19.01.2015 Views

Species-Specific Identification of Campylobacters by Partial 16S ...

Species-Specific Identification of Campylobacters by Partial 16S ...

Species-Specific Identification of Campylobacters by Partial 16S ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

VOL. 41, 2003 SPECIES-SPECIFIC IDENTIFICATION OF CAMPYLOBACTERS 2545<br />

The identification <strong>of</strong> taxa to the subspecies level was possible<br />

for 14 <strong>of</strong> 15 strains <strong>of</strong> C. hyointestinalis. The exception was<br />

strain C. hyointestinalis subsp. hyointestinalis SVS 3038, which<br />

demonstrated a clear phylogenetic affinity with C. hyointestinalis<br />

subsp. lawsonii strains, as described recently (19). Since the<br />

taxonomic status <strong>of</strong> this strain remains unclear, we cannot<br />

recommend <strong>16S</strong> rDNA analysis as a singular method for the<br />

differentiation <strong>of</strong> C. hyointestinalis subspecies. A polyphasic<br />

approach that uses both phenotypic and genotypic methods<br />

should be used for identification <strong>of</strong> the subspecies (19). Subspecies-specific<br />

identification <strong>of</strong> the taxa C. jejuni and C. fetus<br />

<strong>by</strong> <strong>16S</strong> rDNA analysis was not possible (38).<br />

This study further shows that improved differentiation is<br />

possible <strong>by</strong> modification <strong>of</strong> <strong>16S</strong> rDNA analysis. For this purpose<br />

partial sequence data were used to determine species<br />

identities. The general structures <strong>of</strong> <strong>16S</strong> rRNAs and rDNAs<br />

comprise highly conserved and variable regions. Sequence<br />

alignments <strong>of</strong> the Campylobacter <strong>16S</strong> rDNA operon revealed<br />

four highly variable regions, termed Vc6, Vc5, Vc2, and Vc1.<br />

These regions represent the highly variable areas V6 (Vc6), V5<br />

(Vc5), V2 (Vc2), and V1 (Vc1) <strong>of</strong> the procaryotic <strong>16S</strong> rRNA<br />

(rDNA) (35). The sequences <strong>of</strong> the Vc regions exhibited high<br />

levels <strong>of</strong> diversity among the different Campylobacter species<br />

but displayed fixed patterns within the species themselves.<br />

Nearly all Campylobacter species displayed characteristic sequence<br />

patterns and could be clearly discriminated (Table 3).<br />

The exception was a lack <strong>of</strong> differentiation among the taxa C.<br />

coli and C. jejuni and atypical C. lari isolates, which had already<br />

been revealed <strong>by</strong> complete <strong>16S</strong> rDNA analysis. Analysis <strong>of</strong> the<br />

Vc regions indicated the pattern 6D-5D-2E-1D for these taxa<br />

and the two C. lari isolates. To ensure clear differentiation, we<br />

recommend PCR assays <strong>of</strong> the other gene sequences mentioned<br />

above. In addition, discrimination <strong>of</strong> certain isolates <strong>of</strong><br />

C. hyointestinalis and C. lanienae, which displayed the pattern<br />

6D-5B/5C-2C-1B, was also not possible. In these cases, however,<br />

discrimination is achieved <strong>by</strong> complete <strong>16S</strong> rDNA sequence<br />

analysis.<br />

Moreover, it is significant that complete <strong>16S</strong> rDNA as well as<br />

analysis <strong>of</strong> the Vc regions can be used to discriminate closely<br />

related taxa, such as Bacteroides ureolyticus or Helicobacter and<br />

Arcobacter, from Campylobacter species. This is important,<br />

since these pathogens possess few phenotypic criteria which<br />

could serve as useful markers for their unambiguous identification.<br />

For instance, both Helicobacter pullorum and Arcobacter<br />

butzleri have habitats (e.g., pigs and chicken) and disease<br />

associations (e.g., gastroenteritis) similar to those <strong>of</strong> several<br />

campylobacters, contributing to their misidentification as campylobacters<br />

<strong>by</strong> conventional phenotypic tests (1, 21, 36, 46, 52).<br />

We conclude that comparisons <strong>of</strong> <strong>16S</strong> rDNA sequences provide<br />

a substantially improved basis for the identification and<br />

differentiation <strong>of</strong> campylobacter species. Focused analysis <strong>of</strong><br />

the variable regions <strong>of</strong>fers the ability to identify nearly the<br />

same range <strong>of</strong> species as whole-gene analysis, however, with<br />

the advantages <strong>of</strong> higher efficiency and lower cost. Although<br />

the significant pathogens C. jejuni, C. coli, and C. lari cannot be<br />

reliably discriminated <strong>by</strong> use <strong>of</strong> the <strong>16S</strong> rDNA data, the approach<br />

reported here <strong>of</strong>fers obvious advantages over existing<br />

methods. At present, no other singular method has the ability<br />

to identify such an extensive range <strong>of</strong> Campylobacter species.<br />

Furthermore, identification and differentiation are achieved<br />

within 2 days, in contrast to standard biochemical identification,<br />

which may take more than a week or which may even fail<br />

to provide reliable results for certain strains. The addition <strong>of</strong><br />

47 campylobacter sequences to the database should prove valuable<br />

for clinical microbiologists using <strong>16S</strong> rDNA-based analysis<br />

during routine identification. In addition, we expect that the<br />

detailed description <strong>of</strong> the variable <strong>16S</strong> rDNA regions provided<br />

here will facilitate the design <strong>of</strong> species-specific probes,<br />

PCR assays, and oligonucleotide arrays, which will further improve<br />

the ability to identify campylobacters from various specimens.<br />

ACKNOWLEDGMENTS<br />

We are grateful to Karl Bauer, Klemens Fuchs, and Rainer Rosegger<br />

for helpful discussions. We thank the following colleagues for<br />

providing us with Campylobacter strains: S. Hum (Camden, Australia),<br />

I. Moser (Berlin, Germany), G. Kirpal (Hannover, Germany), E. Pohl<br />

(Aulendorf, Germany), E. H<strong>of</strong>er and J. Flatscher (Mödling, Austria),<br />

and R. Krause, B. Ursinitsch, and K. Helleman (Graz, Austria).<br />

REFERENCES<br />

1. al Rashid, S. T., I. Dakuna, H. Louie, D. Ng, P. Vandamme, W. Johnson, and<br />

V. L. Chan. 2000. <strong>Identification</strong> <strong>of</strong> Campylobacter jejuni, C. coli, C. lari, C.<br />

upsaliensis, Arcobacter butzleri, and A. butzleri-like species based on the glyA<br />

gene. J. Clin. Microbiol. 38:1488–1494.<br />

2. Bisping, W., and G. Amtsberg. 1988. Genus: Campylobacter, p.215–231. In<br />

Colour atlas for the diagnosis <strong>of</strong> bacterial pathogens in animals. Paul Parey<br />

Scientific Publishers, Berlin, Germany.<br />

3. Blaser, M. J. 1997. Epidemiologic and clinical features <strong>of</strong> Campylobacter<br />

jejuni infections. J. Infect. Dis. 176:103–105.<br />

4. Bolton, F. J., D. Coates, D. N. Hutchinson, and A. F. Godfree. 1987. A study<br />

<strong>of</strong> thermophilic campylobacters in a river system. J. Appl. Bacteriol. 62:167–<br />

176.<br />

5. Brosius, J., M. L. Palmer, P. J. Kennedy, and H. F. Noller. 1978. Complete<br />

nucleotide sequence <strong>of</strong> a <strong>16S</strong> ribosomal RNA gene from Escherichia coli.<br />

Proc. Natl. Acad. Sci. USA 75:4801–4805.<br />

6. Cha, R. S., and W. G. Thilly. 1995. <strong>Specific</strong>ity, efficiency, and fidelity <strong>of</strong> PCR,<br />

p. 37–51. In C. W. Dieffenbach and G. S. Dveksler (ed.), PCR primer: a<br />

laboratory protocol. Cold Spring Harbor Laboratory Press, Cold Spring<br />

Harbor, N.Y.<br />

7. Clayton, R. A., G. Sutton, P. S. Hinkle, Jr., C. Bult, and C. Fields. 1995.<br />

Intraspecific variation in small-subunit rRNA sequences in GenBank: why<br />

single sequences may not adequately represent prokaryotic taxa. Int. J. Syst.<br />

Bacteriol. 45:595–599.<br />

8. Denis, M., C. Soumet, K. Rivoal, G. Ermel, D. Blivet, G. Salvat, and P. Colin.<br />

1999. Development <strong>of</strong> a m-PCR assay for simultaneous identification <strong>of</strong><br />

Campylobacter jejuni and C. coli. Lett. Appl. Microbiol. 29:406–410.<br />

9. Drancourt, M., C. Bollet, A. Carlioz, R. Martelin, J.-P. Gayral, and D.<br />

Raoult. 2000. <strong>16S</strong> ribosomal DNA sequence analysis <strong>of</strong> a large collection <strong>of</strong><br />

environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol.<br />

38:3623–3630.<br />

10. Duim, B., P. A. Vandamme, A. Rigter, S. Laevens, J. R. Dijkstra, and J. A.<br />

Wagenaar. 2001. Differentiation <strong>of</strong> Campylobacter species <strong>by</strong> AFLP fingerprinting.<br />

Microbiology 147:2729–2737.<br />

11. Duim, B., J. A. Wagenaar, H. P. Endtz, J. R. Dijkstra, and P. A. R. Vandamme.<br />

2001. <strong>Identification</strong> <strong>of</strong> distinct genogroups <strong>of</strong> C. lari with AFLP and<br />

protein pr<strong>of</strong>ile analysis. Int. J. Med. Microbiol. 291(Suppl. 31):143.<br />

12. Endtz, H. P., J. S. Vliegenthart, P. Vandamme, H. W. Weverink, N. P. van<br />

den Braak, H. A. Verbrugh, and A. van Belkum. 1997. Genotypic diversity <strong>of</strong><br />

Campylobacter lari isolated from mussels and oysters in The Netherlands. Int.<br />

J. Food Microbiol. 34:79–88.<br />

13. Engberg, J., S. L. W. On, C. S. Harrington, and P. Gerner-Schmidt. 2000.<br />

Prevalence <strong>of</strong> Campylobacter, Arcobacter, Helicobacter, and Suturella spp. in<br />

human fecal samples as estimated <strong>by</strong> reevaluation <strong>of</strong> isolation methods for<br />

campylobacters. J. Clin. Microbiol. 38:286–291.<br />

14. Etoh, Y., A. Yamamoto, and N. Goto. 1997. Intervening sequences in the <strong>16S</strong><br />

rRNA genes <strong>of</strong> Campylobacter sp.: diversity <strong>of</strong> nucleotide sequences and<br />

uniformity <strong>of</strong> location. Microbiol. Immunol. 42:241–243.<br />

15. Fox, G. E., J. D. Wisotzkey, and P. Jurtshuk, Jr. 1992. How close is close: <strong>16S</strong><br />

rRNA sequence identity may not be sufficient to guarantee species identity.<br />

Int. J. Syst. Bacteriol. 42:166–170.<br />

16. Gonzalez, I., K. A. Grant, P. T. Richardson, S. F. Park, and M. D. Collins.<br />

1997. <strong>Specific</strong> identification <strong>of</strong> the enteropathogens Campylobacter jejuni and<br />

Campylobacter coli <strong>by</strong> using a PCR test based on the ceuE gene encoding a<br />

putative virulence determinant. J. Clin. Microbiol. 35:759–763.<br />

Downloaded from jcm.asm.org at UNIVERSITATSBIBLIOTHEK on June 1, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!