19.01.2015 Views

Coherent states for the time dependent harmonic oscillator: the step ...

Coherent states for the time dependent harmonic oscillator: the step ...

Coherent states for the time dependent harmonic oscillator: the step ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2 H. Moya-Cessa, M. Fernández Guasti / Physics Letters A 311 (2003) 1–5<br />

We can define annihilation and creation operators as<br />

ˆb = 1 √<br />

2<br />

( ˆq + i ˆp),<br />

ˆb † = 1 √<br />

2<br />

( ˆq − i ˆp),<br />

(2)<br />

such that we can rewrite <strong>the</strong> Hamiltonian as (we set<br />

¯h = 1)<br />

(<br />

Ĥ = ˆb † ˆb + 1 ) (<br />

= ˆn + 1 )<br />

.<br />

(3)<br />

2 2<br />

Eigen<strong>states</strong> <strong>for</strong> <strong>the</strong> Hamiltonian (3) are called Fock or<br />

number <strong>states</strong>:<br />

(<br />

Ĥ |n〉= n + 1 2<br />

)<br />

|n〉.<br />

(4)<br />

Fock <strong>states</strong> are orthonormal and <strong>for</strong>m a complete basis,<br />

such that any o<strong>the</strong>r state of <strong>the</strong> <strong>harmonic</strong> <strong>oscillator</strong><br />

may be written in terms of <strong>the</strong>m. In particular coherent<br />

<strong>states</strong> may be written as<br />

|α〉=e − |α|2<br />

2<br />

∞∑<br />

n=0<br />

α n<br />

√<br />

n!<br />

|n〉=̂D(α)|0〉,<br />

(5)<br />

where<br />

̂D(α) = e α ˆb † −α ∗ ˆb .<br />

(6)<br />

<strong>Coherent</strong> <strong>states</strong> are eigen<strong>states</strong> of <strong>the</strong> annihilation<br />

operator<br />

ˆb|α〉=α|α〉,<br />

(7)<br />

and have <strong>the</strong> property that <strong>the</strong> motion of <strong>the</strong> center of<br />

mass of <strong>the</strong> wave packet obeys <strong>the</strong> laws of classical<br />

mechanics (see, <strong>for</strong> instance [8])<br />

〈α|ˆq|α〉=q c , 〈α| ˆp|α〉=p c ,<br />

〈α|Ĥ |α〉=H c ,<br />

where <strong>the</strong> index c labels <strong>the</strong> classical variables.<br />

3. Time <strong>dependent</strong> <strong>harmonic</strong> Hamiltonian<br />

The <strong>time</strong> <strong>dependent</strong> <strong>harmonic</strong> Hamiltonian reads<br />

Ĥ t = 1 2[<br />

ˆp 2 + Ω 2 (t) ˆq 2] .<br />

(8)<br />

(9)<br />

It is well known that an invariant <strong>for</strong> this type of<br />

interaction has <strong>the</strong> <strong>for</strong>m<br />

I ˆ = 1 [( ) ˆq 2 ]<br />

+ (ρ ˆp −˙ρ ˆq) 2 ,<br />

(10)<br />

2 ρ<br />

where ρ obeys <strong>the</strong> Ermakov equation<br />

¨ρ + Ω 2 ρ = ρ −3 .<br />

(11)<br />

Fur<strong>the</strong>rmore, it is easy to show that Î may be related<br />

to <strong>the</strong> Hamiltonian (1) by a unitary trans<strong>for</strong>mation of<br />

<strong>the</strong> <strong>for</strong>m<br />

̂T = ρ i (<br />

2 ˆq ˆp+ ˆp ˆq+<br />

2ρ ˙ρ<br />

ρ 2 −1 ˆq2) ,<br />

(12)<br />

that can be re-written as (see Appendix A)<br />

̂T = e i ln(ρ)<br />

2 ( ˆq ˆp+ ˆp ˆq) ˙ρ<br />

−i<br />

e 2ρ ˆq2 = e i lnρ d ˆq 2<br />

2 dt e −i ˙ρ 2ρ ˆq2 ,<br />

so that<br />

Ĥ = ̂T ˆ I ̂T † .<br />

By using Eq. (4) we can see that<br />

(<br />

Î ̂T † |n〉= n + 1 )<br />

̂T † |n〉,<br />

2<br />

i.e., <strong>states</strong> of <strong>the</strong> <strong>for</strong>m<br />

(13)<br />

(14)<br />

(15)<br />

|n〉 t = ̂T † |n〉,<br />

(16)<br />

are eigen<strong>states</strong> of <strong>the</strong> so-called Ermakov–Lewis invariant.<br />

Lewis [4] wrote this invariant in terms of annihilation<br />

and creation operators<br />

Î =â † â + 1 2 =ˆn t + 1 2 ,<br />

with<br />

â = 1 √<br />

2<br />

[ ˆq<br />

ρ + i(ρ ˆp −˙ρ ˆq) ],<br />

â † = 1 √<br />

2<br />

[ ˆq<br />

ρ − i(ρ ˆp −˙ρ ˆq) ].<br />

(17)<br />

(18)<br />

Once <strong>the</strong> creation and annihilation operators are defined,<br />

analogous equations to <strong>the</strong> <strong>harmonic</strong> <strong>oscillator</strong><br />

with constant frequency may be obtained <strong>for</strong> <strong>the</strong><br />

TDHO. For instance,<br />

̂D t (α) = e α↠−α ∗â,<br />

(19)<br />

and<br />

â|α〉 t = α|α〉 t ,<br />

with<br />

∞∑<br />

|α〉 t = e − |α|2 α n<br />

2 √ |n〉 t = ̂D t (α)|0〉 t .<br />

n!<br />

n=0<br />

(20)<br />

(21)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!