19.01.2015 Views

Ratbay Myrzakulov

Ratbay Myrzakulov

Ratbay Myrzakulov

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

As is well known, for our dynamical system, the Euler-Lagrange equations read as<br />

( )<br />

d ∂L37<br />

− ∂L 37<br />

= 0, (4.9)<br />

dt ∂Ṙ ∂R<br />

( )<br />

d ∂L37<br />

dt ∂T<br />

˙ − ∂L 37<br />

= 0, (4.10)<br />

∂T<br />

( )<br />

d ∂L37<br />

− ∂L 37<br />

= 0. (4.11)<br />

dt ∂ȧ ∂a<br />

Hence, using the expressions<br />

we get<br />

∂L 37<br />

∂Ṙ = −6ɛ 1F RR a 2 ȧ, (4.12)<br />

∂L 37<br />

∂T<br />

˙<br />

∂L 37<br />

∂ȧ<br />

respectively. Here<br />

= −6ɛ 1 F RT a 2 ȧ, (4.13)<br />

= −12(ɛ 1 F R − ɛ 2 F T )aȧ − 6ɛ 1 (F RR Ṙ + F RT ˙ T + F Rψ ˙ψ)a 2 + a 3 F T vȧ + a 3 F R uȧ, (4.14)<br />

a 3 F TT<br />

(<br />

T − v − 6ɛ 2<br />

ȧ 2<br />

a 2 )<br />

(<br />

)<br />

a 3 F RR R − u − 6ɛ 1 (ä<br />

a + ȧ2<br />

a 2 )<br />

= 0, (4.15)<br />

= 0, (4.16)<br />

U + B 2 F TT + B 1 F T + C 2 F RRT + C 1 F RTT + C 0 F RT + MF + 6ɛ 2 a 2 p = 0, (4.17)<br />

U = A 3 F RRR + A 2 F RR + A 1 F R , (4.18)<br />

A 3 = −6ɛ 1 Ṙ 2 a 2 , (4.19)<br />

A 2 = −12ɛ 1 Ṙaȧ − 6ɛ 1 ¨Ra 2 + a 3 Ṙuȧ, (4.20)<br />

A 1 = 12ɛ 1 ȧ 2 + 6ɛ 1 aä + 3a 2 ȧuȧ + a 3 ˙uȧ − a 3 u a , (4.21)<br />

B 2 = 12ɛ 2 Taȧ ˙ + a 3 Tvȧ, ˙<br />

(4.22)<br />

B 1 = 24ɛ 2 ȧ 2 + 12ɛ 2 aä + 3a 2 ȧvȧ + a 3 ˙vȧ − a 3 v a , (4.23)<br />

C 2 = −12ɛ 1 a 2 ṘT, ˙<br />

(4.24)<br />

C 1 = −6ɛ 1 a 2 T˙<br />

2 , (4.25)<br />

C 0 = −12ɛ 1 Taȧ ˙ + 12ɛ 2 Ṙaȧ − 6ɛ 1 a 2 ¨T + a 3 Ṙvȧ + a 3 Tuȧ, ˙<br />

(4.26)<br />

M = −3a 2 . (4.27)<br />

If F RR ≠ 0,<br />

F TT ≠ 0, from Eqs. (4.17) and (4.17), it is easy to find that<br />

R = u + 6ɛ 1 (Ḣ + 2H2 ), T = v + 6ɛ 2 H 2 , (4.28)<br />

so that the relations (4.1) are recovered. Generally, these equations are the Euler constraints of<br />

the dynamics. Here a,R,T are the generalized coordinates of the configuration space. On the<br />

other hand, it is also well known that the total energy (Hamiltonian) corresponding to Lagrangian<br />

L 37 is given by<br />

H 37 = ∂L 37<br />

∂ȧ ȧ + ∂L 37<br />

Ṙ + ∂L 37<br />

∂Ṙ ∂T<br />

˙ T˙<br />

− L 37 . (4.29)<br />

Hence using (4.12)-(4.14) we obtain<br />

H 37 = [−12(ɛ 1 F R − ɛ 2 F T )aȧ − 6ɛ 1 (F RR Ṙ + F RT ˙ T + F Rψ ˙ψ)a 2 + a 3 F T vȧ + a 3 F R uȧ]ȧ<br />

−6ɛ 1 F RR a 2 ȧṘ − 6ɛ 1F RT a 2 ȧ ˙ T − [a 3 (F − TF T − RF R + vF T + uF R + L m )−<br />

6(ɛ 1 F R − ɛ 2 F T )aȧ 2 − 6ɛ 1 (F RR Ṙ + F RT ˙ T + F Rψ ˙ψ)a 2 ȧ]. (4.30)<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!