20.01.2015 Views

Introduction to Enzyme and Coenzyme Chemistry - E-Library Home

Introduction to Enzyme and Coenzyme Chemistry - E-Library Home

Introduction to Enzyme and Coenzyme Chemistry - E-Library Home

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

118 Chapter 5<br />

(6) Retaining glycosidases (like lysozyme) are irreversibly inhibited by substrate<br />

analogues containing a 2 0 -Xuorine substituent, leading <strong>to</strong> covalent<br />

modiWcation of the enzyme active site. Write a mechanism for this process,<br />

<strong>and</strong> explain why the covalent intermediate is not hydrolysed by the normal<br />

reaction pathway of the enzyme.<br />

OH<br />

2'-fluoro substrate analogue<br />

HO<br />

HO<br />

O<br />

F<br />

OAr<br />

Further reading<br />

General<br />

R.H. Abeles, P.A. Frey & W.P. Jencks (1992) Biochemistry. Jones & Bartlett, Bos<strong>to</strong>n.<br />

C.T. Walsh (1979) Enzymatic Reaction Mechanisms. Freeman, San Francisco.<br />

C.H. Wong & G.M. Whitesides (1994) <strong>Enzyme</strong>s in Synthetic Organic <strong>Chemistry</strong>.<br />

Pergamon, Oxford.<br />

Serine proteases<br />

S. Brenner (1988) The molecular evolution of genes <strong>and</strong> proteins: a tale of two serines.<br />

Nature, 334, 528–30.<br />

C.S. Craik, S. Roczniak, C. Largman & W.J. Rutter (1987) The catalytic role of the<br />

active site aspartic acid in serine proteases. Science, 237, 909–13.<br />

J. Kraut (1977) Serine proteases: structure <strong>and</strong> mechanism of catalysis. Annu. Rev.<br />

Biochem., 46, 331–58.<br />

K. Kreutter, A.C.U. Steinmetz, T.C. Liang, M. Prorok, R.H. Abeles & D. Ringe<br />

(1994) Three-dimensional structure of chymotrypsin inactivated with (2S)-N-acetyl-<br />

L-Ala-L-Phe a-chloroethane: implication for the mechanism of inactivation of serine<br />

proteases by chloroke<strong>to</strong>nes. Biochemistry, 33, 13792–800.<br />

M. Prorok, A. Albeck, B.M. Foxman & R.H. Abeles (1994) Chloroke<strong>to</strong>ne hydrolysis by<br />

chymotrypsin <strong>and</strong> N-MeHis57-chymotrypsin: implications for the mechanism of<br />

chymotrypsin inactivation by chloroke<strong>to</strong>nes. Biochemistry, 33, 9784–90.<br />

S. Sprang, T. St<strong>and</strong>ing, R.J. Fletterick, R.M. Stroud, J. Finer-Moore, N.H. Xuong,<br />

R. Hamlin, W.J. Rutter, & C.S. Craik (1987) The three-dimensional structure of<br />

Asn 102 mutant of trypsin: role of Asp 102 in serine protease catalysis. Science, 237,<br />

905–9.<br />

Cysteine proteases<br />

F.A. Johnson, S.D. Lewis & J.A. Shafer (1981) Determination of a low pK a for histidine-159<br />

in the S-methylthio derivative of papain by pro<strong>to</strong>n NMR spectroscopy.<br />

Biochemistry, 20, 44–8.<br />

S.D. Lewis, F.A. Johnson & J.A. Schafer (1981) EVect of cysteine-25 on the ionization of<br />

histidine-159 in papain as determined by pro<strong>to</strong>n NMR spectroscopy. Biochemistry,<br />

20, 48–51.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!