20.01.2015 Views

Overview of Gigabit Ethernet Transceiver IC Design

Overview of Gigabit Ethernet Transceiver IC Design

Overview of Gigabit Ethernet Transceiver IC Design

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Overview</strong> <strong>of</strong> <strong>Gigabit</strong> <strong>Ethernet</strong><br />

<strong>Transceiver</strong> <strong>IC</strong> <strong>Design</strong><br />

國 立 台 灣 大 學 電 機 系<br />

主 講 人 : 吳 安 宇<br />

清 華 大 學 積 體 電 路 中 心 演 講<br />

09/13/2002<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 1<br />

Outline<br />

<strong>Overview</strong> <strong>of</strong> <strong>Gigabit</strong> <strong>Ethernet</strong><br />

<strong>Gigabit</strong> <strong>Ethernet</strong> Channel (CAT 5 UTP Cable)<br />

1000BASE-T <strong>Transceiver</strong><br />

Receiver <strong>Design</strong> Issues<br />

Research Results in NTUEE<br />

References<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 2


<strong>Overview</strong> <strong>of</strong> <strong>Gigabit</strong> <strong>Ethernet</strong><br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 3<br />

Target Market<br />

70% <strong>of</strong> installed UTP is CAT 5.<br />

CAT 5 installed footage is growing 30% annually.<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 4


Relationship between Standard<br />

Families<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 5<br />

The <strong>Gigabit</strong> <strong>Ethernet</strong> Tech. Family<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 6


Support Link Distance<br />

1000BASE-LX<br />

1000BASE-SX<br />

1000BASE-T<br />

1000BASE-CX<br />

Balanced<br />

shielded cable<br />

25m 100m 220m 500m 550m 5km<br />

Machine<br />

room<br />

Horizontal<br />

wiring<br />

Building<br />

backbone<br />

Campus<br />

backbone<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 7<br />

Objectives<br />

Comply with specifications for GMII <strong>of</strong> 802.3z.<br />

Support the objectives <strong>of</strong> 802.3z <strong>of</strong> Nov. 13,<br />

1996.<br />

Provide line transmission which support full<br />

and half duplex operation.<br />

Support operation over 100 meters <strong>of</strong><br />

Category 5 balanced cabling.<br />

4 Pairs 1Gb/s full duplex communication<br />

Achieve bit Error Rate better than to 10 -10 .<br />

Support Auto-Negotiation (Clause 28).<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 8


Market Applications<br />

Server Network<br />

High-Performance Graphic-Based<br />

Applications<br />

Shared <strong>Gigabit</strong> Networks<br />

First-mile Applications (<strong>Ethernet</strong> as First Mile,<br />

EFM)<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 9<br />

Foundations<br />

100BASE-TX (CAT-5 UTP)<br />

– 3-level symbol stream at 125M Baud Rate<br />

– 100BASE-TX DSP Based PHY Is Available.<br />

100BASE-T2 (CAT-3 UTP)<br />

– 5-Level Coding<br />

– Simultaneous 2-Way data stream<br />

– Use <strong>of</strong> DSP (Echo and NEXT Cancellation)<br />

100BASE-T4 (CAT-3 UTP)<br />

– Transmit/Receive Multi-Level Coded Symbols<br />

over 4 Pairs<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 10


<strong>Gigabit</strong> <strong>Ethernet</strong> Channel<br />

( CAT 5 UTP Cable )<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 11<br />

The CAT 5 UTP Channel<br />

CAT 5 UTP is specified in ANSI/TIA/EIA-568-A:1995<br />

or equivalently in ISO/IEC 11801:1995<br />

125M Symbol/sec, 2bits/Symbol<br />

250Mb/s at each pair<br />

4 Pairs 1Gb/s full-duplex communication<br />

<strong>Transceiver</strong>s<br />

Hybrid<br />

Hybrid<br />

Hybrid<br />

Hybrid<br />

Hybrid<br />

Hybrid<br />

Hybrid<br />

Hybrid<br />

<strong>Transceiver</strong>s<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 12


The Cable Challenge<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 13<br />

Channel Response – Insertion Loss<br />

Worst-Case Attenuation <strong>of</strong> 100m CAT 5 Cable<br />

Insertion_Loss(f) < 2.1f 0.529 +0.4/f (dB)<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 14


Channel Response – Return Loss<br />

Return Loss Characteristic <strong>of</strong> 100m CAT 5 Cable<br />

Return_Loss(f) = 15 (dB), 1 ≤ f < 20 (MHz)<br />

Return_Loss(f) = 15-10*log 10 (f/20) (dB), 20 ≤ f < 100 (MHz)<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 15<br />

Channel Response – Crosstalk<br />

NEXT and FEXT Characteristics <strong>of</strong> 100m CAT 5 Cable<br />

<br />

<br />

NEXT_Loss > 27.1-16.8log 10 (f/100) dB<br />

ELFEXT_Loss(f) > 17-20log 10 (f/100) dB<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 16


Channel Response - Total<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 17<br />

Channel Evaluation and Modeling<br />

1. Insertion loss<br />

•2. Return loss<br />

•3. NEXT<br />

•4. FEXT<br />

Attenuation (dB)<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

1 2<br />

3<br />

4<br />

-60<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Frequency (MHz)<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 18


What Is CAT 5E UTP Cable<br />

Enhanced Category 5 Unshielded Twisted Pair<br />

Cable.<br />

Specified in TIA/EIA-568-A-5 and TSB95.<br />

Why CAT 5E UTP<br />

– Better than CAT 5 in Echo and Crosstalk.<br />

– Some Parameters are undefined in the CAT 5 UTP.<br />

– Additional Parameters : FEXT, Return Loss,<br />

Propagation Delay,Delay Skew…<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 19<br />

How Much Better than CAT 5 UTP<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 20


1000BASE-T <strong>Transceiver</strong><br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 21<br />

Review <strong>of</strong> Cable Challenge<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 22


MLT-3 and PAM-5 Signal Levels<br />

5 Level Signaling Costs 6dB Lower than 100BASE-TX<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 23<br />

What are the <strong>Design</strong> Tasks<br />

Each pair a full duplex channel supporting effective data<br />

rate <strong>of</strong> 250Mbps in both directions simultaneously<br />

– Echo, Self-NEXT, and FEXT<br />

• Hybrid to cancel most <strong>of</strong> the Near-end ECHO<br />

• Adaptive cancellers to reduce remaining ECHO and Self-NEXT<br />

Signal-to-Noise Ratio (SNR) 6dB less than 100BASE-TX<br />

due to 5-level signaling<br />

– Provide 6dB coding gain in the form <strong>of</strong> 4-D Trellis code<br />

Channel Impairments<br />

– 20dB signal attenuation at 62MHz at 100 meters<br />

• Incorporate Decision-Feedback Channel Equalization<br />

– External Noise<br />

FCC impose limits on transmit levels<br />

– Limit transmit spectrum above 30MHz<br />

• Partial Response spectral shaping at the transmitter (3/4+1/4Z -1 )<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 24


Transmitter<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 25<br />

Transmitter (cont.)<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 26


DSP Based Receiver Block Diagram<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 27<br />

Typical 100BASE-TX DSP Based Receiver<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 28


What are New from 100BASE-TX<br />

to 1000BASE-T<br />

Pulse Pulse Pulse Pulse<br />

Shaping Shaping Shaping Shaping<br />

125MHz<br />

125MHz<br />

125MHz<br />

125MHz<br />

DAC<br />

DAC<br />

DAC<br />

DAC<br />

GMII<br />

PCS<br />

NEXT<br />

NEXT<br />

Cancellers<br />

Echo Echo Echo Echo<br />

Cancellers<br />

Hybrid<br />

DFE & TCM<br />

Decoder<br />

+<br />

FFE FFE FFE<br />

125MHz<br />

ADC<br />

ADC<br />

ADC<br />

AFE AFE AFE AFE<br />

Timing Recovery<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 29<br />

<strong>Design</strong> Issues in <strong>Gigabit</strong><br />

Receiver<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 30


Major Receiver <strong>Design</strong> Works<br />

A/D conversion<br />

– 125 Mega samples per second Conversion<br />

Frequency Locking and Timing Recovery<br />

– Low Jitter Phase Locked Loop for clock recovery<br />

Echo/NEXT Canceller<br />

FEC – 4D 8-State Trellis Code<br />

Reduced-state Decision Feedback Equalizer<br />

– <strong>Design</strong> <strong>of</strong> critical timing path involving Trellis<br />

decoder and decision feedback equalizer<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 31<br />

Baseband DSP Component –<br />

Echo and NEXT Canceller<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 32


Echo/NEXT Canceller<br />

Operating Frequency : 125MHz<br />

4 Echo Canceller each with 120 Taps<br />

12 NEXT Canceller each with 20 Taps<br />

‣ Low Cost and High Speed Long-Tap<br />

Adaptive Filter<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 33<br />

Echo and NEXT Canceller Structure<br />

x(n)<br />

FIR Filter<br />

y(n)<br />

Error<br />

Calculation<br />

r(n)<br />

e(n)<br />

Adaptive<br />

Theorem<br />

h k (n+1)=h k (n)+µe(n)x(n-k)<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 34


Echo and NEXT Canceller Structure (cont.)<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 35<br />

Baseband DSP Component –<br />

Trellis Encoder<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 36


MLT-3 and PAM-5 Signal Levels<br />

5 Level Signaling Costs 6dB Lower than 100BASE-TX<br />

‣ Add Forward Error Correction (FEC)<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 37<br />

4D TCM for <strong>Gigabit</strong> <strong>Ethernet</strong><br />

Purpose : Match the robustness <strong>of</strong> 3 level 100BASE-<br />

TX signaling with 5 level 1000BASE-T signaling.<br />

Implement as 2-steps approach :<br />

– Convolutional Encoding to convert scrambled octet data into<br />

9-bit word<br />

– Mapping by set partitioning to get 6dB noise immunity gain.<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 38


4D TCM for <strong>Gigabit</strong> <strong>Ethernet</strong> (cont.)<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 39<br />

Baseband DSP Component –<br />

Equalizer<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 40


Detail <strong>of</strong> DFE Based Equalizer<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 41<br />

<strong>Gigabit</strong> Receiver With FEC (Delayed Decision-<br />

Feedback Sequence Estimation (DDFSE) )<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 42


Baseband <strong>Design</strong> Issues<br />

DDFSE :<br />

- Evaluate/derive DDFSE algorithms and<br />

architectures<br />

- Implementational issues <strong>of</strong> Viterbi decoder<br />

- Low-latency adaptive DFE design<br />

Echo canceller and NEXT canceller<br />

-Low-cost/high-speed long taps adaptive filter<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 43<br />

System Simulations<br />

Algorithm <strong>of</strong> Timing Recovery and Adaptive Filters<br />

Loop Bandwidth Partition<br />

Tap Length <strong>of</strong> Adaptive Filter<br />

Bit Number (Wordlegnth) <strong>of</strong> Datapath<br />

Integration <strong>of</strong> Subsystems<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 44


Receiver <strong>Design</strong> Parameter Comparison<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 45<br />

Case Study – <strong>Design</strong> Point : 10dB<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 46


Case Study(cont’d) – Broadcom & Bell Lab.<br />

125MBaud, 2bit/symbol<br />

Pulse Shaping<br />

.75+.26z -1<br />

D/A<br />

Analog<br />

FE<br />

Analog Digital<br />

3 Next<br />

Cancel.<br />

A/ FIF<br />

FFE +<br />

D O<br />

From other transmitters<br />

From other receivers<br />

DFE+TCM<br />

decoder<br />

GMII<br />

PCS<br />

3 Next Cancellers<br />

Echo<br />

Can.<br />

Hybrid<br />

UTP<br />

Hybrid<br />

125M<br />

125M<br />

Echo<br />

Cancel.<br />

PCS<br />

GMII<br />

DFSE Trellis<br />

Decoder<br />

Σ<br />

FFE<br />

A/D<br />

25M<br />

DPLL<br />

Timing<br />

Recove<br />

ry<br />

S<strong>of</strong>t Decs. From<br />

Other Receivers<br />

Timing<br />

Recovery<br />

D/<br />

A<br />

Pulse<br />

shaping<br />

Parameters<br />

Broadcom<br />

A B C<br />

Bell<br />

Lab.<br />

A/D resolution 6 7 8 7 or 8<br />

D/A resolution 6 7 8 17L<br />

FFE Taps 8 8 8 10-20<br />

DFE Taps 14 14 14 8<br />

Next Taps 80 80 80 20<br />

Echo Taps 60 60 60 120<br />

SNR 18.8db 24.4db 27.7db n/a<br />

7bit linearity<br />

10Bit Conf.<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 47<br />

Challenges for <strong>Design</strong> <strong>Gigabit</strong> <strong>Ethernet</strong><br />

Modeling <strong>of</strong> Practical UTP Channels<br />

Need 4 Parallel High-Speed A/Ds and D/As<br />

Need Robust Equalizers to Overcome Echo,<br />

Crosstalk, and Channel Distortion Problems<br />

Algorithm to Realize DFE + 4-D TCM Decoder<br />

Very High Hardware Complexity for SOC <strong>Design</strong><br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 48


NTUEE Research Works<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 49<br />

High-performance Pipelined ADFE <strong>Design</strong> Based<br />

on the PPBS scheme<br />

<strong>Design</strong> a pipelined ADFE in order to increase the<br />

throughput rate to meet the speed requirement <strong>of</strong> GBE<br />

systems and future very-high-speed communication<br />

systems.<br />

Approaches<br />

– Predictive Parallel Branch Slicer (PPBS) Scheme<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 50


Speed Limitation <strong>of</strong> the Conventional<br />

ADFE<br />

•The highest clock rate is limited by Decision Feedback<br />

Loop (DFL)<br />

e(n)<br />

x(n)<br />

FFE<br />

D<br />

D<br />

WUC<br />

FBE<br />

D<br />

WUD<br />

DFL<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 51<br />

Review <strong>of</strong> Pipelined ADFE (Look-Ahead<br />

ADFE)<br />

<br />

<br />

Assume the error in the slicer<br />

output is small, the ADFE can be<br />

consider as the IIR filter.<br />

Apply the look-ahead technique,<br />

we can obtain the pipelined<br />

ADFE coefficients.<br />

N ( z)<br />

Q(<br />

z)<br />

N ( z)<br />

P(<br />

z)<br />

= =<br />

D(<br />

z)<br />

Q(<br />

z)<br />

D(<br />

z)<br />

Q(<br />

z)<br />

N(<br />

z)<br />

=<br />

− D + 1)<br />

1−<br />

z R(<br />

( 1<br />

z<br />

k<br />

with R ( z ) =<br />

∑= i 0<br />

r i z<br />

)<br />

−i<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 52


Relaxed-ADFE<br />

<br />

<br />

<br />

Constraint the first D 1 taps to zeros<br />

Inserting extra D 1 delay to pipeline the DFL<br />

It suffers from the output SNR degradation<br />

Combined channel and FFE response<br />

x(n)<br />

D 2<br />

FFE<br />

D 4<br />

WUC<br />

e(n)<br />

FBE<br />

D<br />

DFL<br />

D 3<br />

D 4<br />

D 1<br />

The first D 1<br />

post-cursor ISI<br />

seen by FBE<br />

WUD<br />

D 3<br />

D 2<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 53<br />

Pipelined ADFE Based on PPBS (PPBS-<br />

ADFE)<br />

<br />

In wirelined communication, the average behavior <strong>of</strong> channel<br />

impulse response can be roughly measured by some instrument<br />

or theoretical analysis. (IOL channel model)<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 54


D 2<br />

PPBS-ADFE (cont.)<br />

We can fix the first D 1 coefficients <strong>of</strong> the FBE according to the<br />

channel model.<br />

Constraint the first D 1 =2 taps to [c 1 c 2 ].<br />

x(n)<br />

FFE<br />

e(n)<br />

D<br />

Combined channel and FFE response<br />

(D 1<br />

=2)<br />

c 1<br />

D 2<br />

D 4<br />

WUC<br />

FBE<br />

DFL<br />

D 3<br />

D 4<br />

c 2<br />

WUD<br />

D 3<br />

D 2<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 55<br />

PPBS-ADFE (cont.)<br />

<br />

<br />

Apply the look-ahead<br />

Computation technique,<br />

the iteration bound <strong>of</strong> DFL<br />

can be shorten by D 1<br />

times.<br />

The extra D 1 delay<br />

elements can be retimed<br />

to appropriate position to<br />

pipeline the critical path.<br />

V T T e 0<br />

V T e T 1<br />

e(n)<br />

x(n)<br />

y(n) b(n)<br />

D D<br />

FFE<br />

D 2<br />

D 4<br />

WUF<br />

An example <strong>of</strong> D 1 =2<br />

PPBS<br />

V T e T 22<br />

V T e T 23<br />

V T T e 24<br />

d 0<br />

d 23<br />

d 23<br />

d 24<br />

e t, 0<br />

e t,1<br />

e t, 24<br />

e t,22<br />

e t, 23<br />

25-to-1 MUX<br />

FBE<br />

D 4<br />

D 3<br />

WUB<br />

D 3 + 3<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 56


Performance Analysis <strong>of</strong> PPBS-<br />

ADFE(II)<br />

Here, we define the<br />

Inaccuracy Index,<br />

T<br />

( V −V<br />

) ( V −V<br />

)<br />

e p e p<br />

Γ=<br />

.<br />

T<br />

V V<br />

Simulation results are<br />

close agreement with<br />

the theoretical results.<br />

p<br />

p<br />

Γ = 0 ( The Conventional ADFE)<br />

Γ = 0.3(<br />

PIPEADFE2)<br />

Γ = 1(<br />

PIPEADFE1)<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 57<br />

Comparisons <strong>of</strong> Hardware Complexity<br />

•S=D 1 +1, is the speedup factor<br />

Relaxed-ADFE<br />

PPBS-ADFE<br />

Mult. in FFF<br />

Mult. in FBF<br />

Total Adder<br />

2(<br />

N f<br />

+ S −1)<br />

2(<br />

+ S −1)<br />

N f<br />

2N b<br />

2N<br />

b<br />

2N<br />

+ 2N<br />

+ 2S<br />

− 3<br />

2N<br />

+ 2N<br />

+ 2S<br />

− 3<br />

f b<br />

f b<br />

Slicer<br />

5 S-1 -to-1 MUX<br />

1<br />

0<br />

5 S-1<br />

2<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 58


Integration <strong>of</strong> Equalization and Timing<br />

Recovery<br />

<br />

The architecture <strong>of</strong> joint ADFE and timing recovery<br />

Rx<br />

Equalization<br />

Slicer<br />

Receive<br />

Clk<br />

Mux<br />

Loop<br />

filter<br />

Estimate<br />

timing<br />

error<br />

CLK<br />

Generater<br />

(40 Phase)<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 59<br />

Simulation Results <strong>of</strong> PPBS-ADFE<br />

<br />

<br />

<br />

Under the IOL worst case environment (100BASE-T)<br />

Using the 7-bit A/D converter<br />

The output SNR in slicer is about 20.22dB (>18.4dB)<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 60


Simulation Results <strong>of</strong> PPBS-ADFE<br />

<br />

<br />

<br />

Under the IOL worst case environment (1000BASE-T)<br />

Using 8-bit A/D converter<br />

The output SNR in slicer is about 24.6dB (>21.3dB)<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 61<br />

Performance in Different Cable<br />

Length<br />

<br />

The longer cable has the larger attenuation (lower SNR).<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 62


CHIP Summary <strong>of</strong> PPBS-ADFE<br />

Using Avanti! 0.35µm standard cell library (WCOM) (critical path =4.69 ns)<br />

Cell Library<br />

Voltage<br />

Die Size<br />

Core Size<br />

Gate Count<br />

Power<br />

I/O Pad<br />

Avanti! 0.35μm 1P4M<br />

3.3V<br />

2.712mm ×2.712mm<br />

1.31mm ×1.31mm<br />

32,839<br />

957mW@ 250MHz<br />

40<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 63<br />

Conclusions<br />

<br />

<strong>Gigabit</strong> <strong>Ethernet</strong> will become the major trend for<br />

<strong>Ethernet</strong> applications within a short period.<br />

The GBE design has more demand on DSP than<br />

analog circuit designs.<br />

A typical SOC design example and challenge.<br />

Research work in NTUEE: A high-performance<br />

pipelined PPBS-ADFE for the future high-speed<br />

communications system is demonstrated.<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 64


References<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

IEEE Std802.3ab, 1999. Available from<br />

http://grouper.ieee.org/groups/802/3/search.html<br />

M. Hatamian, O.E. Agazzi, et al. "<strong>Design</strong> Considerations for <strong>Gigabit</strong><br />

<strong>Ethernet</strong> 1000BASE-T Twisted Pair <strong>Transceiver</strong>s", Proceedings <strong>of</strong> C<strong>IC</strong>C,<br />

1998<br />

K. Azadet "<strong>Gigabit</strong> <strong>Ethernet</strong> over Unshielded Twisted Pair Cables",<br />

Proceedings <strong>of</strong> VLSI-TSA conference, Taipei, June 1999<br />

E. Haratsch "High-Speed VLSI Implementation <strong>of</strong> Reduced Complexity<br />

Sequence Estimation Algorithms with Application to <strong>Gigabit</strong> <strong>Ethernet</strong><br />

1000BASE-T", Proceedings <strong>of</strong> VLSI-TSA conference, Taipei, June 1999<br />

J.Everitt, J. Parker, P. Hurst, D. Nack, K. Konda, C. Raad " A CMOS<br />

transceiver for 10-Mb/s and 100Mb/s <strong>Ethernet</strong>", IEEE JSSC, Vol.33, No. 12,<br />

Dec. 1998, pp.2169-2177<br />

http://www.agilent .com<br />

http://www.gigabit-ethernet.org<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 65<br />

References (cont’d)<br />

<br />

<br />

<br />

<br />

<br />

<br />

E. F. Haratsch, "High-speed VLSI implementation <strong>of</strong> reduced complexity<br />

sequence estimation algorithms with application to <strong>Gigabit</strong> <strong>Ethernet</strong><br />

1000BASE-T," Proc. Int. Symp. VLSI-TSA, Taipei, pp. 171-174, Jun. 1999.<br />

E. F. Haratsch and K. Azadet, "A low complexity joint equalizer and<br />

decodeer for 1000BASE-T <strong>Gigabit</strong> <strong>Ethernet</strong>," Proc. IEEE C<strong>IC</strong>C, Orlando, pp.<br />

465-468, May 2000.<br />

E. F. Haratsch, A. J. Blanksby and K. Azadet, "Reduce-state sequence<br />

estimation with tap-selectable decision-feedback," Proc. IEEE Int. Conf.<br />

Commun.(<strong>IC</strong>C), New Orleans, Jun. 2000.<br />

Alexandra Duel-Hallen and Chris Heegard, " Delayed decision-feedback<br />

sequence estimation“ Trans. IEEE Comm., Vol.37, No. 5, May 1989,pp.428-<br />

436.<br />

M. Vedat Eyuboglu and Shahid U. H. Qureshi, "Reduced-state sequence<br />

estimation for coded modulation on intersymbol interference<br />

channels“ IEEE JSAC, Vol. 7, No. 6, Auguest 1989<br />

Erich F Haratsch, Kamean Azadet, "A 1-Gb/s joint equalizer and trellis<br />

decoder for 1000BASE-T <strong>Gigabit</strong> <strong>Ethernet</strong> “ IEEE Journal <strong>of</strong> solid-state<br />

circuit, Vol. .36, No. 3 ,March 2001<br />

清 華 大 學 積 體 電 路 中 心 演 講 pp. 66

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!