19.01.2015 Views

Ratbay Myrzakulov

Ratbay Myrzakulov

Ratbay Myrzakulov

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Modified Gravity in Space-Time with Curvature and<br />

Torsion: F(R, T) Gravity<br />

<strong>Ratbay</strong> <strong>Myrzakulov</strong> ∗<br />

Eurasian International Center for Theoretical Physics and Department of General<br />

& Theoretical Physics, Eurasian National University, Astana 010008, Kazakhstan<br />

Abstract<br />

In this report, we consider a theory of gravity with a metric-dependent torsion namely<br />

the F(R, T) gravity, where R is the curvature scalar and T is the torsion scalar. We study<br />

the geometric root of such theory. In particular we give the derivation of the model from the<br />

geometrical point of view. Then we present the more general form of F(R, T) gravity with<br />

two arbitrary functions and give some of its particular cases. In particular, the usual F(R)<br />

and F(T) gravity theories are particular cases of the F(R, T) gravity. In the cosmological<br />

context, we find that our new gravitational theory can describe the accelerated expansion of<br />

the Universe.<br />

Contents<br />

1 Introduction 1<br />

2 Preliminaries of F(R), F(G) and F(T) gravities 3<br />

2.1 F(R) gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

2.2 F(T) gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

2.3 F(G) gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

3 Geometrical roots of F(R,T) gravity 4<br />

3.1 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

3.2 FRW case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

4 Lagrangian formulation of F(R,T) gravity 7<br />

5 Cosmological solutions 11<br />

5.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

5.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

6 Conclusion 12<br />

1 Introduction<br />

In the last years the interest in modified gravity theories like F(R) and F(G)-gravity as alternatives<br />

to the ΛCDM Model grew up. Recently, a new modified gravity theory, namely the F(T)-theory,<br />

has been proposed. This is a generalized version of the teleparallel gravity originally proposed<br />

by Einstein [13]-[24]. It also may describe the current cosmic acceleration without invoking dark<br />

energy. Unlike the framework of GR, where the Levi-Civita connection is used, in teleparallel<br />

gravity (TG) the used connection is the Weitzenböck’one. In principle, modification of gravity<br />

may contain a huge list of invariants and there is not any reason to restrict the gravitational<br />

∗ Email: rmyrzakulov@gmail.com; rmyrzakulov@csufresno.edu<br />

1


theory to GR, TG, F(R) gravity and/or F(T) gravity. Indeed, several generalizations of these<br />

theories have been proposed (see e.g. the quite recent review [9]). In this paper, we study some<br />

other generalizations of F(R) and F(T) gravity theories. At the beginning, we briefly review the<br />

formalism of F(R) gravity and F(T) gravity in Friedmann-Robertson-Walker (FRW) universe.<br />

The flat FRW space-time is described by the metric<br />

ds 2 = −dt 2 + a 2 (t)(dx 2 + dy 2 + dz 2 ), (1.1)<br />

where a = a(t) is the scale factor. The orthonormal tetrad components e i (x µ ) are related to the<br />

metric through<br />

g µν = η ij e i µe j ν , (1.2)<br />

where the Latin indices i, j run over 0...3 for the tangent space of the manifold, while the Greek<br />

letters µ, ν are the coordinate indices on the manifold, also running over 0...3.<br />

F(R) and F(T) modified theories of gravity have been extensively explored and the possibility<br />

to construct viable models in their frameworks has been carefully analyzed in several papers (see<br />

[9] for a recent review). For such theories, the physical motivations are principally related to the<br />

possibility to reach a more realistic representation of the gravitational fields near curvature singularities<br />

and to create some first order approximation for the quantum theory of gravitational fields.<br />

Recently, it has been registred a renaissance of F(R) and F(T) gravity theories in the attempt to<br />

explain the late-time accelerated expansion of the Universe [9].<br />

PROBLEM:<br />

Construct such F(R,T) gravity which contents F(R) gravity and F(T) gravity as particular<br />

cases.<br />

In the modern cosmology, in order to construct (generalized) gravity theories, three quantities<br />

– the curvature scalar, the Gauss –Bonnet scalar and the torsion scalar – are usually used (about<br />

our notations see below):<br />

R s = g µν R µν , (1.3)<br />

G s = R 2 − 4R µν R µν + R µνρσ R µνρσ , (1.4)<br />

T s = S ρ µν T ρ µν. (1.5)<br />

In this paper, our aim is to replace these quantities with the other three variables in the form<br />

R = u + g µν R µν , (1.6)<br />

G = w + R 2 − 4R µν R µν + R µνρσ R µνρσ , (1.7)<br />

T = v + S ρ µν T ρ µν, (1.8)<br />

where u = u(x i ;g ij , g˙<br />

ij , g¨<br />

ij ,...;f j ), v = v(x i ;g ij , g˙<br />

ij , g¨<br />

ij ,...;g j ) and w = w(x i ;g ij , g˙<br />

ij , g¨<br />

ij ,...;h j ) are<br />

some functions to be defined. As a result, we obtain some generalizations of the known modified<br />

gravity theories. With the FRW metric ansatz the three variables (1.3)-(1.5) become<br />

R s = 6(Ḣ + 2H2 ), (1.9)<br />

G s = 24H 2 (Ḣ + H2 ), (1.10)<br />

T s = −6H 2 , (1.11)<br />

where H = (lna) t . In the contrast, in this paper we will use the following three variables<br />

R = u + 6(Ḣ + 2H2 ), (1.12)<br />

G = w + 24H 2 (Ḣ + H2 ), (1.13)<br />

T = v − 6H 2 . (1.14)<br />

Finally we would like to note that we expect w = w(u,v). This paper is organized as follows. In<br />

Sec. 2, we briefly review the formalism of F(R) and F(T)-gravity for FRW metric. In particular,<br />

2


the corresponding Lagrangians are explicitly presented. In Sec. 3, we consider F(R,T) theory,<br />

where R and T will be generalized with respect to the usual notions of curvature scalar and torsion<br />

scalar. Some reductions of F(R,T) gravity are presented in Sec. 4. In Sec. 5, the specific<br />

model F(R,T) = µR + νT is analized and in Sec. 6 the exact power-law solution is found; some<br />

cosmological implications of the model will be here discussed. The Bianchi type I version of F(R,T)<br />

gravity is considered in Sec. 7. Sec. 8 is devoted to some generalizations of some modified gravity<br />

theories. Final conclusions and remarks are provided in Sec. 9.<br />

2 Preliminaries of F(R), F(G) and F(T) gravities<br />

At the beginning, we present the basic equations of F(R), F(T) and F(G) modified gravity theories.<br />

For simplicity we mainly work in the FRW spacetime.<br />

2.1 F(R) gravity<br />

The action of F(R) theory is given by<br />

∫<br />

S R =<br />

d 4 xe[F(R) + L m ], (2.1)<br />

where R is the curvature scalar. We work with the FRW metric (1.1). In this case R assumes the<br />

form<br />

R = R s = 6(Ḣ + 2H2 ). (2.2)<br />

The action we rewrite as<br />

where the Lagrangian is given by<br />

∫<br />

S R = dtL R , (2.3)<br />

L R = a 3 (F − RF R ) − 6F R aȧ 2 − 6F RR Ṙa 2 ȧ − a 3 L m . (2.4)<br />

The corresponding field equations of F(R) gravity read<br />

2.2 F(T) gravity<br />

6ṘHF RR − (R − 6H 2 )F R + F = ρ, (2.5)<br />

−2Ṙ2 F RRR + [−4ṘH − 2 ¨R]F RR + [−2H 2 − 4a −1 ä + R]F R − F = p, (2.6)<br />

˙ρ + 3H(ρ + p) = 0. (2.7)<br />

In the modified teleparallel gravity, the gravitational action is<br />

∫<br />

S T = d 4 xe[F(T) + L m ], (2.8)<br />

where e = det (e i µ) = √ −g , and for convenience we use the units 16πG = = c = 1 throughout.<br />

The torsion scalar T is defined as<br />

T ≡ S ρ µν T ρ µν , (2.9)<br />

where<br />

T ρ µν ≡ −e ρ i<br />

(<br />

∂µ e i ν − ∂ ν e i )<br />

µ , (2.10)<br />

K µν ρ ≡ − 1 2 (T µν ρ − T νµ ρ − T ρ µν ) , (2.11)<br />

S ρ<br />

µν<br />

≡ 1 2<br />

(<br />

K<br />

µν<br />

ρ + δ ρT µ θν θ − δρT ν θµ )<br />

θ . (2.12)<br />

For a spatially flat FRW metric (1.1), as a consequence of equations (3.9) and (1.1), we have that<br />

the torsion scalar assumes the form<br />

T = T s = −6H 2 . (2.13)<br />

3


The action (3.8) can be written as<br />

where the point-like Lagrangian reads<br />

∫<br />

S T =<br />

dtL T , (2.14)<br />

The equations of F(T) gravity look like<br />

L T = a 3 (F − F T T) − 6F T aȧ 2 − a 3 L m . (2.15)<br />

12H 2 F T + F = ρ, (2.16)<br />

)<br />

48H 2 F TT Ḣ − F T<br />

(12H 2 + 4Ḣ − F = p, (2.17)<br />

˙ρ + 3H(ρ + p) = 0. (2.18)<br />

2.3 F(G) gravity<br />

The action of F(G) theory is given by<br />

∫<br />

S G =<br />

d 4 xe[F(G) + L m ], (2.19)<br />

where the Gauss – Bonnet scalar G for the FRW metric is<br />

G = G s = 24H 2 (Ḣ + H2 ). (2.20)<br />

3 Geometrical roots of F(R, T) gravity<br />

We start from the M 43 - model (about our notations, see e.g. Refs. [10]-[11]). This model is one<br />

of the representatives of F(R,T) gravity. The action of the M 43 - model reads as<br />

∫<br />

S 43 = d 4 x √ −g[F(R,T) + L m ],<br />

R = R s = ɛ 1 g µν R µν , (3.1)<br />

T = T s = ɛ 2 S ρ µν T ρ µν,<br />

where L m is the matter Lagrangian, ɛ i = ±1 (signature), R is the curvature scalar, T is the torsion<br />

scalar (about our notation see below). In this section we try to give one of the possible geometric<br />

formulations of M 43 - model. Note that we have different cases related with the signature: (1)<br />

ɛ 1 = 1,ɛ 2 = 1; (2) ɛ 1 = 1,ɛ 2 = −1; (3) ɛ 1 = −1,ɛ 2 = 1; (4) ɛ 1 = −1,ɛ 2 = −1. Also note that M 43 -<br />

model is a particular case of M 37 - model having the form<br />

∫<br />

S 37 = d 4 x √ −g[F(R,T) + L m ],<br />

where<br />

R = u + R s = u + ɛ 1 g µν R µν , (3.2)<br />

T = v + T s = v + ɛ 2 S ρ µν T ρ µν,<br />

are the standard forms of the curvature and torsion scalars.<br />

3.1 General case<br />

R s = ɛ 1 g µν R µν , T s = ɛ 2 S ρ µν T ρ µν (3.3)<br />

To understand the geometry of the M 43 - model, we consider some spacetime with the curvature<br />

and torsion so that its connection G λ µν is a sum of the curvature and torsion parts. In this paper,<br />

the Greek alphabets (µ, ν, ρ, ... = 0,1,2,3) are related to spacetime, and the Latin alphabets<br />

4


(i,j,k,... = 0,1,2,3) denote indices, which are raised and lowered with the Minkowski metric η ij<br />

= diag (−1,+1,+1,+1). For our spacetime the connection G λ µν has the form<br />

G λ µν = e i λ ∂ µ e i ν + e j λ e i νω j iµ = Γ λ µν + K λ µν. (3.4)<br />

Here Γ j iµ is the Levi-Civita connection and Kj iµ is the contorsion. Let the metric has the form<br />

ds 2 = g ij dx i dx j . (3.5)<br />

Then the orthonormal tetrad components e i (x µ ) are related to the metric through<br />

so that the orthonormal condition reads as<br />

Here η ij = diag(−1,1,1,1), where we used the relation<br />

The quantities Γ j iµ and Kj iµ are defined as<br />

g µν = η ij e i µe j ν, (3.6)<br />

η ij = g µν e µ i eν j . (3.7)<br />

e i µe µ j = δi j. (3.8)<br />

Γ l jk = 1 2 glr {∂ k g rj + ∂ j g rk − ∂ r g jk } (3.9)<br />

and<br />

K λ µν = − 1 2<br />

(<br />

T<br />

λ<br />

µν + T µν λ + T νµ<br />

λ ) , (3.10)<br />

respectively. Here the components of the torsion tensor are given by<br />

The curvature R ρ σµν is defined as<br />

T λ µν = e i λ T i µν = G λ µν − G λ νµ, (3.11)<br />

T i µν = ∂ µ e i ν − ∂ ν e i µ + G i jµe j ν − G i jνe j µ. (3.12)<br />

R ρ σµν = e i ρ e j σR i jµν = ∂ µ G ρ σν − ∂ ν G ρ σµ + G ρ λµG λ σν − G ρ λνG λ σµ<br />

= ¯R ρ σµν + ∂ µ K ρ σν − ∂ ν K ρ σµ + K ρ λµK λ σν − K ρ λνK λ σµ<br />

+Γ ρ λµ Kλ σν − Γ ρ λν Kλ σµ + Γ λ σνK ρ λµ − Γ λ σµK ρ λν, (3.13)<br />

where the Riemann curvature of the Levi-Civita connection is defined in the standard way<br />

¯R ρ σµν = ∂ µ Γ ρ σν − ∂ ν Γ ρ σµ + Γ ρ λµ Γλ σν − Γ ρ λν Γλ σµ. (3.14)<br />

Now we introduce two important quantities namely the curvature (R) and torsion (T) scalars as<br />

R = g ij R ij , (3.15)<br />

T = S ρ µν Tµν, ρ (3.16)<br />

where<br />

S ρ µν = 1 2<br />

(<br />

Kρ µν + δ µ ρT θ θν − δ ν ρT θ<br />

θµ ) . (3.17)<br />

Then the M 43 - model we write in the form (3.1). To conclude this subsection, we note that in<br />

GR, it is postulated that T λ µν = 0 and such 4-dimensional spacetime manifolds with metric and<br />

without torsion are labelled as V 4 . At the same time, it is a general convention to call U 4 , the<br />

manifolds endowed with metric and torsion.<br />

5


3.2 FRW case<br />

From here we work with the spatially flat FRW metric<br />

ds 2 = −dt 2 + a 2 (t)(dx 2 + dy 2 + dz 2 ), (3.18)<br />

where a(t) is the scale factor. In this case, the non-vanishing components of the Levi-Civita<br />

connection are<br />

Γ 0 00 = Γ 0 0i = Γ 0 i0 = Γ i 00 = Γ i jk = 0,<br />

Γ 0 ij = a 2 Hδ ij , (3.19)<br />

Γ i jo = Γ i 0j = Hδ i j,<br />

where H = (lna) t and i,j,k,... = 1,2,3. Now let us calculate the components of torsion tensor.<br />

Its non-vanishing components are given by:<br />

T 110 = T 220 = T 330 = a 2 h,<br />

T 123 = T 231 = T 312 = 2a 3 f, (3.20)<br />

where h and f are some real functions (see e.g. Refs. [12]). Note that the indices of the torsion<br />

tensor are raised and lowered with respect to the metric, that is<br />

Now we can find the contortion components. We get<br />

T ijk = g kl T ij l . (3.21)<br />

K 1 10 = K 2 20 = K 3 30 = 0,<br />

K 1 01 = K 2 02 = K 3 03 = h,<br />

K 0 11 = K 0 22 = K 0 22 = a 2 h, (3.22)<br />

K 1 23<br />

K 1 32<br />

= K 2 31 = K 3 12 = −af,<br />

= K 2 13 = K 3 21 = af.<br />

The non-vanishing components of the curvature R ρ σµν are given by<br />

R 0 101 = R 0 202 = R 0 303 = a 2 (Ḣ + H2 + Hh + ḣ),<br />

R 0 123 = −R 0 213 = R 0 312 = 2a 3 f(H + h),<br />

R 1 203 = −R 1 302 = R 2 301 = −a(Hf + f), ˙<br />

R 1 212 = R 1 313 = R 2 323 = a 2 [(H + h) 2 − f 2 ]. (3.23)<br />

Similarly, we write the non-vanishing components of the Ricci curvature tensor R µν as<br />

R 00 = −3Ḣ − 3ḣ − 3H2 − 3Hh,<br />

R 11 = R 22 = R 33 = a 2 (Ḣ + ḣ + 3H2 + 5Hh + 2h 2 − f 2 ). (3.24)<br />

At the same time, the non-vanishing components of the tensor S µν<br />

ρ<br />

are given by<br />

S1 10 = 1 (<br />

K<br />

10<br />

1 + δ 1<br />

2<br />

1Tθ<br />

θ0<br />

S 10<br />

1 = S 20<br />

2 = S 30<br />

S 23<br />

1 = 1 2<br />

− δ1T 0 θ<br />

θν ) 1 = (h + 2h) = h, (3.25)<br />

2<br />

3 = 2h, (3.26)<br />

(<br />

K<br />

23<br />

1 + δ 2 1 + δ 3 1<br />

S 23<br />

1 = S 31<br />

2 = S 21<br />

3 = − f 2a<br />

)<br />

= −<br />

f<br />

2a , (3.27)<br />

(3.28)<br />

and<br />

T = T 1 10S 10<br />

1 + T 2 20S 20<br />

2 + T 3 30S 30<br />

3 + T 23<br />

1 S 1 23 + T 2 31S 31<br />

2 + T 3 12S 12<br />

3 . (3.29)<br />

6


Now we are ready to write the explicit forms of the curvature and torsion scalars. We have<br />

R = 6(Ḣ + 2H2 ) + 6ḣ + 18Hh + 6h2 − 3f 2 (3.30)<br />

T = 6(h 2 − f 2 ). (3.31)<br />

So finally for the FRW metric, the M 43 - model takes the form<br />

∫<br />

S 43 = d 4 x √ −g[F(R,T) + L m ],<br />

R = 6(Ḣ + 2H2 ) + 6ḣ + 18Hh + 6h2 − 3f 2 , (3.32)<br />

T = 6(h 2 − f 2 ).<br />

It (that is the M 43 - model) is one of geometrical realizations of F(R,T) gravity in the sense that<br />

it was derived from the purely geometrical point of view.<br />

4 Lagrangian formulation of F(R, T) gravity<br />

Of course, we can work with the form (3.32) of F(R,T) gravity. But a more interesting and general<br />

form of F(R,T) gravity is the so-called M 37 - model. The action of the M 37 - gravity reads as [10]<br />

∫<br />

S 37 = d 4 x √ −g[F(R,T) + L m ],<br />

where<br />

R = u + R s = u + 6ɛ 1 (Ḣ + 2H2 ), (4.1)<br />

T = v + T s = v + 6ɛ 2 H 2 ,<br />

R s = 6ɛ 1 (Ḣ + 2H2 ), T s = 6ɛ 2 H 2 . (4.2)<br />

So we can see that here instead of two functions h and f in (3.32), we introduced two new functions<br />

u and v. For example, for (3.32) these functions have the form<br />

u = 6(1 − ɛ 1 )(Ḣ + 2H2 ) + 6ḣ + 18Hh + 6h2 − 3f 2 , (4.3)<br />

v = 6(h 2 − f 2 − ɛ 2 H 2 ) (4.4)<br />

that again tells us that the M 43 - model is a particular case of M 37 - model [Note that if ɛ 1 = 1 = ɛ 2<br />

we have u = 6ḣ + 18Hh + 6h2 − 3f 2 , v = 6(h 2 − f 2 − H 2 )]. But in general we think (or assume)<br />

that u = u(t,a,ȧ,ä, ... a,...;f i ) and v = v(t,a,ȧ,ä, ... a,...;g i ), while f i and g i are some unknown<br />

functions related with the geometry of the spacetime. So below we will work with a more general<br />

form of F(R,T) gravity namely the M 37 - gravity (4.1). Introducing the Lagrangian multipliers<br />

we now can rewrite the action (4.1) as<br />

∫<br />

S 37 = dta<br />

{F(R,T) 3 ȧ<br />

− λ<br />

[T 2 ] [ (ä )] }<br />

− v − 6ɛ 2<br />

a 2 − γ R − u − 6ɛ 1<br />

a + ȧ2<br />

a 2 + L m , (4.5)<br />

where λ and γ are Lagrange multipliers. If we take the variations with respect to T and R of this<br />

action, we get<br />

λ = F T , γ = F R . (4.6)<br />

Therefore, the action (4.5) can be rewritten as<br />

∫<br />

S 37 =<br />

dta 3 {<br />

F(R,T) − F T<br />

[<br />

T − v − 6ɛ 2<br />

ȧ 2<br />

a 2 ]<br />

− F R<br />

[<br />

R − u − 6ɛ 1<br />

(ä<br />

Then the corresponding point-like Lagrangian reads<br />

a + ȧ2<br />

a 2 )]<br />

+ L m<br />

}<br />

. (4.7)<br />

L 37 = a 3 [F − (T − v)F T − (R − u)F R + L m ] − 6(ɛ 1 F R − ɛ 2 F T )aȧ 2 − 6ɛ 1 (F RR Ṙ + F RT ˙ T)a 2 ȧ. (4.8)<br />

7


As is well known, for our dynamical system, the Euler-Lagrange equations read as<br />

( )<br />

d ∂L37<br />

− ∂L 37<br />

= 0, (4.9)<br />

dt ∂Ṙ ∂R<br />

( )<br />

d ∂L37<br />

dt ∂T<br />

˙ − ∂L 37<br />

= 0, (4.10)<br />

∂T<br />

( )<br />

d ∂L37<br />

− ∂L 37<br />

= 0. (4.11)<br />

dt ∂ȧ ∂a<br />

Hence, using the expressions<br />

we get<br />

∂L 37<br />

∂Ṙ = −6ɛ 1F RR a 2 ȧ, (4.12)<br />

∂L 37<br />

∂T<br />

˙<br />

∂L 37<br />

∂ȧ<br />

respectively. Here<br />

= −6ɛ 1 F RT a 2 ȧ, (4.13)<br />

= −12(ɛ 1 F R − ɛ 2 F T )aȧ − 6ɛ 1 (F RR Ṙ + F RT ˙ T + F Rψ ˙ψ)a 2 + a 3 F T vȧ + a 3 F R uȧ, (4.14)<br />

a 3 F TT<br />

(<br />

T − v − 6ɛ 2<br />

ȧ 2<br />

a 2 )<br />

(<br />

)<br />

a 3 F RR R − u − 6ɛ 1 (ä<br />

a + ȧ2<br />

a 2 )<br />

= 0, (4.15)<br />

= 0, (4.16)<br />

U + B 2 F TT + B 1 F T + C 2 F RRT + C 1 F RTT + C 0 F RT + MF + 6ɛ 2 a 2 p = 0, (4.17)<br />

U = A 3 F RRR + A 2 F RR + A 1 F R , (4.18)<br />

A 3 = −6ɛ 1 Ṙ 2 a 2 , (4.19)<br />

A 2 = −12ɛ 1 Ṙaȧ − 6ɛ 1 ¨Ra 2 + a 3 Ṙuȧ, (4.20)<br />

A 1 = 12ɛ 1 ȧ 2 + 6ɛ 1 aä + 3a 2 ȧuȧ + a 3 ˙uȧ − a 3 u a , (4.21)<br />

B 2 = 12ɛ 2 Taȧ ˙ + a 3 Tvȧ, ˙<br />

(4.22)<br />

B 1 = 24ɛ 2 ȧ 2 + 12ɛ 2 aä + 3a 2 ȧvȧ + a 3 ˙vȧ − a 3 v a , (4.23)<br />

C 2 = −12ɛ 1 a 2 ṘT, ˙<br />

(4.24)<br />

C 1 = −6ɛ 1 a 2 T˙<br />

2 , (4.25)<br />

C 0 = −12ɛ 1 Taȧ ˙ + 12ɛ 2 Ṙaȧ − 6ɛ 1 a 2 ¨T + a 3 Ṙvȧ + a 3 Tuȧ, ˙<br />

(4.26)<br />

M = −3a 2 . (4.27)<br />

If F RR ≠ 0,<br />

F TT ≠ 0, from Eqs. (4.17) and (4.17), it is easy to find that<br />

R = u + 6ɛ 1 (Ḣ + 2H2 ), T = v + 6ɛ 2 H 2 , (4.28)<br />

so that the relations (4.1) are recovered. Generally, these equations are the Euler constraints of<br />

the dynamics. Here a,R,T are the generalized coordinates of the configuration space. On the<br />

other hand, it is also well known that the total energy (Hamiltonian) corresponding to Lagrangian<br />

L 37 is given by<br />

H 37 = ∂L 37<br />

∂ȧ ȧ + ∂L 37<br />

Ṙ + ∂L 37<br />

∂Ṙ ∂T<br />

˙ T˙<br />

− L 37 . (4.29)<br />

Hence using (4.12)-(4.14) we obtain<br />

H 37 = [−12(ɛ 1 F R − ɛ 2 F T )aȧ − 6ɛ 1 (F RR Ṙ + F RT ˙ T + F Rψ ˙ψ)a 2 + a 3 F T vȧ + a 3 F R uȧ]ȧ<br />

−6ɛ 1 F RR a 2 ȧṘ − 6ɛ 1F RT a 2 ȧ ˙ T − [a 3 (F − TF T − RF R + vF T + uF R + L m )−<br />

6(ɛ 1 F R − ɛ 2 F T )aȧ 2 − 6ɛ 1 (F RR Ṙ + F RT ˙ T + F Rψ ˙ψ)a 2 ȧ]. (4.30)<br />

8


Let us rewrite this formula as<br />

where<br />

H 37 = D 2 F RR + D 1 F R + JF RT + E 1 F T + KF + 2a 3 ρ, (4.31)<br />

D 2 = −6ɛ 1 Ṙa 2 ȧ, (4.32)<br />

D 1 = 6ɛ 1 aä + a 3 uȧȧ, (4.33)<br />

J = −6ɛ 1 a 2 ȧT, ˙<br />

(4.34)<br />

E 1 = 12ɛ 2 aȧ 2 + a 3 vȧȧ, (4.35)<br />

K = −a 3 . (4.36)<br />

As usual we assume that the total energy H 37 = 0 (Hamiltonian constraint). So finally we have<br />

the following equations of the M 37 - model [10]-[11]:<br />

D 2 F RR + D 1 F R + JF RT + E 1 F T + KF = −2a 3 ρ,<br />

U + B 2 F TT + B 1 F T + C 2 F RRT + C 1 F RTT + C 0 F RT + MF = 6a 2 p, (4.37)<br />

˙ρ + 3H(ρ + p) = 0.<br />

It deserves to note that the M 37 - model (4.1) admits some interesting particular and physically<br />

important cases. Some particular cases are now presented.<br />

i) The M 44 - model. Let the function F(R,T) be independent from the torsion scalar T:<br />

F = F(R,T) = F(R). Then the action (4.1) acquires the form<br />

∫<br />

S 44 = d 4 xe[F(R) + L m ], (4.38)<br />

where<br />

R = u + R s = u + ɛ 1 g µν R µν , (4.39)<br />

is the curvature scalar. It is the M 44 - model. We work with the FRW metric. In this case R takes<br />

the form<br />

R = u + 6ɛ 1 (Ḣ + 2H2 ). (4.40)<br />

The action can be rewritten as<br />

where the Lagrangian is given by<br />

∫<br />

S 44 = dtL 44 , (4.41)<br />

L 44 = a 3 [F − (R − u)F R + L m ] − 6ɛ 1 F R aȧ 2 − 6ɛ 1 F RR Ṙa 2 ȧ. (4.42)<br />

The corresponding field equations of the M 44 - model read as<br />

Here<br />

and<br />

D 2 F RR + D 1 F R + KF = −2a 3 ρ,<br />

A 3 F RRR + A 2 F RR + A 1 F R + MF = 6a 2 p, (4.43)<br />

˙ρ + 3H(ρ + p) = 0.<br />

D 2 = −6ɛ 1 Ṙa 2 ȧ, (4.44)<br />

D 1 = 6ɛ 1 a 2 ä + a 3 uȧȧ, (4.45)<br />

K = −a 3 (4.46)<br />

A 3 = −6ɛ 1 Ṙ 2 a 2 , (4.47)<br />

A 2 = −12ɛ 1 Ṙaȧ − 6ɛ 1 ¨Ra 2 + a 3 Ṙuȧ, (4.48)<br />

A 1 = 12ɛ 1 ȧ 2 + 6ɛ 1 aä + 3a 2 ȧuȧ + a 3 ˙uȧ − a 3 u a , (4.49)<br />

M = −3a 2 . (4.50)<br />

9


If u = 0 then we get the following equations of the standard F(R s ) gravity (after R = R s ):<br />

6ṘHF RR − (R − 6H 2 )F R + F = ρ, (4.51)<br />

−2Ṙ2 F RRR + [−4ṘH − 2 ¨R]F RR + [−2H 2 − 4a −1 ä + R]F R − F = p, (4.52)<br />

˙ρ + 3H(ρ + p) = 0. (4.53)<br />

ii) The M 45 - model. The action of the M 45 - model looks like<br />

∫<br />

S 45 = d 4 xe[F(T) + L m ], (4.54)<br />

where e = det (e i µ) = √ −g and the torsion scalar T is defined as<br />

Here<br />

T = v + T s = v + ɛ 2 S ρ µν T ρ µν. (4.55)<br />

T ρ µν ≡ −e ρ i<br />

(<br />

∂µ e i ν − ∂ ν e i )<br />

µ , (4.56)<br />

K µν ρ ≡ − 1 2 (T µν ρ − T νµ ρ − T ρ µν ) , (4.57)<br />

S ρ<br />

µν<br />

≡ 1 2<br />

(<br />

K<br />

µν<br />

ρ + δ ρT µ θν θ − δρT ν θµ )<br />

θ . (4.58)<br />

For a spatially flat FRW metric (3.18), we have the torsion scalar in the form<br />

T = v + T s = v + 6ɛ 2 H 2 . (4.59)<br />

The action (4.54) can be written as<br />

where the point-like Lagrangian reads<br />

∫<br />

S 45 =<br />

dtL 45 , (4.60)<br />

L 45 = a 3 [F − (T − v)F T + L m ] + 6ɛ 2 F T aȧ 2 . (4.61)<br />

So finally we get the following equations of the M 45 - model:<br />

E 1 F T + KF = −2a 3 ρ,<br />

B 2 F TT + B 1 F T + MF = 6a 2 p, (4.62)<br />

˙ρ + 3H(ρ + p) = 0.<br />

Here<br />

E 1 = 12ɛ 2 aȧ 2 + a 3 vȧȧ, (4.63)<br />

K = −a 3 (4.64)<br />

and<br />

B 2 = 12ɛ 2 ˙ Taȧ + a 3 ˙ Tvȧ, (4.65)<br />

B 1 = 24ɛ 2 ȧ 2 + 12ɛ 2 aä + 3a 2 ȧvȧ + a 3 ˙vȧ − a 3 v a , (4.66)<br />

M = −3a 2 . (4.67)<br />

If we put v = 0 then the M 45 - model reduces to the usual F(T s ) gravity, where T s = 6ɛ 2 H 2 . As<br />

is well-known the equations of F(T s ) gravity are given by<br />

12H 2 F T + F = ρ, (4.68)<br />

)<br />

48H 2 F TT Ḣ − F T<br />

(12H 2 + 4Ḣ − F = p, (4.69)<br />

˙ρ + 3H(ρ + p) = 0, (4.70)<br />

where we must put T = T s . Finally we note that it is well-known that the standard F(T s ) gravity<br />

is not local Lorentz invariant [33]. In this context, we have a very meager hope that the M 45 -<br />

model (4.54) is free from such problems.<br />

10


5 Cosmological solutions<br />

In this section we investigate cosmological consequences of the F(R,T) gravity. As example, we<br />

want to find some exact cosmological solutions of the M 37 - gravity model. Since its equations are<br />

very complicated we here consider the simplest case when<br />

F(R,T) = µR + νT, (5.1)<br />

where µ and ν are some constants. Then equations (4.37) take the form<br />

where<br />

We can rewrite this system as<br />

µD 1 + νE 1 + K(νT + µR) = −2a 3 ρ,<br />

µA 1 + νB 1 + M(νT + µR) = 6a 2 p, (5.2)<br />

˙ρ + 3H(ρ + p) = 0,<br />

D 1 = 6ɛ 1 a 2 ä + a 3 uȧȧ, (5.3)<br />

E 1 = 12ɛ 2 aȧ 2 + a 3 vȧȧ, (5.4)<br />

K = −a 3 , (5.5)<br />

A 1 = 12ɛ 1 ȧ 2 + 6ɛ 1 aä + 3a 2 ȧuȧ + a 3 ˙uȧ − a 3 u a , (5.6)<br />

B 1 = 24ɛ 2 ȧ 2 + 12ɛ 2 aä + 3a 2 ȧvȧ + a 3 ˙vȧ − a 3 v a , (5.7)<br />

M = −3a 2 . (5.8)<br />

3σH 2 − 0.5(ȧzȧ − z) = ρ,<br />

−σ(2Ḣ + 3H2 ) + 0.5(ȧzȧ − z) + 1 6 a(ż ȧ − z a ) = p, (5.9)<br />

˙ρ + 3H(ρ + p) = 0,<br />

where z = µu + νv, σ = µɛ 1 − νɛ 2 . This system contents two independent equations for five<br />

unknown functions (a,ρ,p,u,v). But in fact it contain 4 unknown functions (H,ρ,p,z). The<br />

corresponding EoS parameter reads as<br />

ω = p ρ = −1 + −2σḢ + 1 6 a(ż ȧ − z a )<br />

3σH 2 − 0.5(ȧzȧ − z) . (5.10)<br />

Let us find some simplest cosmological solutions of the system (5.9).<br />

5.1 Example 1<br />

We start from the case σ = 0. In this case the system (5.9) takes the form<br />

At the same time the EoS parameter becomes<br />

Now we assume that<br />

where κ and l are some real constants. Then<br />

−0.5(ȧzȧ − z) = ρ,<br />

0.5(ȧzȧ − z) + 1 6 a(ż ȧ − z a ) = p, (5.11)<br />

˙ρ + 3H(ρ + p) = 0.<br />

ω = p ρ = −1 − a(ż ȧ − z a )<br />

3(ȧzȧ − z) . (5.12)<br />

z = κa l , (5.13)<br />

ω = −1 − l 3 . (5.14)<br />

This result tells us that in this case our model can describes the accelerated expansion of the<br />

Universe for some values of l.<br />

11


5.2 Example 2<br />

Now consider the de Sitter case that is H = H 0 = const so that a = a 0 e H0t . Then the system<br />

(5.9) reads as<br />

The EoS parameter takes the form<br />

3σH 2 0 − 0.5(ȧzȧ − z) = ρ,<br />

−3σH 2 0 + 0.5(ȧzȧ − z) + 1 6 a(ż ȧ − z a ) = p, (5.15)<br />

If z has the form (5.13) that is z = κe H0lt then we have<br />

˙ρ + 3H(ρ + p) = 0.<br />

ω = p ρ = −1 + a(żȧ − z a )<br />

18σH 2 0 − 3(ȧz ȧ − z) . (5.16)<br />

ω = p ρ = −1 −<br />

If H 0 l > 0 then as t → ∞ we get again<br />

lκ<br />

18σH 2 0 e−H0lt + 3κ . (5.17)<br />

ω = −1 − l 3 , (5.18)<br />

which is same as equation (5.14). This last equation tells us that our model can describes the<br />

accelerated expansion of the Universe e.g. for l ≥ 0. Also it corresponds to the phantom case if<br />

l > 0. Finally we present other forms of the generalized Friedmann equations in the system (5.9).<br />

Let us rewrite these equations in the standard form as<br />

Here<br />

3H 2 = ρ + ρ z , (5.19)<br />

−(2Ḣ + 3H2 ) = p + p z . (5.20)<br />

ρ z = 0.5σ −1 (ȧzȧ − z), (5.21)<br />

p z = −0.5σ −1 (ȧzȧ − z) − 1<br />

6σ a(ż ȧ − z a ) (5.22)<br />

are the z or u − v contributions to the energy density and pressure, respectively.<br />

6 Conclusion<br />

In [30], Buchdahl proposed to replace the Einstein-Hilbert scalar Lagrangian R with a function of<br />

the scalar curvature. The resulting theory is nowadays known as F(R) gravity. Almost 40 years<br />

later, Bengochea and Ferraro proposed to replace the TEGR that is the torsion scalar Lagrangian<br />

T with a function F(T) of the torsion scalar, and studied its cosmological consequences [31]. This<br />

type of modified gravity is nowadays called as F(T) gravity theory. These two gravity theories<br />

[that is F(R) and F(T)] are, in some sense, alternative ways to modify GR. From these results<br />

arises the natural question: how we can construct some modified gravity theory which unifies F(R)<br />

and F(T) theories Examples of such unified curvature-torsion theories were proposed in [10]-[11].<br />

Such type of modified gravity theory is called the F(R,T) gravity. In this F(R,T) gravity, the<br />

curvature scalar R and the torsion scalar T play the same role and are dynamical quantities. In<br />

this paper, we have shown that the F(R,T) gravity can be derived from the geometrical point of<br />

view. In particular, we have proposed a new method to construct particular models of F(R,T)<br />

gravity. As an example we have considered the M 43 - model, deriving its action in terms of the<br />

curvature and torsion scalars. Then in detail we have studied the M 37 - model and presented its<br />

action, Lagrangian and equations of motion for the FRW metric case. Finally we have shown that<br />

the last model can describes the accelerated expansion of the Universe.<br />

12


Concluding, we would like to note that in the paper, we present a special class of extended<br />

gravity models depending on arbitrary function F(R,T), where R is the Ricci scalar and T the<br />

scalar torsion. While in the traditional Eistein-Cartan theory, the role of the torsion depends on<br />

the non trivial source associated with spin matter density, in our F(R,T) gravity models, the<br />

torsion can propagate without the presence of spin matter density. In fact this is a crucial point,<br />

otherwise the additional scalar torsion degree of freedom are not different from the additional<br />

metric gravitational degree of freedom present in extended F(R) models. Finally we would like to<br />

note that all results of this paper are new and different than results of our previous papers [10]-[11]<br />

on the subject.<br />

References<br />

[1] M. U. Farooq, M. Jamil, U. Debnath, Astrophys. Space Sci. 334, 243 (2011).<br />

[2] M. Jamil, D. Momeni, K. Bamba, R. <strong>Myrzakulov</strong>, Int. J. Mod. Phys. D 21 (2012) 1250065;<br />

M. Jamil, I. Hussain, M. U. Farooq, Astrophys. Space Sci. 335, 339 (2011);<br />

M. Jamil, I. Hussain, Int. J. Theor. Phys. 50, 465 (2011).<br />

[3] A. Pasqua, A. Khodam-Mohammadi, M. Jamil, R. <strong>Myrzakulov</strong>, Astrophys. Space Sci. 340,<br />

199 (2012).<br />

[4] M. U. Farooq, M. A. Rashid, M. Jamil, Int. J. Theor. Phys. 49, 2278 (2010);<br />

K. Karami, M. S. Khaledian, M. Jamil, Phys. Scr. 83, 025901 (2011);<br />

M. Jamil, F. M. Mahomed, D. Momeni, Phys. Lett. B 702, 315 (2011);<br />

M. Jamil, A. Sheykhi, Int. J. Theor. Phys. 50, 625 (2011).<br />

[5] R. <strong>Myrzakulov</strong>, arXiv:1011.4337;<br />

R. <strong>Myrzakulov</strong>, arXiv:1103.5918;<br />

M. Jamil, D. Momeni, N. S. Serikbayev, R. <strong>Myrzakulov</strong>, Astrophys. Space Sci. 339, 37 (2012);<br />

M. Jamil, Y. <strong>Myrzakulov</strong>, O. Razina, R. <strong>Myrzakulov</strong>, Astrophys. Space Sci. 336, 315 (2011);<br />

O.V. Razina, Y.M. <strong>Myrzakulov</strong>, N.S. Serikbayev, G. Nugmanova, R. <strong>Myrzakulov</strong>, Cent. Eur.<br />

J. Phys., 10, N1, 47-50 (2012);<br />

I. Kulnazarov, K. Yerzhanov, O. Razina, Sh. Myrzakul, P. Tsyba, R. <strong>Myrzakulov</strong>, Eur. Phys.<br />

J. C, 71, 1698 (2011).<br />

[6] S. Chakraborty, U. Debnath, M. Jamil, R. <strong>Myrzakulov</strong>, Int. J. Theor. Phys. 51, 2246 (2012);<br />

M.U. Farooq, M. A. Rashid, M. Jamil, Int. J. Theor. Phys. 49, 2334 (2010);<br />

M. Jamil, M.U. Farooq, JCAP 03, 001 (2010);<br />

M. Jamil, Int. J. Theor. Phys. 49, 62 (2010);<br />

M. Jamil, M.A. Rashid, Eur. Phys. J. C 58, 111 (2008);<br />

M. Jamil, M.A. Rashid, Eur. Phys. J. C 60, 141 (2009).<br />

[7] E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006) [hepth/0603057];<br />

J. Frieman, M. Turner and D. Huterer, Ann. Rev. Astron. Astrophys. 46, 385 (2008)<br />

[arXiv:0803.0982];<br />

S. Tsujikawa, arXiv:1004.1493 [astro-ph.CO];<br />

M. Li, X. D. Li, S. Wang and Y. Wang, Commun. Theor. Phys. 56, 525 (2011)<br />

[arXiv:1103.5870];<br />

Y. F. Cai, E. N. Saridakis, M. R. Setare and J. Q. Xia, Phys. Rept. 493, 1 (2010)<br />

[arXiv:0909.2776].<br />

[8] A. De Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010) [arXiv:1002.4928];<br />

T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis, arXiv:1106.2476 [astro-ph.CO];<br />

T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010) [arXiv:0805.1726];<br />

S. Tsujikawa, Lect. Notes Phys. 800, 99 (2010) [arXiv:1101.0191];<br />

S. Capozziello, M. De Laurentis and V. Faraoni, arXiv:0909.4672 [gr-qc];<br />

R. Durrer and R. Maartens, arXiv:0811.4132 [astro-ph];<br />

13


S. Nojiri and S. D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007) [hep-th/0601213];<br />

S. Nojiri and S. D. Odintsov, arXiv:1011.0544 [gr-qc];<br />

M.R. Setare, M. Jamil, Gen. Relativ. Gravit. 43, 293 (2011);<br />

M. Jamil, E. N. Saridakis, M. R. Setare, JCAP 1011, 032 (2010).<br />

[9] K. Bamba, S. Capozziello, S. Nojiri, S. D. Odintsov, arXiv:1205.3421.<br />

S. Capozziello, M. De Laurentis and V. Faraoni, arXiv:0909.4672 [gr-qc];<br />

S. Nojiri and S. D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007) [hep-th/0601213];<br />

S. Nojiri and S. D. Odintsov, arXiv:1011.0544 [gr-qc];<br />

M. Jamil, D. Momeni, R. <strong>Myrzakulov</strong>, Eur. Phys. J. C 72, 2122 (2012);<br />

M. Jamil, D. Momeni, R. <strong>Myrzakulov</strong>, Eur. Phys. J. C 72, 2075 (2012);<br />

M. Jamil, D. Momeni, R. <strong>Myrzakulov</strong>, Eur. Phys. J. C 72, 1959 (2012);<br />

M. Jamil, D. Momeni, R. <strong>Myrzakulov</strong>, Eur. Phys. J. C 72, 2137 (2012).<br />

[10] R. <strong>Myrzakulov</strong>, General Relativity and Gravitation, 44, (2012) [DOI:10.1007/s10714-012-<br />

1439-z], [arXiv:1008.4486]<br />

[11] R. <strong>Myrzakulov</strong>. arXiv:1205.5266;<br />

R. <strong>Myrzakulov</strong>, Entropy, 14, N9, 1627-1651 (2012);<br />

M. Sharif, S. Rani, R. <strong>Myrzakulov</strong>, arXiv:1210.2714;<br />

S. Chattopadhyay, arXiv:1208.3896.<br />

[12] F. Muller-Hoissen. Phys. Lett. A, 92, N9, 433-434 (1982);<br />

A. Dimakis, F. Muller-Hoissen. Phys. Lett. A, 92, N9, 431-432 (1982);<br />

F. Muller-Hoissen, J. Nitsch. Phys. Rev. D, 28, N4, 718-728 (1983);<br />

A. Dimakis, F. Muller-Hoissen. J. Math. Phys., 26, N5, 1040-1048 (1985);<br />

F. Muller-Hoissen, J. Nitsch. Gen. Rel. Grav., 17, N8, 747-760 (1985);<br />

H. Goenner, F. Muller-Hoissen. Class. Quantum Grav., 1, 651-672 (1984);<br />

F. Muller-Hoissen. Ann. Inst. Henri Poincare, 40, N1, 21-34 (1984);<br />

S. Capozziello and R. de Ritis, Class. Quant. Grav. 11, 107 (1994);<br />

M. Tsamparlis, Phys. Lett. A, 75, N1,2, 27-28 (1979);<br />

D.P. Mason, M. Tsamparlis, General Relativity and Gravitation, 13, N2, 123-134 (1981);<br />

A.V. Minkevich, A.S. Garkun , [gr-qc/9805007];<br />

S. Capozziello, G. Lambiase, C. Stornaiolo, Ann. Phys. (Leipzig), 10, N8, 713-727 (2001).<br />

[13] G. R. Bengochea and R. Ferraro, Phys. Rev. D 79, 124019 (2009) [arXiv:0812.1205].<br />

[14] R. <strong>Myrzakulov</strong>, Eur. Phys. J. C 71, 1752 (2011) [arXiv:1006.1120]<br />

[15] K. K. Yerzhanov, S. R. Myrzakul, I. I. Kulnazarov and R. <strong>Myrzakulov</strong>, [arXiv:1006.3879]<br />

[16] R. <strong>Myrzakulov</strong>, Advances in High Energy Physics, 2012, 868203 (2012) [arXiv:1204.1093]<br />

[17] K.R. Yesmakhanova, N. A. <strong>Myrzakulov</strong>, K. K. Yerzhanov, G.N. Nugmanova, N.S. Serikbayaev,<br />

R. <strong>Myrzakulov</strong>, [arXiv:1201.4360]<br />

[18] S. Capozziello, M. De Laurentis, L. Fabbri, S. Vignolo, Eur. Phys. J. C, 72, 1908-1918, 2012<br />

[arXiv:1202.3573]<br />

[19] L. Fabbri, S. Vignolo, Int. J. Theor. Phys. 51, 3186-3207 (2012) [arXiv:1201.5498]<br />

[20] X.-C. Ao, X.-Z. Li. JCAP, 1110, 039 (2011). [arXiv:1111.1801]<br />

[21] G.-Y. Qi. [arXiv:1110.3449]<br />

[22] N. Poplawski. [arXiv:1203.0294]<br />

[23] A.J. Lopez-Revelles, R. <strong>Myrzakulov</strong>, D. Saez-Gomez, Physical Review D, 85, N10, 103521<br />

(2012).<br />

[24] K. Bamba, R. <strong>Myrzakulov</strong>, S. Nojiri, S. D. Odintsov, Physical Review D, 85, N10, 104036<br />

(2012).<br />

14


[25] M. Duncan, R. <strong>Myrzakulov</strong>, D. Singleton. Phys. Lett. B, 703, N4, 516-518 (2011).<br />

[26] R. <strong>Myrzakulov</strong>, D. Saez-Gomez, A. Tureanu. General Relativity and Gravitation, 43, N6,<br />

1671-1684 (2011)<br />

[27] V. Dzhunushaliev, V. Folomeev, R. <strong>Myrzakulov</strong>, D. Singleton. Physical Review D, 82, 045032<br />

(2010)<br />

[28] I. Brevik, R. <strong>Myrzakulov</strong>, S. Nojiri, S. D. Odintsov. Physical Review D, 86, N6, 063007 (2012)<br />

[29] E. Elizalde, R. <strong>Myrzakulov</strong>, V.V. Obukhov, D. Saez-Gomez. Classical and Quantum Gravity,<br />

27, N8, 085001-12 (2010)<br />

[30] H.A. Buchdahl. Mon. Not. R. Astron. Soc., 150, 1 (1970).<br />

[31] G.R. Bengochea, R. Ferraro. Phys. Rev. D, 79, 124019 (2009).<br />

[32] Harko T., Lobo F.S.N., Nojiri S., Odintsov S.D. Phys. Rev. D, 84, 024020 (2011).<br />

[33] Sotiriou T.P., Li B., Barrow J.D. Phys. Rev. D, 83, 104030 (2011).<br />

15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!