19.01.2015 Views

Modeling and Measuring Redshift Space Distortions and the Alcock ...

Modeling and Measuring Redshift Space Distortions and the Alcock ...

Modeling and Measuring Redshift Space Distortions and the Alcock ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Modeling</strong> <strong>and</strong> <strong>Measuring</strong> <strong>Redshift</strong> <strong>Space</strong><br />

<strong>Distortions</strong> <strong>and</strong> <strong>the</strong> <strong>Alcock</strong>-Paczynski<br />

Effect in <strong>the</strong> Baryon Oscillation<br />

Spectroscopic Survey<br />

Beth Reid<br />

Hubble Fellow<br />

Lawrence Berkeley National Lab<br />

in collaboration with Martin White, Lado Samushia,<br />

Will Percival, BOSS galaxy clustering working group<br />

Image Courtesy Chris Blake <strong>and</strong> Sam Moorfield<br />

Tuesday, January 31, 2012


Outline<br />

• Motivation<br />

• Basic redshift space distortions (RSD) in configuration<br />

space<br />

• Reid <strong>and</strong> White 2011 configuration space RSD model<br />

(+ connections to o<strong>the</strong>r recent RSD work)<br />

• From halos to galaxies...<br />

• BOSS DR9 first results: BAO, RSD <strong>and</strong> AP constraints<br />

• Future prospects<br />

Beth Reid Nagoya Feb 1<br />

2<br />

Tuesday, January 31, 2012


RSD motivation: Testing<br />

General Relativity<br />

• Once we know <strong>the</strong> expansion history H(a),<br />

we know how perturbations grow in GR:<br />

δ(k, a) = aG(H(a))δi(k)<br />

• We want to test both scale (k) <strong>and</strong> time (a)<br />

dependence<br />

Beth Reid Nagoya Feb 1<br />

3<br />

Tuesday, January 31, 2012


RSD in 3d Galaxy Maps<br />

θ, φ, redshift<br />

depends on <strong>the</strong><br />

geometry of<br />

<strong>the</strong> universe<br />

χ(z) = χtrue + vp/aH(a)<br />

χ(z) =0∫ z c dz’/H(z’)<br />

comoving coordinates: x, y, z<br />

Beth Reid<br />

Tuesday, January 31, 2012<br />

4<br />

Nagoya Feb 1


RSD in configuration space<br />

real to redshift space separations<br />

∇ ⋅ vp = -aHf δm<br />

z<br />

x<br />

x<br />

|vp| ~ d σ8/d ln a = σ8 * f<br />

isotropic<br />

squashed along line of sight<br />

f = d ln σ8 /d ln a<br />

Beth Reid<br />

5<br />

Nagoya Feb 1<br />

Tuesday, January 31, 2012


RSD: Anisotropy in ξ(rσ, rπ)<br />

BOSS DR9: Reid et al., Samushia et al. (in prep)<br />

Beth Reid<br />

6<br />

White et al. 2011 mock catalogs<br />

Nagoya Feb 1<br />

Tuesday, January 31, 2012


Linear RSD (Kaiser 1987)<br />

Beth Reid Nagoya Feb 1<br />

7<br />

Tuesday, January 31, 2012


Linear RSD: Legendre Polynomial moments<br />

General Expansion<br />

Linear <strong>the</strong>ory prediction<br />

Beth Reid<br />

Tuesday, January 31, 2012<br />

8<br />

Nagoya Feb 1


Legendre Polynomial moments<br />

General Expansion<br />

Relation to P(k)<br />

Beth Reid<br />

9<br />

Nagoya Feb 1<br />

Tuesday, January 31, 2012


Linear <strong>the</strong>ory Legendre polynomial<br />

moments: scale dependence<br />

Beth Reid<br />

10 Nagoya Feb 1<br />

Tuesday, January 31, 2012


RSD in configuration space: new<br />

quantities of interest<br />

v̅r, σ 2 r<br />

rπ<br />

r<br />

vz<br />

y<br />

rπ<br />

v̅t=0, σ 2 t<br />

rσ<br />

Beth Reid<br />

11<br />

Nagoya Feb 1<br />

Tuesday, January 31, 2012


Linear <strong>the</strong>ory pairwise velocities (δg = bδm)<br />

Beth Reid<br />

12 Nagoya Feb 1<br />

Tuesday, January 31, 2012


Fisher 1995: <strong>the</strong> Kaiser formula in<br />

configuration space<br />

• δ(x), v(x’) correlated Gaussian fields<br />

• Exp<strong>and</strong> around y = rπ<br />

• Equivalent to Kaiser formula<br />

Beth Reid<br />

13<br />

Nagoya Feb 1<br />

Tuesday, January 31, 2012


Pairwise velocity statistics in linear <strong>the</strong>ory<br />

Beth Reid<br />

14 Nagoya Feb 1<br />

Tuesday, January 31, 2012


Outline<br />

• Motivation<br />

• Basic redshift space distortions (RSD) in configuration<br />

space<br />

• Reid <strong>and</strong> White 2011 configuration space RSD model<br />

(+ connections to o<strong>the</strong>r recent RSD work)<br />

• From halos to galaxies...<br />

• BOSS DR9 first results: BAO, RSD <strong>and</strong> AP constraints<br />

• Future prospects<br />

Beth Reid Nagoya Feb 1<br />

15<br />

Tuesday, January 31, 2012


Recent work: Matter Density Field<br />

Blake et al., arXiv:1105.2862; see also Scoccimarro 2004<br />

Beth Reid<br />

16<br />

Nagoya Feb 1<br />

Tuesday, January 31, 2012


• Galaxies live <strong>the</strong>re!<br />

•<br />

Halos occupy “special”<br />

places in <strong>the</strong> density<br />

field; θ is a volumeaveraged<br />

statistic<br />

• Dependence on halo<br />

bias is complex; studies<br />

of matter correlations<br />

not easily generalized<br />

Why halos<br />

Beth Reid<br />

17 Nagoya Feb 1<br />

Tuesday, January 31, 2012


Recent Work: Halos<br />

• Tinker, Weinberg, Zheng 2006; Tinker<br />

2007 (+ galaxies in halo model)<br />

• Matsubara 2008ab [LPT with biasing]<br />

• Tang, Kayo, Takada arXiv:1103.3614<br />

• Nishimichi, Taruya arXiv:1106.4562<br />

• ....<br />

Beth Reid<br />

18 Nagoya Feb 1<br />

Tuesday, January 31, 2012


N-body Simulations<br />

• White et al. 2011; arXiv:1010.4915<br />

• 67.5 (Gpc/h) 3 total volume<br />

(for BOSS galaxies V ~ 5 (Gpc/h) 3 )<br />

Beth Reid<br />

19 Nagoya Feb 1<br />

Tuesday, January 31, 2012


N-body simulations vs Linear <strong>and</strong><br />

Lagrangian Perturbation Theories<br />

• LPT works on<br />

BAO scales<br />

• See Matsubara<br />

PRD 78, 083519;<br />

arXiv:1105.5007<br />

Beth Reid<br />

20 Nagoya Feb 1<br />

Tuesday, January 31, 2012


N-body simulations vs Linear <strong>and</strong><br />

Lagrangian Perturbation Theories<br />

• ξ2 suppressed by 2.5-7.5% at 50 h -1 Mpc,<br />

depends strongly on bias<br />

Beth Reid<br />

21 Nagoya Feb 1<br />

Tuesday, January 31, 2012


Our approach<br />

• Two distinct sources of nonlinearity:<br />

• Nonlinear growth of structure/biasing --<br />

affects both halo clustering <strong>and</strong> velocities<br />

(study in N-body sims/perturbation <strong>the</strong>ory)<br />

• Nonlinear mapping from real to redshift<br />

space coordinates (non-perturbative)<br />

• Recall: to get Kaiser: dvz/dz small (P) or<br />

exp<strong>and</strong> around y = rπ (ξ)<br />

Beth Reid<br />

22 Nagoya Feb 1<br />

Tuesday, January 31, 2012


The scale-dependent Gaussian streaming<br />

model ansatz<br />

v̅r, σ 2 r<br />

rπ<br />

r<br />

vz<br />

y<br />

rπ<br />

v̅t=0, σ 2 t<br />

rσ<br />

Beth Reid<br />

23<br />

Nagoya Feb 1<br />

Tuesday, January 31, 2012


The scale-dependent Gaussian streaming<br />

model ansatz<br />

• Non-perturbative!<br />

• Approximate pairwise<br />

velocity PDF P(vz, r) with<br />

a Gaussian; match 1 st<br />

<strong>and</strong> 2 nd moments<br />

• Agrees at linear order<br />

with Kaiser/exact<br />

Beth Reid<br />

24 Nagoya Feb 1<br />

Tuesday, January 31, 2012


The scale-dependent Gaussian streaming<br />

model ansatz: “linear” <strong>the</strong>ory predictions<br />

b=2.7<br />

b=0.5<br />

Kaiser limit<br />

Gaussian streaming model b 3 correction !!<br />

Beth Reid<br />

25<br />

Nagoya Feb 1<br />

Tuesday, January 31, 2012


The scale-dependent Gaussian streaming<br />

model ansatz vs N-body simulations<br />

• Start with ξ(r), v(r), σ²⊥,∥(r) measured from N-body<br />

halos in real space<br />

• Compare with N-body halo clustering in redshift<br />

space<br />

Beth Reid<br />

26 Nagoya Feb 1<br />

Tuesday, January 31, 2012


The scale-dependent Gaussian streaming<br />

model ansatz vs N-body simulations: ξ0<br />

Beth Reid<br />

27 Nagoya Feb 1<br />

Tuesday, January 31, 2012


The scale-dependent Gaussian streaming<br />

model ansatz vs N-body simulations: ξ0<br />

Beth Reid<br />

28 Nagoya Feb 1<br />

Tuesday, January 31, 2012


The scale-dependent Gaussian streaming<br />

model ansatz vs N-body simulations: ξ2<br />

Beth Reid<br />

29 Nagoya Feb 1<br />

Tuesday, January 31, 2012


The scale-dependent Gaussian streaming<br />

model ansatz vs N-body simulations: ξ2<br />

Beth Reid<br />

30 Nagoya Feb 1<br />

Tuesday, January 31, 2012


Can we predict real space halo clustering/<br />

velocity PDFs using perturbation <strong>the</strong>ory<br />

• LPT (including nonlinear<br />

bias) predicts halo ξ(r)<br />

down to 25 Mpc/h<br />

Beth Reid<br />

31<br />

Nagoya Feb 1<br />

Tuesday, January 31, 2012


Velocity statistics in st<strong>and</strong>ard<br />

perturbation <strong>the</strong>ory: new results<br />

• Pair-weighted, not volume weighted! Nagoya Feb 1<br />

Beth Reid<br />

32<br />

Tuesday, January 31, 2012


Velocity statistics in st<strong>and</strong>ard<br />

perturbation <strong>the</strong>ory: new results<br />

* assumes linear bias<br />

Beth Reid<br />

33<br />

Nagoya Feb 1<br />

Tuesday, January 31, 2012


Velocity statistics in st<strong>and</strong>ard<br />

perturbation <strong>the</strong>ory: new results<br />

Pair-weighting correction<br />

Linear <strong>the</strong>ory<br />

PT correction to Pδθ<br />

Bispectrum terms: Bδδθ<br />

Beth Reid<br />

34<br />

Nagoya Feb 1<br />

Tuesday, January 31, 2012


Velocity statistics in st<strong>and</strong>ard<br />

perturbation <strong>the</strong>ory: new results<br />

Bispectrum terms: Bδδθ<br />

Bδδθ , Pδθ terms<br />

appear in Tang et al.,<br />

Nishimishi et al.<br />

PT correction to Pδθ<br />

total PT correction<br />

Pair-weighting correction<br />

Beth Reid<br />

35<br />

Nagoya Feb 1<br />

Tuesday, January 31, 2012


Putting it all toge<strong>the</strong>r: fully analytic model<br />

• Error dominated by<br />

error in v12(r) slope<br />

• Works where b 2 L = 0<br />

(i.e., for BOSS<br />

galaxies)<br />

• New LPT calculation<br />

in prep: Carlson et<br />

al., 2012<br />

Beth Reid<br />

36<br />

Nagoya Feb 1<br />

Tuesday, January 31, 2012


Summary: Two distinct effects<br />

• Non-linear gravitational<br />

evolution: MUST be<br />

accounted for given<br />

current statistical errors:<br />

ξ2 suppressed by 2.5-7.5%<br />

at 50 h -1 Mpc!<br />

• Non-linear real-to-redshift<br />

space mapping: b 3 term<br />

Beth Reid<br />

37 Nagoya Feb 1<br />

Tuesday, January 31, 2012


Outline<br />

• Motivation<br />

• Basic redshift space distortions (RSD) in configuration<br />

space<br />

• Reid <strong>and</strong> White 2011 configuration space RSD model<br />

(+ connections to o<strong>the</strong>r recent RSD work)<br />

• From halos to galaxies...<br />

• Interlude: SDSS DR9 first results<br />

• Future prospects<br />

Beth Reid Nagoya Feb 1<br />

38<br />

Tuesday, January 31, 2012


Dominant impact of galaxies: Fingers-of-God<br />

REAL SPACE: r ~ 1 Mpc/h<br />

x<br />

Central galaxies<br />

Satellite galaxies<br />

x<br />

REDSHIFT SPACE: r ~ 15 Mpc/h<br />

Finger-of-God features mix small <strong>and</strong> large scale power<br />

x<br />

x<br />

x<br />

Beth Reid<br />

39<br />

Nagoya Feb 1<br />

Tuesday, January 31, 2012


Fingers-of-God in ξ(rσ, rπ)<br />

Beth Reid<br />

40 Nagoya Feb 1<br />

Tuesday, January 31, 2012


From halos to galaxies<br />

• In principle, straightforward to model in ξ(rσ, rπ)<br />

-- just ano<strong>the</strong>r convolution with intrahalo velocity<br />

PDF<br />

• In practice 3 (broad) distinct PDFs: cs, ss (1h), ss<br />

(2h)<br />

• Inaccarucy of halo ξ(rσ, rπ) on small scales inhibits<br />

this approach<br />

Beth Reid Nagoya Feb 1<br />

41<br />

Tuesday, January 31, 2012


Safe on quasilinear scales...<br />

• One-halo (classical<br />

FOG) unimportant<br />

• ~ 10% effect at 25<br />

Mpc/h for BOSS<br />

galaxies<br />

Beth Reid Nagoya Feb 1<br />

42<br />

Tuesday, January 31, 2012


From halos to galaxies<br />

• Marginalizing over additional Gaussian dispersion<br />

works!<br />

RW11<br />

LPT<br />

FOGs<br />

RSD model vs 70 (Gpc/h) 3 of sims<br />

Beth Reid Nagoya Feb 1<br />

43<br />

Tuesday, January 31, 2012


Outline<br />

• Motivation<br />

• Basic redshift space distortions (RSD) in configuration<br />

space<br />

• Reid <strong>and</strong> White 2011 configuration space RSD model<br />

(+ connections to o<strong>the</strong>r recent RSD work)<br />

• From halos to galaxies...<br />

• BOSS DR9 first results: BAO, RSD <strong>and</strong> AP constraints<br />

• Future prospects<br />

Beth Reid Nagoya Feb 1<br />

44<br />

Tuesday, January 31, 2012


Galaxy clustering lightning<br />

<strong>the</strong>ory review<br />

• Theory 1: underlying matter power spectrum<br />

(determined at z >~ zCMB, neglecting ν)<br />

• Theory II: Expansion history H(0 < z < zGAL)<br />

Tuesday, January 31, 2012


Matter Power Spectrum<br />

• Entire P(k) (not just BAO) acts as st<strong>and</strong>ard ruler<br />

determined by CMB<br />

• We marginalize over <strong>the</strong> (negligible) uncertainty<br />

P(k)<br />

r 2 ξ(r)<br />

Mpc -1<br />

Mpc<br />

Tuesday, January 31, 2012


Theory II: geometry<br />

• We measure θ, φ, <strong>and</strong> z for each galaxy, <strong>and</strong> use a<br />

cosmological model to convert to comoving<br />

coordinates<br />

z1<br />

z2<br />

1/H(z)<br />

θ<br />

χ(z) (or DA(z))<br />

Tuesday, January 31, 2012


Theory II: <strong>Alcock</strong>-Paczynski<br />

• ξ(rp, π) appears anisotropic if you assume <strong>the</strong><br />

wrong cosmological model (constrain ηAP = DA * H)<br />

3<br />

χ(z) =0∫ z c dz’/H(z’)<br />

BAO in ξ0(s) determines<br />

“geometric mean”<br />

DV ∝ (DA 2 H -1 ) 1/3<br />

c Δz / H(z)<br />

π<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

ξ(rp, π)<br />

20 40 60 80 100 120 140 160 180<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

Image from Tian et al. arXiv:1011.2481<br />

r p<br />

χ(z)*Δθ<br />

Tuesday, January 31, 2012


Fitting to 2d clustering<br />

• Use full model of ξ0,2(s ≥ 25 h -1 Mpc) to constrain:<br />

• growth of structure (fσ8)<br />

• D V ∝ (DA 2 /H) 1/3<br />

• <strong>Alcock</strong>-Paczynski (ηAP ∝ DA(zeff) * H(zeff))<br />

• marginalizing over shape of underlying linear<br />

P(k), bσ8, σ 2 FOG<br />

Tuesday, January 31, 2012


Tuesday, January 31, 2012<br />

<strong>Alcock</strong>-Paczynski in multipoles


DR9 spectroscopic results:<br />

preliminary!<br />

• DR9 data final (public July 2012), clustering/<br />

covariances ~final, cosmological constraints<br />

preliminary<br />

• Current uncertainties reported, not central<br />

values<br />

Tuesday, January 31, 2012


BOSS “CMASS” (zeff = 0.57)<br />

galaxy sample in perspective<br />

Eisenstein et al. arXiv:1101.1529<br />

Tuesday, January 31, 2012


BAO fits in P(k)/ξ(r) consistent<br />

X. Xu et al. (in prep; DR7)<br />

BOSS Galaxy Clustering (in prep.)<br />

• 2-3% uncertainty<br />

on BAO position<br />

plot of BAO feature here<br />

in angle-averaged<br />

P(k)/ξ(r)<br />

• Constrains<br />

DV ∝ (DA 2 /H) 1/3<br />

Tuesday, January 31, 2012


The CMASS measurements<br />

• 26 log bins in s for ξ0 <strong>and</strong> ξ2 = 52 DOF<br />

plot of ξ0 <strong>and</strong> ξ2 here<br />

Tuesday, January 31, 2012


Model Fits<br />

• We test <strong>the</strong> LCDM hypo<strong>the</strong>sis in 4 models,<br />

always marginalizing over P(k) shape <strong>and</strong> σ 2 FOG:<br />

• LCDM (bσ8)<br />

• LCDM + fσ8: (bσ8, fσ8)<br />

• LCDM + geometry: (bσ8, DV, DA*H)<br />

• LCDM++: (bσ8, fσ8, DV, DA*H)<br />

Tuesday, January 31, 2012


Current status<br />

• D V/DV,fid = x ± 0.019 (i.e., minimal information<br />

gain on DV compared to BAO only!)<br />

• Geometry LCDM: fσ8 = xx ± 0.03 (7%)<br />

[WMAP7 LCDM: 0.45 ± 0.025]<br />

• fσ8 LCDM: η = xx ± 0.04 (4%)<br />

[WMAP7 LCDM: 1.00 ± 0.012]<br />

• Fit both: fσ8 = xx ± 0.07, η = xx ± 0.07<br />

Tuesday, January 31, 2012


Testing alternative models with amplitude of<br />

peculiar velocities<br />

BOSS DR9<br />

Tuesday, January 31, 2012


Tuesday, January 31, 2012<br />

Expansion rate at z=0.57


Outline<br />

• Motivation<br />

• Basic redshift space distortions (RSD) in configuration<br />

space<br />

• Reid <strong>and</strong> White 2011 configuration space RSD model<br />

(+ connections to o<strong>the</strong>r recent RSD work)<br />

• From halos to galaxies...<br />

• Interlude: SDSS DR9 first results<br />

• Future prospects<br />

Beth Reid Nagoya Feb 1<br />

59<br />

Tuesday, January 31, 2012


Future Prospects: “convolutional” LPT<br />

(Jordan Carlson, et al., in prep)<br />

• Fourier transform formal LPT P(k, μ) expression; use<br />

cumulant expansion thm + Gaussian integrals<br />

• Recovers Zel’dovich approximation exactly -><br />

b 3 nonlinear mapping term ()<br />

Beth Reid Nagoya Feb 1<br />

60<br />

Tuesday, January 31, 2012


Future Prospects: “convolutional” LPT<br />

(Jordan Carlson, et al., in prep)<br />

CLPT<br />

Linear <strong>the</strong>ory<br />

Matsubara LPT<br />

halo real space ξ0 (preliminary!)<br />

Beth Reid<br />

61 Nagoya Feb 1<br />

Tuesday, January 31, 2012


Future Prospects: “convolutional” LPT<br />

(Jordan Carlson, et al., in prep)<br />

CLPT<br />

Linear <strong>the</strong>ory<br />

Matsubara LPT<br />

halo redshift space ξ0 (preliminary!)<br />

Beth Reid<br />

62 Nagoya Feb 1<br />

Tuesday, January 31, 2012


Future Prospects: “convolutional” LPT<br />

(Jordan Carlson, et al., in prep)<br />

CLPT<br />

Linear <strong>the</strong>ory<br />

Matsubara LPT<br />

matter ξ2 (preliminary!)<br />

Beth Reid<br />

63 Nagoya Feb 1<br />

Tuesday, January 31, 2012


Future Prospects: “convolutional” LPT<br />

(Jordan Carlson, et al., in prep)<br />

CLPT<br />

Linear <strong>the</strong>ory<br />

Matsubara LPT<br />

halo ξ2 (preliminary!)<br />

Beth Reid<br />

64 Nagoya Feb 1<br />

Tuesday, January 31, 2012


Future Prospects: “convolutional” LPT<br />

(Jordan Carlson, et al., in prep)<br />

• New real space ξ(r) fits to ~ 10 Mpc/h !!<br />

• Repeat v12(r), σ 2 ⊥,∥(r) calculations in LPT (including<br />

b2 L ) may extend analytic Gaussian streaming model to<br />

smaller scales<br />

Beth Reid Nagoya Feb 1<br />

65<br />

Tuesday, January 31, 2012


Future Prospects: using small-scale<br />

clustering to infer σ 2 FOG<br />

IF we can determine σ from<br />

small-scale clustering (e.g.,<br />

HOD), gain factor of 2 on RSD<br />

X<br />

X<br />

smin, WiggleZ<br />

smin, BOSS<br />

Beth Reid<br />

66 Nagoya Feb 1<br />

Tuesday, January 31, 2012


Conclusions<br />

• Configuration space simplifies many conceptual issues<br />

in modeling RSD<br />

• Worked example of developing/modelling target<br />

(BOSS) galaxies: 2% accurate to 25 h -1 Mpc<br />

• 7% measurement of fσ8 in DR9 CMASS galaxies, ~4%<br />

final (barring fur<strong>the</strong>r modeling improvements)<br />

• Fur<strong>the</strong>r development underway (CLPT, small scale/<br />

HOD modeling, ...)<br />

Beth Reid Nagoya Feb 1<br />

67<br />

Tuesday, January 31, 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!