19.01.2015 Views

Coherent states for the time dependent harmonic oscillator: the step ...

Coherent states for the time dependent harmonic oscillator: the step ...

Coherent states for the time dependent harmonic oscillator: the step ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Physics Letters A 311 (2003) 1–5<br />

www.elsevier.com/locate/pla<br />

<strong>Coherent</strong> <strong>states</strong> <strong>for</strong> <strong>the</strong> <strong>time</strong> <strong>dependent</strong> <strong>harmonic</strong> <strong>oscillator</strong>:<br />

<strong>the</strong> <strong>step</strong> function<br />

Héctor Moya-Cessa a,∗ , Manuel Fernández Guasti a,b<br />

a INAOE, Coordinación de Optica, Ap. Postal 51 y 216, 72000 Puebla, PUE, Mexico<br />

b Departamento de Física, CBI, Universidad Autónoma Metropolitana Iztapalapa, Ap. Postal 55-534, 09340 México, DF, Mexico<br />

Received 14 February 2003; accepted 10 March 2003<br />

Communicated by P.R. Holland<br />

Abstract<br />

We study <strong>the</strong> <strong>time</strong> evolution <strong>for</strong> <strong>the</strong> quantum <strong>harmonic</strong> <strong>oscillator</strong> subjected to a sudden change of frequency. It is based<br />

on an approximate analytic solution to <strong>the</strong> <strong>time</strong> <strong>dependent</strong> Ermakov equation <strong>for</strong> a <strong>step</strong> function. This approach allows <strong>for</strong> a<br />

continuous treatment that differs from <strong>for</strong>mer studies that involve <strong>the</strong> matching of two <strong>time</strong> in<strong>dependent</strong> solutions at <strong>the</strong> <strong>time</strong><br />

when <strong>the</strong> <strong>step</strong> occurs.<br />

© 2003 Elsevier Science B.V. All rights reserved.<br />

PACS: 42.50.-p; 03.65.-w; 42.50.Dv<br />

Keywords: Time <strong>dependent</strong> <strong>harmonic</strong> <strong>oscillator</strong>; Squeezed <strong>states</strong>; <strong>Coherent</strong> <strong>states</strong><br />

1. Introduction<br />

The problem of <strong>the</strong> <strong>harmonic</strong> <strong>oscillator</strong> with <strong>time</strong><br />

<strong>dependent</strong> frequency has received considerable attention<br />

over <strong>the</strong> years [1]. In particular Kiss et al. [2]<br />

have studied <strong>the</strong> problem of <strong>the</strong> <strong>time</strong> <strong>dependent</strong> frequency<br />

given by a <strong>step</strong> function (see also [3]). They<br />

have solved <strong>the</strong> problem by dividing it in two regions<br />

<strong>for</strong> <strong>the</strong> two different frequencies of <strong>the</strong> <strong>step</strong> function<br />

and matching later <strong>the</strong> solutions <strong>for</strong> <strong>the</strong> two regions.<br />

Here we would like to study <strong>the</strong> same problem but using<br />

a continuous approach by using instead an invari-<br />

ant <strong>for</strong>malism. This will allow us to obtain analytic<br />

solutions that do or do not exhibit squeezing depending<br />

on <strong>time</strong> when departing from an initial coherent<br />

state. We will also show that, in a trans<strong>for</strong>med Hilbert<br />

space, an initial coherent state remains coherent during<br />

<strong>the</strong> evolution.<br />

2. <strong>Coherent</strong> <strong>states</strong> <strong>for</strong> constant frequency<br />

Let us first consider <strong>the</strong> Hamiltonian <strong>for</strong> <strong>the</strong> <strong>harmonic</strong><br />

<strong>oscillator</strong> with unitary mass, m = 1, and unitary<br />

frequency, ω 0 = 1<br />

* Corresponding author.<br />

E-mail addresses: hmmc@inaoep.mx (H. Moya-Cessa),<br />

mfg@xanum.uam.mx (M. Fernández Guasti).<br />

Ĥ = 1 2(<br />

ˆq 2 +ˆp 2) .<br />

(1)<br />

0375-9601/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.<br />

doi:10.1016/S0375-9601(03)00461-4


2 H. Moya-Cessa, M. Fernández Guasti / Physics Letters A 311 (2003) 1–5<br />

We can define annihilation and creation operators as<br />

ˆb = 1 √<br />

2<br />

( ˆq + i ˆp),<br />

ˆb † = 1 √<br />

2<br />

( ˆq − i ˆp),<br />

(2)<br />

such that we can rewrite <strong>the</strong> Hamiltonian as (we set<br />

¯h = 1)<br />

(<br />

Ĥ = ˆb † ˆb + 1 ) (<br />

= ˆn + 1 )<br />

.<br />

(3)<br />

2 2<br />

Eigen<strong>states</strong> <strong>for</strong> <strong>the</strong> Hamiltonian (3) are called Fock or<br />

number <strong>states</strong>:<br />

(<br />

Ĥ |n〉= n + 1 2<br />

)<br />

|n〉.<br />

(4)<br />

Fock <strong>states</strong> are orthonormal and <strong>for</strong>m a complete basis,<br />

such that any o<strong>the</strong>r state of <strong>the</strong> <strong>harmonic</strong> <strong>oscillator</strong><br />

may be written in terms of <strong>the</strong>m. In particular coherent<br />

<strong>states</strong> may be written as<br />

|α〉=e − |α|2<br />

2<br />

∞∑<br />

n=0<br />

α n<br />

√<br />

n!<br />

|n〉=̂D(α)|0〉,<br />

(5)<br />

where<br />

̂D(α) = e α ˆb † −α ∗ ˆb .<br />

(6)<br />

<strong>Coherent</strong> <strong>states</strong> are eigen<strong>states</strong> of <strong>the</strong> annihilation<br />

operator<br />

ˆb|α〉=α|α〉,<br />

(7)<br />

and have <strong>the</strong> property that <strong>the</strong> motion of <strong>the</strong> center of<br />

mass of <strong>the</strong> wave packet obeys <strong>the</strong> laws of classical<br />

mechanics (see, <strong>for</strong> instance [8])<br />

〈α|ˆq|α〉=q c , 〈α| ˆp|α〉=p c ,<br />

〈α|Ĥ |α〉=H c ,<br />

where <strong>the</strong> index c labels <strong>the</strong> classical variables.<br />

3. Time <strong>dependent</strong> <strong>harmonic</strong> Hamiltonian<br />

The <strong>time</strong> <strong>dependent</strong> <strong>harmonic</strong> Hamiltonian reads<br />

Ĥ t = 1 2[<br />

ˆp 2 + Ω 2 (t) ˆq 2] .<br />

(8)<br />

(9)<br />

It is well known that an invariant <strong>for</strong> this type of<br />

interaction has <strong>the</strong> <strong>for</strong>m<br />

I ˆ = 1 [( ) ˆq 2 ]<br />

+ (ρ ˆp −˙ρ ˆq) 2 ,<br />

(10)<br />

2 ρ<br />

where ρ obeys <strong>the</strong> Ermakov equation<br />

¨ρ + Ω 2 ρ = ρ −3 .<br />

(11)<br />

Fur<strong>the</strong>rmore, it is easy to show that Î may be related<br />

to <strong>the</strong> Hamiltonian (1) by a unitary trans<strong>for</strong>mation of<br />

<strong>the</strong> <strong>for</strong>m<br />

̂T = ρ i (<br />

2 ˆq ˆp+ ˆp ˆq+<br />

2ρ ˙ρ<br />

ρ 2 −1 ˆq2) ,<br />

(12)<br />

that can be re-written as (see Appendix A)<br />

̂T = e i ln(ρ)<br />

2 ( ˆq ˆp+ ˆp ˆq) ˙ρ<br />

−i<br />

e 2ρ ˆq2 = e i lnρ d ˆq 2<br />

2 dt e −i ˙ρ 2ρ ˆq2 ,<br />

so that<br />

Ĥ = ̂T ˆ I ̂T † .<br />

By using Eq. (4) we can see that<br />

(<br />

Î ̂T † |n〉= n + 1 )<br />

̂T † |n〉,<br />

2<br />

i.e., <strong>states</strong> of <strong>the</strong> <strong>for</strong>m<br />

(13)<br />

(14)<br />

(15)<br />

|n〉 t = ̂T † |n〉,<br />

(16)<br />

are eigen<strong>states</strong> of <strong>the</strong> so-called Ermakov–Lewis invariant.<br />

Lewis [4] wrote this invariant in terms of annihilation<br />

and creation operators<br />

Î =â † â + 1 2 =ˆn t + 1 2 ,<br />

with<br />

â = 1 √<br />

2<br />

[ ˆq<br />

ρ + i(ρ ˆp −˙ρ ˆq) ],<br />

â † = 1 √<br />

2<br />

[ ˆq<br />

ρ − i(ρ ˆp −˙ρ ˆq) ].<br />

(17)<br />

(18)<br />

Once <strong>the</strong> creation and annihilation operators are defined,<br />

analogous equations to <strong>the</strong> <strong>harmonic</strong> <strong>oscillator</strong><br />

with constant frequency may be obtained <strong>for</strong> <strong>the</strong><br />

TDHO. For instance,<br />

̂D t (α) = e α↠−α ∗â,<br />

(19)<br />

and<br />

â|α〉 t = α|α〉 t ,<br />

with<br />

∞∑<br />

|α〉 t = e − |α|2 α n<br />

2 √ |n〉 t = ̂D t (α)|0〉 t .<br />

n!<br />

n=0<br />

(20)<br />

(21)


H. Moya-Cessa, M. Fernández Guasti / Physics Letters A 311 (2003) 1–5 3<br />

Recently it has been shown that <strong>the</strong> Schrödinger<br />

equation <strong>for</strong> <strong>the</strong> <strong>time</strong> <strong>dependent</strong> <strong>harmonic</strong> Hamiltonian<br />

has a solution of <strong>the</strong> <strong>for</strong>m [5]<br />

∣<br />

∣ψ(t) 〉 = e −iÎ ∫ t<br />

ω(t)dt̂T †̂T(0) ∣ 0 ∣ψ(0) 〉 ,<br />

(22)<br />

with ω(t) = 1/ρ 2 . If we consider <strong>the</strong> initial state to be<br />

〉<br />

∣ ψ(0) = ̂T † (0)|α〉=|α〉 0 ,<br />

(23)<br />

with α given in (5), we note that <strong>the</strong> evolved state has<br />

<strong>the</strong> <strong>for</strong>m<br />

∣<br />

∣ψ(t) 〉 = ̂T †∣ ∣αe −i ∫ t<br />

0 ω(t′ )dt ′ 〉 ∣<br />

= αe −i ∫ t<br />

0 ω(t′ )dt ′ (24)<br />

〉t ,<br />

this is, coherent <strong>states</strong> keep <strong>the</strong>ir <strong>for</strong>m through evolution.<br />

4. Minimum uncertainty <strong>states</strong><br />

We define <strong>the</strong> operators<br />

̂Q = 1 √<br />

2<br />

(â<br />

+â<br />

† ) ,<br />

(25)<br />

and<br />

̂P = 1<br />

(26)<br />

i √ (â −â<br />

† ) .<br />

2<br />

It is easy to see that <strong>the</strong>y are related to ˆq and ˆp by <strong>the</strong><br />

trans<strong>for</strong>mations<br />

ˆq = ̂T ̂Q̂T † ,<br />

and<br />

ˆp = ̂T ̂P ̂T † ,<br />

and that <strong>the</strong>y obey <strong>the</strong> equations [7]<br />

(27)<br />

(28)<br />

5. Step function<br />

Let us consider <strong>the</strong> Hamiltonian of <strong>the</strong> system to be<br />

given by Eq. (9) with Ω(t) given by a <strong>step</strong> function<br />

that may be modeled by [6]<br />

[<br />

Ω(t)= ω 1 1 + (<br />

1 + 1 (32)<br />

2ω 1 2 tanh[ ɛ(t − t s ) ])] ,<br />

where t s is <strong>the</strong> <strong>time</strong> at which <strong>the</strong> frequency is changed,<br />

= ω 2 − ω 1 with ω 1 and ω 2 <strong>the</strong> initial and final<br />

frequencies, and ɛ is a parameter (ɛ →∞describes<br />

<strong>the</strong> <strong>step</strong> function limit). In Fig. (1) we plot this<br />

function as a function of t <strong>for</strong> ω 1 = 1andω 2 = 2<br />

(solid line) and ω 2 = 3 (dash line). The solution to <strong>the</strong><br />

Ermakov equation (11) <strong>for</strong> this particular <strong>for</strong>m of Ω(t)<br />

is given by [6]<br />

ρ(t) = √ 1 (<br />

( )<br />

1 + ω2 1<br />

2 Ω 2 (t) + 1 − ω2 1<br />

Ω 2 (t)<br />

( ∫ t )) 1/2<br />

× cos 2 Ω(t ′ )dt ′ . (33)<br />

t s<br />

Aplotofρ(t) is given in Fig. 2 <strong>for</strong> <strong>the</strong> same values<br />

given in Fig. 1. We also plot ω(t) = 1/ρ 2 in Fig. 3.<br />

It may be numerically shown that <strong>the</strong> <strong>time</strong> average of<br />

ω(t) from t s to <strong>the</strong> end of <strong>the</strong> first period is 2 <strong>for</strong> <strong>the</strong><br />

solid line and 3 <strong>for</strong> <strong>the</strong> dash line, with ω max = 2 2 <strong>for</strong><br />

<strong>the</strong> solid line and ω max = 3 2 <strong>for</strong> <strong>the</strong> dash line.<br />

˙̂P = iω(t)[Î, ̂P ]=−ω(t)̂Q,<br />

and<br />

(29)<br />

˙̂Q = iω(t)[ I, ˆ ̂Q ]=ω(t)̂P.<br />

(30)<br />

The uncertainty relation <strong>for</strong> operators ̂Q and ̂P <strong>for</strong> <strong>the</strong><br />

coherent state (21) is given by<br />

̂Q ̂P = 1 2 ,<br />

(31)<br />

where ̂X = √ 〈̂X 2 〉−〈̂X〉 2 . (Time <strong>dependent</strong>) <strong>Coherent</strong><br />

<strong>states</strong> are thus minimum uncertainty <strong>states</strong><br />

(MUS), not <strong>for</strong> position and momentum but <strong>for</strong> <strong>the</strong><br />

trans<strong>for</strong>med position and momentum.<br />

Fig. 1. Ω(t) as a function of t <strong>for</strong> ω 1 = 1andω 2 = 2 (solid line)<br />

and ω 2 = 3 (dashed line). ɛ = 20 and t s = 2.


4 H. Moya-Cessa, M. Fernández Guasti / Physics Letters A 311 (2003) 1–5<br />

Let us consider that at <strong>time</strong> t = 0wehave<strong>the</strong><br />

system in <strong>the</strong> initial coherent state (5). From Fig. 2<br />

we can see that ̂T(0) = 1since ˙ρ = 0andlnρ = 0.<br />

There<strong>for</strong>e from (23), |ψ(0)〉=̂T † (0)|α〉=|α〉 0 =|α〉<br />

and from (22) we obtain <strong>the</strong> evolved wave function<br />

〉<br />

∣ ψ(t) = e<br />

−iÎ ∫ t<br />

ω(t)dt̂T 0 † |α〉=̂T †∣ ∣ αe<br />

−i ∫ t<br />

ω(t)dt〉 0 .<br />

(34)<br />

Note that <strong>the</strong> coherent state in <strong>the</strong> above equation is<br />

given in <strong>the</strong> original Hilbert space, i.e., in terms of<br />

number <strong>states</strong> given in (4). From Fig. 2 we can also see<br />

that <strong>for</strong> <strong>the</strong> maxima, ˙ρ(t max ) = 0andlnρ(t max ) = 0,<br />

<strong>the</strong>re<strong>for</strong>e ̂T † (t max ) = 1and<br />

∣ ψ(tmax ) 〉 = ∣ αe<br />

−i ∫ tmax<br />

0 ω(t)dt 〉 ,<br />

(35)<br />

i.e., we recover <strong>the</strong> initial coherent state. However, <strong>for</strong><br />

<strong>the</strong> minima, we have ˙ρ(t min ) = 0andlnρ(t min ) ≠ 0<br />

and <strong>the</strong>n we obtain<br />

∣ ψ(tmin ) 〉 = e i ln ρ(t min )<br />

2 ( ˆq ˆp+ ˆp ˆq) ∣ αe<br />

−i ∫ t min<br />

0 ω(t)dt 〉 , (36)<br />

that may be written in terms of annihilation and<br />

creation operators as<br />

∣ ψ(tmin ) 〉 = e lnρ(t min )<br />

2 ( ˆb 2 −( ˆb † ) 2 ) ∣ αe<br />

−i ∫ t min<br />

0 ω(t)dt 〉 , (37)<br />

that are <strong>the</strong> well-known squeezed (two-photon coherent)<br />

<strong>states</strong> [10]<br />

∣ ψ(tmin ) 〉 = ∣ αe<br />

−i ∫ t min<br />

0 ω(t)dt ; ln ρ(t min ) 〉 . (38)<br />

Squeezed <strong>states</strong>, just as coherent <strong>states</strong>, are also MUS.<br />

However <strong>the</strong> uncertainties <strong>for</strong> ˆq and ˆp are<br />

ˆq =<br />

1<br />

√<br />

2 ρ(tmin ) ,<br />

(39)<br />

and<br />

ˆp = ρ(t min)<br />

√<br />

2<br />

.<br />

(40)<br />

Fig. 2. ρ(t) as a function of t <strong>for</strong> ω 1 = 1andω 2 = 2 (solid line) and<br />

ω 2 = 3 (dashed line). ɛ = 20 and t s = 2.<br />

For <strong>time</strong>s in between we will have nei<strong>the</strong>r coherent<br />

<strong>states</strong> nor standard squeezed <strong>states</strong> (in <strong>the</strong> initial<br />

Hilbert space), but <strong>the</strong> wave function<br />

〉<br />

∣ ψ(t) = e<br />

−i ˙ρ ˆq2∣ 2ρ ∣ αe<br />

−i ∫ t<br />

0 ω(t′ )dt ′ ; ln ρ 〉 . (41)<br />

It should be stressed however, that in <strong>the</strong> instantaneous<br />

Hilbert space we will always have <strong>the</strong> coherent<br />

state (24).<br />

6. Conclusions<br />

Fig. 3. ω(t) as a function of t <strong>for</strong> ω 1 = 1andω 2 = 2 (solid line) and<br />

ω 2 = 3 (dashed line). ɛ = 20 and t s = 2.<br />

We have studied <strong>the</strong> problem of <strong>the</strong> <strong>time</strong> <strong>dependent</strong><br />

<strong>harmonic</strong> <strong>oscillator</strong> <strong>for</strong> a particular <strong>for</strong>m of <strong>time</strong> dependency,<br />

namely <strong>the</strong> <strong>step</strong> function. We have studied<br />

it from an invariant point of view that has made it possible<br />

to obtain analytic solutions. We have shown that,<br />

depending on <strong>the</strong> space we look at <strong>the</strong> solutions <strong>for</strong><br />

an initial coherent state, <strong>the</strong> state remains coherent or<br />

it may present squeezing. This squeezing may be enhanced<br />

by increasing <strong>the</strong> frequency difference of <strong>the</strong><br />

<strong>step</strong>.


H. Moya-Cessa, M. Fernández Guasti / Physics Letters A 311 (2003) 1–5 5<br />

Appendix A<br />

The unitary operator ̂T is given by<br />

̂T = ρ i 2ρ ˙ρ<br />

2 ( ˆq ˆp+ˆp ˆq+<br />

ρ 2 −1 ˆq2 ) i ln ρ<br />

2ρ ˙ρ<br />

= e<br />

2 ( ˆq ˆp+ˆp ˆq+<br />

ρ 2 −1 ˆq2 )<br />

. (A.1)<br />

This exponential involves <strong>the</strong> sum of <strong>the</strong> operators<br />

 = i ln ρ ( ˆq ˆp +ˆp ˆq),<br />

2<br />

and<br />

̂B = i ln ρ<br />

ρ ˙ρ<br />

ρ 2 − 1 ˆq2 .<br />

One can show that<br />

(A.2)<br />

(A.3)<br />

[Â, ̂B]=2lnρ ̂B.<br />

(A.4)<br />

Using <strong>the</strong> fact that <strong>the</strong> commutator of <strong>the</strong> two operators<br />

is proportional to one of <strong>the</strong> operators, we can factor<br />

<strong>the</strong> exponential in <strong>the</strong> <strong>for</strong>m (see <strong>for</strong> instance [9])<br />

e i ln ρ<br />

2ρ ˙ρ<br />

2 ( ˆq ˆp+ ˆp ˆq+<br />

1−ρ 2 ˆq2 )<br />

= e<br />

i ln ρ<br />

2 ( ˆq ˆp+ ˆp ˆq) e −i ˙ρ 2ρ ˆq2 .<br />

(A.5)<br />

References<br />

[1] See, <strong>for</strong> instance, V.V. Dodonov, V.I. Man’ko, Phys. Rev. A 20<br />

(1979) 550;<br />

J. Janszky, Y.Y. Yushin, Opt. Commun. 59 (1986) 151;<br />

J.R. Ray, J.L. Reid, Phys. Rev. A 26 (2) (1982) 1042;<br />

F. Haas, J. Goedert, Phys. Lett. A 279 (2001) 181;<br />

S. Bouquet, H.R. Lewis, J. Math. Phys. 37 (11) (1996) 5509.<br />

[2] T. Kiss, J. Janszky, P. Adam, Phys. Rev. A 49 (1994) 4935.<br />

[3] G.S. Agarwal, S.A. Kumar, Phys. Rev. Lett. 67 (1991) 3665.<br />

[4] H.R. Lewis, Phys. Rev. Lett. 18 (1967) 510.<br />

[5] M. Fernández Guasti, H. Moya-Cessa, J. Phys. 36 (2003) 2069.<br />

[6] M. Fernández Guasti, unpublished.<br />

[7] M. Fernández Guasti, H. Moya-Cessa, quant-ph/0212073.<br />

[8] P. Meystre, M. Sargent III, Elements of Quantum Optics,<br />

Springer, Berlin, 1990.<br />

[9] H. Moya-Cessa, J.A. Roversi, S.M. Dutra, A. Vidiella-<br />

Barranco, Phys. Rev. A 60 (1999) 4029.<br />

[10] H.P. Yuen, Phys. Rev. A 13 (1976) 2226.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!