19.01.2015 Views

full issue - Association of Biotechnology and Pharmacy

full issue - Association of Biotechnology and Pharmacy

full issue - Association of Biotechnology and Pharmacy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Current Trends in <strong>Biotechnology</strong> <strong>and</strong> <strong>Pharmacy</strong><br />

Vol. 5 (3) 1325 -1337 July 2011, ISSN 0973-8916 (Print), 2230-7303 (Online)<br />

1336<br />

different concentrations were screened, <strong>and</strong> were<br />

found to increase the production <strong>of</strong> cephamycin<br />

C as compared to control (Fig. 6).<br />

The effect <strong>of</strong> inducer on cephamycin C<br />

production: Diamines are known to increase the<br />

production <strong>of</strong> cephamycin C (8,9). 1,3-<br />

Diaminopropane (a three carbon diamine) was<br />

used as an inducer for the production <strong>of</strong><br />

cephamycin C. It was added at 0.4-1.6% v/v to<br />

the RSM optimized media supplemented with<br />

amino acids. Fig. 7 shows the effect <strong>of</strong> 1,3-<br />

diaminopropane on production <strong>of</strong> cephamycin<br />

C. The optimum production <strong>of</strong> cephamycin C<br />

obtained was 3973.20 ± 57.96 mg/l at 1.2% v/v<br />

<strong>of</strong> 1,3-diaminopropane. 1,3-Diaminopropane<br />

increases the enzyme levels <strong>of</strong> lysine-6-<br />

aminotransferase <strong>and</strong> P6C dehydrogenase (the<br />

first <strong>and</strong> second enzymes <strong>of</strong> the cephamycin<br />

biosynthetic pathway) responsible for the<br />

conversion <strong>of</strong> lysine to á-aminoadipic acid (a rate<br />

limiting step) at transcriptional level (9).<br />

Conclusion<br />

Glycerol <strong>and</strong> yeast extract were found<br />

to be suitable carbon <strong>and</strong> nitrogen source for the<br />

production <strong>of</strong> cephamycin C from N.<br />

lactamdurans NRRL 3802. Taguchi L 16<br />

-<br />

orthogonal array design demonstrated the effect<br />

<strong>of</strong> Na 2<br />

S 2<br />

O 3<br />

, yeast extract, K 2<br />

HPO 4<br />

<strong>and</strong> L-<br />

glutamic acid in the production medium to be<br />

significant. Further optimization <strong>of</strong> the medium<br />

using RSM showed complex interaction between<br />

them <strong>and</strong> also increased the production <strong>of</strong><br />

cephamycin C to 3042.19 ± 62.36 mg/l. There<br />

was a 12.52 fold increase in production <strong>of</strong><br />

cephamycin C after RSM <strong>and</strong> 16.35 fold increase<br />

after addition <strong>of</strong> metabolic precursors <strong>and</strong><br />

inducer.<br />

References<br />

1. Stapley, E.O., Jackson, M., Hern<strong>and</strong>ez, S.,<br />

Zimmerman, S.B., Currie, S.A., Mochale,<br />

S., Mata, J.M., Woodruff, H.B. <strong>and</strong> Henlin,<br />

D. (1972). Cephamycins, a new family <strong>of</strong><br />

â-lactam antibiotics. Antimicrobial Agents<br />

<strong>and</strong> Chemotherapy, 2: 122-131.<br />

2. Nagarajan, R., Boeck, L.D., Gorman, M.,<br />

Hamill, R.L., Higgens, C.E., Hoehn, M.M.,<br />

Starck, W.M. <strong>and</strong> Whitney, J.G. (1971). â-<br />

Lactam antibiotics from Streptomyces.<br />

Journal <strong>of</strong> the American Chemical Society,<br />

93: 2308–2310.<br />

3. Kumar, P. <strong>and</strong> Satyanarayana, T. (2007).<br />

Optimization <strong>of</strong> culture variables for<br />

improving glucoamylase production by<br />

alginate entrapped Thermomucor indicaeseudaticae<br />

using statistical methods.<br />

Bioresource Technology, 98: 1252-1259.<br />

4. Survase, S.A., Annapure, U.S. <strong>and</strong> Singhal,<br />

R.S. (2009). Statistical optimization for<br />

improved production <strong>of</strong> cyclosporin A in<br />

solid-state fermentation. Journal <strong>of</strong><br />

Microbiology <strong>and</strong> <strong>Biotechnology</strong> 19: 1385-<br />

1392.<br />

5. Kirpekar, A.C., Kirwant, D.J. <strong>and</strong> Stieber,<br />

R.W. (1991). Effects <strong>of</strong> glutamate, glucose,<br />

phosphate, <strong>and</strong> alkali metal ions on<br />

cephamycin C production by Nocardia<br />

lactamdurans in defined media.<br />

<strong>Biotechnology</strong> <strong>and</strong> Bioengineering, 38:<br />

1100-1109.<br />

6. Inamine, E. <strong>and</strong> Birnbaum, J. (1973).<br />

Fermentation process. US patent 3,770,590.<br />

7. Ginther, C.L. (1979). Sporulation <strong>and</strong><br />

serine protease production by Streptomyces<br />

lactamdurans. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy, 15: 522–526.<br />

8. Inamine, E. <strong>and</strong> Birnbaum, J. (1976).<br />

Fermentation <strong>of</strong> cephamycin C. US patent<br />

3,977,942.<br />

Lalit D. Kagliwal et al

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!