19.01.2015 Views

Fick's Second Law

Fick's Second Law

Fick's Second Law

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SHR §3.3.2<br />

Fick’s <strong>Second</strong> “<strong>Law</strong>”<br />

Species mole<br />

balance<br />

equation:<br />

@c i<br />

@t = r · N i + S i<br />

@c i<br />

@t = r · (c iv M ) r· J i + S i<br />

Assume: <br />

• no bulk flow (vM = 0) <br />

• no reaction (Si = 0) <br />

• Constant molar concentration, c. <br />

• Fick’s law (binary) with constant DAB<br />

Fick’s <strong>Law</strong><br />

(binary):<br />

J A =<br />

cD AB rx A<br />

c @x A<br />

@t<br />

= cD AB r · (rx A )<br />

Gradient <br />

(cartesian<br />

coordinates)<br />

Laplacian <br />

(cartesian<br />

coordinates)<br />

r = @<br />

@x ~ i + @ @y ~ j + @ @z ~ k<br />

r · r = r 2 = @2<br />

@x 2 + @2<br />

@y 2 + @2<br />

@z 2<br />

@x A<br />

@t<br />

@c A<br />

@t<br />

= D AB r 2 x A equivalent<br />

since we<br />

= D AB r 2 assumed c<br />

c A is constant<br />

Fick’s <strong>Second</strong> <strong>Law</strong><br />

Really just some assumptions on top of<br />

the governing equations & Fick’s <strong>Law</strong>.<br />

Fick’s <strong>Second</strong> <strong>Law</strong> in<br />

cartesian coordinates:<br />

@x A<br />

@t<br />

= D AB<br />

✓ @ 2 x A<br />

@x 2<br />

+ @2 x A<br />

@y 2<br />

+ @2 x A<br />

@z 2<br />

◆<br />

21 MassTransfer.key - February 5, 2014


Example: Loschmidt Tube<br />

@c i<br />

@t = r · (c iv M ) r· J i + S i<br />

@x A<br />

@t<br />

What<br />

assumptions<br />

= D AB<br />

@ 2 x A<br />

xA+<br />

xA-<br />

z=<br />

z=0<br />

@z 2 t=0 t→∞<br />

How many intial & boundary conditions do<br />

we need What form should the BCs take<br />

z=-<br />

"<br />

(x A x A )<br />

(x A+ x A ) = 1<br />

2 + 1 ⇡<br />

1X<br />

k=0<br />

1<br />

⇣ m⇡z<br />

⌘ ✓ m 2<br />

m sin ⇡ 2 ◆ #<br />

exp Dt<br />

`<br />

`2<br />

1<br />

0.8<br />

time<br />

m = k + 1 2<br />

Reminder: solutions to PDEs are heavily<br />

influenced by initial and boundary conditions!<br />

Mole Fraction<br />

0.6<br />

0.4<br />

0.2<br />

time<br />

0<br />

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2<br />

z<br />

22 MassTransfer.key - February 5, 2014


SHR §3.3.3<br />

Example: Ground Contamination<br />

A benzene spill occurs on the ground. Determine how long<br />

it will take for the contamination to diffuse 1 meter deep.<br />

@x A<br />

@t<br />

= D AB<br />

@ 2 x A<br />

@z 2<br />

c A = c Ao t =0<br />

c A = c As t>0, z=0<br />

c A =0 t>0, z!1<br />

✓<br />

c A c Ao<br />

=erfc<br />

c As c Ao<br />

t =<br />

apple<br />

z2<br />

4D AB<br />

Assumptions: <br />

• the spill is “large” in x and y<br />

directions (relative to z). <br />

• D AB =10 -8 cm 2 /s. <br />

• Fick’s second law holds. <br />

• Soil density is 2 g/cm 3 . <br />

• Benzene density is 0.8765 g/cm 3<br />

z<br />

2 p D AB t<br />

◆<br />

c Ao<br />

µg Benzene per kg soil<br />

✓ ◆ 2<br />

erfc 1 cA<br />

= 4.2 years<br />

c As c Ao<br />

4<br />

3<br />

2<br />

1<br />

x 10 8<br />

EPA suggests less than 0.3 μg<br />

benzene (A) per kg soil (B).<br />

c max<br />

A<br />

=3⇥ 10 7 gA/kgB ⇢ B<br />

M A<br />

=3⇥ 10 7 gA/kgB 2000kgB /m 3<br />

78 gA /molA<br />

=7.69 ⇥ 10 6 molA/m 3<br />

Each curve is a different<br />

time (in years!)<br />

1<br />

2<br />

4<br />

8<br />

16<br />

32<br />

64<br />

0<br />

0 0.5 1 1.5 2<br />

z (m)<br />

Disclaimer: there is actual flow (not just<br />

diffusion) in such a spill. Contamination<br />

could occur much faster...<br />

23 MassTransfer.key - February 5, 2014


Example: Steady-State Diffusion & Reaction<br />

A + B ! C<br />

S A = S B = S C = kc A c B<br />

0<br />

@c A<br />

@t<br />

@c B<br />

@t<br />

@c C<br />

@t<br />

= D A<br />

@ 2 c A<br />

@z 2<br />

= D B<br />

@ 2 c B<br />

@z 2<br />

= D C<br />

@ 2 c C<br />

@z 2<br />

+ S A<br />

+ S B<br />

+ S C<br />

cA,i-1<br />

cA,i cA,i+1<br />

Δz<br />

http://www.che.utah.edu/~sutherland/page_id=867<br />

24 MassTransfer.key - February 5, 2014


Length & Time Scales in Diffusion<br />

Fick’s <strong>Second</strong> <strong>Law</strong>:<br />

@x A<br />

@t<br />

= D AB<br />

@ 2 x A<br />

@z 2<br />

Let’s nondimensionalize this equation:<br />

nondimensional time: t ⇤ = t /⌧<br />

nondimensional length: z ⇤ = z /`<br />

nondimensional diffusivity: D ⇤ = D⌧ /`2<br />

If we choose and τ<br />

associated with diffusion,<br />

then we expect D*=1,<br />

⌧ = `2<br />

D<br />

` = p D⌧<br />

Characteristic length and time<br />

scales for diffusion!<br />

25 MassTransfer.key - February 5, 2014

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!