19.01.2015 Views

Diego Saez-Gomez

Diego Saez-Gomez

Diego Saez-Gomez

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

8<br />

− 3H 2 − 2Ḣ = 1 κ 2 p m +<br />

φ<br />

¨φ +2H ˙φ − 1 <br />

Let’s reconstruct the corresponding Cosmological<br />

100 scalar-tensor<br />

2 V (φ) evolution . theory in viable for the (4.5) particular modified models gravityconsi<br />

6<br />

in the previous section. By the expressions(4.3), the corresponding relation φ(R) fo<br />

while the 4 trace equation in(4.4) is given by,<br />

Scalar-tensor representation of<br />

models(2.10) are given by,<br />

f(r) gravity<br />

3 ¨φ = κ 2 (ρ m − p m<br />

c) 1 −c 2 φV R +2V − 9H ˙φ . cR(aR(4.6)<br />

− b)<br />

2<br />

φ HS =1+ 2<br />

+ c 1<br />

R<br />

Let’s reconstruct the corresponding scalar-tensor HS 1+ c 2R 1+ c , φ<br />

2R NO =1−<br />

(1 + cR) 2 + aR<br />

1+cR + aR − b<br />

Hence, 1+cR ,<br />

0 the R<br />

Rtheory for the<br />

HS<br />

scalar-tensor representation for both mod<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

HS particular models considered<br />

Φ<br />

potentials exhibit<br />

Φtwo branches due to the particu<br />

in the previous section. By the expressions(4.3), the corresponding relation φ(R) for the<br />

(a) where we have assumed<br />

models(2.10) are given by,<br />

considered<br />

a power of n<br />

here.<br />

= 1 for (b) Inboth addition,<br />

models(2.10).<br />

both models<br />

Then, the<br />

introduce<br />

scalar p<br />

tials(4.3) yield,<br />

c 1 c 2 R<br />

φ HS =1+ 2<br />

+ c 1<br />

cR(aR − b)<br />

R HS 1+ c 2R 1+ c , φ<br />

2R NO =1− V<br />

(1 + cR) 2 + aR<br />

1+cR + aR − b<br />

HS (φ) = 1+c <br />

Figure 7: Scalar potentials V (φ) in terms of H0 2 ,oftheHSmodelwithn of the scalar<br />

1 −field, φ =1,c ± 2being c 12 =2,c c1<br />

φ<br />

(1 2<br />

< = −<br />

1+cR , 1φ)<br />

(4.7)<br />

(figure in the7a),<br />

HS model, an<br />

and of the NO model with n =1,a =0.1/H R HS ,<br />

0 2 , b =1,c =0.05/H limit where 0 2 ,fig.7b. both Both branches potentials<br />

c 2<br />

of arethe not uniquely scalar potentials co<br />

defined, where each branch behaves veryR different,<br />

R HS converging to the boundary of the<br />

HS<br />

V<br />

where we have assumed a power of n = 1 for NO (φ) = 2 a + c (1 + b − φ) ± 2 scalar field φ.<br />

Moreover, the evolution(a of + the bc)(a scalar + c −field, φ) φ(z) =f<br />

both models(2.10). Then, the c 2 .<br />

scalar potentials(4.3)<br />

0.92 yield, Hence, the scalar-tensor<br />

16<br />

V HS (φ) = 1+c representation 2.0<br />

for both models is not uniquely defined, bu<br />

potentials exhibit 1 − φ ± two 2 cbranches, 2 c1 (114<br />

−which φ) in principle do not affect V Φ the cosmological evolu<br />

Φz<br />

R HS<br />

Φz ,<br />

V<br />

but it may influence cthe 2<br />

V NO (φ) = 2 a + c (1 + b − φ) ± 2 behavior of the phase space. In addition,<br />

Φ<br />

200<br />

0.90<br />

both models intro<br />

1.9<br />

12<br />

a boundary condition on the value of the scalar field, being φ < 1 for the HS model<br />

(a + bc)(a + c − φ)<br />

φ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!