />

collision kernel. In the following, we will discuss only the case of<br />

Maxwell molecules [7], namely K σς (|g · n|/|g|), where the collision<br />

kernel is independent of the relative velocity.<br />

In the previous equation, the post–collision test <strong>and</strong> field particle<br />

velocities ξ ′ <strong>and</strong> ξ ′ ∗ are given by<br />

ξ ′ = ξ + 2µ σς<br />

m σ<br />

(g · n) n, (3)<br />

ξ ′ ∗ = ξ ∗ − 2µ σς<br />

m ς<br />

(g · n) n, (4)<br />

which means that there are many possible outcomes (ξ ′ , ξ ′ ∗) from<br />

a given pair of incoming (test <strong>and</strong> field) particle velocities (ξ, ξ ∗ ),<br />

depending on the impact direction n.<br />

The reduced mass µ σς is defined as<br />

µ σς = m σ m ς /(m σ + m ς ). (5)<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 6 / 51


Kinetic theory of rarefied gas mixtures<br />

Full <strong>Boltzmann</strong> equations<br />

Indifferentiability Principle <strong>and</strong> H–theorem<br />

Indifferentiability Principle: when all the masses m σ <strong>and</strong><br />

cross-sections K σς are identical, the total distribution f = ∑ σ f σ<br />

obeys the single species <strong>Boltzmann</strong> equation.<br />

H–theorem: in the case of a mixture, the entropy inequality<br />

(H–theorem) is<br />

∑<br />

∫<br />

Q σ log(f σ )dξ ≤ 0. (6)<br />

σ<br />

R 3 ξ<br />

These properties of the full <strong>Boltzmann</strong> equations for mixtures will<br />

guide the design of BGK–type simplified models <strong>and</strong> consequently<br />

of the <strong>Lattice</strong> <strong>Boltzmann</strong> solvers.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 7 / 51


Kinetic theory of rarefied gas mixtures<br />

Exchange relation for momentum<br />

Exchange relation for momentum (1 of 3)<br />

The momentum equation is<br />

∫<br />

∂ t (ρ σ u σ ) + ∇ · Π σ = ρ σ a σ +<br />

R 3 ξ<br />

m σ ξQ σ dξ. (7)<br />

Taking into account the symmetries of the elementary collision<br />

yields (see for example Eq. (48) in the Ref. [8])<br />

∫<br />

m σ ξQ σ dξ = ∑ 〈∫<br />

〉<br />

K σς (|g · n|/|g|) m σ (ξ ′ − ξ) dn ,<br />

R 3 ξ ς g·n


Kinetic theory of rarefied gas mixtures<br />

Exchange relation for momentum<br />

Exchange relation for momentum (2 of 3)<br />

Let us express the surface element dn in Eq. (10) by using g as<br />

polar axis, φ as polar angle <strong>and</strong> θ as azimuthal angle.<br />

Hence K σς (|g · n|/|g|) = K σς (cos φ) = K σς (φ) <strong>and</strong> consequently<br />

∫<br />

m σ ξQ σ dξ = ∑ 〈∫<br />

〉<br />

2µ σς K σς (φ) (g · n) n dn . (10)<br />

R 3 ξ ς<br />

g·n


Kinetic theory of rarefied gas mixtures<br />

Exchange relation for momentum<br />

Exchange relation for momentum (3 of 3)<br />

Consequently<br />

∫<br />

1 2π ∫ π<br />

K σς (φ) |g| cos φ<br />

2 0 0<br />

where<br />

∫ 4π<br />

⎧<br />

⎨<br />

⎩<br />

0<br />

0<br />

cos φ<br />

⎫<br />

⎬<br />

⎭ sin φ dφdθ = χ σς g. (12)<br />

χ σς = 1 K σς (φ) (cos φ) 2 dn. (13)<br />

2 0<br />

Coming back to Eq. (10) yields<br />

∫<br />

m σ ξQ σ dξ = ∑ 2µ σς χ σς 〈g〉 σς<br />

= p ∑ B σς y σ y ς (u ς −u σ ), (14)<br />

R 3 ξ ς<br />

ς<br />

where<br />

B σς = 2µ σςχ σς n 2<br />

= B ςσ , (15)<br />

p<br />

where n is the total particle number density, p is the pressure <strong>and</strong><br />

y σ is the molar concentration, as it will be discussed next.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 10 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Outline Compass<br />

1 Kinetic theory of rarefied gas mixtures<br />

Full <strong>Boltzmann</strong> equations<br />

Exchange relation for momentum<br />

2 <strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Single-relaxation-time <strong>Lattice</strong> <strong>Boltzmann</strong> scheme<br />

Andries-Aoki-Perthame (AAP) model<br />

LBM formulation by variable transformation<br />

3 Validation <strong>and</strong> simple applications<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 11 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Simplified kinetic models<br />

Andries-Aoki-Perthame (AAP) model<br />

The full <strong>Boltzmann</strong> equations for gas mixtures are much more<br />

formidable to analyze than the equation for a single-species<br />

system [3, 4, 5, 6].<br />

A popular approach is to derive simplified model <strong>Boltzmann</strong><br />

equations which are more manageable to solve. Numerous model<br />

equations are influenced by Maxwell’s approach to solve the<br />

<strong>Boltzmann</strong> equation by using the properties of the Maxwell<br />

molecule <strong>and</strong> the linearized <strong>Boltzmann</strong> equation [12].<br />

The simplest model equations for a binary mixture is that by Gross<br />

<strong>and</strong> Krook [13, 12], which is an extension of the<br />

single-relaxation-time model for a pure system — the celebrated<br />

Bhatnagar-Gross-Krook (BGK) model.<br />

Many other models exist: Sirovich [14, 15], Hamel [16, 17], ...<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 12 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Basic consistency constraints<br />

Andries-Aoki-Perthame (AAP) model<br />

1 The Indifferentiability Principle, which prescribes that, if a<br />

BGK-like equation for each species is assumed, this set of<br />

equations should reduce to a single BGK-like equation, when<br />

mechanically identical components are considered, i.e. the single<br />

fluid description should be recovered [18].<br />

2 The relaxation equations for momentum <strong>and</strong> temperature should<br />

be as close as possible to those derived by means of the full<br />

<strong>Boltzmann</strong> equations [19].<br />

3 All the species should tend to a target equilibrium distribution<br />

which is a Maxwellian, centered on a proper macroscopic velocity,<br />

common to all the species.<br />

4 The non-negativity of the distribution functions for all the species<br />

should be satisfied.<br />

5 A generalized H theorem for mixtures should hold.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 13 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Simplified AAP model<br />

Andries-Aoki-Perthame (AAP) model<br />

Let us consider a simplified version of the AAP model, proposed<br />

by Andries, Aoki, <strong>and</strong> Perthame [2], which is based on only one<br />

global (i.e., taking into account all the species ς) operator for each<br />

species σ, namely<br />

∂ˆt f σ + ξ· ˆ∇f σ = λ σ<br />

[<br />

fσ(∗) − f σ<br />

]<br />

, (16)<br />

where<br />

f σ(∗) =<br />

[<br />

]<br />

ρ σ<br />

(2πϕ σ /3) exp − 3 (ξ − u∗ σ) 2<br />

, (17)<br />

2 ϕ σ<br />

<strong>and</strong><br />

u ∗ σ = u σ + ∑ ς<br />

m 2<br />

m σ m ς<br />

B σς<br />

B mm<br />

x ς (u ς − u σ ). (18)<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 14 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Properties of simplified AAP model<br />

Andries-Aoki-Perthame (AAP) model<br />

The target velocity can be easily recasted as<br />

u ∗ σ = u + ∑ ( )<br />

m<br />

2<br />

B σς<br />

− 1 x ς (u ς − u σ ). (19)<br />

m<br />

ς σ m ς B mm<br />

If m σ = m for any σ, then (Property 1)<br />

u ∗ σ = u + ∑ ς<br />

( m<br />

2<br />

mm<br />

)<br />

B mm<br />

− 1 x ς (u ς − u σ ) = u. (20)<br />

B mm<br />

Clearly (Property 2)<br />

∑<br />

x σ u ∗ σ = u + ∑ σ<br />

σ<br />

∑<br />

( m<br />

2<br />

ς<br />

m σ m ς<br />

)<br />

B σς<br />

− 1 x σ x ς (u ς − u σ ) = u.<br />

B mm<br />

(21)<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 15 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Diffusive scaling<br />

Andries-Aoki-Perthame (AAP) model<br />

In the following asymptotic analysis [20], we introduce the<br />

dimensionless variables, defined by<br />

x i = (l c /L) ˆx i , t = (UT c /L) ˆt. (22)<br />

Defining the small parameter ɛ as ɛ = l c /L, which corresponds to<br />

the Knudsen number, we have x i = ɛ ˆx i .<br />

Furthermore, assuming U/c = ɛ, which is the key of derivation of<br />

the incompressible limit [20], we have t = ɛ 2 ˆt. Then, AAP model is<br />

rewritten as<br />

ɛ 2 ∂f σ<br />

∂t + ɛ ξ ∂f σ [ ]<br />

i = λ σ fσ(∗) − f σ . (23)<br />

∂x i<br />

In this new scaling, we can assume ∂ α f σ = ∂f σ /∂α = O(f σ ) <strong>and</strong><br />

∂ α M = ∂M/∂α = O(M), where α = t, x i <strong>and</strong> M = ρ σ , q σi where<br />

q σi = ρ σ u σi .<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 16 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Regular Knudsen expansion<br />

Andries-Aoki-Perthame (AAP) model<br />

Clearly the solution of the BGK equation depends on ɛ. The<br />

solution for small ɛ is investigated in the form of the asymptotic<br />

regular expansion<br />

ρ <strong>and</strong> q σi are also exp<strong>and</strong>ed:<br />

f σ = f (0)<br />

σ + ɛf (1)<br />

σ + ɛ 2 f (2)<br />

σ + · · · . (24)<br />

ρ σ = ρ (0)<br />

σ + ɛρ (1)<br />

σ + ɛ 2 ρ (2)<br />

σ + · · · , (25)<br />

q σi = ɛq (1)<br />

σi<br />

+ ɛ 2 q (2)<br />

σi<br />

+ · · · , (26)<br />

since the Mach number is O(ɛ), the perturbations of q σi starts from<br />

the order of ɛ. Consequently<br />

f σ(∗) = f (0) (1)<br />

σ(∗)<br />

+ ɛf<br />

σ(∗) + ɛ2 f (2)<br />

σ(∗) + · · · , (27)<br />

Regular expansion means ∂ α f (k)<br />

σ<br />

= O(1) <strong>and</strong> ∂ α M (k) = O(1).<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 17 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Asymptotic analysis of AAP model<br />

Andries-Aoki-Perthame (AAP) model<br />

Collecting the terms of the same order yields<br />

f (k)<br />

σ<br />

= f (k)<br />

σ(∗) − g(k) σ , (28)<br />

g (0)<br />

σ = 0, (29)<br />

g (1)<br />

σ = τ σ ∂ S f (0)<br />

σ(∗) , (30)<br />

g σ (2) = τ σ [∂ t f (0)<br />

σ(∗) + ∂ Sf (1)<br />

σ(∗) − τ σ∂Sf 2 (0)<br />

σ(∗)<br />

], (31)<br />

· · · ,<br />

where ∂ S = ξ i ∂/∂x i <strong>and</strong> τ σ = 1/λ σ .<br />

The previous coefficients of the regular expansion allows one to<br />

derive the macroscopic equations recovered by the AAP model.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 18 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Andries-Aoki-Perthame (AAP) model<br />

Tuning the single species relaxation frequency<br />

Taking the first order moments of g (1)<br />

σ<br />

where p (k)<br />

σ<br />

= ϕ σ ρ (k)<br />

σ /3.<br />

yields<br />

λ σ ρ (0)<br />

σ [u ∗(1)<br />

σ − u (1)<br />

σ ] = ∇p (0)<br />

σ , (32)<br />

If λ σ is selected as λ σ = p B mm /ρ, then the previous expression<br />

becomes<br />

1/p (0) ∇p (0)<br />

σ<br />

= ∑ ς<br />

B σς y σ y ς [u (1)<br />

ς − u (1)<br />

σ ], (33)<br />

which clearly proves that the leading terms of the macroscopic<br />

equations recovered by means of the AAP model are consistent<br />

with Maxwell-Stefan model.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 19 / 51


D2Q9 lattice<br />

<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

LBM formulation by variable transformation<br />

Let us define the AAP model for a set of discrete velocities,<br />

ɛ 2 ∂f σ<br />

∂t + ɛV ∂f σ [ ]<br />

i = λ σ fσ(∗) − f σ , (34)<br />

∂x i<br />

where V i is a list of i-th components of the velocities in the<br />

considered lattice <strong>and</strong> f = f σ(∗) , f σ is a list of discrete distribution<br />

functions (change in the notation !!) corresponding to the<br />

velocities in the considered lattice.<br />

Let us consider the two dimensional 9 velocity model, which is<br />

called D2Q9, namely<br />

V 1 = [ 0 1 0 −1 0 1 −1 −1 1 ] T , (35)<br />

V 2 = [ 0 0 1 0 −1 1 1 −1 −1 ] T . (36)<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 20 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Rule of computation for the list<br />

LBM formulation by variable transformation<br />

The components of the molecular velocity V 1 <strong>and</strong> V 2 are the lists<br />

with 9 elements. Before proceeding to the definition of the local<br />

equilibrium function f σ(∗) , we define the rule of computation for the<br />

list.<br />

Let h <strong>and</strong> g be the lists defined by h = [h 0 , h 1 , h 2 , · · · , h 8 ] T <strong>and</strong><br />

g = [g 0 , g 1 , g 2 , · · · , g 8 ] T . Then, hg is the list defined by<br />

[h 0 g 0 , h 1 g 1 , h 2 g 2 , · · · , h 8 g 8 ] T . The sum of all the elements of the list<br />

h is denoted by 〈h〉, i.e. 〈h〉 = ∑ 8<br />

i=0 h i.<br />

Then, the (dimensionless) density ρ σ <strong>and</strong> momentum q σi = ρ σ u σi<br />

are defined by<br />

ρ σ = 〈f σ 〉, q σi = 〈V i f σ 〉. (37)<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 21 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Continuous equilibrium moments<br />

LBM formulation by variable transformation<br />

Let us introduce the following function<br />

[<br />

]<br />

ρ<br />

f e (ρ, ϕ, u 1 , u 2 ) =<br />

(2πϕ/3) exp 3 (ξ − u)2<br />

− . (38)<br />

2 ϕ<br />

Let us define 〈〈·〉〉 = ∫ +∞<br />

−∞ · dξ 1dξ 2 <strong>and</strong> the generic equilibrium<br />

moment m pq = 〈〈f e ξ p 1 ξq 2 〉〉.<br />

All the equilibrium moments appearing in the Euler system of<br />

equations are the following: m 00 , m 10 , m 01 , m 20 , m 02 , m 11 . Due to<br />

the lattice deficiencies, only the equilibrium moments m 21 , m 12<br />

must be considered in addition, for recovering the desired<br />

Navier-Stokes system of equations. The moment m 22 is arbitrarily<br />

selected in order to complete the set of discrete moments.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 22 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

LBM formulation by variable transformation<br />

Simplified continuous equilibrium moments<br />

Collecting the previous results yields<br />

¯m c (ρ, ϕ, u 1 , u 2 ) = ρ [1, u 1 , u 2 ,<br />

u 2 1 + ϕ/3, u 2 2 + ϕ/3, u 1 u 2 ,<br />

u 1 u 2 2 + u 1 ϕ/3, u 2 1 u 2 + u 2 ϕ/3,<br />

ϕ (u 2 1u 2 2 + u 2 1ϕ/3 + u 2 2ϕ/3 + ϕ/9)] T .<br />

The previous analytical results involve high order terms (like u 1 u 2 2 )<br />

which are not strictly required, in order to recover the macroscopic<br />

equations we are interested in.<br />

m c (ρ, ϕ, u 1 , u 2 ) = ρ [1, u 1 , u 2 ,<br />

u 2 1 + ϕ/3, u 2 2 + ϕ/3, u 1 u 2 ,<br />

u 1 /3, u 2 /3,<br />

(u 2 1 + u 2 2)/3 + ϕ/9] T<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 23 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Design of discrete local equilibrium<br />

LBM formulation by variable transformation<br />

On the selected lattice, the discrete integrals m σ(∗) , corresponding<br />

to the previous continuous ones, can be computed by means of<br />

simple linear combinations of the discrete equilibrium distribution<br />

function f σ(∗) (still unknown), namely m σ(∗) = Mf σ(∗) where M is<br />

a matrix defined as<br />

M = [1, V 1 , V 2 , V 2<br />

1 , V 2<br />

2 , V 1 V 2 , V 1 V 2<br />

2 , V 2<br />

1 V 2 , V 2<br />

1 V 2<br />

2 ] T . (39)<br />

We design the discrete local equilibrium such as<br />

m σ(∗) = m c (ρ σ , ϕ σ , u ∗ σ1 , u∗ σ2 ), or equivalently<br />

f σ(∗) = M −1 m c (ρ σ , ϕ σ , u ∗ σ1 , u∗ σ2 ). In particular the latter provides<br />

the operative formula for defining the local equilibrium <strong>and</strong><br />

consequently the scheme.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 24 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Discrete operative formula<br />

LBM formulation by variable transformation<br />

Eq. (34) is formulated for discrete velocities, but it is still<br />

continuous in both space <strong>and</strong> time.<br />

Since the streaming velocities are constant, the Method of<br />

Characteristics is the most convenient way to discretize space <strong>and</strong><br />

time <strong>and</strong> to recover the simplest formulation of the LBM scheme.<br />

Applying the second-order Crank–Nicolson yields<br />

f + σ = f σ + (1 − θ) λ σ<br />

[<br />

fσ(∗) − f σ<br />

]<br />

+ θ λ<br />

+<br />

σ<br />

[f + σ(∗) − f + σ<br />

where θ = 1/2.<br />

]<br />

, (40)<br />

The previous formula would force one to consider quite<br />

complicated integration procedures [21]. A simple variable<br />

transformation has been already proposed in order to simplify this<br />

task [22].<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 25 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Variable transformation<br />

LBM formulation by variable transformation<br />

(Step 1) Let us apply the transformation f σ → g σ defined by<br />

g σ = f σ − θ λ σ<br />

[<br />

fσ(∗) − f σ<br />

]<br />

. (41)<br />

(Step 2) Let us compute the collision <strong>and</strong> streaming step leading<br />

to g σ → g σ + by means of the modified updating equation<br />

g σ + = g σ + λ ′ [ ]<br />

σ fσ(∗) − g σ , (42)<br />

where λ ′ σ = λ σ /(1 + θλ σ ).<br />

(Step 3) Finally let us come back to the original discrete<br />

distribution function g σ + → f σ<br />

+ by means of<br />

f + σ<br />

= g+ σ + θ λ + σ f + σ(∗)<br />

1 + θ λ + . (43)<br />

σ<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 26 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Problem for mixtures<br />

LBM formulation by variable transformation<br />

In case of mixtures, the problem arises from the (Step 3), which<br />

requires both λ + σ <strong>and</strong> f + σ(∗)<br />

, depending on the updated<br />

hydrodynamic moments at the new time step.<br />

Since the single component density is conserved, Eq. (41) yields<br />

ρ + σ = 〈g + σ 〉, (44)<br />

consequently it is possible to compute p + σ , ρ + , p + <strong>and</strong> λ + σ .<br />

However this is not the case for the single component momentum,<br />

because this is not a conserved quantity <strong>and</strong> hence the first order<br />

moments for g σ + <strong>and</strong> f σ<br />

+ differ [23], namely<br />

〈V i g + σ 〉 = ρ + σ u + σi − θ λ+ σ ρ + σ (u ∗+<br />

σi − u+ σi ) =<br />

= ρ + σ u + σi − θ p+ ∑ ς<br />

B σς y σ + y ς + (u + ςi − u+ σi<br />

). (45)<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 27 / 51


<strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

LBM formulation by variable transformation<br />

Solution: solving locally a linear system of equations<br />

In the general case, Eq. (45) can be recasted as<br />

〈V i g σ + 〉 = q<br />

σi + − θ ∑<br />

λ+ σ χ σς (x + σ q<br />

ςi + − x+ ς q<br />

σi + ), (46)<br />

ς<br />

where q<br />

σi + = ρ+ σ u + σi <strong>and</strong> χ σς =<br />

m2 B σς<br />

. (47)<br />

m σ m ς B mm<br />

Finally, grouping together common terms yields<br />

[<br />

]<br />

∑<br />

〈V i g σ + 〉 = 1 + θ λ + σ (χ σς x + ς ) q<br />

σi + − θ λ+ σ x + σ<br />

ς<br />

∑<br />

(χ σς q<br />

ςi + ). (48)<br />

ς<br />

Clearly the previous expression defines a linear system of<br />

algebraic equations for the unknowns q + σi .<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 28 / 51


Validation <strong>and</strong> simple applications<br />

Outline Compass<br />

1 Kinetic theory of rarefied gas mixtures<br />

Full <strong>Boltzmann</strong> equations<br />

Exchange relation for momentum<br />

2 <strong>Lattice</strong> <strong>Boltzmann</strong> solvers <strong>and</strong> applications<br />

Single-relaxation-time <strong>Lattice</strong> <strong>Boltzmann</strong> scheme<br />

Andries-Aoki-Perthame (AAP) model<br />

LBM formulation by variable transformation<br />

3 Validation <strong>and</strong> simple applications<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 29 / 51


Validation <strong>and</strong> simple applications<br />

Single-relaxation-time MixLBM code<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 30 / 51


Validation <strong>and</strong> simple applications<br />

Basic algorithm<br />

The proposed numerical code is formulated not in the st<strong>and</strong>ard<br />

way (<strong>and</strong> it is quite inefficient from the computational point of<br />

view).<br />

Even though it is not an efficient implementation, the proposed<br />

formulation is much more similar to any other explicit finite<br />

difference (FD) scheme.<br />

This offers some advantages:<br />

1 it makes easier to implement hybrid schemes, i.e. to mix up kinetic<br />

<strong>and</strong> conventional schemes on the same discretization;<br />

2 it makes easier to compare the LBM scheme with other FD<br />

schemes, mainly in terms of updating rule;<br />

3 it makes easier to implement simple boundary conditions, based on<br />

the concept of local equilibrium.<br />

Anyway the basic sequence of collision <strong>and</strong> streaming step is<br />

preserved.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 31 / 51


Validation <strong>and</strong> simple applications<br />

Schematic view<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 32 / 51


Main loop<br />

Validation <strong>and</strong> simple applications<br />

fd(1:nx,1:ny,0:8,1:species)<br />

do t = 1,nt,1<br />

do i = 1,nx,1<br />

do j = 1,ny,1<br />

call Update<strong>Lattice</strong>Data(...,f(:,:));<br />

do s = 1,species,1<br />

fd_new(i,j,:,s) = f(:,s);<br />

call HydrodynamicMoments(...);<br />

enddo<br />

enddo<br />

enddo<br />

fd(:,:,:,:) = fd_new(:,:,:,:);<br />

enddo<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 33 / 51


Validation <strong>and</strong> simple applications<br />

Update<strong>Lattice</strong>Data loop<br />

do k=0,8,1<br />

iI = i + Incr(k,1); jI = j + Incr(k,2);<br />

do s=1,species,1<br />

! BCs rs,uxs,uys in I(i+,j+)<br />

enddo<br />

do s=1,species,1<br />

call EquilibriumDistribution(...,feq(:))<br />

lambda(s)=...;<br />

do ik=0,8,1<br />

fc(ik)=f(ik,s)+lambda(s)*(feq(ik)-f(ik,s));<br />

enddo<br />

f_new(BB(k),s) = fc(BB(k));<br />

enddo<br />

enddo<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 34 / 51


Validation <strong>and</strong> simple applications<br />

Update<strong>Lattice</strong>Data loop with variable transformation<br />

do k=0,8,1<br />

do s=1,species,1<br />

call EquilibriumDistribution(...,feq(:))<br />

lambda(s)=...;<br />

TRANSFORMATION f(:,s) -> g(:,s)<br />

do ik=0,8,1<br />

gc(ik)=g(ik,s)+lambda’(s)*(feq(ik)-g(ik,s));<br />

enddo<br />

g_new(BB(k),s) = gc(BB(k));<br />

enddo<br />

enddo<br />

BACK-TRANSFORMATION g_new(:,s) -> f_new(:,s)<br />

COMPUTE CONSERVED MOMENTS<br />

SOLVE LINEAR SYSTEM FOR NON-CONSERVED MOMENTS<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 35 / 51


Validation <strong>and</strong> simple applications<br />

Ternary mixture<br />

In case of ternary mixture Eq. (14) reduces to<br />

n∇y 1 = B 12 y 1 k 2 + B 13 y 1 k 3 − (B 12 y 2 + B 13 y 3 )k 1 , (49)<br />

n∇y 2 = B 21 y 2 k 1 + B 23 y 2 k 3 − (B 21 y 1 + B 23 y 3 )k 2 , (50)<br />

n∇y 3 = B 31 y 3 k 1 + B 32 y 3 k 2 − (B 31 y 1 + B 32 y 2 )k 3 . (51)<br />

The molecular weights are m σ = [1, 2, 3], the internal energies<br />

are [e σ = 1/3, 1/6, 1/9] <strong>and</strong> consequently ϕ σ = [1, 1/2, 1/3].<br />

The theoretical Fick diffusion coefficient is D σ = α/m σ , where<br />

α ∈ [0.002, 0.8] <strong>and</strong> the theoretical Maxwell–Stefan diffusion<br />

resistance is given by [28]<br />

B σς = β<br />

( 1<br />

m σ<br />

+ 1 m ς<br />

) −1/2<br />

, β ∈ [5, 166]. (52)<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 36 / 51


Validation <strong>and</strong> simple applications<br />

Solvent test case<br />

A component of a mixture is called solvent if its concentration is<br />

predominant in comparison with the other components of the<br />

mixture [10].<br />

Let us suppose that, in our ternary mixture, the component 3 is a<br />

solvent. In particular, the initial conditions for the solvent test case<br />

are given by<br />

[ ( )] x − L/2<br />

p 1 (0, x) = ∆p 1 + tanh<br />

+ p s , (53)<br />

δx<br />

[ ( )] x − L/2<br />

p 2 (0, x) = ∆p 1 − tanh<br />

+ p s , (54)<br />

δx<br />

p 3 (0, x) = 1 − 2 (∆p + p s ), (55)<br />

where clearly p(0, x) = ∑ σ p σ = 1 <strong>and</strong> ∆p = p s = 0.01.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 37 / 51


Validation <strong>and</strong> simple applications<br />

Solvent test case: simplified transport coefficients<br />

Hence y 3<br />

∼ = 1 <strong>and</strong> consequently y1 ∼ = 0 <strong>and</strong> y2 ∼ = 0. Under these<br />

assumptions, Eqs. (49, 50) reduce to<br />

∇y 1 = −B 13 y 1 (u 1 − v) = B 13 y 1 (v − u 1 ), (56)<br />

∇y 2 = −B 23 y 2 (u 2 − v) = B 23 y 2 (v − u 2 ), (57)<br />

Consequently the measured diffusion resistances are given by<br />

B ∗ 13 = 1 D ∗ 1<br />

= ∂y 1/∂x<br />

y 1 (v − u 1 ) , (58)<br />

B ∗ 23 = 1 D ∗ 2<br />

= ∂y 2/∂x<br />

y 2 (v − u 2 ) , (59)<br />

where, in this test, the Maxwell–Stefan model reduces to the Fick<br />

model.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 38 / 51


Validation <strong>and</strong> simple applications<br />

Solvent test case: Fick model<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 39 / 51


Validation <strong>and</strong> simple applications<br />

Solvent test case: Maxwell–Stefan model<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 40 / 51


Validation <strong>and</strong> simple applications<br />

Dilute test case<br />

A component of a mixture is said dilute if its concentration is<br />

negligible in comparison with the other components of the mixture<br />

[10].<br />

Let us suppose that, in our ternary mixture, the component 1 is<br />

dilute. In particular, the initial conditions for the dilute test case are<br />

given by<br />

[ ( )] x − L/2<br />

p 1 (0, x) = ∆p 1 + tanh<br />

+ p s , (60)<br />

δx<br />

[ ( )] x − L/2<br />

p 2 (0, x) = ∆p 1 − tanh<br />

+ p s +<br />

δx<br />

+(1 − r) (1 − 2 ∆p), (61)<br />

p 3 (0, x) = r (1 − 2 ∆p) − 2 p s , (62)<br />

where p(0, x) = ∑ σ p σ = 1, ∆p = p s = 0.01, r = 1/2.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 41 / 51


Validation <strong>and</strong> simple applications<br />

Dilute test case: Maxwell–Stefan model<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 42 / 51


Validation <strong>and</strong> simple applications<br />

Non-Fickian test case: Stefan tube<br />

It is essentially a vertical tube, open at one end, where the carrier<br />

flow licks orthogonally the tube opening [10]. In the bottom of the<br />

tube is a pool of quiescent liquid. The vapor that evaporates from<br />

this pool diffuses to the top.<br />

p 1 (0, x) = p 1 (0, 0) 1 [ ( )] x − L/2<br />

1 − tanh<br />

+ p s , (63)<br />

2<br />

δx<br />

p 2 (0, x) = p 2 (0, 0) 1 [ ( )] x − L/2<br />

1 − tanh<br />

+ p s , (64)<br />

2<br />

δx<br />

p 3 (0, x) = [1 − p 3 (0, 0)] 1 [ ( )] x − L/2<br />

1 + tanh<br />

+ p 3 (0, 0),<br />

2<br />

δx<br />

(65)<br />

where the constant p s = 10 −4 has been introduced for avoiding to<br />

divide per zero.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 43 / 51


Validation <strong>and</strong> simple applications<br />

Stefan tube<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 44 / 51


Conclusions<br />

In the present tutorial, a LBM scheme for gas mixture modeling,<br />

which fully recovers Maxwell–Stefan diffusion model in the<br />

continuum limit, without the restriction of the macroscopic<br />

mixture-averaged approximation, was discussed.<br />

As a theoretical basis for the development of the LBM scheme, a<br />

recently proposed BGK-type kinetic model for gas mixtures [2]<br />

was considered. This essentially ties the LBM development to the<br />

recent progresses of the BGK-type kinetic models <strong>and</strong> opens new<br />

perspectives.<br />

In the reported numerical tests, the proposed scheme produces<br />

good results on a wide range of relaxation frequencies.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 45 / 51


References I<br />

[1] F. Williams.<br />

Combustion Theory.<br />

Benjamin/Cumming, California, 1986.<br />

[2] P. Andries, K. Aoki, <strong>and</strong> B. Perthame.<br />

A consistent BGK-type model for gas mixtures.<br />

J. Stat. Phys., 106(5/6):993–1018, 2002.<br />

[3] S. Chapman <strong>and</strong> T. G. Cowling.<br />

The Mathematical Theory of Non-Uniform Gases.<br />

Cambridge University Press, Cambridge, UK, 3rd edition, 1970.<br />

[4] J. H. Ferziger <strong>and</strong> H. G. Kaper.<br />

Mathematical Theory of Transport in Gases.<br />

North Holl<strong>and</strong>, Amsterdam, 1972.<br />

[5] L. C. Woods.<br />

An Introduction to the Kinetic Theory of Gases <strong>and</strong> Magnetoplasmas.<br />

Oxford University Press, Oxford, UK, 3 edition, 1993.<br />

[6] S. Harris.<br />

An Introduction to the Theory of the <strong>Boltzmann</strong> Equation.<br />

Dover, Mineola, NY, 2004.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 46 / 51


References II<br />

[7] C. Cercignani<br />

The <strong>Boltzmann</strong> Equation <strong>and</strong> Its <strong>Applications</strong>.<br />

Applied Mathematical Sciences, Springer-Verlag, 1987.<br />

[8] P. Asinari<br />

Nonlinear <strong>Boltzmann</strong> equation for the homogeneous isotropic case: Minimal deterministic<br />

Matlab program.<br />

accepted for publication in Computer Physics Communications.<br />

available on line arXiv:1004.3491v1 [physics.comp-ph].<br />

[9] C.E. Brennen.<br />

Fundamentals of <strong>Multi</strong>phase Flow.<br />

Cambridge University Press, United Kingdom, 2005.<br />

[10] R. Taylor <strong>and</strong> R. Krishna.<br />

<strong>Multi</strong>component Mass Transfer.<br />

John Wiley & Sons, New York, 1993.<br />

[11] R. Krishna <strong>and</strong> J.A. Wesselingh.<br />

Maxwell-stefan approach to mass transfer.<br />

Chemical Engineering Science, 52(6):861–911, 1997.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 47 / 51


References III<br />

[12] E. P. Gross <strong>and</strong> E. A. Jackson.<br />

Kinetic models <strong>and</strong> the linearized <strong>Boltzmann</strong> equation.<br />

Phys. Fluids, 2(4):432–441, 1959.<br />

[13] E. P. Gross <strong>and</strong> M. Krook.<br />

<strong>Models</strong> for collision processes in gases: Small-amplitude oscillations of charged<br />

two-component systems.<br />

Phys. Rev., 102:593–604, 1956.<br />

[14] L. Sirovich.<br />

Kinetic modelling of gas mixtures.<br />

Phys. Fluids, 5:908–918, 1962.<br />

[15] L. Sirovich.<br />

Mixtures of Maxwell molecules.<br />

Phys. Fluids, 9:2323–2326, 1966.<br />

[16] B. B. Hamel.<br />

Kinetic models for binary mixtures.<br />

Phys. Fluids, 8:418–425, 1965.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 48 / 51


References IV<br />

[17] B. B. Hamel.<br />

Two-fluid hydrodynamic equations for a neutral, disparate-mass, binary mixtures.<br />

Phys. Fluids, 9:12–22, 1966.<br />

[18] V. Garzò, A. dos Santos, <strong>and</strong> J. J. Brey.<br />

A kinetic model for a multicomponent gas.<br />

Phys. Fluids A, 1(2):380–383, 1989.<br />

[19] T. F. Morse.<br />

Kinetic model equations for a gas mixture.<br />

Phys. Fluids, 7:2012–2013, 1964.<br />

[20] Y. Sone.<br />

Kinetic Theory <strong>and</strong> Fluid Dynamics.<br />

Birkhäuser, Boston, 2nd edition, 2002.<br />

[21] P. Asinari.<br />

Semi-implicit-linearized multiple-relaxation-time formulation of lattice <strong>Boltzmann</strong> schemes<br />

for mixture modeling.<br />

Phys. Rev. E, 73(5):056705, 2006.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 49 / 51


References V<br />

[22] He X., Chen S., <strong>and</strong> Doolen G. D. J.<br />

A novel thermal model for the lattice boltzmann method in incompressible limit.<br />

J. Computat. Phys., 146:282, 1998.<br />

[23] S. Arcidiacono, I. V. Karlin, J. Mantzaras, <strong>and</strong> C. E. Frouzakis.<br />

<strong>Lattice</strong> boltzmann model for the simulation of the multicomponent mixtures.<br />

Phys. Rev. E, 76:046703–1—046703–11, 2007.<br />

[24] P. Asinari.<br />

<strong>Multi</strong>ple-relaxation-time lattice boltzmann scheme for homogeneous mixture flows with<br />

external force.<br />

Phys. Rev. E, 77:056706, 2008.<br />

[25] P. Asinari.<br />

<strong>Lattice</strong> <strong>Boltzmann</strong> scheme for mixture modeling: Analysis of the continuum diffusion<br />

regimes recovering Maxwell-Stefan model <strong>and</strong> incompressible Navier-Stokes equations.<br />

Phys. Rev. E, 80:056701, 2009.<br />

[26] H. Grad.<br />

Theory of rarefied gases.<br />

In F. Devienne, editor, Rarefied Gas Dynamics, pages 100–138. Pergamon, London, 1960.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 50 / 51


References VI<br />

[27] P. Asinari <strong>and</strong> T. Ohwada.<br />

Connection between kinetic methods for fluid-dynamic equations <strong>and</strong> macroscopic<br />

finite-difference schemes.<br />

Comput. Math. Appl., 58:841, 2009.<br />

[28] W.E. Stewart R.B. Bird <strong>and</strong> E.N. Lightfoot.<br />

Transport Phenomena.<br />

John Wiley & Sons, New York, 1960.<br />

Pietro Asinari, PhD (Politecnico di Torino) <strong>Multi</strong>-<strong>Species</strong> LB <strong>Models</strong> Rome, Italy, on July 5-9, 2010 51 / 51

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!