19.01.2015 Views

Diego Saez-Gomez

Diego Saez-Gomez

Diego Saez-Gomez

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Cosmological constraints on modified<br />

gravity theories<br />

<strong>Diego</strong> Sáez-Gómez<br />

Astrophysics, Cosmology and Gravity Center<br />

University of Cape Town<br />

and<br />

Department of Theoretical Physics<br />

University of the Basque Country<br />

August 3, 2013<br />

Kobayashi-Maskawa Instiute<br />

University of Nagoya


Index<br />

Friedmann-Lemaître-Robertson-Walker (FLRW) cosmologies in<br />

F(R) gravity<br />

The cosmological evolution in viable F(R) gravities, and their<br />

scalar-tensor counterpart. Future singularities and Little Rip.<br />

Testing F(R) gravity with SNe Ia data: a simple model<br />

F(R,T) gravity and cosmological perturbations


Brief Article<br />

The Author<br />

April 6, 2012<br />

FLRW cosmologies<br />

1<br />

w>−1, quintessence fluid ,<br />

w = −1, cosmological constant ,<br />

Cosmological Principle: assumes that the Universe is the same in every point (at large<br />

scales), what from w


General Relativity: Big Bang model<br />

R0<br />

0 = 3ä<br />

a , (5)<br />

(ä<br />

Rj i =<br />

a + 2ȧ2<br />

a 2 + 2K )<br />

a 2 δj i , (6)<br />

(ä<br />

R = 6<br />

a + ȧ2<br />

a 2 + K )<br />

a 2 , (7)<br />

FLRW cosmologies<br />

where a dot denotes a derivative with respect to t.<br />

Let us consider an ideal perfect fluid as the source of<br />

the energy momentum tensor T µ ν .Inthiscasewehave<br />

T ν µ =Diag(−ρ,p,p,p) , (8)<br />

B. The evolution of the universe filled with a<br />

where ρB. andThe p are evolution theperfect energy of the density fluid universe and the filledpressure<br />

with a<br />

density of the fluid, respectively. perfect Then fluid Eq. (4) gives the<br />

FLRW equations in General two Relativity independent equations<br />

Let us consider the evolution of the universe filled with<br />

B. The Let usevolution consider (ȧ the ofevolution the universe of the universe filled filledawith<br />

abarotropicperfectfluidwithanequationofstate<br />

ion of homogeneity and isotropy of the<br />

pproximately true on large scales. The<br />

m homogeneity at early epochs played<br />

oleinthedynamicalhistoryofourunil<br />

density perturbations grew via gravy<br />

into the structure we see today in<br />

temperature anisotropies observed in<br />

wave Background (CMB) are believed<br />

from quantum fluctuations generated<br />

nary stage in the early universe. See<br />

3, 74, 75, 76] for details on density pered<br />

by inflationary cosmology. In this<br />

eview the main features of the homopic<br />

cosmology necessary for the subseic<br />

is given by [70, 77, 78, 79]<br />

) 2<br />

[<br />

dr 2<br />

]<br />

abarotropicperfectfluidwithanequationofstate<br />

H 2 ≡ perfect = fluid<br />

8πGρ − K<br />

)<br />

1 − Kr 2 + r2 (dθ 2 +sin 2 θdφ 2 ) ,<br />

a 3 a 2 , (9)<br />

w = p/ρ ,<br />

(1)<br />

Ḣ = −4πG(p + ρ)+ K a 2 , (10) (17)<br />

Let us consider the evolution of the universe filled with<br />

abarotropicperfectfluidwithanequationofstate<br />

where w is assumed to be constant. Then by solving the<br />

where<br />

factorwithcosmictimet. Thecoordire<br />

known as comoving For a perfect coordinates. fluid with<br />

Einstein H is the equations Hubble given parameter, in Eqs. ρ(9) and and p denote (10) with the K to-=0tal<br />

energy density and pressure of all the species present<br />

A wean inobtain<br />

equation we obtainof state, w = p/ρ , (17)<br />

the universe at a given epoch.<br />

icle comes to rest in these coordinates.<br />

The energy momentum tensor is conserved 2 by virtue of<br />

a purely kinematic statement. In this where w is assumed toH be=<br />

constant. 2 Then by solving the<br />

the Bianchi identities, leading to the continuity equation<br />

ics is associated with the scale factor–<br />

H = 3(1 + w)(t − t 0 ) , (18)<br />

Einstein equations given in Eqs. (9) and<br />

2<br />

(10) with K =0,<br />

ations allow us to determine the scale we obtain<br />

a(t) ∝ (t − t 0 )<br />

3(1+w) , (19)<br />

2<br />

e matter content of the universe is spect<br />

K in the metric (1) describes the ge-<br />

2<br />

a(t) ˙ρ +3H(ρ ρ ∝(t a −3(1+w) −+ p) t 0 ) =0. , (11)(20)<br />

tial section of space time, with closed, Equation (11) can H be =<br />

where t derived from Eqs. (9) and (10),<br />

3(1 + w)(t − t<br />

erses corresponding to K =+1, 0, −1, which means that two of Eqs. (9), (10) 0 ) , (18)<br />

0 is constant. We note that the above solution<br />

is valid for w ≠ −1. The radiation and (11) are independent.<br />

Eliminating a(t) ∝ the (t −K/a t 2 2 dominated universe<br />

0 )<br />

3(1+w) term from , Eqs. (9) and<br />

which contains an initial singularity corresponds (and toperhaps w = 1/3, a future whereas one..). the dust dominated (19)<br />

enient to write the metric (1) in the (10), universe we obtain to w<br />

ρ=0. ∝ aInthesecaseswehave<br />

−3(1+w) , (20)<br />

ä<br />

t) [ dχ 2 + fK 2 (χ)(dθ2 +sin 2 θdφ 2 ) ] universe toRadiation w =0. a = Inthesecaseswehave<br />

: − a(t) 4πG ∝ (ρ(t +3p) − t 0 ) . (12)<br />

where t 3<br />

, (2)<br />

0 is constant. We note that 1/2 , ρ ∝ a above −4 , (21)<br />

solution<br />

is valid Hencefor thewaccelerated ≠Dust −1.<br />

:<br />

The<br />

a(t)<br />

expansion radiation<br />

∝ (t − t 0 ) 2/3<br />

occurs dominated<br />

, ρ ∝ a −3<br />

for +3p


FLRW cosmologies<br />

12<br />

3<br />

No Big Bang<br />

(54)<br />

2<br />

Supernovae<br />

t 0 →<br />

ig. 3<br />

verse<br />

(0)<br />

Λ =<br />

t 0 =<br />

s the<br />

tellar<br />

s the<br />

to go<br />

a flat<br />

rized<br />

n the<br />

vacuum energy density<br />

(cosmological constant)<br />

1<br />

0<br />

-1<br />

Clusters<br />

Maxima<br />

SNAP<br />

Target Statistical Uncertainty<br />

CMB<br />

Boomerang<br />

open<br />

expands forever<br />

recollapses eventually<br />

flat<br />

closed<br />

0 1 2 3<br />

mass density<br />

arget<br />

the<br />

MB<br />

AP<br />

f prithe<br />

G. Aldering [SNAP Collaboration], “Future Research<br />

FIG. 4: The Direction Ω (0)<br />

m -Ω (0)<br />

Λand confidence Visions for regions Astronomy”, constrained Alan M. from<br />

the observations Dressler, of SN editor, Ia, Proceedings CMB and of the galaxy SPIE, Volume clustering. 4835, We<br />

also show the pp. expected 146-157 [arXiv:astro-ph/0209550].<br />

confidence region from a SNAP satellite<br />

for a flat universe with Ω (0)<br />

m =0.28. From Ref. [106].<br />

We need something Clearly the flat else: universe Dark with-<br />

energy or modified gravity....but how is the Equation of State<br />

the “cosmic triangle”).<br />

out a cosmological constant is ruled out. The compilation<br />

of three different cosmological data sets strongly<br />

reinforces the need for a dark energy dominated universe


α =<br />

Dark energy equation of state<br />

= H 0 +1− Einstein H 0 (H 0 + gravity 10) + 1<br />

4<br />

FLRW cosmologies<br />

Brief Article<br />

1<br />

w>−1,<br />

w = −1,<br />

w


FLRW cosmologies<br />

Future singularities<br />

BRIEF ARTICLE<br />

THE AUTHOR<br />

• Type I (“Big Rip”): For t → t s , a →∞and ρ →∞, |p| →∞.<br />

• Type II (“Sudden”): For t → t s , a → a s and ρ → ρ s , |p| →∞.<br />

• Type III: For t → t s , a → a s and ρ →∞, |p| →∞.<br />

• Type IV: For t → t s , a → a s and ρ → ρ s , p → p s but higher derivatives of Hubble<br />

parameter diverge.<br />

J. D. Barrow, G. J. Galloway and F. J. Tipler, Mon. Not. Roy. Astr. Soc. 223, 835-844 (1986); R. R. Caldwell, M. Kamionkowski and N. N. Weinberg,<br />

Phys. Rev. Lett. 91 071301 (2003), astro-ph/0302506; S. Nojiri, S. Odintsov, S. Tsujikawa, Phys. Rev. D 71, 063004 (2005); arXiv:hep-th/0501025;<br />

M. P. Dabrowski and T. Denkieiwcz, Phys. Rev. D 79, 063521 (2009) [arXiv:0902.3107 [gr-qc]]....


1<br />

aside from the gravity part, also contains I. FORMULAE<br />

a matter contribution, namely<br />

F(R) gravity<br />

<br />

aside from the gravity part, also contains a matter contribution, namely<br />

S = d<br />

<br />

4 x √ −g f(R)+2κ 2 <br />

L m . (2.1)<br />

c 1 (R/R HS ) n<br />

f(R) =R − R HS<br />

c<br />

Action,<br />

2 (R/R HS ) n +1 , =R + Rn (aR n − b)<br />

S = d 4 x √ −g f(R)+2κ 2 <br />

L m .<br />

1+cR n . (2.1) (1)<br />

Here the coupling constant is given by κ 2 = 8πG, while L m stands for the Lagrangian<br />

I. FORMULAE<br />

corresponding to the matter that fills the<br />

Here the coupling constant <br />

S EH = d 4 x √ is<br />

−g given by κ <br />

R +2κ 2 <br />

2 particular system to be studied. Note that the<br />

= 8πG, while L<br />

L m → S = d 4 x √ m stands<br />

−g for the<br />

f(R)+2κ 2 Lagrangian<br />

Hilbert-Einstein action is recovered for f(R) =R in (2.1), The field equations corresponding<br />

corresponding to the matter that fills the particular system to be studied. LNote m . that the (2)<br />

to action (2.1) are obtained by the variation of this action with respect to the metric tensor<br />

Hilbert-Einstein action is recovered for f(R) =R in (2.1), The field equations corresponding<br />

g<br />

c 1 (R/R HS ) n<br />

f(R) =R − R<br />

to action (2.1) are obtained by the variation of this action with HS<br />

respect c 2 (R/R to HS<br />

the ) n metric +1 , f(R) tensor<br />

=R + Rn (aR n − b)<br />

µν , what yields<br />

1+cR n .<br />

g Field µν , what equations, yields<br />

R µν f R (R) − 1 <br />

R µν f R (R) − 1 2 g S<br />

µνf(R)+g µν f R (R) EH = d<br />

−∇ 4 x √ −g <br />

2 g µνf(R)+g µν f R (R) −∇ µ ∇ ν f R (R) =κ 2 T µν (m) . (2.2)<br />

R +2κ<br />

µ ∇ ν f R (R) =κ 2 2 <br />

L<br />

T µν (m) m → S = d<br />

. (2.2)<br />

4 x √ −g f(R)+2κ 2 <br />

L m .<br />

Here the subscript R denotes derivatives with respect to R. We assume a flat FLRW metric,<br />

Here the subscript R denotes derivatives with respect to 3 R. We assume a flat FLRW metric,<br />

where as usual the energy-momentum tensor is defined as: T µν (m) = −√ 2 δ ( √ −gL m )<br />

ds 2 = −dt 2 + a(t) 2 dx i2 . −g δg<br />

3<br />

µν (2.3)<br />

ds 2 = −dt 2 + a(t) 2 i=1<br />

dx i2 . (2.3)<br />

Spatially Then, for flat this FLRW metric, equations, modified FLRW equations i=1 are obtained through the 00 and ij components<br />

of the field equations (2.2),<br />

Then, for this metric, modified FLRW equations are obtained through the 00 and ij components<br />

of the field equations (2.2),<br />

H 2 = 1 <br />

κ<br />

H 2 = 1 <br />

2 ρ m + Rf <br />

R − f<br />

−<br />

3f R<br />

κ 2 ρ m + Rf 2<br />

3HṘf RR ,<br />

<br />

R − f<br />

−<br />

3f R 2<br />

3HṘf RR ,<br />

−3H 2 − 2Ḣ = 1 <br />

κ<br />

−3H 2 − 2Ḣ = 1 <br />

2 p m +<br />

f Ṙ2 f RRR +2HṘf RR + ¨Rf RR + 1 <br />

R<br />

κ 2 p m +<br />

f Ṙ2 f RRR +2HṘf RR + ¨Rf RR + 1 2 (f − Rf R) , (2.4)<br />

<br />

R 2 (f − Rf R) , (2.4)<br />

where dots denote derivatives with respect the time, Hubble parameter is defined as usual<br />

H(t) =ȧ/a, and Ricci scalar for the metric (2.3) isR =6(2H2 +Ḣ). Here, we are interested<br />

where dots denote derivatives with respect the time, Hubble parameter is defined as usual<br />

in studying a subclass of modified gravities, the so-called<br />

H(t) =ȧ/a, and Ricci scalar for the metric (2.3) isR =6(2H2 viable f(R) gravities, as they<br />

+Ḣ). Here, we are interested<br />

accomplish some indispensable conditions to be considered realistic candidates to describe


Viable f(r) gravity<br />

Viability conditions for F(R) gravity<br />

1. f RR > 0 for hight curvature, which ensures the existence of stable high<br />

curvature regimes, as the matter dominated epoch.<br />

2. 1 + f R > 0, which avoids the appearance of a negative effective gravitational<br />

coupling G eff = G/(1 + f R ), and the anti-gravity regime, implying also<br />

the avoidance of the graviton to turn into a ghost.<br />

3. f R → 0 as R →∞. GR has to be recovered at early times. Together<br />

with f RR > 0, implies f R < 0, and consequently −1


L DARK ENERGY MODEL AND BEHAVIOUR OF ITS FRW SOLUTIONS<br />

(1 + x 2n<br />

1<br />

λ =<br />

)2<br />

g from (1) can be written<br />

x 2n−1<br />

, (17)<br />

1 (2<br />

in<br />

+<br />

the<br />

2x 2n<br />

1following − 2n)<br />

Einsteinian form (though gravity itself is not the<br />

where x 1 = R 1 /R c . From the stability condition 0 <<br />

Rµ ν − 1 (<br />

Viable<br />

)<br />

f(r) gravity<br />

m(r = −2) ≤ 1weobtain<br />

2 δν µR = −8πG Tµ(m) ν + T µ(DE)<br />

ν (2)<br />

2x 4n<br />

1 − (2n − 1)(2n +4)x 2n<br />

1 +(2n − 1)(2n − 2) ≥ 0 .(18)<br />

1<br />

When n = 1,<br />

≡ F ′ (R)Rµ ν − 1 for example,<br />

2<br />

Some F (R)δν µ + ( we have x 1 ≥ √ 3 and<br />

λ ≥ 8 √ 3/9. Under Eq. (18) one<br />

∇ µ ∇ ν can<br />

−I. show<br />

δµ∇ ν FORMULAE that<br />

ρ ∇ ρ) F ′ the condition<br />

(4) is satisfied. This situation is similar to the<br />

(R) , F(R) ≡ f(R) − R (3)<br />

Starobinsky’s model (12),<br />

viable<br />

see Ref.<br />

f(R)<br />

[15]<br />

gravity<br />

for details.<br />

models 1<br />

riation We can of Lextend m and the satisfies abovethe twogeneralized models to the conservation more gen-laeral FORMULAE<br />

andform<br />

the right-hand side of Eq. c 1<br />

Tµ;ν(m) ν =0separately(since<br />

) (3) (R/R satisfythiscondition,too).Thereexistsasubtletyin<br />

HS ) n<br />

discussed below. f(R) The =R trace − R HS ofc 2<br />

Eq. (R/R (2)reads HS ) n +1 , f(R) =R + Rn (aR n − b)<br />

W. Hu and I. Sawicki, Phys.<br />

1+cR n . Rev. D 76 064004 (2007), arXiv:0705.1158[astro-ph]<br />

(1)<br />

f(R) =R − ξ(R), ξ(0) = 0, ξ(R ≫ R c ) → const. (19)<br />

3∇ µ ∇ µ f ′ − Rf ′ +2f =8πGT m . (4)<br />

RThe HS ) n conditions<br />

ns (de Sitter ones for R>0) are roots of the algebraic equation Rf ′ =2f.<br />

S) n +1 , f(R) (4) =R translate + Rn (aR into n − b)<br />

1+cR n . (1)<br />

following3-parametricform:<br />

ξ ,R < 1 , ξ ,RR < 0 , for R ≥ R 1 . (20)<br />

(<br />

In order to satisfy LGC, we require ( that ξ(R) ) −n approaches<br />

aconstantrapidlyasR f(R) =R + λR grows 0 1+ in the R2<br />

R0<br />

2 region− R1)<br />

≫ R c A. Starobinsky, JETP Lett. 86 157 (2007),(5)<br />

arXiv:0706.2041 [astro-ph]<br />

(such as ξ(R) ≃ constant − (R c /R) 2n discussed above).<br />

Another model to meet these requirements is<br />

the order of the presently observed<br />

(<br />

effective cosmological constant. Thenf(0) = 0 (the<br />

appears’ in flat space-time) and Rµ ν ) R =0isalwaysasolutionofEq. (2)intheabsence<br />

gative – flat<br />

f(R)<br />

space-time<br />

=R −<br />

is<br />

λR<br />

unstable. c tanh<br />

For<br />

,<br />

|R| ≫ R 0 ,<br />

(21) S. Tsujikawa, Phys. Rev. D 77 023507 (2008), arXiv:0709.1391[astro-ph]<br />

R c<br />

f(R) =R − 2Λ(∞) where the highctive<br />

cosmological constant is Λ(∞) =λR 0 /2. The equation for de Sitter solutions having<br />

1 where > 0canbewrittenintheform<br />

λ and R c are positive constants. A similar model<br />

was proposed by Appleby and Battye [16], although it is<br />

different from (21) in the sense x 1 (1 + that x 2<br />

λ =<br />

1) ξ(R) n+1 canbenegative<br />

for R < In Rsome limit, 2((1+x GR is 2 1 )n+1 recovered, − 1 − (n the +1)x local 2 1 violations ) . are avoided, and the non-linear (6)<br />

1 . In the region R ≫ R c the model (21)<br />

part become important for large<br />

scales, also avoids matter instabilities...but this kind of models usually cross the phantom barrier, which may lead to<br />

themaximal root of Eq. (6). So, instead of specifying λ, onemaytakeanyvalueofx<br />

future singularities.<br />

1<br />

rresponding value of λ. It follows from the structure of Eq. (6) that x 1 < 2λ. Thus, the<br />

tant at the de Sitter solution Λ(R 1 )=R 1 /4 < Λ(∞). On the other hand, x 1 → 2λ in both<br />

1andx 1 ≫ 1, n fixed. In these cases the Universe evolution becomes indistinguishable<br />

odel.<br />

S. Nojiri and S.D. Odintsov, Phys. Rev. D 77 026007 (2008), arXiv:0710.1738[hep-th]


3 Cosmological evolution in viable<br />

evolution<br />

f(R) gravity<br />

in viable<br />

In this Cosmological section, we explore evolution the cosmological in viable f(R) evolution gravity for the models considered above. For<br />

F(R)<br />

<br />

Inthat thisreason, section, itwe is convenient explore theto cosmological perform a change evolution of variables for the models in the equations considered(2.4), above. consid-<br />

For<br />

andscalar-tensor a 0 is the value equivalent, of the scale where factor the phase at thespace present willtime be explored. t 0 , such that the current epoch<br />

corresponds 3 Cosmological to z = 0 Then, evolution the time derivative in viableis f(R) transformed gravity as d dt = −(1 + z)H d dz<br />

, and the<br />

first FLRW equation in (2.4) and the continuity equation (2.7) yield,<br />

that<br />

In this<br />

reason,<br />

section, H<br />

it 2 (z)<br />

is<br />

we<br />

convenient<br />

= explore 1 <br />

κ 2 the ρ<br />

to m (z)+ cosmological R(z)f R − f<br />

perform a change<br />

evolution +<br />

of<br />

3(1<br />

variables<br />

for + z)H the 2 in<br />

models f RR<br />

the<br />

R equations<br />

(z) considered ,<br />

(2.4),<br />

above. (3.2) For<br />

ering the redshift z 3f as<br />

that reason, it is convenient R the independent variable 2 instead of the cosmological time t, wherethe considering<br />

to perform a change of variables in the equations (2.4), considering<br />

the<br />

redshift the redshift is defined z as the usual, independent variable instead of the cosmological time t, wherethe<br />

Using the redshift isas redshift<br />

defined the independent<br />

z<br />

as<br />

as<br />

usual,<br />

the (1 independent + variable: z)ρ m(z) −variable 3(1 + w m instead of the cosmological time t, wherethe<br />

redshift is defined as usual,<br />

1+z = a )ρ m (z) =0, (3.3)<br />

1+z = a 0<br />

1+z = a 0<br />

where now primes denote derivatives with respect to 0the a(t) ,<br />

a(t) , redshift. Then, the Ricci scalar can (3.1)<br />

be rewritten as R =6 2H 2 (z) − (1 + z)H(z)H (z) a(t) , (3.1)<br />

and a (3.1)<br />

0 is the value of the scale factor at the present , whiletime the equation t 0 , such that (3.3) the cancurrent be easily epoch<br />

solved and corresponds<br />

and<br />

for a 0<br />

a<br />

ais 0 is<br />

constant the to value z =<br />

the value<br />

EoS of 0 Then, the<br />

of the<br />

parameter scale the factor time<br />

scale factor<br />

w m , derivative the present is transformed time t 0 , such as d that the current epoch<br />

at the present time t 0 , such that the current epoch<br />

FLRW equations<br />

corresponds<br />

corresponds yield:<br />

to z = 0 Then, the time derivative is transformed as d dt = −(1 + z)H d<br />

dt<br />

to z = 0 Then, the time derivative is transformed as d = dt = −(1 −(1 + + z)H d dz<br />

, and the<br />

first FLRW equation in (2.4) and the continuity equation (2.7) yield,<br />

z)H dz d , and the<br />

first FLRW equation in (2.4) and ρ(z) the =ρcontinuity 0 (1 + z) 3(1+w equation m) . (2.7) yield,<br />

dz<br />

,(3.4)<br />

and the<br />

first FLRW equation in (2.4) and the continuity equation (2.7) yield,<br />

H 2 (z) = 1 <br />

κ 2 ρ m (z)+ R(z)f <br />

H 2 (z) = 1 <br />

κ 2 ρ m (z)+ R(z)f <br />

Here ρ 0 is the value<br />

H 2 (z)<br />

of the<br />

= 1 <br />

matter<br />

κ 2 ρ<br />

energy m (z)+ R(z)f <br />

R − f<br />

density R −atf<br />

the<br />

+ 3(1<br />

present<br />

+ z)H<br />

epoch 2 f RR R<br />

R − f + 3(1 + z)H 2 z <br />

3f + 3(1 + z)H 2 f RR R =<br />

(z)<br />

0,<br />

,<br />

which can<br />

(3.2)<br />

3f R 2<br />

f RR R (z) , (3.2)<br />

be rewritten as ρ 0 = 3 H<br />

κ 2 0 2 R 2<br />

(z) , (3.2)<br />

3f Ω0 m. Then, we can fit the current values of the cosmological<br />

parameters using the observational R (1 + data z)ρ m(z) 2<br />

(1 + z)ρ [28], −where 3(1 + wH m 0<br />

)ρ= m 100 (z) =0, hkms −1 Mpc −1 with h = (3.3)<br />

0.71 m(z)<br />

(1 + z)ρ − 3(1 + w m )ρ m (z) =0, (3.3)<br />

where ± 0.03now andprimes the matter denote density, derivatives Ω 0 m =0.27<br />

m(z) with − 3(1 respect ±<br />

+<br />

0.04,<br />

w m<br />

to)ρ while the m (z) redshift. the<br />

=0,<br />

matter Then, fluid theis Ricci considered scalar (3.3) can<br />

where pressureless the where last be rewritten equation now(cold primes can as dark R be denote matter =6 easily derivatives with respect to the redshift. Then, the Ricci scalar can<br />

be<br />

where<br />

rewritten<br />

now primes<br />

as R<br />

denote<br />

=6 2Hand solved,<br />

2 (z) baryons), − (1 + z)H(z)H such that (z) w <br />

derivatives with respect to the redshift. Then, Ricci scalar can<br />

be rewritten as R =6 2H 2 − (1 + z)H(z)H (z) m , = while 0. The the equation (3.2) (3.3) iscan a second be easily<br />

order solved differential for a constant equationEoS 2H 2 parameter H(z), so by w m<br />

fixing , the<br />

(z) − (1 + z)H(z)H (z) initial , whileconditions, the equation the(3.3) corresponding can be easily<br />

cosmological solved for evolution a constant can EoS beparameter obtained through w<br />

, while the equation (3.3) can be easily<br />

m , the Hubble parameter in terms of the redshift<br />

for solved both models for a constant considered EoSin parameter previous ρ(z) section, w m =ρ , 0 (1 and + z) explore 3(1+wm) how . the future evolution (with(3.4)<br />

−1


e quite different, since the universe may I. enter FORMULAE in a phantom phase [19], or may produce<br />

Cosmological<br />

oscillations along the cosmological evolution<br />

[27]. We will explore<br />

in<br />

the evolution,<br />

viable<br />

and<br />

the crossing of the phantom barrier in viable f(R) gravity in next sections.<br />

1<br />

F(R)<br />

1<br />

Hence, under these circumstances, the cF 1 (R/R (R) term HS ) n is able to reproduce both accelerating<br />

f(R) =R − R HS<br />

epochs of the universe evolution. Here c 2 (R/R we will HS ) n focus +1 , on f(R) the =R study + Rn (aR n − b)<br />

I. FORMULAE<br />

of1+cR two n . (1)<br />

I. FORMULAE<br />

models of this<br />

kind of viable gravity, proposed by Hu and Sawicki in Ref. [15], and Nojiri 1and Odintsov in<br />

<br />

Ref. [16], whose actions are given by,<br />

S EH = d 4 x √ −g <br />

R +2κ 2 <br />

L m → S = d 4 x √ −g 1<br />

f(R)+2κ 2 <br />

I. FORMULAE c 1 (R/R HS ) n<br />

L m . (2)<br />

Hu-Sawicki model<br />

f(R) =R − R HS<br />

c 1 c HS ) n<br />

F HS (R) =−R HS<br />

c 2 (R/R HS ) n +1 , F NO(R) = Rn (aR n 2 (R/R HS ) n +1 , f(R) =R + Rn (aR n − b)<br />

c 1+cR − b)<br />

n . (1)<br />

1 (R/R<br />

f(R) =R − R<br />

I. FORMULAE<br />

HS ) n<br />

HS<br />

c 2 (R/R HS ) n +1 , f(R) =R + Rn (aR n − b)<br />

1+cR n . (2.10)<br />

T µν (m) = 2 δ ( √ 1+cR n . (1)<br />

<br />

1<br />

−gL m )<br />

√<br />

Here, {c 1 ,c 2 ,n} are free parameters where and R HS κ 2 ρ −g 0 m according δg µν (3)<br />

S EH = d 4 x √ −g <br />

c<br />

R +2κ 2 <br />

L m → S = d 4 x √ to −gRef. 1 (R/R HS ) n<br />

f(R)+2κ [15], while 2 <br />

f(R) =R − R<br />

<br />

L m {a, . b, c, n} (2)<br />

I. FORMULAE<br />

are free parameters<br />

S EH<br />

for<br />

=<br />

the<br />

d 4 second<br />

x √ −g <br />

HS<br />

model<br />

R +2κ 2 <br />

in(2.10).<br />

L m →<br />

The<br />

S<br />

first<br />

=<br />

model<br />

d 4 x √ −g in(2.10)<br />

f(R)+2κ<br />

has 2 <br />

c c 1 (R/R HS ) f(R) =R − R HS<br />

been<br />

L m .<br />

studied (2)<br />

c 2 (R/R HS ) n +1 , f(R) =R + Rn (aR n 2 (R/R HS ) n +1 , f(R) =R + Rn (aR n − b)<br />

1+cR n . (1)<br />

− b)<br />

1+cR n . (1)<br />

in Ref. [7], where it was proven andthat then =1, universe c 1<br />

evolution =2, c 2 = goes 1 through two different De<br />

(4)<br />

Sitter points, being one of them stableT and (m) the other one unstable, which can be identified to<br />

µν = −√ 2 δ ( √ −gL m )<br />

<br />

the current accelerated f(R) era=R and−to the inflationary c 1 (R/R HS −g ) n<br />

epoch, respectively. Similarly, the second<br />

Initial conditions:<br />

HS<br />

model in(2.10) was studied in Ref. [18], c 2<br />

also (R/Rwith HS ) n the +1 , δg µν (3)<br />

T f(R) =R + Rn (aR n − b)<br />

µν (m) = − 2 δ ( √ −gL m )<br />

S EH = d 4 x √ −g <br />

R +2κ 2 <br />

L m<br />

√→ −g<br />

S =<br />

δg µν d 4 x √ −g f(R)+2κ 2 <br />

L m<br />

presence of an extra1+cR field, n . . (2) (3) (1)<br />

and was shown<br />

n =1, c 1 =2, c 2 = 1 (4)<br />

<br />

1. Assuming "CDM model at z=0,<br />

S EH = d 4 x √ −g n =1, <br />

R +2κ 2 c 1 =2, c 2 = 1<br />

L m → S = d 4 x √ −g f(R)+2κ 2 (4)<br />

T µν (m) = − 2 δ ( √ −gL m )<br />

√ L m . (2)<br />

−g<br />

H(z = 0) = H 0 = 100 hkms −1 δg<br />

Mpc µν (3)<br />

−1 ,h=0.71 ± 0.03 (5)<br />

H(z = 0) = H 0 = 100 –4– hkms −1 Mpc −1<br />

T µν (m) = −√ 2 δ ( √ ,h=0.71 ± 0.03 (5)<br />

n =1, c −gL m )<br />

−g δg µν (3)<br />

H (z) = κ2 ρ 1 =2, c 2 = 1<br />

m<br />

2 H 0 (1 + z)h(z) , → H (0) = κ2<br />

ρ 0 m = 3 (4)<br />

2H 0 2 Ω0 m . (6)<br />

H(z = 0) = H 0 = 100 hkms −1 Mpc −1 ,h=0.71 ± 0.03 (5)<br />

n =1, c 1 =2, c 2 = 1 (4)<br />

2. Assuming a phantom expansion at z=0,<br />

ρ m<br />

H (z) = κ2<br />

H(z = 2 0) H = H 0 = 100 hkms −1 Mpc −1 0 (1 + z)h(z) , → H (0) = κ2<br />

ρ 0 m = 3 ,h=0.71 2H 0 ± 20.03 Ω0 m . (6)<br />

(5)<br />

H (0) 0 (7)


Cosmological evolution<br />

in viable f(R)<br />

Hu-Sawicki and Nojiri-Odintsov models<br />

1. "CDM initial conditions,<br />

Cosmological evolution in viable modified gravity 8<br />

EoS parameter w(z)<br />

0.2<br />

w HS z<br />

0.996<br />

w HS z<br />

w NO z<br />

0.998<br />

w NO z<br />

0.4<br />

1.000<br />

0.6<br />

1.002<br />

1.004<br />

0.8<br />

1.006<br />

1.0<br />

1.0 0.5 0.0 0.5 1.0<br />

z<br />

(a)<br />

The EoS parameter will cross the phantom barrier in the future.<br />

1.008<br />

1.00 0.95 0.90 0.85 0.80<br />

z<br />

(b)<br />

K. Bamba, C. Q. Geng and C. C. Lee, JCAP 1011, 001 (2010)<br />

DSG, Class.Quant.Grav. 30 095008 (2013)


0.8<br />

1.006<br />

1.0<br />

Cosmological evolution<br />

in viable f(R)<br />

1.0 0.5 0.0 0.5 1.0<br />

Hu-Sawicki and Nojiri-Odintsov model<br />

z<br />

(a)<br />

1.00 0.95 0.90 0.85 0.80<br />

Figure 1: Evolution of the EoS parameter (12) as a function of the redshift z for the models F HS (R)<br />

and F NO (R). Herewehaveassumedtheinitialconditionsh(0) = 1 and h<br />

2. Phantom initial conditions<br />

(0) = 0.4, accordingto(14).<br />

The panel 1a shows the evolution from the past to the future, where the phantom barrier is crossed for<br />

negative redshifts in EoS both parameter models. The panel 1b shows in more detail the range −1


Cosmological evolution<br />

in viable f(R)<br />

Hu-Sawicki and Nojiri-Odintsov model<br />

Deceleration parameter<br />

Cosmological evolution in viable modified gravity 9<br />

q = −aä/ȧ 2 DSG, Class.Quant.Grav. 30 095008 (2013)<br />

0.4<br />

0.2<br />

0.0<br />

HS<br />

NO<br />

CDM<br />

0.5<br />

0.0<br />

HS<br />

NO<br />

CDM<br />

0.2<br />

0.4<br />

0.5<br />

0.6<br />

0.8<br />

1.0<br />

1.0<br />

1.0 0.5 0.0 0.5 1.0<br />

z<br />

"CDM initial (a) conditions<br />

1.0 0.5 0.0 0.5 1.0<br />

z<br />

Phantom (b) initial conditions<br />

Figure 3: Evolution of the deceleration parameter q = −aä/ȧ 2 for the models F HS (R) and F NO (R)


Moreover, lations along the the election cosmological of phantom evolution, conditions a fact atpointed z = 0 gives out before an anomalous for this behavior kind of models of the<br />

Scalar-tensor<br />

cosmological in Ref. [27]. parameters In general, for we both have models shown<br />

representation<br />

that whenthe z>0. transition to the phantom epoch occurs.<br />

Moreover, the election of phantom conditions z = 0 gives an anomalous behavior of the<br />

f(r)<br />

Then, Then,<br />

4cosmological Scalar-tensor by bya a<br />

gravity: particular<br />

parameters f(R) f(R)<br />

representation for action, action,<br />

bothwe presence<br />

we<br />

models can can<br />

of reconstruct<br />

when f(R) z>0. gravity its its equivalent<br />

of scalar-tensor<br />

a sudden<br />

theory(4.1),<br />

so sothat thatwe wecan canstudy studythe theviable viablemodels modelsstudied studiedabove aboveby byanalyzing analyzingtheir their scalar-tensorcoun-<br />

terpart. terpart. It<br />

coun-<br />

singularity<br />

4 is Scalar-tensor well Moreover, known that by byvarying representation f(R) gravity the the action(4.1) is equivalent of f(R) withrespecttothemetricg togravity<br />

a kind of Brans-Dicke µν µν theory , , field fieldequations<br />

with equations a null<br />

are are kinetic obtained, term, and a scalar potential, (see for example, [6, 23] and references therein),<br />

It is wellCosmological known that evolution f(R) gravity is equivalent to a kind of Brans-Dicke theory with a null<br />

kinetic term, and a scalarS potential, d 4 x √ (see −g for Rexample, − V (φ)+2κ [6, 23] 2 <br />

and references therein),<br />

Action,<br />

R L m . (4.1)<br />

µν 1 2 g µνR κ2<br />

φ T µν (m)<br />

1<br />

S = d 4 x √ φ (∇ µ∇ ν φ − g µν φ) − 1 µν − 1 in viable modified<br />

2 g µνR = κ2<br />

φ T µν (m) + 1 gravity<br />

−g φ (∇ µ∇ ν φ − g µν φ) − 1 12<br />

22 g µνV g 0.92<br />

µνV<br />

(φ) (φ),<br />

,<br />

2.0<br />

Φz<br />

φ R − V (φ)+2κ 2 Φz <br />

By varying the action with respect to the scalar field φ, theLrelation m . between both theories<br />

0.90<br />

(4.1)<br />

is obtained, and f(R) action(2.1) 3φ 3φ = κisrecovered,<br />

κ 2 T 2 T (m) (m) φ dV dV (φ) (φ) 1.9<br />

+ φ −− 2V 2V (φ) (φ), , (4.4) (4.4)<br />

By varying the action with respect to the scalar dφ dφ<br />

field φ, the relation between both theories<br />

0.88<br />

R = V<br />

is obtained, and f(R) 1.8<br />

(φ) → φ = φ(R) , ⇒ f(R) =φ(R)R − V (φ(R)) . (4.2)<br />

where wherethe thesecond secondequation equation action(2.1) is isthe thetrace trace isrecovered, of ofthe thefield fieldequations equationsin(4.4). in(4.4). Hence, Hence, for fora aflat flatFLRW<br />

metric metric<br />

While(2.3), the<br />

(2.3),<br />

scalar the the Friedmann<br />

field<br />

R = V and the equations equations<br />

potential yield, yield,<br />

0.86<br />

are related with 1.7 the particular f(R) action by,<br />

FLRW equations,<br />

(φ) → φ = φ(R) , ⇒ f(R) =φ(R)R − V (φ(R)) . (4.2)<br />

φ = f<br />

While the scalar field and the R (R) , V(φ(R)) = f<br />

potential are related R (R) R − f(R) . (4.3)<br />

3H 2 1 κ 2 ρ m 3H with the particular f(R) action by,<br />

φ<br />

˙φ + 1 <br />

3H 2 = 1 κ 2 ρ m − 3H<br />

φ<br />

˙φ + 1 <br />

22 V V (φ) (φ) 0.84<br />

1.6<br />

, ,<br />

φ = f R (R) , V(φ(R)) = f R (R) R − f(R) . (4.3)<br />

3H 2 2Ḣ 1 κ 2 p m φ<br />

¨φ +2H ˙φ − 1 <br />

− 3H 2 − 2Ḣ = 1 κ 2 p m +<br />

φ<br />

¨φ +2H ˙φ − 1 <br />

1.5<br />

1.0 0.5 0.0 0.5 1.0<br />

1.0 0.5<br />

–9– 22 V V (φ) (φ) 0.0 0.5 1.0<br />

z<br />

z. . (4.5) (4.5)<br />

(a)<br />

(b)<br />

Trace while while equation, the thetrace traceequation equationin(4.4) in(4.4) is isgiven givenby,<br />

by,<br />

Figure 7: Evolution of the scalar field φ(z)<br />

–9–<br />

for the HS model (7a) and the NO model (7b). In both<br />

cases, the initial conditions<br />

33 ¨φ ¨φ are: = κκ 2 (ρ 2 h(0) = 1, andh<br />

(ρ m m −p m<br />

p m ) ) − (0)<br />

φV φV =<br />

+2V 3Ω<br />

+2V 0 m/2.<br />

−− 9H 9H ˙φ ˙φ . . (4.6) (4.6)<br />

In vacuum, Let’s Let’s reconstruct<br />

the For phase simplicity, space the the corresponding<br />

can webe assume described the scalar-tensor<br />

FLRW by, equations theory theory<br />

(19) for forthe in<br />

the<br />

vacuum, particular particular<br />

so models by<br />

models<br />

combining considered<br />

the<br />

in inthe theprevious equations section. section.<br />

(19)-(20), By By<br />

the the<br />

following expressions(4.3),<br />

system results, the the correspondingrelation relationφ(R) φ(R) for forthe<br />

the<br />

models(2.10) are aregiven givenby,<br />

by,<br />

Ḣ = −2H 2 + 1<br />

c 1<br />

cc 1 2<br />

c 2 R<br />

φφ HS =1+ 2 c 1<br />

cR(aR − HS 1+ c 2R 1+ c , φ<br />

2R NO =1−<br />

(1 + cR) 2 + aR<br />

1+cR + aR − b<br />

HS =1+ 2<br />

+ c 6 V 1<br />

(φ) , ˙φ =<br />

−3H 2 φ + 1 <br />

1<br />

3H cR(aR −2b)<br />

V (φ)<br />

R 1+cR , (4.7)<br />

HS 1+ c 2R 1+ c , φ<br />

2R NO =1−<br />

(1 + cR) 2 + aR .<br />

1+cR + aR − b (25)<br />

Note that this is a dynamical 1+cR , (4.7)<br />

R<br />

Rsystem R<br />

R HS<br />

whose critical points are given by Ḣ = ˙φ =0, which<br />

HS HS<br />

corresponds to HS de Sitter solutions, as mentioned in the previous sections as a feature of<br />

where wef(R) havegravity. assumed Then, a power the critical of n = points 1 for areboth the solutions models(2.10). of the algebraic Then, the equation, scalar poten-<br />

DSG, Class.Quant.Grav. 30 095008 (2013)


8<br />

− 3H 2 − 2Ḣ = 1 κ 2 p m +<br />

φ<br />

¨φ +2H ˙φ − 1 <br />

Let’s reconstruct the corresponding Cosmological<br />

100 scalar-tensor<br />

2 V (φ) evolution . theory in viable for the (4.5) particular modified models gravityconsi<br />

6<br />

in the previous section. By the expressions(4.3), the corresponding relation φ(R) fo<br />

while the 4 trace equation in(4.4) is given by,<br />

Scalar-tensor representation of<br />

models(2.10) are given by,<br />

f(r) gravity<br />

3 ¨φ = κ 2 (ρ m − p m<br />

c) 1 −c 2 φV R +2V − 9H ˙φ . cR(aR(4.6)<br />

− b)<br />

2<br />

φ HS =1+ 2<br />

+ c 1<br />

R<br />

Let’s reconstruct the corresponding scalar-tensor HS 1+ c 2R 1+ c , φ<br />

2R NO =1−<br />

(1 + cR) 2 + aR<br />

1+cR + aR − b<br />

Hence, 1+cR ,<br />

0 the R<br />

Rtheory for the<br />

HS<br />

scalar-tensor representation for both mod<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

HS particular models considered<br />

Φ<br />

potentials exhibit<br />

Φtwo branches due to the particu<br />

in the previous section. By the expressions(4.3), the corresponding relation φ(R) for the<br />

(a) where we have assumed<br />

models(2.10) are given by,<br />

considered<br />

a power of n<br />

here.<br />

= 1 for (b) Inboth addition,<br />

models(2.10).<br />

both models<br />

Then, the<br />

introduce<br />

scalar p<br />

tials(4.3) yield,<br />

c 1 c 2 R<br />

φ HS =1+ 2<br />

+ c 1<br />

cR(aR − b)<br />

R HS 1+ c 2R 1+ c , φ<br />

2R NO =1− V<br />

(1 + cR) 2 + aR<br />

1+cR + aR − b<br />

HS (φ) = 1+c <br />

Figure 7: Scalar potentials V (φ) in terms of H0 2 ,oftheHSmodelwithn of the scalar<br />

1 −field, φ =1,c ± 2being c 12 =2,c c1<br />

φ<br />

(1 2<br />

< = −<br />

1+cR , 1φ)<br />

(4.7)<br />

(figure in the7a),<br />

HS model, an<br />

and of the NO model with n =1,a =0.1/H R HS ,<br />

0 2 , b =1,c =0.05/H limit where 0 2 ,fig.7b. both Both branches potentials<br />

c 2<br />

of arethe not uniquely scalar potentials co<br />

defined, where each branch behaves veryR different,<br />

R HS converging to the boundary of the<br />

HS<br />

V<br />

where we have assumed a power of n = 1 for NO (φ) = 2 a + c (1 + b − φ) ± 2 scalar field φ.<br />

Moreover, the evolution(a of + the bc)(a scalar + c −field, φ) φ(z) =f<br />

both models(2.10). Then, the c 2 .<br />

scalar potentials(4.3)<br />

0.92 yield, Hence, the scalar-tensor<br />

16<br />

V HS (φ) = 1+c representation 2.0<br />

for both models is not uniquely defined, bu<br />

potentials exhibit 1 − φ ± two 2 cbranches, 2 c1 (114<br />

−which φ) in principle do not affect V Φ the cosmological evolu<br />

Φz<br />

R HS<br />

Φz ,<br />

V<br />

but it may influence cthe 2<br />

V NO (φ) = 2 a + c (1 + b − φ) ± 2 behavior of the phase space. In addition,<br />

Φ<br />

200<br />

0.90<br />

both models intro<br />

1.9<br />

12<br />

a boundary condition on the value of the scalar field, being φ < 1 for the HS model<br />

(a + bc)(a + c − φ)<br />

φ


H(z = 0) = H 0 = 100 hkms −1 Mpc −1 ,h=0.71 ± 0.03 (5)<br />

H (z) = κ2<br />

2<br />

Scalar-tensor representation of<br />

ρ m<br />

f(r) gravity<br />

H 0 (1 + z)h(z) , → H (0) = κ2<br />

ρ 0 m = 3 2H 0 2 Ω0 m . (6)<br />

H (0) 0 (7)<br />

Hu-Sawicki model<br />

Ω m (z) , Cosmological Ω f(R) (z) evolution in viable modified(8)<br />

gravity<br />

Phase space<br />

1.0<br />

V + (φ) V − (φ) (9)<br />

0.9<br />

1.6<br />

1.4<br />

0.8<br />

1.2<br />

H 2 H 0<br />

2<br />

0.7<br />

0.6<br />

H 2 H 0<br />

2<br />

1.0<br />

0.8<br />

0.5<br />

0.6<br />

0.4<br />

0.4<br />

0.3<br />

0.90 0.92 0.94 0.96 0.98 1.00<br />

Φ<br />

(a)<br />

This branch of the potential makes the scalar field to tend to the boundary, where a<br />

sudden singularity occurs.<br />

2.0 2.2 2.4 2.6<br />

Figure 9: Phase space H(φ) for the HS model (panel 9a), where different init<br />

considered. The right panel corresponds to the NO model. For both models, the po<br />

been assumed. As observed, all the curves in both models reach DSG, Class.Quant.Grav. the bounding 30 095008 (2013) of the sc<br />

(b)<br />

Φ


(z = 0) = H 0 = 100 hkms −1 Mpc −1 ,h=0.71 ± 0.03 (5)<br />

)= κ2<br />

2<br />

Scalar-tensor representation of<br />

f(r) gravity<br />

ρ m<br />

H 0 (1 + z)h(z) , → H (0) = κ2<br />

ρ 0 m = 3 2H 0 2 Ω0 m . (6)<br />

Hu-Sawicki model<br />

H (0) 0 (7)<br />

Phase space<br />

Cosmological evolution in viable modified gravity<br />

Ω m (z) , Ω f(R) (z) (8)<br />

1.2<br />

V + (φ) V − (φ) (9)<br />

2.0<br />

1.1<br />

1.0<br />

1.5<br />

H 2 H 0<br />

2<br />

0.9<br />

0.8<br />

H 2 H 0<br />

2<br />

1.0<br />

0.7<br />

0.5<br />

0.6<br />

0.5<br />

0.65 0.70 0.75 0.80 0.85 0.90<br />

There is a an asymptotic focus, which corresponds to a stable de Sitter solution.<br />

(a)<br />

Φ<br />

0.0<br />

0.0 0.5 1.0<br />

(b)<br />

Φ<br />

DSG, Class.Quant.Grav. 30 095008 (2013)<br />

Figure 8: Phase space of the HS model (panel 8a), and the NO model (8b)<br />

G. Cognola, E. Elizalde, S. D. Odintsov, P. Tretyakov, and S. Zerbini, Phys. Rev. D 79 044001 (2009)


H(z = 0) = H 0 = 100 hkms −1 Mpc −1 ,h=0.71 ± 0.03 (5)<br />

Scalar-tensor representation of<br />

H (z) = κ2<br />

2<br />

ρ m<br />

f(r) gravity<br />

H 0 (1 + z)h(z) , → H (0) = κ2<br />

ρ 0 m = 3 2H 0 2 Ω0 m . (6)<br />

Nojiri-Odintsov model<br />

H (0) 0 (7)<br />

Ω m (z) , Ω f(R) (z) (8)<br />

n in viable modified Phase space gravity 15<br />

V + (φ) V − (φ) (9)<br />

1.6<br />

1.4<br />

1.2<br />

H 2 H 0<br />

2<br />

1.0<br />

0.8<br />

0.6<br />

.94 0.96 0.98 1.00<br />

(a)<br />

Φ<br />

0.4<br />

2.0 2.2 2.4 2.6 2.8 3.0<br />

The scalar field reaches its boundary, where (b) a sudden singularity occurs.<br />

Φ<br />

DSG, Class.Quant.Grav. 30 095008 (2013)


(z = 0) = H 0 = 100 hkms −1 Mpc −1 ,h=0.71 ± 0.03 (5)<br />

)= κ2<br />

2<br />

Scalar-tensor representation of<br />

f(r) gravity<br />

ρ m<br />

H 0 (1 + z)h(z) , → H (0) = κ2<br />

ρ 0 m = 3 2H 0 2 Ω0 m . (6)<br />

Nojiri-Odintsov model<br />

H (0) 0 (7)<br />

n in viable Ωmodified m (z) , Ω f(R) gravity (z) (8) 13<br />

Phase space<br />

2.0<br />

V + (φ) V − (φ) (9)<br />

1.5<br />

H 2 H 0<br />

2<br />

1.0<br />

0.5<br />

5 0.80 0.85 0.90<br />

(a)<br />

Φ<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0<br />

Φ<br />

(b)<br />

The Hubble parameter tends to a an asymptotically stable dS point.<br />

of the HS model (panel 8a), and the NO model (8b). In both models, the<br />

DSG, Class.Quant.Grav. 30 095008 (2013)


R 2 ˜f(R) (24)<br />

The Little Rip<br />

INERTIAL FORCE INTERPRETATION OF THE LITTLE RIP<br />

As the universe expands, the relative acceleration between two points separated by a comoving<br />

As the universe expands, the relative acceleration<br />

<br />

between two points separated<br />

<br />

by a comoving distance l is given<br />

distance l is affected by the acceleration of the expansion. An observer located at a comoving<br />

byH(t) lä/a, =H wherea<br />

distance 0 [cos(ωt)] is the scale 2 2ωµ<br />

+ factor. An observer a comoving distance l away from a mass m will measure an inertial<br />

force on the mass<br />

l away<br />

of<br />

from a 1mass − 3λ m +3µ will measure tan(ωt) 2µ<br />

1 −<br />

an inertial 1 −force 3λ +3µ on the [sin(ωt)]2 mass of<br />

F iner = mlä/a = ml<br />

(Ḣ ) (29)<br />

+ H<br />

2<br />

. (1)<br />

P (φ) =P<br />

Let us assume the two particles are bound 0 (cos(ωφ)) − 2(1−3λ)<br />

1−3λ+3µ (30)<br />

<br />

by a constant force F 0 . If F iner is positive and greater than F 0 ,thetwo<br />

particles become unbound. This is the “rip” produced by the accelerating expansion. Note that equation (1) shows<br />

If the two particles are bounded<br />

that a rip always occurs when<br />

S<br />

either<br />

= dby H 4 xa √ constant<br />

diverges<br />

−gβ(φ)Lforce, or Ḣ m<br />

when<br />

diverges (assuming Ḣ>0).<br />

(31)<br />

The first case corresponds to a<br />

“big rip” [13], while if H is finite, but Ḣ diverges with Ḣ>0, wehaveaTypeIIor“suddenfuture”singularity[5–7],<br />

The binding system is broken and a<br />

which also leads to a rip. However, as F iner noted>F in 0 Ref. [11], it is possible for H, andtherefore,F (32)<br />

“Rip”of system occurs. iner ,toincreasewithout<br />

bound and yet not produce a future singularity at a finite time; thisisthelittlerip. Boththebigripandlittlerip<br />

are characterized by F iner →∞;thedifference is that F iner →∞occurs at a finite time for a big rip and as t →∞<br />

for theThis littleusually rip. occurs for singularities of the type of Big Rip (H diverges) and Type II singularities (H’<br />

An interesting diverges). case occurs when H is finite and Ḣ diverges but is negative. In this case, even though the universe<br />

is expanding, all structures are crushed rather than ripped. Anexampleisgivenby<br />

However, a break of the bounded system H may = H 0<br />

occur + H 1<br />

with (t c −no t) α future . singularity, which is called the (2)<br />

Little Rip.<br />

Here H 0 and H 1 are positive constants and α is a constant with 0 < α < 1.<br />

By using It could theoccur FRWeven equations in cyclic cosmologies, where the Hubble parameter presents a bound, but whose<br />

strength during the accelerating phase 3 may be strong<br />

κ 2 H2 = ρ , − 1 ( enough to make a Little Rip to occur.<br />

κ 2 2Ḣ +3H2) = p, (3)<br />

we may rewrite (1) in the following form:<br />

φ = t, H= g (φ) =g (t) (25)<br />

P (φ) =P 0 (cos ωφ) 4 (26)<br />

H(t) =H 0 (cos ω t) 2 +2ω(2 sin ω t − tan ω t) (27)<br />

<br />

II.<br />

S = dtd 3 x g (3) NF( ˜R) (28)<br />

P. Frampton, K. Ludwick, R. Scherrer, Phys. Rev. D 84: 063003,2011, arXiv:1106.4996<br />

2


effective repulsive force 12h<br />

R ∼ reproduced 0<br />

+6h 0 by the F (R) terms . and compare (19) with the binding forces of<br />

for example the Solar ⎪⎩ System). However, to ensure that a little rip is reproduced, one has to stu<br />

acceleration but free of future singularities, which may have a stronger growth in time than thos<br />

big rip singularities. Let us use the reconstruction technique using Eqs. (12-21). As an exam<br />

iods okingof at super-accelerating some of the models expansion reconstructed and it does in not the contain previous any sections, future<br />

(t s<br />

singularity. we can see To for<br />

that find β<br />

the<br />

=1<br />

−t)<br />

out<br />

2 Hubble parameter (25)<br />

a<br />

ay<br />

periodic<br />

lead to<br />

function<br />

a little rip,<br />

that<br />

one<br />

reproduces<br />

has to determine<br />

a cyclic<br />

the<br />

Universe.<br />

duration<br />

From<br />

of each<br />

the<br />

cycle6βh effective<br />

and 0<br />

EoS<br />

the strength<br />

parameter<br />

of the<br />

(t s<br />

for β < 1<br />

−t) (41), it is clear that this<br />

force<br />

odel exhibits<br />

reproduced<br />

periods<br />

by the<br />

of<br />

F<br />

super-accelerating<br />

(R) terms and compare<br />

expansion<br />

with the<br />

and<br />

binding<br />

it does<br />

forces β+1<br />

not contain<br />

of coupled<br />

any<br />

systems<br />

future<br />

(as<br />

singularity. To find out<br />

lar System). However, to ensure that a little rip is reproduced,<br />

the model (25) may lead to a little rip, one hasfunction,<br />

one has to f( study<br />

to determine the duration ˜R) ∝ ˜R models n n = 2 of eternal<br />

(20)<br />

of each cycle and the strength of the<br />

ee of future singularities, which may have a stronger<br />

The<br />

growth<br />

Little<br />

in time<br />

<br />

than<br />

ective repulsive force reproduced by the F (R) terms and compare d<br />

2 those models containing<br />

with the binding forces of coupled systems (as<br />

s. Let us use the reconstruction technique using Eqs. (12-21). −3n As an example, we consider the U(φ) =e −βeαφ ,<br />

r example the Solar System). However, to ensure that a little rip is dt 2 reproduced, +3H d Rip<br />

<br />

R n−1 ∼ (2 − n)R n (21)<br />

dt one has to study models of eternal<br />

celeration but free of future singularities, which may have a stronger n = 2growth free of singularities time than those models containing (22)<br />

g rip singularities. Let us useU(φ) the =e reconstruction technique using Eqs. (12-21). As an example, we consider the<br />

nction, Little Rip in f(R) −βeαφ , (45)<br />

n =<br />

gravity<br />

1 2 + 3µ<br />

(23)<br />

2(1 − 3λ +3µ)<br />

constants. Then, by the expression (21), the Hubble parameter and the scale factor yield,<br />

U(φ) =e −βeαφ , R 2 ˜f(R) (24) (45)<br />

H(t) =h 0 e αt + h 1 , → a(t) =a 0 e 4βeαt +6αt . (46)<br />

here α and<br />

Hubble<br />

β are constants.<br />

parameter<br />

φ = t, H= g (φ) =g (t) (25)<br />

Then, by the expression (21), the Hubble parameter and the scale factor yield,<br />

d h 1 =6α. It is straightforward to see that the function (46) describes aP Universe, (φ) =P 0 (cos where ωφ) 4 for small<br />

(26)<br />

H(t) =h 0 e αt be easily reconstructed by<br />

+ h 1 , → a(t) =a 0 e 4βeαt +6αt the expressions (15) and (20),<br />

ubbleparametercanbeapproximatedasaconstant,reproducingadeSittersolution,asinthe<br />

H(t) =H 0 (cos ω t) 2 +2ω(2 . sin ω t − tan ω t) (27) (46)<br />

del. For large times, the Universe ends in an eternal phantom phase, where the EoS parameter<br />

here ithout h 0 big =4αβ rip singularity. and h 1 =6α. Nevertheless, It is straightforward a little rip to (dissolution see that the of bound function S = structures) dtd (46) 3 x describes g (3) NF( might ˜R) occur a Universe, where(28)<br />

8for small<br />

ilarly es t to α, the Action theHubbleparametercanbeapproximatedasaconstant,reproducingadeSittersolution,asinthe<br />

model presented in Ref. [5], as it is pointed out below. The functions P (φ) and Q(φ)<br />

se structed of ΛCDM by themodel. expressions For large (15) and times, (20), the Universe R = ends 6(2H 2 in+ Ḣ) an and eternal by using phantom expression<br />

8<br />

phase, (13), where which yields,<br />

<br />

Here the couplings κ i are constants depending on C 1,2 .Hence,forsmallvaluesoftheRicciscalartheactionreduces EoS parameter<br />

F (R) <<br />

to−1, the<br />

but<br />

action<br />

without<br />

for General<br />

big rip<br />

Relativity<br />

singularity.<br />

plus power-law H(t) =H<br />

Nevertheless,<br />

curvature 0 [cos(ωt)]<br />

a little<br />

corrections, 2 2ωµ<br />

+<br />

rip (dissolution of bound structures) <br />

might occur<br />

a finite time, P (φ) =e similarly 4βeαφ , toQ(φ) the model =−6αpresented 2 (3 + 4βe αφ in)(3 Ref. + 8βe [5], αφ as )e 4βeαφ it is pointed . out below. F (R) = The<br />

C (47) 1 functions + C 2 4 R <br />

are constants depending on C 1,2 .Hence,forsmallvaluesoftheRicciscalartheactionreduces<br />

1 − 3λ as +3µ R 2 , tan(ωt) 2µ<br />

which is1known −<br />

1 − 3λ recipe +3µ to [sin(ωt)]2 cure the<br />

singularities and which has a viable behavior ([13]). R<br />

12R<br />

+<br />

P + (φ) 75 and e Q(φ)<br />

25<br />

0<br />

ral Relativity plus power-law curvature corrections, as R 2 action (48) represents a viable model where GR can (29)<br />

be recovered while the curvature scalar corrections remain , which small. is It known is important recipe to that cure such theadditional Rcorrections<br />

0<br />

hn be easily reconstructed by the expressions (15) and (20),<br />

hat hasreproduces abecome viablerelevant behavior the solution close ([13]). to(46) the Hence, little can be rip thecalculated evolution. action (48) Inby order represents inverting to estimate athe viable expression themodel time for where ofthe thelittle GR Ricci rip can scalar induced dissolution of<br />

e<br />

nd<br />

curvature<br />

by using<br />

scalar<br />

the expression<br />

corrections<br />

P<br />

(13),<br />

remain<br />

(φ) =e<br />

which<br />

small.<br />

yields,<br />

It is important that such<br />

P (φ)<br />

additional<br />

=P<br />

bound structures in a naive way, one might compare the energy-density 4βeαφ , Q(φ) =−6α 2 (3 + 4βe αφ of a 0 (cos(ωφ))<br />

corrections<br />

− 2(1−3λ)<br />

1−3λ+3µ (30)<br />

<br />

bound<br />

)(3 + 8βe αφ system as the Solar System with<br />

to the the little density rip evolution. ρ )e 4βeαφ F (R) .Forthemodel(46),suchdensitycanbeapproximatedforlargetimesby<br />

In order to estimate time little rip induced dissolution . of<br />

(47)<br />

<br />

S = d<br />

he F (R) action that F (R) reproduces =<br />

C 4 x √ −gβ(φ)L<br />

naive way, one might compare the energy-density<br />

the solution (46) can be calculated by inverting the expression of the Ricci scalar<br />

1 + C 2 4 R of <br />

m (31)<br />

a<br />

exponential<br />

R<br />

bound system as the Solar System with<br />

12R<br />

+<br />

+ 75 e<br />

25<br />

0 16 functions are expanded power series,<br />

themodel(46),suchdensitycanbeapproximatedforlargetimesby<br />

terms adjusted with the dark energy density ρ F (R) = nowadays,<br />

ρ. 0 e 2αt , (48)<br />

(50)<br />

= 6(2H 2 + Ḣ) and by using the expression R<br />

F iner >F 0 (32)<br />

0 (13), which yields,<br />

where ρ R 2 R 3<br />

0 is a constant that<br />

ρ <br />

F (R) =<br />

C 1 + C 2 4 R <br />

1 = −24e −39/12 R 0 ,andC 2 =2 √ can be set F (R) ∼ κ 1 R + κ 2 + κ 3<br />

R 0 R<br />

3R 0 . Hence, we have reconstructed F (R) R model<br />

12R<br />

+<br />

+ 75 e<br />

25<br />

0<br />

which is able to<br />

2 + ··· .<br />

F (R) = ρ 0 e 2αt by imposing that the current value of the energy-density is ρ<br />

, (50) F (R) (t 0 )= 3 κ<br />

H 2 0 2 ∼<br />

10 −47 GeV 4 , where the age of the Universe is takenwhere<br />

to be t 0 ∼ 13.73<br />

ρ F Gyrs, (R) (t 0<br />

accordingtoRef.[14].<br />

)= 3 κ 2 H2 0 ∼ 10 −47 GeV<br />

Onecansetthetime<br />

4 (33)<br />

of the little rip dissolution occurrence when the gravitational coupling of the 0 Sun-Earth 16<br />

accelerated that can be (eternal) set by imposing phase, that whichthe does current not lead valueto ofa the future energy-density . (48)<br />

R<br />

singularity. isNote ρ F (R) that (t 0 )= the 3 system<br />

action (48)<br />

0 κ<br />

H 2 is broken due to the<br />

Einstein-Hilbert action plus some corrections for small<br />

here R 0 = α 2 , C 1 = −24e −39/12 R 0 ,andC 2 =2 √ values of the Ricci curvature R, 2 0 ∼<br />

cosmological expansion. By assuming a mean density of the Sun-Earth system given by ρ ⊙−⊕ =0.594×10<br />

age of the Universe is taken to be t 0 ∼ 13.73 Gyrs, accordingtoRef.[14]. Onecansetthetime where the<br />

−3 kg/m 3 ∼<br />

10 −21 GeV 4 ,thetimeforthelittleripdissolutionofboundstructuresis,<br />

tion ns are occurrence expanded<br />

Time for<br />

when in power<br />

Little<br />

the gravitational series,<br />

Rip<br />

coupling of the<br />

3R<br />

Sun-Earth<br />

0 . Hence,<br />

system<br />

we have<br />

is<br />

reconstructed<br />

broken due to the<br />

F (R) model which is able to<br />

n. By assuming a mean density of the Sun-Earth<br />

produce a super-accelerated (eternal) Rphase, 2 tsystem which R 3 given by ρ<br />

does not lead ⊙−⊕ =0.594×10<br />

to a future singularity. −3 kg/m 3 LR = 13.73 Gyrs + 29.93<br />

∼<br />

Note that the action (48)<br />

forthelittleripdissolutionofboundstructuresis,<br />

α . (51)<br />

rns out to be the Einstein-Hilbert<br />

F (R) ∼ κ 1 R +<br />

action<br />

κ 2 +<br />

R 0<br />

plus<br />

κ 3<br />

Rsome 2 + ···<br />

corrections<br />

.<br />

for small values of the Ricci<br />

(49)<br />

curvature R, where the<br />

Hence, depending on the parameter α, the 0<br />

ponential functions are expanded in power series,<br />

t LR = 13.73 Gyrs + 29.93 appearance of the little rip may last shorter or longer. For example, when<br />

α = 10 −1 Gyrs −1 ,thelittleripoccursattheUniverseageoft<br />

α . LR = 313.03 Gyrs, while for α (51) ≥ 1Gyrs −1 ,thetimefor<br />

the decoupling will be much shorter.<br />

RS. 2 Nojiri, S. ROdintsov AlotofmodelscanbereconstructedinframesofF 3 and DSG, AIP Conf. Proc. 1458, 207 (2011), arXiv:1108.0767.<br />

he parameter α, the appearance of the little F (R) rip∼ may κ 1 R last + κ(R) shorter 2<br />

gravity + κ 3<br />

which + are ··· able . to reproduce a super-accelerating (49)<br />

R<br />

or longer. For example, when<br />

0<br />

where α and β are constants. Then, by the expression (21), the Hubble parameter and the scale<br />

H(t) =h 0 e αt + h 1 , → a(t) =a 0 e 4βeαt +6αt .<br />

where h 0 =4αβ and h 1 =6α. It is straightforward to see that the function (46) describes a Univ<br />

times t α, theHubbleparametercanbeapproximatedasaconstant,reproducingadeSitte<br />

case of ΛCDM model. For large times, the Universe ends in an eternal phantom phase, where<br />

w F (R) < −1, but without big rip singularity. Nevertheless, a little rip (dissolution of bound stru<br />

in a finite time, similarly to the model presented in Ref. [5], as it is pointed out below. The funct<br />

P (φ) =e 4βeαφ , Q(φ) =−6α 2 (3 + 4βe αφ )(3 + 8βe αφ )e 4βeαφ .<br />

The F (R) action that reproduces the solution (46) can be calculated by inverting the expressio<br />

where R 0 = α 2 , C 1 = −24e −39/12 R 0 ,andC 2 =2 √ 3R 0 . Hence, we have reconstructed F (R) mo<br />

reproduce a super-accelerated (eternal) phase, which does not lead to a future singularity. Note<br />

turns out to be the Einstein-Hilbert action plus some corrections for small values of the Ricci cur<br />

One can set the time of the little rip dissolution occurrence when the gravitational coupling of the<br />

Sun-Earth system is broken due to the cosmological expansion by assuming a density for the f(R)<br />

A. López-Revelles,<br />

R0<br />

2 R. Myrzakulov and DSG, Phys. Rev. D 85, 103521 (2012), arXiv:1201.5647.<br />

−1<br />

phase free of singularities. Let us consider, for example, a Hubble parameter that reproduces a phantom Universe<br />

16<br />

.


cosmological evolution,<br />

e of the Solar system, the force of the coupling between Sun and a body of mass m<br />

aracterized by the Newtonian law,<br />

F N = G mM ⊙<br />

F<br />

F N = G mM r 2 . (5.2)<br />

cosm r 3<br />

=<br />

The<br />

⊙<br />

H0<br />

2 Little Rip<br />

where r 2 . (5.2)<br />

M⊙ =1.9<br />

F N 10 30 GM<br />

kg is Sun the mass of the Sun, and r is the distance between the Sun<br />

and the body m. Here, in both cases it is assumed that F<br />

⊙ =1.9 10 30 i = | F i |, as both forces have radial<br />

directions, kg is thebut mass opposite of thesign. Sun, Hence, and r we is may the distance between the Sun<br />

ody m. Here, in both cases it is assumed that F<br />

Little Rip in viable f(R) gravity<br />

i = | F compare both quantities along the cosmological<br />

For the case of the Earth-Sun system,<br />

i |, as<br />

r<br />

both<br />

=<br />

forces<br />

149.6<br />

have<br />

× 10<br />

radial<br />

9<br />

evolution,<br />

, but opposite sign. Hence, we mayF compare cosm<br />

both quantities along the cosmological<br />

,<br />

= r3 <br />

F N<br />

F cosm<br />

= r3 <br />

GM⊙ H2 0 h(z) 2 − (1 + z)h(z) h (z) , (5.3)<br />

of the previous sections, h(0) = 1 and a) h <br />

F N GM⊙ H2 0 h(z) 2 − (1 + z)h(z) h (z) (0) = 3 2 Ω(0)<br />

of both where forces recall athat z =0is we defined given H(z) by=H 0 h(z) in , section 3, whereH(5.3)<br />

0 = 100 hkms −1 Mpc −1<br />

with h = 0.71 ± 0.03. Let’s compare both forces for the Earth-Sun system, where r =<br />

all that we defined 149.6 × H(z) 10 9 m=H is the 0 h(z) Earth-Sun in section distance, 3, whereH at the 0 = present 100 hkms time, −1 z Mpc = 0,<br />

−1<br />

0.71 ± Earth-Sun 0.03. Let’ssystem<br />

(i) F cosm<br />

∼ 0.82 × 10 −22 , (ii) F cosm<br />

compareF N both forces for the Earth-Sun system, where r =<br />

0 9 m is the Earth-Sun distance, At z=0 at theF cosm present<br />

=1.4<br />

time,<br />

× 10<br />

z −22 = 0, h(0) 2 − h(0)h (0) , (5.4)<br />

F N<br />

F cosm<br />

<br />

h(z) 2 − (1 + z)h(z) h (z) , (31)<br />

where recall that H(z) =H 0 h(z), where H 0 =100hkms −1 Mpc −1 with h =0.71±0.03.<br />

m, the ratio (31) yields<br />

F cosm /F N =1.4×10 −22 [h(0) 2 − h(0)h (0)] and by considering the same initial conditions<br />

m ,andb) h (0) = −0.1, theratio<br />

F N<br />

∼ 1.95 × 10 −22 . (32)<br />

=1.4 × 10 −22 h(0) 2 − h(0)h (0) , (5.4)<br />

Then, Fby N assuming the initial conditions from section 3, h(0) = 1 and a) h (0) = 3 2 Ω(0) m , and<br />

b) h (0) = −0.1,<br />

assuming the initial conditions from section 3, h(0) = 1 and a) h (0) = 3 2 Ω(0) m , and<br />

−0.1,<br />

(i) F HS<br />

NOcosm<br />

∼ 0.82 × 10 −22 , (ii) F cosm<br />

∼ 1.95 × 10 −22 . (5.5)<br />

F N F N<br />

1.10 22<br />

1.10 22<br />

(i) F cosm<br />

∼ 0.82 × 10 −22 , (ii) F cosm<br />

Hence, F N<br />

both values are too small<br />

∼ 1.95 × 10 −22 . (5.5)<br />

F N<br />

to produce any kind of instability on the orbits of the<br />

1.510 22 z<br />

1.210 22 z<br />

8.10 23<br />

oth values are too small to produce any kind of instability on 5.10 the 23 orbits of the<br />

6.10 23<br />

4.10 23<br />

– 14 –<br />

– 14 –<br />

1.0 0.5 0.0 0.5 1.0<br />

1.0 0.5 0.0 0.5 1.0<br />

0<br />

HS<br />

NO<br />

DSG, Class.Quant.Grav. 30 095008 (2013)


Testing F(R) gravity with Sne Ia<br />

data<br />

A simple model<br />

f(R) =a<br />

R<br />

R 0<br />

<br />

n R<br />

+ b<br />

R 0<br />

Viability conditions<br />

To ensure the occurrence of a matter dominated epoch at high redshifts: 0.75 −bn<br />

<br />

b>0 and n>1 or<br />

b0.75<br />

n−1<br />

R<br />

R 0<br />

Fixed point: matter dominated epoch<br />

a =<br />

n [2n(1 + q 0 +2δ 1 ) − 3(1 + δ 1 )]<br />

(n − 1) [3 + n(8n − 13)] (q 0 − 1)(1 + δ 2 )<br />

b = k(1 − q 0) −n 2n 2 (q 0 − 1) − 3(1 + δ 1 )+4n(1 + δ 1 ) <br />

(n − 1) [3 + n(8n − 13)] (1 + δ 2 )<br />

A. Cruz-Dombriz, P. Dunsby, DSG, in preparation


Testing F(R) gravity with<br />

Sne Ia data<br />

A simple model<br />

Fixing the initial conditions at z = 2000 to match the ΛCDM model<br />

50 000<br />

0.6<br />

40 000<br />

0.4<br />

30 000<br />

0.2<br />

H H 0<br />

q<br />

0.0<br />

20 000<br />

0.2<br />

10 000<br />

0.4<br />

0<br />

0 500 1000 1500 2000<br />

z<br />

0.6<br />

0 2 4 6 8 10<br />

z<br />

A. Cruz-Dombriz, P. Dunsby, DSG, in preparation


Testing F(R) gravity with<br />

Sne Ia data<br />

Using the Union2 SNIa Dataset (557 Sne)<br />

1.0<br />

"CDM model,<br />

0.5<br />

χ 2 min = 542.68 (Ω m =0.27 ± 0.02)<br />

∆2<br />

0.0<br />

f(R) gravity,<br />

χ 2 min = 546.204 (Ω m =0.3)<br />

δ 1 = −0.07186, δ 2 =1<br />

0.5<br />

1.0<br />

0.090 0.085 0.080 0.075 0.070 0.065 0.060<br />

∆1<br />

A. Cruz-Dombriz, P. Dunsby, DSG, in preparation


tudy bations of the are kept quasi-static [13, 15]. approximation Let us point out for II. that this Θ f(R,<br />

F(R,T)<br />

µν<br />

kind this = T −2T ) approximation of GRAVITY models.<br />

gravity<br />

µν − pg µν<br />

InTHEORIES<br />

Section . may VI we apply our results to two particu (7<br />

tion odelsof and thenumerical first-order results perturbed are obtained fields [16, and23] compared and therefore with the requires ΛCDM model. Finally in Section VII we conclu<br />

us iththe Let theequations us main start conclusions bymotion writingbecome<br />

of the this general investigation. action for f(R, T ) gravities [4],<br />

on II, we briefly review the state-of-the-art of f(R, T<br />

S =<br />

II.<br />

S G +<br />

f(R,<br />

S m T<br />

= 1 ) gravity. <br />

) GRAVITY 2κ 2 d 4 x √ Section<br />

osmological equations f R R for µν f(R, − 1 2 fg T )=f µν − (g 1 (R) µν +f −∇ 2 (T µ ∇) ν models ) f R = − as<br />

THEORIES<br />

−g κwell 2 <br />

−(f(R, fas<br />

T Tµν T )+L + f Tm pg ) µν , . (8<br />

omentum conservation for such models. Then, Section IV addressed I. FORMULAE<br />

ons ere we<br />

where,<br />

for have f(R,<br />

Let us Action, κstart 2 dropped<br />

=8πG,<br />

T )=f 1<br />

by writing R<br />

(R)+f the explicit<br />

is the 2 (T<br />

general Ricci<br />

) models dependences<br />

scalar<br />

while of<br />

actionand forT Section f in R<br />

f(R, represents<br />

Vand deals T .<br />

T ) gravities the<br />

with<br />

trace<br />

the<br />

[4], of the energy-momentum tensor, i.e., T =<br />

tis is<br />

while<br />

kind straightforward<br />

L<br />

of models.<br />

m is the matter<br />

Into Section see that<br />

Lagrangian.<br />

VI we theapply usual<br />

As usual<br />

our continuity<br />

the<br />

results<br />

energy-momentum<br />

toequation two particular is not satisfied for the field equations (8), an<br />

S = S c 1 (R/R HS ) n<br />

f(R) =R − R HS<br />

c 2 (R/R HS ) n +1 , f(R) =R + Rn (aR n G + S m = 1 <br />

tensor is defined as,<br />

dsequently comparedthe with covariant the ΛCDM derivative model. ofFinally the energy-momentum in Section VII we<br />

− b)<br />

2κ 2 d 4 x √ tensor conclude is not null in general ∇ µ T µν = 0. In order t<br />

n. ain the modified continuity equation, let us take the covariant−g (f(R, T )+L m ) ,<br />

T 1+cR n .<br />

µν = 2 δS derivative m<br />

√ −g δg µν .<br />

of the equation (8),<br />

<br />

here, κ<br />

Field 2 =8πG, R∇ is µ the f Ricci scalar and T represents the trace of the energy-momentum tensor, i.e., T = T<br />

equations, R R µν − 1 (R, <br />

S EH = d 4 x √ −g <br />

hile Then, T ) GRAVITY<br />

L m<br />

byis varying the matter the THEORIES action Lagrangian. with2respect fg µν − (g µν −∇ µ ∇ ν ) f R = − <br />

κ 2 <br />

+ f T Tµν − f T Θ µν<br />

As usual to the energy-momentum metric field g µν , the tensor<br />

R +2κ 2 field is equations defined as, are obtained,<br />

L m → S = d 4 x √ −g f(R)+2κ 2 <br />

L m<br />

or f(R, T ) fgravities T µν = √ 2<br />

R (R, T )R[4],<br />

µν − 1 δS m<br />

2 f(R, T )g µν − (g µν −∇ µ ∇ ν ) f R (R, T )=− <br />

−g δg µν . κ 2 + f T (R, T ) T µν − f T (R, T )Θ µν ,<br />

where the energy-momentum tensor is defined as: T µν (m) = −√ 2 δ ( √ where = 1 →<br />

the subscripts on the function f(R, T ) mean differentiation −gL m )<br />

hen, by varying the action with respect to the metric field g µν with respect to R or T , and the tensor Θ<br />

2κ , the field equations −g δg µν are obtained,<br />

defined 2 d 4 x √ f R ∇ µ R µν + R µν ∇ µ f R − 1 2 g µν(f R ∇ µ R + f T ∇ µ T ) − (g µν ∇ µ −∇ µ ∇ µ ∇ ν ) f R =<br />

−g (f(R, T )+L m ) , (1)<br />

as,<br />

f R (R, T )R µν − 1 ∇ µ − κ 2 <br />

+ f<br />

T represents the trace of<br />

Divergence of the field 2 f(R, the energy-momentum T )g µν − (g µν −∇ µ ∇ ν ) f R (R, )=− κ 2 + f T (R, T ) T µν − f T (R, T )Θ µν ,<br />

equations Θ µν ≡ g αβ δT tensor, T Tµν − f<br />

i.e., T T Θ<br />

= µν . (9<br />

T µ µ,<br />

αβ<br />

δg µν = −2T µν g µν L m +2g αβ δL m<br />

the energy-momentum tensor is defined as,<br />

us, using the identities ∇ µ R<br />

.<br />

µν − 1 2 Rg µν<br />

= 0, and (∇ν − ∇ ν ) f R (R, T )=R δg µν g µν αβ<br />

∇ µ f R , the covariant derivativ<br />

the here energy-momentum the subscripts on the function f(R, T ) mean differentiation with respect to R or T , and the tensor Θ µν<br />

efined Note T µν that as, = √for 2 δS m<br />

tensor needs to satisfy,<br />

a regular . f(R, T ) function, in absence of any kind of matter, (2) the corresponding f(R) gravity equa<br />

−g δg<br />

µν<br />

are recovered, and consequently<br />

∇ µ T<br />

the corresponding properties and the well-known solutions for f(R) gravity are<br />

µν =<br />

f <br />

T 1<br />

he satisfied metric by fieldf(R, g µν T , the ) theories field equations inκclassical Θ 2 + f<br />

µν ≡ gare αβ δT T 2vacuum g µν∇ µ T − (T µν + Θ µν )∇ µ ln f T −∇ µ Θ<br />

obtained, αβ<br />

δg µν = −2T (for a review on f(R)<br />

µν − g µν L m +2g αβ theories, δL µν . (10<br />

m see [1]). Moreover, here w<br />

.<br />

interested to study the behavior of this kind of theories for spatially flatδg FLRW µν g αβ spacetimes, which are express<br />

nce, comoving for coordinates by the line element,<br />

−∇<br />

In<br />

a<br />

ote that µ ∇<br />

general,<br />

perfect<br />

ν ) f<br />

for R (R,<br />

the<br />

fluid<br />

T )=−<br />

divergence<br />

with an<br />

κ<br />

a regular f(R, 2 +<br />

of<br />

equation<br />

f<br />

the<br />

T ) function, T (R,<br />

equations<br />

T ) of state<br />

T<br />

in µν −<br />

is not<br />

p<br />

f<br />

absence T (R,<br />

null,<br />

= wρ,<br />

T<br />

which<br />

beingw<br />

)Θ<br />

of any kind µν<br />

of matter, the corresponding f(R) gravity equati<br />

re recovered, and consequently the corresponding ds 2 properties = a 2 (η) ,<br />

may give<br />

a constant,<br />

(3)<br />

rise to an<br />

the<br />

anomalous<br />

0−component<br />

behavior<br />

of<br />

of the<br />

the covarian<br />

ivative matter (10) turns content. out to become,<br />

<br />

dη and 2 −the dxwell-known 2 solutions for f(R) gravity are a<br />

atisfied ) mean by differentiation f(R, T ) theories with respect in classical to Rvacuum or T , and (for the a review tensoron Θ µν f(R) is<br />

κ 2 + w − 3<br />

<br />

<br />

f theories, see [1]). Moreover, here we<br />

terested where a(η) to study is the the scale behavior factor T − (1 + w)Tf<br />

2 in of conformal TT T ˙ + 3(1 + w)<br />

H(κ 2 − f<br />

this kind of time theories η. Then, for spatially the main T ) − 2f<br />

flatissue TR (4HḢ FLRW arises spacetimes, on + the Ḧ) T =0. (11<br />

T. Harko, F. S. N. Lobo, S. Nojiri and S. D. Odintsov, content #Phys. which Rev. D84, are of 024020 the expressed<br />

(2011) Unive


ere right lethand us remind side (r.h.s.). that T Thus, = T it µ = may ρ −lead 3p. toThe violations last equation of the usual differs evolution from theofusual different continuity species equation in theon th<br />

,-null T Nevertheless, ) mean rightdifferentiation hand in side the next (r.h.s.). with section Thus, respect<br />

F(R,T)<br />

we it focus may to Rour lead orattention T to , and violations<br />

gravity<br />

the on atensor model of theΘ that usual keeps evolution the usual of the continuity differentequation<br />

species in th<br />

µν is<br />

iverse. d. Nevertheless, in the next section we focus our attention on a model that keeps the usual continuity equatio<br />

hanged.<br />

δT αβ<br />

δg µν = −2T µν − g µν L m +2g αβ δL m<br />

. (4)<br />

III. δg µν<br />

f 1 g(R)+f αβ 2 (T ) TYPE THEORIES<br />

III. f 1 (R)+f 2 (T ) TYPE THEORIES<br />

section, absencewe of any choose kind the ofalgebraic matter, the function corresponding f(R, T ) to f(R) be agravity sum ofequations<br />

two independent functions<br />

nonding thisA section, particular properties wecase,<br />

choose and the thewell-known algebraic function solutionsf(R, for f(R) T ) togravity be a sum areof also two independent functions<br />

acuum (for a review on f(R) theories, f(R, T see )=f [1]). 1 (R)+f Moreover, 2 (T ) here we are<br />

d of theories for spatially flat FLRW spacetimes, f(R, T )=f which 1 (R)+f are expressed 2 (T ) in<br />

(12)<br />

(12<br />

(R) and f 2 (T ), respectively depend on the curvature R and the trace T . The generalized Einstein equations<br />

ere rgy<br />

yield fdensity, Friedmann<br />

1 (R) andwith f<br />

equations,<br />

2 (T ), respectively depend on the curvature R and the trace T . The generalized Einstein equation<br />

(8) ds 2 yield = a 2 (η) f 10 ≡ f 1 (R 0 ), f 1R0 ≡ df 1 (R 0 )/dR 0 , f 20 ≡ f 2 (T 0 ), f 2T0 ≡ df 2 (T 0 )/dT 0 and c 2<br />

dη 2 − dx 2 s = p 0 /ρ 0 . Th<br />

tinuity equation (11) for Lagrangians given by (12) yields<br />

(5)<br />

<br />

− 3Hf 1R +3H f 1R0 − a2<br />

2 f <br />

<br />

10 = −κ 2 a 2 ρ 0 +(1+c 2 s)ρ 0 a 2 f 2T0 + a2<br />

l time η. Then, the main ∇ 2 f 20 , (13)<br />

− 3Hf 1R 0<br />

+3H f 1R0 − a2<br />

f <br />

1R 0<br />

+ Hf 1R 0<br />

− (H +2H 2 )f 1R0 + a2<br />

2 f 2 f 10 = −κ 2 a 2 ρ 0 +(1+c 2 s)ρ 0 a 2 f 2T0 + a2<br />

µ T µ issue arises on the content of the Universe is<br />

0 ν = 1<br />

1<br />

10 = −κ 2 2 c 2 sρ 0 − a2<br />

2 f 2 f 20 , (13<br />

ensor, defined in (2). Since we are κ 2 δ ν µ ∂ µ<br />

−interested f 2T0 on flat 2 f 20 + c 2 sρ 0 f 2T0 + T µ<br />

0 ν ∂ µf 2T0 , (15<br />

FLRW cosmologies,<br />

less matter, radiation,... ) can be well described 20 . (14)<br />

f <br />

1R 0<br />

+ Hf 1R 0<br />

− (H +2H 2 )f 1R0 + a2 by<br />

2 f perfect fluids, whose<br />

wing explicitly that the energy-momentum tensor is not<br />

10 = a priori −κ 2 a 2 covariantly c 2 sρ 0 − a2<br />

2 f conserved<br />

20 . in f(R, T ) theories. Thus (14<br />

these theories, the test particles moving in a gravitational<br />

e prime holds for the derivative with respect to η, H ≡ a field do not follow geodesic lines. By exploring th<br />

ation /a and the subscript 0 holds for unperturbed<br />

ere ndT (15)<br />

quantities: the prime Rholds 0 denotes for the thederivative scalar curvature with respect corresponding to η, Hto ≡the a µν =(ρ<br />

for<br />

+ p)u<br />

ν =<br />

µ u<br />

0 component,<br />

ν − pg µν .<br />

one gets<br />

Continuity equation,<br />

/a unperturbed and (6) the subscript metric, ρ0 holds the unperturbed for unperturbe<br />

kground quantities: R 0 denotes the scalar curvature corresponding to the unperturbed metric, ρ 0 the unperturbe<br />

ρ 0 +3Hρ 0 (1 + c 2 1<br />

s)=<br />

κ 2 (1 + c 2<br />

− f<br />

s)ρ 0 f2T 0<br />

+ c 2 sρ 0f 2T0 + 1 <br />

2T0<br />

2 f 20<br />

. (16<br />

e that The whether usual continuity f 2 vanishes equation (i.e., is f(R) recovered theories) when, or characterizes a non-running cosmological constant, both f 2T<br />

vanish, and then the continuity equation in these scenarios becomes<br />

f 2T0<br />

f<br />

ρ 0 +3H 2 (T )=α √ 1+c 2 T + β<br />

s<br />

ρ0 =0 . (17<br />

n order to Lagrangians such as (12) consistent with the standard conservation equation, the r.h.s. of (15) has t<br />

ish leading to the differential equation<br />

1 <br />

F. Alvarenga, A. Cruz-Dombriz, S. Houndjo, M. Rodrigues, DSG, to appear in PRD, ArXiv:1302.1866


sence, function the complete represents sethe of equations unique<br />

F(R,T)<br />

Lagrangian that describes thatthe satisfies general<br />

gravity<br />

thelinear usual perturbations continuity equation for the kind (17) of within models the considere class o<br />

e, elsf(R, given T )=f by expression 1 (R) +f<br />

IV. 2 (12). (T ),<br />

PERTURBATIONS<br />

have been obtained, which<br />

IN f(R,<br />

provides<br />

T ) THEORIES<br />

enough information about the behavior of th<br />

turbations within this class of theories, that can be compared with expected results from ΛCDM model.<br />

consider the scalar perturbations of a flat FLRW metric in the longitudinal gauge<br />

IV. PERTURBATIONS IN f(R, T ) THEORIES<br />

V. Cosmological EVOLUTION perturbations<br />

OF SUB-HUBBLE MODES AND THE QUASI-STATIC APPROXIMATION<br />

ds 2 = a 2 (η) (1 + 2Φ)dη 2 − (1 − 2Ψ)dx 2 , (21)<br />

et us consider the scalar perturbations of a flat FLRW metric in the longitudinal gauge<br />

≡e Φ(η, are interested x) and Ψ in ≡ the Ψ(η, possible x) are the effects scalar on perturbations. the<br />

ds 2 = a 2 (η) density contrast The components evolution<br />

(1 + 2Φ)dη 2 − (1 − 2Ψ)dx 2 once of perturbed the perturbations energy-momentum enter the Hubbl<br />

ius thisingauge the matter are given dominated by era. In the sub-Hubble limit, i.e., H k, and , after having neglected all the (21 tim<br />

ivative for the<br />

re Φ ≡ˆδT Φ(η, 0 x) and Ψ ≡ Ψ(η, x) are the scalar perturbations. The components of perturbed energy-momentum<br />

0 = ˆδρ<br />

Bardeen’s potentials Φ and Ψ, the equations (25) and (26)<br />

i<br />

= ρ 0 δ , ˆδT j = −ˆδp δ i j = −c 2 sρ 0 δ i 0<br />

jδ , ˆδT i = −ˆδT i 0 = − can be combined yielding<br />

⎛<br />

⎞ 1+c 2 s<br />

ρ0 ∂ i v, (22)<br />

or in this gauge are given by2k2<br />

f<br />

1+<br />

1R0 R 0<br />

a<br />

6<br />

denotes the potential Ψ =<br />

ˆδT 0 0 = ˆδρ<br />

Φ 2 f 1R0<br />

for the velocity perturbations. Using the model (12), the<br />

i<br />

= ρ 0 δ , ˆδT j = −ˆδp δ i j = −c 2 sρ 0 δ i 0<br />

jδ , ˆδT i = −ˆδT i 0 = − perturbed metric (21) and<br />

rbed The energy-momentum perturbed equation 1+<br />

tensor can 1+c 2 s 4k2 f 1R0<br />

; Φ = − 1<br />

4k2 f<br />

1+<br />

1R0 R 0<br />

a<br />

⎝ 2 f 1R0<br />

⎠ <br />

R 0<br />

be (22), reduced the first to,<br />

2k<br />

order perturbed 2 a ρ0 ∂ i v, (22<br />

when combined yield<br />

2 f 1R0<br />

1+ 3k2 f 1R0<br />

κ 2 a 2 ρ 0<br />

− f 2T0 δ . (35<br />

R 0<br />

f<br />

a 2 1R0<br />

equations f 1R0 reads<br />

addition, re v denotes the<br />

<br />

µ equation the potential for velocity perturbations. Using the model (12), the perturbed metric (21) and<br />

f<br />

perturbed 1R0<br />

ˆδG<br />

energy-momentum ν +(R µ<br />

0ν + ∇µ ∇ ν − tensor ν µ ) f<br />

(22), 1R0 Rthe 0<br />

ˆδR +<br />

µα<br />

ˆδg ∇<br />

first order perturbed ν ∇ α δ<br />

equations ν<br />

ˆδg <br />

µ αβ<br />

δ 3f(34) 2T0<br />

in the<br />

<br />

QS approximation<br />

+ H 1 −<br />

∇<br />

reads α ∇ β f 1R0<br />

2(κ 2 δ + k 2 f 2T0<br />

− f 2T0 ) 2(κ <br />

<br />

µ<br />

f 1R0<br />

ˆδG ν +(R µ<br />

0ν + − g αµ γ ∇µ ∇ ν − δ ν µ ) f 1R0 R 0<br />

ˆδR +<br />

µα<br />

ˆδg ∇ ν ∇ α − δ ν<br />

ˆδg <br />

0<br />

ˆδΓ 2 − f 2T0 ) δ + yields,<br />

<br />

<br />

αν − δ ν µ g αβ γ<br />

0<br />

ˆδΓ k2 Φ − 3Ψ 3f 2T0<br />

<br />

− 3H 1 −<br />

2(κ 2 Ψ = 0 (34)<br />

− f 2T0<br />

βα<br />

∂ γ f 1R0 = − µ (κ − f<br />

αβ 2T0 ) ˆδT<br />

)<br />

δ 3f 0 <br />

2T<br />

+ H 1 −<br />

ν<br />

µ nce, the complete set of equations that2(κ <br />

describes 2 − f2T 0 the ) δ + k 2 f2T<br />

0<br />

general2(κ linear 2 − perturbations f2T 0 )δ + k2 Φ = 0 (36<br />

for the ∇<br />

α kind ∇ β of f 1R0 models considered<br />

f(R, In T )=f the sub-Hubble 1 (R) +f 2 (T limit, ), have k Hbeen 1 <br />

<br />

+<br />

− g αµ γ<br />

0<br />

ˆδΓ αν − δ ν µ g αβ γ<br />

2 (1 obtained, − which<br />

0<br />

ˆδΓ c2 s)f 2T0 δ ν µ provides<br />

+(1− 3c 2 enough<br />

s)(1 + c<br />

βα<br />

∂ 2 information<br />

s)ρ<br />

γ f 0 f 2T0 1R0 =<br />

T<br />

− (κ − f 2T0 ) ˆδT ν<br />

µ 0<br />

u µ about the behavior of the<br />

en, by using the previous result (35) in the equation (36) one gets<br />

rbations within this class of theories, that can be compared with expected results<br />

u<br />

from ν<br />

ˆδρ<br />

ΛCDM<br />

,<br />

model.<br />

(23)<br />

⎡<br />

⎛<br />

⎞⎤<br />

<br />

<br />

1<br />

0R +<br />

2 (1 − c2 s)f 2T0 δ ν µ +(1− 3c 2 s)(1 + c 2 s)ρ 0 f 2T0 T 0<br />

u µ 0<br />

=d δ 2 f 1 (R 0 )/dR0, 2 ∇<br />

3f α 2T0<br />

+ H 1 − ∇ α and ∇ holds for the covariant derivative with respect to the unperturbed u ν<br />

ˆδρ , metric (23<br />

3), V. we EVOLUTION have made use 2(κof OF 2 δ + 1 f 1R0<br />

⎣k 2 f 2T0<br />

−the SUB-HUBBLE f relation linkingMODES the traceAND to theTHE eneryQUASI-STATIC density, T 0 = ρ 0 −APPROXIMATION<br />

3p 0 =(1− 3c 2 2T0 ) 2 (κ 2 − f 2T0 ) − (κ2 − f 2T0 ) a2 ρ 0<br />

⎝ 1+4k2<br />

R 0<br />

a 2 f 1R0<br />

⎠⎦ δ = 0 (37<br />

f 1R0 1+3 k2<br />

s)ρ 0 , and<br />

re f 1R0 R 0<br />

=d 2 f 1 (R 0 )/dR0, 2 ∇ α ∇ α and ∇ holds for the covariant derivative with respect to the unperturbed metric<br />

et are caninterested be understood in theas possible the quasi-static effects on equation the density forcontrast f(R, T ) evolution models ofonce the form the perturbations (19). By neglecting enter the in<br />

In (23), we have made use of the relation linking trace to the enery density, T 0 = ρ 0 − 3p 0 =(1− 3c 2 Hubble (37) th<br />

ms s)ρ 0 , and<br />

s inf 2 the (T 0 ), matter i.e., paying dominated attention era. only In the to f(R) sub-Hubble theories, limit, one i.e., recovers H the k, usual and after quasi-static having approximation neglected all the fortime<br />

thos<br />

ative ories (see for the for Bardeen’s instance [22], potentials [23] and Φ [24]) and Ψ, the equations (25) and (26) can be combined yielding<br />

⎛ ⎛ ⎞ ⎞<br />

2k2 f<br />

1+<br />

1R0<br />

f<br />

R 0<br />

a<br />

Ψ = Φ 2 f 1R0<br />

1+ 4k2 f 1R0<br />

; Φ = − 1<br />

1R0<br />

4k2 f<br />

1+<br />

1R0 R 0<br />

a<br />

⎝ 2 f 1R0<br />

⎠ <br />

R 0<br />

2k 2<br />

a 2 f 1R0<br />

1+ 3k2 f 1R0<br />

κ 2 a 2 ρ<br />

δ + Hδ − ⎝ 1+4k2<br />

R 0<br />

a 2 f 1R0<br />

⎠ κ2 a 2 ρ 0<br />

0<br />

− f 2T0 δ . (35)<br />

R<br />

1+3 k2 f 1R0<br />

δ = 0 (38<br />

R 0 2f 0<br />

f<br />

a 2 1R0<br />

f a 2 1R0 1R0 F. Alvarenga, A. Cruz-Dombriz, S. Houndjo, M. Rodrigues, DSG, to appear in PRD, ArXiv:1302.1866<br />

f 1R0<br />

a 2 f 1R0 R 0<br />

f 1R0


e previous section, we study two particular f(R, T )modelswithf 1 (R 0 )<br />

rtional to the Ricci scalar, i.e., f 1 (R 0 )=R 0 . This choice encapsulates a<br />

function f 2 (T 0 ) introduced in Section 2 through the expression (19).<br />

. f A (R 0 ,T 0 )=R 0 + αT 1/2<br />

0<br />

F(R,T) gravity<br />

Evolution of the matter perturbations in the quasi-static limit<br />

tant α according to expression (43), thus possessing the appropriate<br />

ckground evolution that can be rewritten as<br />

= Ω 0 ma −1 +(1− Ω 0 m)a 1/2 10 1<br />

(47)<br />

k=50 H 0<br />

k=100 H 0<br />

k=200 H 0<br />

k=500 H 0<br />

k=1000 H 0<br />

ΛCDM<br />

Log[δ k ]<br />

10 2 10 0<br />

0 0.5 1 1.5 2 2.5 3<br />

10 -1<br />

10 -2<br />

10 -3<br />

Log[1+z]<br />

ure 1: δ k evolution for f A (R, T )modelaccordingtothequasi-staticevolutiongivenby(40)andΛCDM given by (39). The depicte<br />

des are k =50,100,200,500and1000(inH 0 units). The plotted redshift ranged from z =1000toz =0(today). ThevalueofΩ 0 m<br />

fixed to 0.27 for illustrative purposes. It is seen how whereas the ΛCDM is k-independent, the f A (R, T )modelevolutionsdivergefo<br />

ll the studied modes and leave the linear region at redshifts z ≈ 100. F. Alvarenga, For larger A. Cruz-Dombriz, k-modes S. Houndjo, (deep M. Sub-Hubble Rodrigues, DSG, modes) to appear in the PRD, ArXiv:1302.1866<br />

divergence


n at redshift z = 1000 where δ is assumed to behave as in a matter<br />

k-dependence. In Fig. 1 we have plotted the evolution of the density<br />

he strong k-dependence of equation (40) renders the evolution of these<br />

ity contrast evolution provided by the Concordance ΛCDM model and<br />

100.<br />

F(R,T) gravity<br />

Evolution of the matter perturbations in the quasi-static limit<br />

f B (R 0 ,T 0 )=R 0 + α T 1/2<br />

0 − 2β<br />

α < 0<br />

nd in (19), which also satisfies the usual continuity equation in the<br />

s supplemented with a cosmological constant −2β. The first FLRW<br />

10 1<br />

Ω 0 ma −1 − c 1 Ω 0 ma 1/2 + c 2 a 2 , (49)<br />

order to provide the correct dimensions<br />

10 0<br />

to the free constants parameters<br />

(witha(z = 0) = 1), one gets the constraint,<br />

Log[δ k ]<br />

Ω 0 m + c 2 → c 2 =1− Ω 0 m(1 − c 1 ) . (50)<br />

10 -1<br />

k=50 H 0<br />

k=100 H 0<br />

k=200 H 0<br />

k=500 H 0<br />

k=1000 H 0<br />

ΛCDM<br />

10 2<br />

0 0.5 1 1.5 2 2.5 3<br />

imensionless parameters {c 1 ,c 2 }, where one remains arbitrary. As for<br />

in the equation (37) leads to an evolution of the matter perturbations<br />

only a very restricted limit for 10 -2 the free parameter c 1 can avoid such<br />

10 -3<br />

Log[1+z]<br />

igure 2: δ k evolution for f B (R, T )modelaccordingtothequasi-staticevolutiongivenby(37)andΛCDM given by (39). Here we<br />

ave assumed a value c 1 = −10 −3 .Aspreviously,thedependenceonk leads to a strong growth of the matter perturbations for large<br />

values of k, whereasthebehaviorissimilartotheΛCDM model for the modes k


en at redshift z = 1000 where δ is assumed to behave as in a matter<br />

F(R,T) gravity<br />

ok-dependence. In Fig. 1 we have plotted the evolution of the density<br />

the strong k-dependence of equation (40) renders the evolution of these<br />

sity contrast evolution provided by the Concordance ΛCDM model and<br />

≈ 100.<br />

Evolution of the matter perturbations in the quasi-static limit<br />

f B (R 0 ,T 0 )=R 0 + α T 1/2<br />

0 − 2β<br />

1<br />

α > 0<br />

und in (19), which also satisfies 0.9 the usual continuity equation in the<br />

is supplemented with a cosmological constant −2β. The first FLRW<br />

0.8<br />

= Ω 0 ma −1 − c 1 Ω 0 ma 1/2 + c 2 a 2 0.7<br />

, (49)<br />

0.6<br />

order to provide the correct dimensions to the free constants parameters<br />

(witha(z = 0) = 1), one gets0.5<br />

the constraint,<br />

δ k<br />

1Ω 0 m + c 2 → c 2 =1− Ω 0 0.4<br />

m(1 − c 1 ) . (50)<br />

0.3<br />

dimensionless parameters {c 1 ,c 2 }, where one remains arbitrary. As for<br />

k in the equation (37) leads to0.2<br />

an evolution of the matter perturbations<br />

, only a very restricted limit for the free parameter c 1 can avoid such<br />

0.1<br />

k=50 H 0<br />

k=100 H 0<br />

k=200 H 0<br />

k=500 H 0<br />

k=1000 H 0<br />

ΛCDM<br />

1<br />

0<br />

-0.1<br />

0 0.5 1 1.5 2 2.5 3<br />

Log[1+z]<br />

igure 3: δ k evolution for f B (R, T )modelaccordingtothequasi-staticevolutiongivenby(37)andΛCDM given by (39). Here we<br />

have assumed a positive value for the free parameter c 1 =10 −3 ,whichleadstoanoscillatingbehaviorofthematterperturbations,<br />

which turns out stronger as k is larger, and whose oscillations are observed for large small redshifts. The model mimics the ΛCDM<br />

F. Alvarenga, A. Cruz-Dombriz, S. Houndjo, M. Rodrigues, DSG, to appear in PRD, ArXiv:1302.1866<br />

model only those modes small enough k


Summary<br />

Viable modified gravities reproduce a sudden singularity, which<br />

may be circumvented in the scalar-tensor picture.<br />

The transition to a phantom phase probably occurs in the class of<br />

the so-called viable f(R) gravities, where the EoS parameter<br />

presents an oscillating behavior, but no future singularity or Little<br />

Rip occurs.<br />

The analysis of a simple model of f(R) gravity, and its test with<br />

the Sne Ia reveals that the f(R) gravities can describe late-time<br />

acceleration with great accuracy.<br />

f(R,T) gravities seem to be ruled out, since the non-standard<br />

coupling among matter and gravity introduce an anomalous<br />

behavior in the matter perturbations.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!